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The Impact of Climate Change on Chemical Inputs: 

Evidence of Pesticide Usage from China 

Abstract 

Pesticides have been applied widely to prevent, mitigate, or destroy pests and 

diseases to improve crop yield and quality. However, under climate change, 

including the change in the spatiotemporal distribution of temperature and 

precipitation, pest pressure and optimal pesticide application rates are likely to 

vary, thereby pesticide use is expected to be affected. In this study, we systemically 

assess the impact of climate change on pesticide use by examining regional 

variations and the effects of extreme weather using a novel panel from China 

during 1998-2016. Meanwhile, this study pioneers in using the chain rule to 

decompose the aggregate of influence of climate change into three components, 

namely, effects of planted area, intensity, and structure. The results show that 

pesticide usage trends to first increase and then to decrease as the temperature 

rising and daily precipitation increasing. Moreover, the impact of climate change 

on pesticide use varies across regions. The northeast regions of China is more 

sensitive to climate change in pesticide use than the other regions. Considering 

strict land constraints, this study furthermore shows that intensive effects 

dominate the impact of climate change on pesticide use. Intensive effect dominates 

93 percent of the temperature impact and dominates 145 percent of the 

precipitation impact. 

Keywords: Climate change; Pesticide usage; Decompose; Maximum entropy 
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The Impact of Climate Change on Chemical Inputs: 

Evidence of Pesticide Usage from China 

1 Introduction 

To increase food security, agriculture has become increasingly dependent on 

pesticide with these chemicals emitting into atmosphere, pedosphere and 

hydrosphere. Regular inflow and high persistence can lead to high pesticide 

concentrations in environmental compartments over time and affect non-target 

species, hence they have adverse impacts on the environment and human health. 

For example, grain production has doubled over the last 40 years as a consequence 

of changes in plant protection and other agricultural technology, including a 15–

20-fold increase in pesticide use worldwide. The use of pesticides causes adverse 

externalities on human health and environment. For example, for every 100 

agricultural workers, between one and three suffer acute pesticide poisoning, 

leading to many thousands of fatalities; developing countries experience 99% of 

the deaths while using 25% of the world’s production of pesticides (Chakraborty 

and Newton 2011). However, these impacts might be sensitive to climate change 

because pest pressure and optimal pesticide application rates vary with weather 

and climate conditions (Koleva and Schneider 2009; Noyes et al. 2009; Olesen and 

Bindi 2002). Given the general acceptance of major climate change effects, it is 

obvious that an effect on pesticide use can also be expected. 

 

It is ecologically difficult to completely seize the links between climate and 

pesticide usage given the high degree of complexity of the relationship. The 

impacts of climage change on pesticide use include several pathways. First, climate 

change can reduce concentrations of pesticides due to a combination of increased 

volatilization and accelerated degradation, both strongly affected by a high 

moisture content, elevated temperatures and direct exposure to sunlight (Delcour, 

Spanoghe, and Uyttendaele 2015; Noyes et al. 2009). Typically, global warming is 
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acknowledged to accelerate the degradation of chemical components due to 

accelerated microbial and chemical reaction rates and may reduce concentrations 

of pesticides in the environment (Bloomfield et al. 2006; Delcour et al. 2015). In 

general, timing and intensity of rainfall influence pesticide persistence and 

efficiency (Rosenzweig et al. 2001). Pesticide uptake and transport in plants, are 

affected by precipitation and will be limited in case of decreased transpiration 

under dry circumstances. Typically, elevated soil moisture contents and increased 

precipitation, also enhance pesticide degradation (Noyes et al. 2009).  

 

Second, altered climate conditions can create a thriving environment for insect 

and pathogen attacks. Higher temperatures and wetter conditions may allow 

faster development times for weeds, pests and diseases, and probably allow for 

additional generations within a year (Bale et al. 2002; Bloomfield et al. 2006; Goel, 

McConnell, and Torrents 2005; Rosenzweig et al. 2001). Moreover, warmer 

winters reduce winterkill, and consequently, increase insect populations in 

subsequent growing seasons. Wet conditions bring on severe insect and plant 

pathogen infestations. Excessive soil moisture may drown soil-residing insects 

(Rosenzweig et al. 2001). Drought changes the physiology of host species, leading 

to changes in the insects that feed on them, and can reduce populations of friendly 

insects (such as predators or parasitoids), spiders and birds, influencing the 

impact of pest infestations.  

 

Third, climate change seems likely to change the growth rate of crops that would 

indirectly change the pesticide usage. Higher temperatures and increased CO2 

concentrations, associated with a substantial change in photosynthetic activity, 

promote plant growth and expansion. A high growth rate can cause a dilution of 

the absorbed pesticide concentration in plants, decreasing the pesticide residue 

(Delcour et al. 2015; Patterson et al. 1999). A lengthening of the active growing 

season potentially allows for increased farming. This possibility might result in 

increased pesticide use. Pesticide uptake and transport in plants, are affected by 
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precipitation and will be limited in case of decreased transpiration under dry 

circumstances.  

 

Fourth, there are indications that climate change causes phenology and 

geographic distribution changes in a wide range of ecosystems. Research figures 

out that infestations often coincide with modifications in climate conditions 

(Jackson et al. 2011; Rosenzweig et al. 2001). This is not illogical as temperature 

affects not only the availability of host plants and refuges, but also improves 

dispersal, migration and population characteristics such as reproduction and 

growth rates (Delcour et al. 2015). For instance, warmer winters will exceed the 

threshold for diapause at the southern edge of the range and distributions will 

shift north, thus many of specifies will expand their geographical ranges to higher 

latitude and altitudes(Bale et al. 2002). It is probable that the geographical ranges 

of these species will expand northwards in a warmer climate. 

 

Once farmers’ adaption behavior was considered, the impact of climate change on 

pesticide use will become more complicated. For example, because of the reduced 

pesticide tolerance of crops under stress, the use of another range of new 

pesticides will possibly be needed. On the other hand, a shift in the use of certain 

classes of current pesticide products is the most probable evolution (Delcour et al. 

2015). Moreover, changes in crop management techniques, particularly reducing 

the intensification of cropping, increase of crop rotations and reduction in 

monocultures, could decrease the activity of pests.  

 

There have been few studies investigating the relationships between pesticides 

and climate change (Bloomfield et al. 2006). Chen and Mccarl (2001) used state 

level pesticide usage data and examined the effect of climate variations on the 

average and variability of U.S. per area pesticide costs across the U.S. as a proxy for 

investigating the consequence for pest populations. They found that the increases 

of rainfall and temperature increase the pesticide usage. The impacts of 
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temperature and rainfall on the cost variability vary across crops. Overall, crop 

damage by pests and weeds is a consequence of complex ecological dynamics 

between two or more organisms, and therefore, is difficult to estimate and predict. 

 

This paper contributes to the investigation of the relationship between pesticide 

usage and climate change using a novel panel of 2,657 counties in China from 1998 

to 2016. Given the high degree of complexity of the link between climate and 

pesticide usage, empirical analysis will bring more insights that can help 

policymakers measure the comprehensive costs of climate change. We 

systemically assess the impact of climate change on pesticide usage by examining 

regional and seasonal variations. This study pioneers in using the chain rule to 

decompose the aggregate of influence of climate change into three components, 

namely, effects of planted area, intensity, and structure. Moreover, this study 

contributes in providing a maximum entropy approach to recover crop specific 

pesticide usage at county level to dissolve the challenge of data limitation.  

 

The results show that pesticide use is associated with temperature, precipitation, 

and extreme weather. We found that there is a non-linear relationship between the 

growing season temperature and pesticide usage. In this case, pesticide usage 

trends to first increase and then to decrease as the temperature rising. 

Furthermore, it is found that the marginal effect evaluated 19.5℃ (the sample 

average) is -1.16% on pesticide total usage for growing season temperature. In 

terms of precipitation, there is also an inverted U-shaped relation between 

pesticide usage and growing season precipitation. And the marginal effect 

evaluated 3.27 mm (the sample average) is -1.89%. Under extreme weather, the 

higher temperature or more precipitation, the less on pesticide use. Moreover, the 

impact of climate change on pesticide use varies across regions. The northeast 

region of China is more sensitive to climate change in pesticide use than the other 

regions. Considering strict land constraints, this study furthermore shows that 

temperature and precipitation have a significant impact on pesticide intensity, 
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crop planting structure and total planting area. Among them, intensive effects 

dominate the impact of climate change on pesticide use. By measuring marginal 

effect at the sample average level, it is found that intensive effect dominates 93 

percent of the temperature impact and dominates 145 percent of the precipitation 

impact. 

 

The rest of the study is organized as follows. Section 2 introduces the background 

of pesticide usage in China. Section 3 outlines the theoretical framework of 

analysis and empirical estimation strategy. Section 4 introduces data sources and 

the maximum entropy program to recover pesticide intensity in each county.  

Section 5 describes our results on the impacts of climate change on aggregate 

pesticide usage, decomposition results and pesticide use regulation discussions. 

Section 6 provides the concluding remarks.  

 

2 Pesticide usage in China 

China has experienced the rapid increase of pesticide use in last decades. The total 

amount of pesticides used per year grew from 0.76 million tons in 1990 to 1.5 

million tons in 2018 (see Figure 1). The intensity of pesticide use increased from 

5 kg per ha in 1990 to 9 kg per ha in 2018, which is 3.1 times of the average value 

in worldwide (FAO 2020). Typically, the average utilization rate of pesticides is 

35%, 30% lower than utilization rates in developed countries (Jin and Zhou 2018). 

[Insert Figure 1 around here] 

Due to the severe non-point polltuion driven by pesticide overuse, China’s 

ministry of agricultural in 2015 realeasd Zero Growth of Pesticide Use plan (ZGPU) 

by 2020. It requires to achieve annual growth rates of chemical fertilizer use of 

less than 1% from 2015 to 2019, and strive to realize zero growth of chemical 

fertilizer use for principal crops by 2020 (Jin and Zhou 2018). The practical 

objective of the ZGPU plan is to keep the use of pesticides per unit of land area 

below the average level in the years 2016 to 2019, and strive to achieve zero 
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growth in the total use of pesticides by 2020. As the strict regulation from 2015, 

the total use of pesiticide has been in the track of reduction in Figure 1. Consider 

the fact that total planted area keeps increasing in the last decade and there is a 

minor change for the crop strucure, the recent reduction of pesticide use is driven 

by the efficiency improvement of pesticide-intensive crops such as fruits and 

vegetable accounting for 14% of planted area. For example, apple production and 

vegetables have reduced pesitcide consumption by one fourth and one fifth from 

2012 to 2018, respectively. However, the less pesticide-intensive crop such as 

grain accounting for 70% of planted area has reached a stable platform since 2012.  

 

On the other hand, it is expected that China’s food consumption will continuously 

increase along with economic growth. Based on recent projection, household 

income will be increased by around 5% annually by 2027 (Lannes et al. 2018), and 

total poulation will increase to 1.45 billion by 2030 (UN 2013). Hence, these trends 

drive sustained growth of per capita food consumption in the near future (Ye et al. 

2013). As pesticide is extremely important for mitigate the vulnerability of food 

production, strict pesticide use regulation is adding potential volatility to China’s 

domestic food supply.  

 

3 Methodology 

3.1 Total impact of climate change on pesticide use 

Unlike standard factors of production such as land, labor, and capital, pesticide 

does not increase potential output. It only increases the share of potential output 

that producers realized. Hence, under the background of climate change we 

modified the classical damage control conceptural framework proposed by 

Lichtenberg and Zilberman (1986) and define the relationship between production 

pesticide use and output as 

  𝑄 = 𝐹(𝑋, 𝐺(𝑃);𝑊)            (1) 

where 𝑄 denotes output, the production funciton 𝐹 is assumed to possess the 
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concave propertity, and 𝑋  is a direct production input vector such as labor, 

fertilizer, etc. 𝐺(𝑃) is the proportion of the destructive capacity of the damaging 

agent eliminated by the application of a level of control agent 𝑃, such as pesticide. 

Function 𝐺 is monotonically increasing with respect to 𝑃, which means that 𝐺 

converges to 1 when infinite amout of 𝑃  application. 𝑊  denotes climate 

variables that can affect both crop growh and the damage control efficiency. 

Then the demand of pesticide can be expressed as  

 𝑃 = 𝑓(𝑄, 𝑋,𝑊).            (2)  

It turns out that the effects of climate change on aggregate pesticide demand vary 

over different climate factors, and sequentially become an empirical question. 

 

In the empirical estimation, the key variables used in Equation (2) are elaborately 

incorporated to a reduced form (see Equation (3)). To identify the effect of climate 

change on the pesticide use, county level panel in China from 1998-2012 are used 

to estimate the empirical model as follows. 

Ln𝑃𝑟𝑡 = 𝛽0 + 𝛽1𝑊𝑟𝑡 + 𝑇𝑡 + 𝐷𝑟 + 𝑢𝑟𝑡,               (3) 

where 𝑃𝑟𝑡 denotes the total pesticide use in county 𝑟 in year 𝑡. 𝑊𝑟𝑡 is a set of 

climatic factors. 𝑊𝑟𝑡 denotes climate variables that can affect both crop growh 

and the damage control efficiency. Even if damage due to pests, weeds, etc., were 

absent, farm production would still be affected by the variability of rainfall, 

temperature, length of the growing season, and other factors beyond the 

producer's control (Saha, et al., 1997). For example, precipiation may stimulate the 

growth of crop. However, moisture levels also have a significant impact on the pest 

control effectiveness of certain pesticide (Saha, et al., 1997), and stimuate the 

growth of weeds. Hence, variable 𝑊𝑟𝑡 captures the interactions of beween crop 

growth and the damage control. Meanwhile, 𝑊𝑟𝑡 denote climate conditions that 

also affect damage control inputs. For example, warm winter improves pest 

overwintering, dispersal, migration and population characteristics (Delcour, et al., 

2015), but it seems not affect crop development in the growing season. 
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A time-invariant county fixed effect 𝐷𝑟 is used to control for heterogeneity, such 

as soil quality, land topgraphy, and different agricultural production practices 

including rotation or tillage. On the other hand, there is a consistent advancement 

related to pesticide use such as new pesticide varieties and the adoption of 

genetically modified crop. Hence, we also control time trend 𝑇𝑡  to remove the 

unobserved factors common to all regions in a given year, such as the introduction 

of a new crop variety, adoption of new production technologies, legislation, pest 

resistance, or other temporal shocks. We use 𝑢𝑟𝑡  is an error term. 𝜷  is the 

parameter vector to be estimated.  

 

3.2 Decompose the impact of climate change on pesticide use 

To investigate details about the impacts of climate change on pesticide use, total 

pesticide use can be decomposed as follows 

 𝑃 =∑𝑃𝑖
𝑖

=∑
𝑃𝑖
𝐿𝑖

𝑖

𝐿𝑖
𝐿
𝐿 =∑𝑃𝐼𝑖 ⋅ 𝑆𝐼𝑖 ⋅ 𝐿

𝑖

                        (4)  

where 𝑃 is the total pesticide use in one specific region, 𝑃𝑖  is the pesticide use 

for crop 𝑖 , 𝐿  is the total land used for crop production, 𝐿𝑖   denotes cultivated 

land area for crop 𝑖 , 𝑃𝐼𝑖  refers to crop 𝑖 ’s pesticide intensity, and 𝑆𝐼𝑖  is the 

share of crop 𝑖 according to planting area.  

 

Since pesticide use is affected by climate, we could use chain rule to take a 

derivation of 𝑃 with respect to 𝑊 to have  

𝜕𝑃

𝜕𝑊
=∑

𝜕𝑃𝐼𝑖
𝜕𝑊

⋅ 𝑆𝐼𝑖 ⋅ 𝐿

𝑖

+∑
𝜕𝑆𝐼𝑖
𝜕𝑊

⋅ 𝑃𝐼𝑖
𝑖

⋅ 𝐿 +∑
𝜕𝐿

𝜕𝑊
⋅ 𝑃𝐼𝑖

𝑖

⋅ 𝑆𝐼𝑖                   (5)  

                           

 

Therefore, we could apply the following estimations to identify the effects of 

climate change on intensity, structure, and planted area.  

Intensive effect Structural effect Extensive effect 
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{

Ln𝑃𝐼𝑖,𝑟𝑡 = 𝛼10 + 𝛼11𝑊𝑟𝑡+𝑇𝑡 + 𝐷𝑟 + 𝜀𝑟𝑡                                     (6)

𝑆𝐼𝑖,𝑟𝑡 = 𝛼20 + 𝛼21𝑊𝑟𝑡+𝑇𝑡 + 𝐷𝑟 + 𝑒𝑟𝑡                                          (7)

Ln𝐿𝑟𝑡 = 𝛼30 + 𝛼31𝑊𝑟𝑡+𝑇𝑡 + 𝐷𝑟 + 𝑣𝑟𝑡                                         (8)

 

where 𝑃𝐼𝑖,𝑟𝑡 and 𝑆𝐼𝑖,𝑟𝑡denote pesticide intensity and planted area based share of 

crop 𝑖 of county 𝑟 in year 𝑡, respectively. Typically, we did not take logarithm for 

𝑆𝐼𝑖,𝑟𝑡 as it is proportion. In practice, we divide all crops into six categories, which 

represents 𝑖 ∈ (grain, potato, cotton and linen, sugar crop, oil −

bearing crop, and vegetable and fruits). 𝐿𝑟𝑡 is the total planted area of county 𝑟 

in year 𝑡 . 𝑆𝐼𝑖,𝑟𝑡  denotes cropping structure for crop 𝑖  in county 𝑟  in year 

𝑡 .  [𝜀𝑟𝑡 𝑒𝑟𝑡 𝑢𝑟𝑡]  is a vector of error term in the above regressions. 𝜶  is the 

parameter vector to be estimated, and we drop the subscript 𝑖  for all crops in 

order to simplify notations. Given the mean value of pesticide intensity 𝑃𝐼𝑖 , crop 

share 𝑆𝐼𝑖 , and planted area 𝐿 , vector [𝛼11  𝛼21 α31]  can be used for the 

estimations of 
𝜕𝑃𝐼𝑖

𝜕𝑊
, 
𝜕𝑆𝐼𝑖

𝜕𝑊
, and 

𝜕𝐿

𝜕𝑊
, respectively. Then, these parameters are used to 

decompose the climate change effect on intensity effect, structure effect and 

planted area effect as introduced above. 

 

Given the potential spatial and serial correlation in the error term, we estimate the 

model by clustering standard errors at both the county level and the city-by-year 

level, following the two-way clustering strategy discussed in Cameron, Gelbach 

and Miller (2011). 

 

4 Data 

4.1 Data sources 

The climate data are obtained from the China Meteorological Data Sharing Service 

System, which provides the daily average temperatures as well as precipitation 

recorded in 825 weather stations in China from 1998 to 2016. As the distribution 

of weather stations is not exactly consistent with county territory, that is, there is 

more than one station in a few counties while no station in some other ones. Hence, 

the spatial interpolation method based on the observed climatic information is 
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used to generate weather data for each county. First, the inverse distance weighted 

(IDW) method was used to interpolate the climate data from 825 weather stations 

across China to a spatial field with a grid spacing of 500 meter (Yi et al. 2016). 

Then, the values of each grid located in a county were averaged to represent the 

mean status of that county. Based on the data from 825 meteorological stations 

across the country, interpolation methods were used to derive the climate 

indicators for each county, including daily average temperature, daily minimum 

temperature, daily maximum temperature, and average daily rainfall. The climate 

variables required for this study are calculated from these indicators. Besides, this 

study uses the quadratic growing season average temperature and precipitation 

as an alternative specification of climate variables. Specifically, the growing season 

is determined by the five-day moving average method, which is defined as the 

period when the average daily temperature is stable over 8℃. 

 

Agricultral production data including county-level total pesticide use, planted area, 

and crop structure are collected from the database of the Institute of Agricultural 

Information at the Chinese Academy of Agricultural Sciences (CAAS). It covers 

2657 counties from 30 provinces/municipalities in the mainland of China from 

1998 to 2016. Summary statistics for these data are shown in Table 1.  

[Insert Table 1 around here] 

 

4.2 Recover county level pesticide use 

During the estimation for crop-specific pesticide usage with respect to climate 

change in Equaiton (5), we face a challenge to have county-level pesticide usage 

for each crop. The only available crop specific pesticide use data is at provincal 

level. In addition, CAAS only reports aggregate pesticide use over all crops in each 

county. Hence, we develop a maximum entropy program to recover pesticise usage 

for every crop in each county.  

 



 13 

Let 𝐴𝑔𝑖  be the observed planted area of crop 𝑖  in county 𝑔 , and 𝑇𝑔𝑖  be the 

pesticide usage for crop 𝑖  in county 𝑔 . We could represent pesticide usage 

intensity by 𝐹𝑔𝑖 =
𝑇𝑔𝑖

𝐴𝑔𝑖
, which is to be estimated. After consult with agronomists, 

we set 𝐹𝑖
−  and 𝐹𝑖

+  as pesticide usage intensity lower and upper bound, 

respectively, i.e., 𝐹𝑖
− ≤ 𝐹𝑔𝑖 ≤ 𝐹𝑖

+ . Observed total pesticide usage in county 𝑔  is 

𝑇𝑔 = ∑ 𝑇𝑔𝑖
𝐼
𝑖=1 , and total pesticide usage in each province is 𝑇 = ∑ 𝑇𝑔

𝐺
𝑔=1  if 𝐺 is 

the number of counties in a province. In addition, observed provincial pesticide 

use for crop 𝑖 is 𝐹𝑖 = ∑
𝐹𝑔𝑖𝐴𝑔𝑖

∑ 𝐴𝑔𝑖
𝐼
𝑖=1

𝐺
𝑔=1 .  

 

We define 𝑝𝑔𝑖 =
𝑇𝑔𝑖

𝑇
  as the share of pesticide useage for crop 𝑖  in county 𝑔 . 

Apparently, we could treat these shares as probabilities and then apply the 

maximum entropy principle. Then, the maximum entropy problem is set by  

max
𝑝𝑔𝑖

−∑∑𝑝𝑔𝑖 ln 𝑝𝑔𝑖

𝐺

𝑔=1

𝐼

𝑖=1

 

Subject to 

{
 
 
 
 

 
 
 
 ∑ ∑ 𝑝𝑔𝑖 = 1

𝐺

𝑔=1

𝐼

𝑖=1
                                                           

∑ 𝑝𝑔𝑖
𝐼

𝑖=1
=
𝑇𝑔

𝑇
,                                           ∀ 𝑔 = 1,… , 𝐺

∑
𝑝𝑔𝑖 𝑇

∑ 𝐴𝑔𝑖
𝐼
𝑖=1

𝐺

𝑔=1
= 𝐹𝑖 ,                                     ∀ 𝑖 = 1,… , 𝐼

𝐹𝑖
−𝐴𝑔𝑖

𝑇
≤ 𝑝𝑔𝑖 ≤

𝐹𝑖
+𝐴𝑔𝑖

𝑇
,       ∀ 𝑖 = 1,… , 𝐼,   𝑔 = 1,… , 𝐺

 

After 𝑝𝑔𝑖  is solved, we can recover crop specific county level total pesticide 

useage 𝑇𝑔𝑖  and intensity 𝐹𝑔𝑖 . It is found that the differenes between yearly 

observed aggregate pesticide usage and the ones recoved by the maximum 

entropy program over counties are all less than 5%, which is shown in Table A1 in 

Appendix.  
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5 Results 

By taking Hausman test, the random effect model is rejected at 1% statistial level. 

Hence, the following estimaitons are based fixed effect model.  

 

5.1 Total impact of climate change on pesticide useage 

Table 2 reports the baseline results for the aggregate impact of climate change on 

pesticide use. The first column presents the results based on OLS.The second to 

the fourth column reports the results of fixed effect model,including two-way fixed 

effects model，one-way clustering fixed effects model and two-way clustering fixed 

effects model.The four models derive similar estimates. Column (4) reports that 

pesticide usage trends to first increase and then to decrease as the temperature 

rising and daily precipitation increasing.Using the estimated coefficients of the 

first and second terms, it is found that the use of pesticides peaks when the 

growing season average temperature and precipitation reach 18.2 ℃ and 1.4 mm. 

Given the fact that China has been experienced with 0.59℃ and 0.69 mm increase 

for growing season average temperature and precipitation in the last two decades 

respectively, climate change has driven the reduce of pesticide usage by 1.1%. 

[Insert Table 2 around here] 

 

5.2 Robustness checks for different starting temperature 

Given that different starting temperatures may lead to different length of growing 

periods, accordingly, starting temperatures other than 8 ℃ in order to determine 

the growth period are also included to test the sensitivity of pesticide usage  to 

different growing season in this study. Overall, the consideration of different 

starting temperatures does not change our previous findings in Section 5.1, as 

shown in Table 3. 

 

5.3 Heterogeneity analysis by regions 

We further investigates heterogeneous impacts of climate change on pesticide 
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usage by regions. The impacts of growing season temperature and precipitation 

over regions shows significant differences in Table 4 Pesticides in North，

Northeast,East , Central and South China increase first and then decline as the 

growing season average temperature rises,while it does not have impacts in 

Southwest and Northwest China as they are the coldest region in growing season 

of China. However, due to differences in the  temperature of different regions, 

pesticides in North and Northeast China are in the rising stage, while East , Central 

and South China are in the falling stage.Furthermore, 1 ℃ increase Northeast and 

North China will lead pesticide useage to increase by about 6%, while 1 ℃ increase 

East , Central and South China will lead pesticide useage to reduce by about 

6%,3%and 4%. 

 

The impact of more precipitation shows more significant heterogeneity. For 

example, pesticides in Southwest China decrease first and then increase as 

growing season average daily precipitation increasing, which is inconsistent with 

the benchmark model. Through calculations and statistics, it is found that growing 

season average daily precipitation in Southwest China is 3.65mm, which falls to 

the left of the inflection point. This indicates that with the increase in precipitation, 

the use of pesticides in Southwest China has decreased, which is consistent with 

the results of the basic model.In additional, the differences of marginal impacts of 

precipitation on pesticide useage among regions are straightforward. 1 mm more 

daily growing season precipitation in Northeast  China is more than 10 times of 

the one in North China. 

 

5.4 Nonlinear impacts 

This study first examins the nonlinear impacts of increasing temperature on 

pesticide usage by constructing multiple temperature bins. Figure 2 (a) and  

Figure 2(b) displays point estimates and the 95% confidence bands of coefficient 

estimate of temperature bins, which are obtained based on Equation (3). Given a 

chosen temperature interval for every 2 °C in Figure 2(a), and 3 °C in Figure 2(b), 



 16 

a typical temperature bin counts the number of days within the growing season 

with temperature exposures falling into the bin,and we omitted the lower than 0 °C 

case for reference.The selection of temperature cutoffs follows convention in the 

literature such as Schlenker and Roberts (2009), Chen and Yang (2019), and Cui 

(2020). Overall, we find temperature has a non-linear relationship with the use of 

pesticides , which reminds that pesticides first increase and then decrease as the 

temperature rising. Moreover, we found a turning point around 28°C, which is 

robust over different temperature intervals, showing that heat drives less 

pesticide usage than the one with relatively low temperature exposure.Along with 

that, Figure 2(a) and Figure2(b) shows estimations using an eighth-order 

polynomial function, which provide similar trends and thresholds. 

[Insert Figure 2 around here] 

Similarly, we constructed a series of precipitation bins to examine the impact of 

rainfall change on pesticide usage. As precipitation pattern changes result in the 

movement and distribution of chemicals (Rosenzweig et al. 2001; Schiedek et al. 

2007), we found the change of pesticide usage due to the variation of rainfall 

intensity in Figure 2(c) and Figure 2(d). When growing season daily precipitation 

is more than 15 mm, farmers would rapidly redue pesticide usage to avoid 

ineffective losses.  

 

5.5 Decomposing impact of climate change on pesticide useage 

Decomposing the aggregate pesticide usage properly will deepen the 

understanding of the impact of climate change. Tables A4-A6 in Appendix report 

the three effects of climate change based on Equation (5). First, increased growing 

season temperature will stimulate intensive pesticide use for potato and cotton 

crop, but it reduces the pesticide intensity for oil, vegetable and fruit. In the 

meantime, growing season precipitation increases pesticide intensity for sugar 

crop, and oil-bearing crop, but it reduces the pesticide intensity for cotton, 

vegetable and fruit. Second, we observed warm growing season temperature leads 
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to more sown areas for grain, but less sown areas for cotton. It seems that grain 

crop is the only one that will be more produced if hotter is expected. The reason is 

straightforward as it is more suitable for mechanized production to replace labor 

in hotter weather than other crops. Meanwhile, we observed more growing season 

precipitation lead to more sown areas for oil-bearing crop, and vegetable and fruit, 

but less sown areas for cotton, grain and sugar crop. A good explanation for this is 

that wetter weather is not suitable for the growth of cotton, due to causing more 

pests, but suitable for the growth of other crops such as vegetables and fruits. 

Third, the increases of growing season precipitation stimulate the total planted 

area. Typically, 1 mm increase of growing season daily precipitation drives 2.6% 

increase of the planting area.   

 

We further investigate crop specific impacts of temperature and precipitation for 

each of the three different effects. Technically, we implemented the mean values of 

pesticide intensity, crop structure, and planted area from 1998 to 2016 in Equation 

(5) to measure crop-specific impacts of temperature and precipitation on the use 

of pesticide. The results are shown in Table 5 and 6. First, vegetable and fruit are 

the main drive in intensive, structural and extensive effects for the impacts of 

temperature and precipitation. It is valuable to mention that the overall impact of 

precipitation and temperature on pesticide intensity is negative. In addition, more 

precipitation leads to less grain production which helps reduce pesticide usage 

through structural effect. 

 

Given the above estimation, we continue to report the share for the three effects 

within the total impact of climate change on pesticide usage in Figure 3. Detailed 

information is shown in Table A5 in Appendix due to limited space. To ensure our 

decomposition to be acceptable, we compared the aggregation over the three 

effects based on Equation (5) with the direct impact based on Equation (3) in the 

last column of Table A5. The minor differences show that our decomposition is 

credible. It is found that intensive effects dominate the impact of climate change 
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on pesticide use. Intensive effect dominates 93 percent of the temperature impact, 

while structural and extensive effect share the rest impact. Besides, intensive effect 

dominates 145 percent of the precipitation impact, although intensive effect could 

largely reduce pesticide usage with respect to more precipitation.   

[Insert Figure 3 around here] 

 

5.6 Forecast of pesticide use change under climate change 

Predicting the extent of the pesticide use variation responding to climate change 

is helpful for policy makers to fully consider pesticide regulations. Again, we 

combine the estimates in Section 5.1 and the future climate data to project the 

change of pesticide usage driven by climate change. Projections of future climate 

factors were collected from WorldClim-Global Climate Data, which generates 

climate predictions according to the constantly updated global climate models for 

the following time periods: 2021-2040, 2041-2060, 2061-2080, and 2081-2100. 

In the lead up to the IPCC AR6, the energy modelling community has developed a 

new set of emissions scenarios driven by different socioeconomic assumptions. On 

the one hand, comparing with the four representative greenhouse gas (GHG) 

concentration pathways (RCPs), we used the updated new versions SSP1-2.6, 

SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively1 . On the other hand, this article 

chooses climate data derived from the global climate models BCC-CSM2-MR, 

which represent a projection for future global temperature and precipitation 

changes. Considering different projections for future SSPs and future global 

temperature and precipitation, we eventually chose the field to four scenarios for 

four time period. Given the vast heterogeneity across regions in China, we further 

conduct analysis by different regions. 

[Insert Figure 4 around here] 

 

This article calculates the projected changes in growing season average 

                                                   
1 Introduction is available at https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-
explained 
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temperature across regions,which are the differences between the future growing 

season average temperature and the growing season average temperature during 

the sample period (1998–2016). Figure 4 shows the variations of pesticide use in 

different regions due to future temperature change for the four time period.In 

general, we find that future global warming will significantly lower China’s 

pesticide usage. Specifically, in the panel of Figure 6 (2021~2040), under the BCC-

CSM2-MR model, pesticide in the shortern term is projected to reduce by 0.6~2.6% 

under SSP1-2.6 and by 0.8–2.7% under SSP5-8.5. During the medium term 

(2041~2060), corresponding declines in pesricide are slightly larger, by 0.8~3.1% 

under SSP1-2.6 and by 1.8–3.5% under SSP5-8.5.In the rest panel of Figure 4 , the 

declines in pesticide in the long term are projected to be considerably greater than 

those in the shortern and medium term.By 2081~2100, China’s pesticide is 

projected to decrease by 3.7~5.1%. 

 

Similarly, Figure 5 presents the effects of future precipition change on pesticide. 

All findings from predictions in Figure 4 are in line with Figure 5. The most 

remarkable difference between Figure 5 and Fugure 4 is that the projected 

reductions in pesticide for temperature are nearly twice as large as the decline in 

pesticide due to precipitation, as shown by the different scale of values on the 

vertical axis. 

[Insert Figure 5 around here] 

6 Conclusions 

By introducing a maximum entropy program to recover crop-specific pesticide 

usage information at county levels, this study assesses the impacts of climate 

change in China. Our investigation confirms the findings of climate change 

affecting pesticide usage, as reported in existing literature.  

 

We demonstrate that both elevated temperature and precipitation reduce total 

pesticide usage under the background of China’s agricultural production. Overall, 
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pesticide usage trends to first increase and then to decrease as the temperature 

rising and daily precipitation increasing.Typically,the temperature and 

precipitation impact is more significant for Northeast China. Especially, our results 

uncovered three different components and corresponding shares of the impacts of 

climate change on total pesticide usage including intensive effect, structural effect 

and extensive effect. More importantly, we provide an assessment scenario under 

climate change.  

 

Due to data limitations, this study has following deficiencies. First, we cannot 

identify the impacts of climate change on the three types of pesticide including 

insecticide, fungicide, and herbicide. That will be more informative for accurate 

regulations and scientific research funding guidance if further studies can identfy 

those individual impacts. Second, farm household’s practical responses to climate 

change will help us understand how much various adaptation strategies can 

change pesticide usage such as changing rotation and using traditional anti-

reversible varieties.  
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Data sources: China’s National Bureau of Statistics. 

Figure 1 Pesticide usage in China 
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Notes: This figure displays changes in logarithm of pesticide usage if a county is exposed for 

one day to 2℃ (Panel a.), 3℃ (Panel b.), 2mm (Panel c.), and 5mm (Panel d.) temperature 

intervals (solid line) where we sum temperatures exposure days fall within each interval. The 

95% confidence bands are added by dash lines. The smooth lines fit coefficient estimates of 

each temperature range using an eighth-order polynomial function. Histograms at the bottom 

show the distribution of mean of temperature bin and precipitation bin in the data, 

respectively.  

Figure 2 Nonlinear impacts of temperature on pesticide usage 
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Figure 3 Decompose the impact of climate change on pesticide usage 
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Notes: Graph (2021~2040) displays predicted percentage changes in pesticide usage over 

regions due to future temperatures changes under four emissions scenarios of the BCC-CSM2-

MR climate model by 2021-2040. Graph (2041~2060), Graph (2061~2080) and Graph 

(2081~2100) display the corresponding changes in the long term. A star indicates the point 

estimates in pesticide usage changes based on the most plausible changes in temperature, and 

whiskers represent ranges in pesticide usage changes based on lower and upper bounds in 

temperature change. The color represents the different SSPs scenarios impact of temperature 

impacts. 

Figure 4 Predicted impacts of future temperature on pesticide over regions 
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Notes: Graph (2021~2040) displays predicted percentage changes in pesticide usage over 

regions due to future precipitation changes under four emissions scenarios of the BCC-CSM2-

MR climate model by 2021-2040. Graph (2041~2060), Graph (2061~2080) and Graph 

(2081~2100) display the corresponding changes in the long term. A star indicates the point 

estimates in pesticide usage changes based on the most plausible changes in precipitation, and 

whiskers represent ranges in pesticide usage changes based on lower and upper bounds in 

precipitation change. The color represents the different SSPs scenarios impact of precipitation 

impacts. 

Figure 5 Predicted impacts of future precipitation on pesticide over regions 
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Table 1 Summary statistics 

Variable  Mean S.D. Minimum Maximum

Economic factors

Total pesticide usage (kg) 574941.66 603271.33 1.80 5558524.00

Total planted area (Thousand ha) 53.83 46.48 0 619.92

Grain pesticide intensity (kg/ha) 6.50 6.00 0.07 40.72

Potato pesticide intensity (kg/ha) 4.15 3.07 0.01 17.23

Cotton pesticide intensity (kg/ha) 22.74 12.12 0.90 50.33

Sugar pesticide intensity (kg/ha) 10.60 5.27 0.20 22.49

Oil-bearing pesticide intensity (kg/ha) 3.52 2.25 0.14 11.62

Vegetable and fruit pesticide intensity (kg/ha) 26.19 12.02 2.19 76.37

Grain crop ratio (%) 63.60 21.39 0 100

Potato crop ratio (%) 4.45 9.94 0 100

Cotton crop ratio (%) 2.44 7.98 0 100

Sugar crop ratio (%) 1.35 5.35 0 100

Oil-bearing crop ratio (%) 5.04 9.66 0 100

Vegetable and fruit ratio (%) 23.85 18.66 0 100

Climatic variables

Growing season average temperature (℃) 19.85 2.26 8.75 26.02

Growing season average precipitation (mm) 3.27 1.51 0.02 13.07

Number of counties 2657  
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Table 2 Baseline results for climate change on pesticide use 

OLS

(1) (2) (3) (4)

1.1020*** 0.1419*** 0.1419*** 0.1419***

(0.0279) (0.0250) (0.0468) (0.0453)

-0.0223*** -0.0039*** -0.0039*** -0.0039***

(0.0007) (0.0006) (0.0012) (0.0011)

0.5424*** 0.0135 0.0135 0.0135

(0.0141) (0.0096) (0.0184) (0.0176)

-0.0579*** -0.0049*** -0.0049** -0.0049**

(0.0018) (0.0011) (0.0022) (0.0020)

-1.5180*** 11.1581*** 11.1581*** 11.1581***

(0.2644) (0.2445) (0.4749) (0.4512)

Time trend Yes Yes Yes Yes

County fixed effect No Yes Yes Yes

County effect No No Yes Yes

City-by-year effect No No No Yes

R-squared 0.2228 0.0484 0.0484 0.8961

Number of counties 2657 2657 2657 2657

Growing season  average

precipitation(mm）

Growing season  average

precipitation(mm)-Quadratic

Constant

Variable
Fixed effect

Growing season  average

temperature(℃）

Growing season  average

temperature(℃)-Quadratic

 

Notes: Significance codes are *10% level, **5% level, *** 1% level. Standard errors are in 

parentheses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

Table 3 Robustness checks for different starting temperatures  

6℃ 7℃ 9℃ 10℃

(1) (2) (3) (4)

0.0556 0.1110*** 0.1429*** 0.1534***

(0.0351) (0.0401) (0.0468) (0.0552)

-0.0016* -0.0031*** -0.0038*** -0.0039***

(0.0009) (0.0010) (0.0012) (0.0013)

0.0142 0.0146 0.0106 0.0065

(0.0188) (0.0181) (0.0174) (0.0162)

-0.0054** -0.0052** -0.0045** -0.0037**

(0.0022) (0.0021) (0.0020) (0.0018)

11.9616*** 11.4773*** 11.1053*** 10.9590***

(0.3341) (0.3884) (0.4714) (0.5650)

Time trend
Yes Yes Yes Yes

County fixed effect
Yes Yes Yes Yes

R-squared
0.8960 0.8961 0.8960 0.8960

Number of counties
2657 2657 2657 2657

Growing season  average

precipitation(mm）

Growing season  average

precipitation(mm)-Quadratic

Constant

Growing season average temperature starts from

Variable

Growing season  average

temperature(℃）

Growing season  average

temperature(℃)-Quadratic

 

Notes: Significance codes are *10% level, **5% level, *** 1% level. Standard errors are in 

parentheses.  
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Table 4 Heterogenous analysis over regions 

Variable North Northeast East Central South Southwest Northwest

0.5726*** 0.5386 0.1595*** 0.1181*** 1.1611** 0.1419 -0.0433

(0.1861) (0.3297) (0.0581) (0.0453) (0.5172) (0.0872) (0.1161)

-0.0132*** -0.0127 -0.0053*** -0.0035*** -0.0262** -0.0035 0.0004

(0.0047) (0.0088) (0.0016) (0.0013) (0.0116) (0.0024) (0.0033)

0.1478 0.3729*** -0.0398 0.0388 0.0490 -0.1712*** 0.0454

(0.0910) (0.0898) (0.0270) (0.0327) (0.0778) (0.0483) (0.0801)

-0.0360* -0.0480*** -0.0024 -0.0097** -0.0009 0.0155*** -0.0052

(0.0192) (0.0122) (0.0027) (0.0045) (0.0074) (0.0059) (0.0133)

Growing season  average

temperature(℃）

Growing season  average

temperature(℃)-Quadratic

Growing season  average

precipitation(mm）

Growing season  average

precipitation(mm)-Quadratic
 

Notes: Notes: Significance codes are *10% level, **5% level, *** 1% level. Standard errors are in parentheses.  
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Table 5 Decompose the impact of temperature on pesticide usage 

Percent Percent Percent

Linear Quadratic (kg) % Linear Quadratic (kg) % Linear Quadratic (kg) %

Grain crop 0.0210 -0.0004 1091.9207 -19.13 -0.0277 0.0006 -1066.0469 -61.76 -771.5444 36.12

Potato crop -0.1513 0.0047 552.6042 -9.68 0.0051 -0.0001 -93.5711 -5.42 -34.4644 1.61

Cotton crop -0.0961 0.0026 828.3848 -14.52 0.0020 -0.0001 -815.0670 -47.22 -103.7388 4.86

Sugar crop 0.0491 -0.0016 -376.6409 6.60 0.0001 0.0000 -78.4135 -4.54 -26.7108 1.25

Oil-bearing crop 0.1385 -0.0034 94.3551 -1.65 0.0025 -0.0001 -135.0095 -7.82 -33.0910 1.55

Vegetable and fruit 0.0624 -0.0021 -7897.4697 138.39 0.0017 0.0000 3914.3301 226.76 -1166.7389 54.62

Subtotal -5706.8459 100 1726.2222 100 -2136.2883 100

-0.0043 0.0000

(1) Intensive effect
† (2) Structural effect (3) Extensive effect

Estimated

coefficient

Estimated

coefficient

Estimated

coefficient

    
  

⋅    ⋅  
    
  

⋅    ⋅  
  

  
⋅    ⋅    

 

Notes: † The marigal effects are measured at sample average. 
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Table 6 Decompose the impact of precipitation on pesticide usage 

Percent Percent Percent

Linear Quadratic (kg) % Linear Quadratic (kg) % Linear Quadratic (kg) %

Grain crop -0.0210 -0.0009 -6138.4790 39.18 0.0075 -0.0016 -1084.6921 63.65 2381.0457 36.12

Potato crop -0.0028 0.0001 -39.8317 0.25 0.0001 0.0000 85.2994 -5.01 106.3599 1.61

Cotton crop -0.0555 0.0026 -3411.5996 21.78 0.0028 -0.0003 1035.0940 -60.74 320.1461 4.86

Sugar crop 0.0365 -0.0013 587.2892 -3.75 -0.0012 0.0000 -527.4634 30.95 82.4315 1.25

Oil-bearing crop -0.1157 0.0138 -345.3545 2.20 -0.0020 0.0002 -67.6258 3.97 102.1215 1.55

Vegetable and fruit 0.0093 -0.0042 -6317.8262 40.33 -0.0107 0.0015 -1144.6495 67.17 3600.6465 54.62

Subtotal -15665.8018 100 -1704.0374 100 6592.7510 100

0.0255 -0.0023

(1) Intensive effect (2) Structural effect (3) Extensive effect

Estimated

coefficient
Estimated coefficient

Estimated

coefficient

    
  

⋅    ⋅  
    
  

⋅    ⋅  
  

  
⋅    ⋅    

 

Notes: † The marigal effects are measured at sample average.
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Appendix 

Table A1 Differences between yearly aggregated observed and recovered 

pesticide usage using maximum entropy program over counties 

Year Difference (%)

1998 2.57

1999 3.08

2000 1.32

2001 1.00

2002 3.09

2003 1.20

2004 2.35

2005 3.31

2006 1.25

2007 1.90

2008 2.08

2009 -0.03

2010 0.67

2011 0.18

2012 -2.42

2013 -1.29

2014 -1.09

2015 -1.97

2016 -0.29  
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Table A2 Coefficients for temperature bins 

[4, 6) [6, 8) [8, 10) [10, 12) [12, 14) [14, 16) [16, 18) [18, 20) [20, 22) [22, 24) [24, 26) [26, 28) [28, 30) [30, 32) [32, 34) >=34

-0.0046 0.0004 0.0031*** 0.0011 -0.0004 0.0008 0.0001 0.0006 -0.0011* 0.0002 0.0022*** 0.0006 0.0021** -0.0004 -0.0024 -0.0068

(0.0052) (0.0019) (0.0009) (0.0007) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0007) (0.0009) (0.0011) (0.0027) (0.0104)

Number of counties 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657

Days of growing

season average

temperature (℃)

 

Notes: Significance codes: *10% level, **5% level, *** 1% level. Standard errors are in parentheses. All other cofounding varialbles are the same as Table 2.  
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Table A3 Coefficients for precipitation bins 

[0, 2) [2, 4) [4, 6) [6, 8) [8, 10) [10, 12) [12, 14) [14, 16) [16, 18) [18, 20) [20, 22) [22, 24) [24, 26) [26, 28) >=28

-0.0014** -0.0021** -0.0021** -0.0026** -0.0019 -0.0011 0.0010 -0.0019 -0.0056*** -0.0079*** -0.0042** -0.0066*** -0.0021 -0.0046* -0.0049***

(0.0006) (0.0008) (0.0010) (0.0011) (0.0013) (0.0015) (0.0016) (0.0016) (0.0019) (0.0021) (0.0021) (0.0024) (0.0025) (0.0026) (0.0014)

Number of counties 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657 2657

Days of growing

season average

precipitation(mm)

 

Notes: Significance codes: *10% level, **5% level, *** 1% level. Standard errors are in parentheses. All other cofounding varialbles are the same as Table 2.  
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Table A4 Impact of climate change on pesticide intensity  

(1) (2) (3) (4) (5) (6)

Grain crop Potato  Cotton Sugar crop
Oil-bearing

crop

Vegetable

and fruit

0.0210 -0.1513 -0.0961*** 0.0491 0.1385** 0.0624*

(0.0458) (0.1080) (0.0345) (0.0610) (0.0677) (0.0361)

-0.0004 0.0047* 0.0026*** -0.0016 -0.0034** -0.0021**

(0.0011) (0.0027) (0.0009) (0.0015) (0.0017) (0.0009)

-0.0210 -0.0028 -0.0555*** 0.0365* -0.1157*** 0.0093

(0.0152) (0.0422) (0.0171) (0.0205) (0.0262) -0.0138

-0.0009 0.0001 0.0026 -0.0013 0.0138*** -0.0042***

(0.0016) (0.0039) (0.0016) (0.0022) (0.0027) (0.0016)

1.0041** 1.6737 4.2444*** 1.5067** -0.3194 2.5717***

(0.4576) (1.0641) (0.3501) (0.6084) (0.6757) (0.3463)

Time trend Yes Yes Yes Yes Yes Yes

County fixed effect Yes Yes Yes Yes Yes Yes

Number of counties 2657 2657 2657 2657 2657 2657

Constant

Variable

Growing season average

temperature (℃)

Growing season average

temperature (℃)-Quadratic

Growing season average

precipitation (mm)

Growing season average

precipitation (mm)-Quadratic

 

Notes: Significance codes: *10% level, **5% level, *** 1% level. Standard errors are in parentheses.  
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Table A5 Impact of climate change on cropping pattern  

(1) (2) (3) (4) (5) (6)

Grain crop Potato  Cotton Sugar crop
Oil-bearing

crop

Vegetable

and fruit

-0.0277*** 0.0051 0.0020* 0.0001 0.0025 0.0017

(0.0104) (0.0035) (0.0012) (0.0017) (0.0035) (0.0077)

0.0006** -0.0001 -0.0001** -0.0000 -0.0001 0.0000

(0.0003) (0.0001) (0.0000) (0.0000) (0.0001) (0.0002)

0.0075* 0.0001 0.0028** -0.0012** -0.0020 -0.0107***

(0.0040) (0.0014) (0.0011) (0.0005) (0.0013) (0.0030)

-0.0016*** 0.0000 -0.0003*** 0.0000 0.0002* 0.0015***

(0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0004)

0.9346*** -0.0016 0.0064 0.0170 0.0363 0.1443**

(0.0996) (0.0355) (0.0108) (0.0151) (0.0348) (0.0730)

Time trend Yes Yes Yes Yes Yes Yes

County fixed effect Yes Yes Yes Yes Yes Yes

Number of counties 2657 2657 2657 2657 2657 2657

Constant

Variable

Growing season average

temperature (℃)

Growing season average

temperature (℃)-Quadratic

Growing season average

precipitation (mm)

Growing season average

precipitation (mm)-Quadratic

 

Notes: Significance codes: *10% level, **5% level, *** 1% level. Standard errors are in parentheses.  
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Table A6 Impact of climate change on total planted area  

Variable Total planted area

-0.0043

(0.0328)

0.0000

(0.0008)

0.0255**

(0.0125)

-0.0023

(0.0015)

3.4202***

(0.3253)

Time trend Yes

County fixed effect Yes

Number of counties 2657

Growing season average

temperature (℃)

Growing season average

temperature (℃)-Quadratic

Growing season average

precipitation (mm)

Growing season average

precipitation (mm)-Quadratic

Constant

 

Notes: Significance codes: *10% level, **5% level, *** 1% level. Standard errors are in parentheses.  
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Table A7 Decomposion of climate change on pesticide usage 

Equation (5) Equation (3) Difference
☨

kg/℃, kg/mm
Share of

impact (%)

kg/℃,

kg/mm

Share of

impact (%)

kg/℃,

kg/mm

Share of

impact (%)
kg/℃, kg/mm kg/℃, kg/mm %

Growing season average

temperature (℃)
-5706.85 93.30 1726.22 -28.22 -2136.29 34.92 -6116.91 -6676.20 8.38

Growing season average

precipitation (mm)
-15665.80 145.36 -1704.04 15.81 6592.75 -61.17 -10777.09 -10860.76 0.77

Intensive effect Structural effect Extensive effect

Total effect

 

Notes: ☨ We compare the aggregate impact of climate change over the three types of effects based 

on Equation (5) with the direct impact based on Equation (3). 

 

 


