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Estimating shadow price for symbiotic nitrogen
and technical efficiency for legume-based
conservation agriculture in Malawi

Robertson R. B. Khataza, Atakelty Hailu, Marit E. Kragt
and Graeme J. Doole'

Determining the value of legumes as soil fertility amendments can be challenging, yet
this information is required to guide public policy and to incentivise prescribed land-
management practices such as conservation agriculture. We use a directional input
distance function (DIDF) to estimate shadow prices for symbiotic nitrogen and the
technical efficiency for mixed maize-legume production systems in Malawi. The
shadow prices reflect the trade-off between fertiliser nitrogen and symbiotic nitrogen
required to achieve a given quantity of output. Our results reveal considerable
technical inefficiency in the production system. The estimated shadow prices vary
across farms and are, on average, higher than the reference price for commercial
nitrogen. The results suggest that it would be beneficial to redesign the current price-
support programs that subsidise chemical fertilisers and indirectly crowd-out organic
soil amendments such as legumes.

Key words: Africa, biological nitrogen fixation, directional distance function,
efficiency and productivity, sustainable agricultural intensification.

1. Introduction

Legumes are an important component of smallholder farming systems in
sub-Saharan Africa (Sanginga 2003; Giller et al. 2009). Besides crop
outputs, legume-based cropping systems (henceforth LBCS) supply a
variety of indirect benefits that are essential for sustainable agricultural
intensification (Giller ez al. 2009; Jensen et al. 2012; Preissel et al. 2015).
For example, LBCS can help to suppress parasitic weeds and pest/disease
incidence recurring from the use of monoculture. In addition to breaking
the disease cycle and controlling weeds, LBCS maintain soil fertility
through nutrient recycling and prevention of soil erosion (Giller et al. 2009;
Preissel et al. 2015). Thus, the organic soil amendments supplied through
LBCS can reduce the need, at least partly, for commercial fertiliser
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Estimating TE and shadow price for LBCS 463

application and can hence lower farm investment costs (Pannell and
Falconer 1988; Sanginga 2003; Mafongoya et al. 2007). Furthermore, as
part of a soil-nitrogen management plan, LBCS represent a cheap form of
abatement to reduce nitrogen leachates associated with excessive fertiliser
use (Jensen et al. 2012). However, the values of LBCS benefits, particularly
the nutrient-recycling function, have not been adequately studied. This is
partly because the nitrogen derived from legume association is an
intermediate resource, which is neither directly observable nor traded in
commodity markets, and thus difficult to value through direct market
prices. Instead, valuing biological nitrogen derived from legume-based
symbiotic fixation process (LBSF-N) requires the application of indirect
methods, such as shadow pricing (Piot-Lepetit and Vermersch 1998;
Reinhard et al. 1999; Fare et al. 2009).

Valuing soil fertility benefits can help ascertain the economic importance of
LBCS and justify the role of legumes in conservation agriculture and
sustainable environmental management. Currently, legume intensification is
being promoted in sub-Saharan Africa as one of the strategies available under
conservation agriculture (Giller et al. 2009; Thierfelder et al. 2013). For
example, in Malawi, the Government has included legume seed as part of the
targeted farm input support program. The farm-subsidy program promotes
both chemical and biological (legumes) fertilisers. Coincidentally, the impact
of conservation agriculture practices is not well researched in the case of
Malawi and other African countries (Giller et al. 2009; Thierfelder et al.
2013). Therefore, accurate information on the economic benefits of LBSF-N
will be useful for policy interventions that promote conservation agriculture
across Africa.

A few studies have attempted to value LBSF-N (Pannell and Falconer
1988; Dobereiner 1997; Smil 1999; Herridge et al. 2008; Chianu et al. 2011).
Apart from Pannell and Falconer (1988) and Schilizzi and Pannell (2001) who
use bio-economic modelling approaches to value LBSF-N, previous studies
have mainly applied the replacement-cost method to estimate the value of
LBSF-N (Smil 1999; Herridge et al. 2008; Chianu et al. 2011). The
replacement-cost method is based on an assumption that the two alternative
inputs being valued are perfectly substitutable; thus, the estimates arising
from this method do not capture changes in the degree of input substi-
tutability. We address this limitation by adopting an econometric approach,
and use the ratio of marginal products to determine the degree of
substitutability between a pair of inputs. In our approach, we apply the
directional input distance function (DIDF) technique to estimate shadow
prices for LBSF-N. The estimated shadow price reflects the trade-off between
nitrogen from commercial fertilisers and LBSF-N, required to produce a
given quantity of output. Accordingly, this shadow price represents the
benefit of using LBSF-N as a production input.

The paper makes a contribution to the literature in two ways. First, we
demonstrate the application of a DIDF to value the contribution of LBSF-
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N as a factor of production. To the best of our knowledge, this is the first
study to apply DIDF to value LBSF-N. Although a nonfrontier production
function could be used to determine shadow prices, as in Barbier (1994) and
Magnan et al. (2012), such an approach does not account for inefficiencies.
Given the extent of inefficiency routinely reported in studies evaluating the
performance of smallholder agriculture, it is more appropriate to use more
general frameworks that allow for the estimation of both inefficiency and
shadow prices. Compared to other frontier-based approaches, the DIDF
represents a flexible technique that can derive an inefficiency measure that
accounts for possible input reductions. With the DIDF, it is possible to set a
uniform translation vector that evaluates the extent to which the technology
can achieve input (cost) savings (Fare and Grosskopf 2004; Fare et al. 2009;
Hailu and Chambers 2012). A key advantage of such an approach is that
the set of individual firm’s inefficiencies can be compared across farms and
summed into an aggregate measure of industry inefficiency (Fare and
Grosskopf 2004; Fare et al. 2008, 2009; Hailu and Chambers 2012). An
alternative distance function specification is the radial approach, where the
directional vector for input contraction or output expansion is data-driven
(dictated by the input or output mix for each observation) and therefore
unknown to the analyst (Fare et a/. 2008; Hailu and Chambers 2012).
Radial input (output) distance function values reflect the highest (lowest)
possible proportionate reduction in inputs (outputs) and thus provide only
relative measures of inefficiency (Hailu and Veeman 2000). Further, the
DIDF, like its radial distance function counterpart, can be used to represent
multi-input, multi-output production technologies (Hailu and Veeman
2000). Our second contribution is on the application of a bootstrapping
technique, within the DIDF method, to test the robustness of the estimates
(Canty 2002; Canty and Ripley 2015). By using the bootstrapping
technique, we are able to get a sense of the variability surrounding shadow
price and technical efficiency estimates.

The rest of the paper is organised as follows. In the next section, we present
a theoretical representation of the DIDF, followed by empirical estimation
procedures. We describe the study site and data in Section 4. Finally,
empirical results are discussed in Section 5 and conclusions are presented in
Section 6.

2. Theoretical model

The productive efficiency of a firm is determined by comparing its inputs and
outputs against the boundaries of the best-practice frontier. A firm’s measure
of inefficiency is given by how far that firm is from the frontier boundary.
Denote production inputs by x = (x1,x2,.....,xy) € RY and outputs by
y=0nyy.uym) € ERf Then, a production technology, which maps out
all feasible input—output combinations, can be defined as an input require-
ment set L(y) = {x : x can produce y}.
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Estimating TE and shadow price for LBCS 465

The directional input distance function,
DIDF(x,y;gx) = sup{p : (x — fg.,») € L(y)}, represents the technology
B

and helps to measure a firm’s level of inefficiency. The vector, g(g, € %ﬁ),
is the translation metric which maps the direction in which inputs are scaled.
Thus, the translation vector seeks to achieve input contraction in the g.-
direction. For any firm on the frontier boundary, DIDF(x, y; g.) =0,
indicating that it is technically infeasible to translate the input bundle in any
direction. Conversely, any firm below the technology frontier has a positive
distance value, DIDF(x, y; g.) > 0, such that the observed input bundle can
be translated in the direction given by g(g,).

The DIDF inherits the standard properties imposed on the production
technology L(y) (Chambers et al. 1996; Fare et al. 2008). We assume that L
() is a closed, convex, nonempty set with inputs and outputs freely
disposable (Fare et al. 2008). Other important properties of the DIDF
technology include the following: (i) representation, which implies that all
technologically feasible input—output combinations have non-negative direc-
tional distance function value, and vice versa; (ii) translation, which denotes
that adding a multiple of the direction vector to the input—output bundle
reduces the distance function by that multiple; (iii) monotonicity, which
indicates that the function is nondecreasing in inputs and nonincreasing in
outputs; and (iv) the function is concave in the input-output vector
(Chambers et al. 1996; Fare et al. 2008).

We derive shadow prices for LBSF-N by exploiting the duality relationship
between the DIDF and the cost function. Let w = (wy,w,,.....,wy) € RY
denote the vector of input prices for which the shadow cost function is given
by:

Cly,w) = inflwx : x € L(y)} (1)

Equation (1) gives the minimum cost that can be achieved, given input
price (w) and output vector y € RY. It follows from the principle of cost
minimisation that C(y, x) < wxVx € L(y). That is, the minimum cost
cannot exceed the actual cost of producing y € R®Y. Achieving input-
efficiency implies that {x — [DIDF(y,x :gy).gx] € L(y)}. Thus, for any
production situation where technical inefficiency can be reduced or
eliminated, the minimum cost ought to be lower than the actual costs as
follows:

C(y,x) <w{x — [DIDF(y, x : g).gx]} = wx — wgDIDF(y,x : gx) ~ (2)
By rearranging Equation (2), the duality relationship between the cost

function and the DIDF can be expressed as (Chambers et al. 1996; Fare et al.
2009):
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DIDF(y,x : g,) = m@“{W_TE(y’X)} ¥

Applying the envelope theorem to Equation (3) yields the following
normalised input price vector:

ODIDF :
ODIDF(x,yig) 4, .
ox,

N (4)

Wy = Wgy

Provided that the DIDF is differentiable, one can estimate partial
derivatives and use these to derive shadow prices. For any two different
inputs, n and 1, it follows that their price ratio equals the corresponding ratio
of distance function derivatives. The ratio of distance function derivatives
indicates the marginal rate of technical substitution (MRS) expressed by
(Chambers et al. 1996):

[Correction added on 17 July 2017, after first online publication: Equation 5
has been corrected]

ﬂ _ aDIDF<x7y7gX)/8xn o MPXn i
wy  ODIDF(x,y;g.)/0xy  MPx,

MRS, Vnn (5)

where w,, is the price for the nth production factor (x,), and MP, is the
marginal product derived with respect to factor x. Thus, the knowledge of
one factor price (w,) can be used to compute the price of the unknown inputs,
in this case, LBSF-N.

In addition to the marginal products, one can also obtain technical
(in)efficiency measures, if a frontier-based technical relationship is specified.
For a directional distance measure of inefficiency, zero distance indicates that
a firm is fully efficient, and a positive distance function value shows the level
of inefficiency as follows:

TI(x,y) = DIDF(x, ;) (6)

3. Empirical estimation

Both nonparametric approaches (e.g. data envelopment analysis (DEA)) and
parametric methods (e.g. stochastic frontier analysis) can be used to estimate
the DIDF parameters. We specify the DIDF as a parametric function, which
is differentiable, and thus, it is easy to recover shadow prices from it. Such a
parametric specification can be estimated either as a deterministic frontier or
as a stochastic function. In our approach, we estimate the DIDF as a
deterministic frontier using mathematical programming techniques to impose
representation, monotonicity and translation properties on the function easily
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(Fare and Grosskopf 2004; Fare et al. 2009; Hailu and Chambers 2012;
Bostian and Herlihy 2014). The stochastic frontier models could also be
estimated using maximum-likelihood methods (e.g. Coelli and Perelman
2000) or using Bayesian methods (e.g. O’Donnell and Coelli 2005; Hailu and
Chambers 2012). Although one could impose monotonicity and other
conditions using Bayesian methods, the choice of proper priors on the
parameters of frontier models is not straightforward, and the use of improper
priors could affect the accuracy of the posterior estimates (Fernandez er al.
1997, 2000). Bayesian estimation is also computationally intensive and more
difficult. Alternatively, theoretical regularity restrictions can be imposed more
easily using mathematical programming techniques, as is the case in this
study. This approach is straightforward, given the central importance of
constraints in defining the feasible space in constrained optimisation
problems.

The quadratic functional form is used because it is a flexible form that
allows for the global imposition of the translation property (Hailu and
Chambers 2012). We choose the unit directional vectors, with negative
elements for inputs and zero elements for output, so that the projection to the
frontier of an observed point seeks to contract inputs while holding the
output vector constant. Since the data are normalised by mean values, the use
of the unit vector for direction is equivalent to the use of the average sample
direction for the translation. By assigning the unit vectors, the directional
input distance function gives an estimate of the maximum unit reduction in
inputs that is feasible for a given amount of output (Fare and Grosskopf
2004; Hailu and Chambers 2012). This approach is valuable because it makes
it easier to interpret the estimated measure of technical inefficiency as
proportions of the sample mean values. Further, when a common directional
vector 1s chosen for all firms, the directional distance function measure of
inefficiency for an individual firm can be aggregated to a measure of industry
inefficiency (Fare and Grosskopf 2004; Fare et al. 2008, 2009; Hailu and
Chambers 2012). The quadratic DIDF is specified as follows:

DIDF(x,y; —1,0) = fi, + Z Bun + Z Bunym + 0.5 Z Z [
n=1 n'=
(7)

+0 SZ Z ﬁmm’ym Yt +ZZﬁmnym Xn +u

m=1m'= m=1 n=1

where y,, represents the production output under consideration, x,, is a vector
of inputs, and u represents the inefficiency term. Equation (7) is estimated in
R, using APEAR package (Hailu 2013).

The underlying distance function and parameter values (5, and u) are based
on a true, but unobserved, technology frontier. Typically, the estimated
frontier and parameters depend on a sample of observations, usually believed
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to be representative of the true population. Thus, one empirical challenge is
to mitigate the potential bias that could result from small samples and
sampling variability. Therefore, we apply nonparametric bootstrapping
techniques to explore the variability of our sample estimates. Using the
bootstrapping procedure explained in Canty (2002) and Canty and Ripley
(2015), the estimation of the function in Equation (7) was bootstrapped a
thousand times, whereby each pseudo (bootstrap) sample was drawn with
replacement from the original sample.

We start by assuming that a random sample, replicated r-times and where r
is large enough, can be used to construct the unknown population
distribution from which the original sample was drawn. Application of
Equation (7) to the bootstrap sample gives distance function parameters i,
and the distribution function F, which are considered to approximate the true
population parameters, i and F. A bootstrapping algorithm generates r-
pseudo samples which can yield consistent sample parameters lp and F. The
bootstrap sample parameters are related to the true unobserved population
parameters in the following way:

Y = fIF) & = f(F) (8)

Equation (8) shows that given a representative sample, the estimated
sample parameters can be used to recover population parameters. Through
resampling, an approximate empirical distribution can be obtained for any
statistics of interest, for example the variance and standard error. The
statistics that are generated through bootstrapping in this analysis are as
follows:

bias = E(W}) — Y =, —

azrili(lﬁﬁ—nﬁf)z; SE= || -— ZRj(tﬁf—tﬁf)z

r=1 r=1

0.5

©)

where o and SE represent the variance and standard errors of individual
parameters, respectively. For a detailed description of this bootstrapping
procedure, the reader is referred to Canty (2002) and Canty and Ripley
(2015).

4. Study area and data description

4.1 Study area

We use survey data collected from Kasungu and Mzimba districts in Malawi.
The survey was conducted in the 2013/2014 crop season. These districts are
part of the medium-altitude agro-ecological zone of the country. A
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subdivision of this agro-ecological zone is the Kasungu—Lilongwe plain. This
zone is one of the areas where LBCS are most dominant in Malawi.

The survey followed a three-stage random sampling approach. First, the
study zones were selected based on Ministry of Agriculture administrative
demarcations, known as extension planning areas (EPAs). The EPAs are
district-level administrative units established to coordinate and oversee the
execution of extension services across the country. The second step involved
the choice of an EPA section. An EPA section is the lowest unit of
administration in the Ministry of Agriculture hierarchy. Subsequently, maize-
legume producers were identified for each EPA section. This procedure was
done in order to establish a sampling frame. Third, after the selection of EPA
sections and the enumeration of maize-legume producers was completed,
face-to-face interviews were conducted with a set of randomly chosen
respondents (household heads).

4.2 Data description

The survey collected information on farm and household characteristics. We
use primary data from a sample of 135 plots, representing the mixed maize-
legume cropping system. Fifty-five per cent of the sample (74 plots) was from
Kasungu and the remainder (45 per cent) came from Mzimba district (61
plots). We recorded one maize-legume intercropped plot per producer hence
the number of producers is the same as the number of plots. The sample
represents 13 per cent and 12 per cent of the total number of maize-legume
producers enumerated in Mzimba district (453) and Kasungu district (596),
respectively. Therefore, the number of farms sampled in the two districts is
proportionately represented. However, we realise that our sample size (135
out of 1049 farms) is relatively small; hence, we employ bootstrapping
procedures to ameliorate some potential problems associated with sampling
variability. Typically, farmers intercropped maize with common beans
(Phaseolus vulgaris), groundnuts (Arachis hypogaea), or soya bean (Glycine
max). Table 1 summarises the data.

Table 1 Descriptive statistics for the variables used in the estimation (n = 135)

Variable name Unit Mean SD Min. Max.
Output

Crop output (y) Output index/acre 0.32 0.24 0.01 1.31
Inputs

Fertiliser nitrogen (x;) kg N/acre 27.33 19.78 0.00 109.00
Symbiotic nitrogen (x,) kg N/acre 0.74 1.13 0.00 11.06
Labour (x3) AEU/acre 1.88 1.28 0.18 8.05
Other variable inputs (x,) Input index/acre 1.74 1.15 0.23 8.94

Note: AEU, Adult equivalent units (1 Male-adult = 1 AEU, | Female = 0.8 AEU, 1 Child = 0.5 AEU).
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Total crop output is an implicit output-quantity index aggregated using a
multilateral Tornqgvist approach, where the contribution of each commodity
is weighted by its relative share in total crop value and the corresponding
natural logarithm of outputs (Caves er al. 1982)." Similarly, the aggregate
value for other variable inputs represents an implicit input-quantity index
comprising purchased seeds, nonfertiliser chemicals and herbicides. This
implicit input-quantity variable is deflated by a weighted price index of
expenditure share and the corresponding natural logarithm of inputs. A total
of four production inputs are included in the estimation of the input distance
function. These inputs are quantity of commercial fertiliser, family labour,
farm expenses, and symbiotic nitrogen. The quantity of commercial fertiliser
is expressed in kilograms of total nitrogen as the major active ingredient
contained in the fertilisers used in production. The main mineral fertilisers
used in the maize-based production in Malawi are Urea, Calcium Ammo-
nium Nitrate, and 23:21:0 + 4S. These three fertilisers, respectively, contain
46 per cent, 27 per cent, and 23 per cent nitrogen (N). Family labour is
converted to adult equivalent units (AEU), which represents farm labour
supply measured in terms of full-time equivalent employees. The computation
of AEU is based on the conversion factors as follows: one adult male
(15 years of age and over, working on a full day-basis) represents one AEU,
whereas one adult female working for a full day represents 0.8 AEU, and one
child (5-14 years) working for a full day represents 0.5 AEU. Overall, the
data presented in Table 1 show wide variations in terms of the input—output
combinations, which reflects farm heterogeneity regarding resource endow-
ment and managerial ability, among other factors.

Symbiotic nitrogen (LBSF-N) is included as an additional source of
nitrogen, which is available to the component crops through intercropping
and legume rotation. LBSF-N values are not directly observable. However,
the literature currently contains abundant LBSF-N estimates that are
obtained using reliable measurement methods, such as >N-based techniques
(Peoples et al. 2009; Ronner and Franke 2012). We use published LBSF-N
estimates to compute the amount of symbiotic N fixed on agricultural land.
The quantity of symbiotic nitrogen was computed based on the harvest-index
method, which relates plant biomass, nitrogen concentrations, and the
proportion of atmospheric nitrogen fixed (Hogh-Jensen ez al. 2004; Herridge
et al. 2008; Peoples et al. 2009). Alternatively, one could use total area under
leguminous crops to quantify the amount of farm-level symbiotic nitrogen
fixation. However, we prefer to use grain-weight because the quantity and
quality of grain harvested also reflects the growth conditions in which the
crop developed and matured (Stern 1993). Thus, crop productivity (yield) is

! We thank an anonymous reviewer for this suggestion. The translog multilateral output
(input) index for the kth farm is given by: Ind; =0.5% (Rf + R;)(IngF —Ing;), where R
represents revenue (expenditure) share for the ith commodity (input) and ¢ is the
corresponding output (input) quantity.
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used as an indirect measure of soil quality (fertility) and captures potential
differences in soil quality across farms. Computation details for LBSF-N are
provided in the appendix and summarised in Table S1.

Legume-based symbiotic fixation process was estimated for two cropping
practices, namely, intercropping and crop rotation. LBSF-N from intercrop-
ping was estimated using the harvest-index method (see Table S1), whereas
that from crop rotation was estimated using coefficients obtained from fitting
a crop-response model (Stauber and Burt 1973; Stauber et al. 1975; Frank
et al. 1990). The crop-response model was specified as a quadratic function to
allow for diminishing marginal productivity as follows:

Ve =0+ N, + oox; + OC3N,2 + 0<4X,2 +asN;.x, + oagN— + & (10)

where y, is output in the current season ¢, N, is the quantity of nitrogen
applied in the current season, N,_; is the carry-over nitrogen from the
previous season, x represents other factors of production, and ¢ is the random
error term. Table S2 shows the results of the crop-response model.

In our sample, crop rotations had been adopted on 61 farms (45 per cent).
Out of these 61 farms, 72 per cent were legume-maize rotations and most of
the remaining (23 per cent) were tobacco-maize rotations. Further, 52 per
cent of the sample (135 farms) practised in-situ crop residue retention, a
practice aimed at enhancing soil productivity through residue mineralisation.
We used this plot-history data to test whether crop rotation has significant
effects on land productivity (i.e. crop yield) and the evidence suggests positive
incremental effects (Table S2). The net residual nitrogen was then estimated
implicitly as a ratio of input elasticities for the intercropped LBSF-N and the
rotation variables.

5. Results and discussion

The coefficient estimates of the directional input distance function are
reported in Table S3. The estimated first-order coefficients have the expected
signs: they are positive for inputs and negative for output variables, with
generally small standard errors.

5.1 Estimated measure of technical efficiency

Recall that technical inefficiency is given by the relative distance to the
frontier and the shorter the distance, the more efficient the production unit is.
Table 2 presents the results of the DIDF measure of technical inefficiency
(TI). The DIDF estimates reveal a considerable level of inefficiency for the
sample farms. Only 31 farms (representing 23 per cent of the total sample)
were operating at maximum efficiency. The mean TI obtained from the
bootstrap model is 0.52, compared to 0.47 from the base model. The TI
obtained using the base (nonbootstrap) model is significantly lower than that
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Table 2 Estimated directional input distance function measure of technical inefficiency (TI)

Mean inefficiency SE [95 per cent confidence interval]
Base model 0.47 0.03 0.41 to 0.53
Bootstrap model 0.52 0.06 0.40 to 0.64

obtained using the bootstrap model (P < 0.1). Therefore, the base model
underestimates technical inefficiency. Generally, it is the bootstrap estimates
that are considered plausible and robust (Mugera and Ojede 2014). Thus, the
TI estimate of 0.52 implies that if the average farmer operated efficiently, she
or he could produce the same output with an input bundle that is smaller by
52% of the mean input values reported in Table 1. For example, a producer
who used 27.33 kg per acre of nitrogen fertiliser could have used 13.12 kg per
acre of this input to produce the average output.

Our findings are comparable with previous studies conducted in the region,
although few studies have applied directional distance functions on African
agriculture. For example, using a directional distance function, Singbo and
Lansink (2010) reported mean inefficiency of 0.20 for the Beninese rice and
vegetable production system. In another study, Singbo et al. (2014) evaluated
the performance of vegetable production in Benin and reported TI of 0.14
and marketing inefficiency of 0.25. Mulwa and Emrouznejad (2013) evaluated
the performance of sugarcane production in Kenya and estimated TI to be
0.14. Collectively, this evidence shows that there is substantial scope for
improving performance in the studied production systems and African
agriculture in general.

5.2 Morishima elasticity of input substitution

The Morishima elasticity of substitution (MES) provides complete informa-
tion about input substitutability in cases where a production technology has
more than two inputs (Blackorby and Russell 1989). The MES measures the
degree of curvature of the isoquant or the relative change in shadow prices
associated with a unit change in the ratio of the corresponding inputs
(Grosskopf et al. 1995). We calculate the indirect Morishima elasticities to
get a sense of the ease with which one input can be substituted for another in
the production process. Equation (11) shows the MES derived from the
distance function approach (Blackorby and Russell 1989; Grosskopf et al.
1995):

. [DIDF,y DIDF,,
X, -
"| DIDF,  DIDF,

MES,,y = (11)

where x; is the frontier value of input (input level adjusted for inefficiency),
and DIDF,, and DIDF,,, are the first-order and second-order derivatives of
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Table 3 Estimates of the indirect Morishima elasticity of input substitution

f s / 0
f —0.89 [-2.21 to 0.43] 1.11 [-0.23 to 2.45] 1.06 [—0.29 to 2.40] 1.76 [0.20 to 3.33]
s 0.26 [0.10 to 0.42] —0.13 [-0.20 to —0.07] 0.01 [0.01 to 0.02] 0.27 [0.14 to 0.39]
l 0.30 [0.23 to 0.36] 0.03 [0.02 to 0.04] —0.19 [-0.24 to —0.15] 0.70 [0.28 to 1.13]
0 3.79 [0.11 to 7.48] 2.08 [0.58 to 3.58] 2.10 [0.59 to 3.61] —3.70 [-7.33 to —0.08]

Note: f, fertiliser nitrogen, s, symbiotic nitrogen, /, family labour; o, other input costs.

the directional input distance function, respectively. The MES estimates are
reported in Table 3.

The sign and size of the MES are important: the elasticity sign helps to
classify inputs as substitutes or complements, whereas the size of the elasticity
indicates the degree of substitutability or complementarity. Inputs n and n’
are considered to be Morishima substitutes if MES,,, <0, or complements if
MES,,» > 0. High MES values show a low degree of substitution while low
values indicate relative ease of substitution (Grosskopf et al. 1995). As shown
in Table 3, the MES elasticities are generally asymmetric (M ES,,,y # MES,,,).
For example, the substitution of commercial fertiliser for symbiotic nitrogen
gives an elasticity value of 1.11, whereas the reverse yields 0.26. The size and
sign of the elasticities suggest that the two inputs are partially substitutable;
thus, increasing fertiliser nitrogen to replace symbiotic nitrogen is relatively
difficult, but the reverse is relatively easy.

5.3 Estimates of LBSF-N shadow prices

We apply Equation (5) to obtain shadow prices for LBSF-N. Table 4 gives a
summary of shadow prices for the base and bootstrap models. The value of
LBSF-N is estimated as a fraction of the average market price for commercial
nitrogen. The price of commercial N is US$2.11/kg N, based on the 2013/14
crop-season price of fertiliser nitrogen (Urea) which was selling at
MWK17,000 per 50 kg bag (1 US$ = 350 MWK). The shadow price values
are positive and range from 1.01 to 22.23 US$/kg, when evaluated using the
95 per cent confidence interval.® The mean shadow price for LBSF-N is
estimated to be US$5.26/kg for the bootstrap model, and US$20.1/kg for the
base model. The difference between the two mean shadow prices is
statistically significant (P < 0.01). We note that both the base and the

2 The possibility that shadow prices could be sensitive to heterogeneities in soil quality has
been pointed out by an anonymous reviewer. However, in the absence of explicit soil quality
data, we believe that crop yield is a good proxy indicator to reflect potential differences in soil
quality attributes across farms. In addition, if farmers aim to optimise investment returns, then
their input allocation decisions, for example, fertiliser application will tend to approximate the
prescribed agronomic recommendations which are based on soil quality differences across the
country (Benson 1997). Since we only have input and output data, we consider that using the
ratio of marginal products (input substitution effects) is the most reasonable approach that
accounts for the differences in farm characteristics as well as farmer characteristics. As a result,
the estimated shadow prices correspondingly vary across farms.
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Table 4 Estimated shadow prices for symbiotic nitrogen (US$/kg N)

Mean SE [95 per cent confidence interval]
Base model 20.10 1.07 17.98 to 22.23
Bootstrap model 5.26 2.15 1.01 to 9.51

bootstrap models yield average shadow prices that are higher than the
reference market price of US$2.11/kg N. The estimated shadow values can be
interpreted as the opportunity cost of using LBSF-N in terms of foregone
commercial nitrogen, keeping output constant. An alternative interpretation
of shadow price values is to regard them as surrogate or implicit prices for a
nonmarket good (LBSF-N). In this regard, the commercial fertiliser market
could serve as a proxy market for LBSF-N. Thus, our estimated mean
shadow price of US$5.26/kg could serve as an appropriate accounting value
for fertiliser cost-savings, achieved as a result of substituting LBSF-N for
fertiliser N. This shadow price represents the per-unit benefit that a producer
would gain by using LBSF-N as a substitute for fertiliser nitrogen (Bond and
Farzin 2007). For example, a farm operating without any unit of fertiliser N
would increase crop output-value by US$5.26 if an extra kilogram of LBSF-
N were available in the soil.

Because shadow prices for LBSF-N are not readily available in the
literature, we compare our estimates against somewhat related environmental
services. Table 5 presents these studies. The analysis of sustainable intensi-
fication or best management practice most closely related to ours is an
application by Bond and Farzin (2007), which deals with the effect of low
input production system using legume cover-crops, herbicides, and air
pollution in California, USA. Unfortunately, due to limitations in their soil
quality data, the study did not include shadow prices for nonmarketable
inputs (legume-fertiliser effects). Other studies that have treated nitrogen
leachate from agricultural sources as a bad output are Shaik er al. (2002),
who studied the effect of organic and inorganic fertilisers in the USA;
Reinhard et al. (1999), who assessed the Dutch dairy industry; and Piot-
Lepetit and Vermersch (1998), who analysed the French pork sector. From
these studies, the estimated shadow prices for excess nitrogen are reported to
be in the range of US$2.00-4.77/kg for the US study, US$1.86/kg for The
Netherlands, and US$0.14-1.02/kg for the French pork sector. Recently,
Hou et al. (2015) estimated the cost of soil erosion and nitrogen loss in the
Chinese Ansai region. From this study, the cost of soil erosion and nitrogen
loss are estimated to be US$0.02 per kg/ha and US$0.06 per kg/ha,
respectively. The reviewed studies show variations in the estimated shadow
price values. The variation in the shadow price estimates in the above studies
is not surprising because each study dealt with a different subsector that could
differ in a number of ways, including operational scale and local environ-
mental conditions at the study locations. Nevertheless, our results are close to
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the estimates for the US and the Netherlands (Reinhard ez al. 1999; Shaik
et al. 2002).

6. Conclusions

The challenge of maintaining or improving agricultural productivity in sub-
Saharan Africa is enormous. As such, agricultural researchers and policy-
makers are constantly looking for technologies that are economically
attractive and environmentally sound. The best strategy to improve produc-
tivity and maintain soil fertility in sub-Saharan Africa should focus on a
combination of both inorganic and organic fertilisers for maximum comple-
mentary benefits (Mafongoya et al. 2007). However, research evidence shows
low adoption of integrated soil fertility management practices, which includes
legume cultivation (Giller er al. 2009). A better understanding of the value of
these legume systems is needed to develop more effective economic incentives
that would facilitate the adoption of best management practices and reward
soil conservation efforts.

Using the directional input distance function approach (DIDF), this study
appraised the value of symbiotic nitrogen and estimated the technical
efficiency of legume-based cropping systems (LBCS) in Malawi. Our results
reveal two major findings. First, the results show that smallholder farmers
exhibit substantial production inefficiency, with a mean directional ineffi-
ciency value of 0.52. By addressing this production inefficiency, an average
farm could reduce each of the four inputs by 52 per cent while output remains
constant. Second, the average shadow price for symbiotic nitrogen (LBSF-N)
is higher than the observed market price for commercial nitrogen fertiliser.
The shadow price values of symbiotic nitrogen (and LBCS) reflect only
productivity benefits achieved without applying any unit of chemical
fertilisers. The total value of LBCS could be greater if other environmental
services and socio-economic benefits, such as their value as a disease break
and for reducing soil erosion, are accounted for.

In the interest of maintaining a productive stock of soil capital, market-
based mechanisms could be used to help enhance legume production and
promotion of conservation agriculture. However, given the prevailing market
prices, our estimated elasticities of input substitution demonstrate that a
complete substitution to organic fertilisers can be detrimental to farm
productivity. This result infers that complete conversion to organic produc-
tion will require some compensation to farmers, for example through higher
output prices, for such a substitution to be profitable. Therefore, one of the
possible policy options to incentivise farmers’ investments in conservation
agriculture is to facilitate price premiums for commodities produced from
sustainably managed farms, such as LBCS. For example, recent studies have
shown that some farmers in other African countries such as Ghana, Kenya,
and Uganda are benefiting from price premiums received as a result of
participating in certification programs targeting low input sustainable
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agricultural production systems (Bolwig et al. 2009; Kleemann and Abdulai
2013; Ayuya et al. 2015). Thus, price premiums can provide incentives to
farmers to invest in legume-based conservation agriculture as part of the
integrated soil fertility management strategies.

Organic soil amendments build long-term soil fertility benefits that are
usually heavily discounted by land users, who mostly seek to maximise their
present farm benefits. As a result, there is less investment in conservation
practices by the land users, partly because produce from such low input
sustainable agricultural systems are considered as nondifferentiated products.
Thus, the prevailing commodity prices fail to incentivise conservation
agriculture. We contend that price premiums could be a better alternative
and a more cost-effective policy instrument for promoting LBCS than the
subsidies or public-support programs that are currently being used to
promote legume production in Malawi and other African countries. We
therefore recommend that future research should investigate the potential
demand for produce from sustainably managed farms, and also mechanisms
through which farmers can be integrated into existing or emerging regional
and export markets for such products. Specifically, policymakers could focus
on creating and promoting an enabling environment that allows the potential
benefits of LBCS to be fully exploited by: (i) promoting knowledge about soil
and other benefits of the integrated cropping systems; (ii) supporting more
sustainable production processes (e.g. through certification and labelling
requirements); and (iii) channelling support from current input subsidies to
the support of extension and market development activities.
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