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The Imperative for Cellulosic Biofuels in an Electrifying Vehicle Market 

1 Introduction 

Achieving the goal of a 50% reduction in greenhouse gas emission (GHG) — addressed by 

the Biden administration's climate policy— will require a portfolio of strategies (US EPA 2020), 

especially for the transportation sector. The ambitious decarbonization plan inevitably requires a 

shift to low carbon fuels and alternative powertrains vehicles, such as electric vehicles and flex-

fuel vehicles capable of using high blends of ethanol, both of which need to be incentivized by 

policies. The electric vehicle (EV) buyers are granted the federal vehicle credit, and the potential 

restrictive ban on gasoline-fueled vehicles indirectly proposed by California, New York City, 

and Massachusetts might further the market acceptance of electric vehicles. In the case of the 

promoting biofuel fleet, the extant ethanol blend mandate of 56 billion liters of corn ethanol has 

been implemented since 2007 and potentially extended after 2022. Currently also implemented 

are the fleet-wide fuel efficiency standard that regulates the automakers to raise the fuel economy 

of vehicles as well as the Renewable Portfolio Standard that reduces the carbon intensity of 

electricity by introducing renewable electricity. The joint implementation of these policies in the 

presence of a trending preference for the electric vehicle, however, may or may not achieve the 

targeted goals when considering the interactions in the fuel market, electricity market, and 

agricultural sectors. Rarely has literature discuss the interaction of the policies for both 

electrification and biofuel blending and their synergistic/agonistic effect on the alternative fuel 

vehicles. 

The objective of this paper is to examine cost-effectiveness and the ability of GHG reduction 

of each of the policies individually and jointly together. We interact the biofuel blend policy with 
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the incentives for electrification and study the joint implication on adoptions of alternative fuel 

vehicles and energy consumption, as well as the welfare and environmental impact on the US 

economy. The most notable low-carbon biofuel is corn- and cellulosic-based ethanol, with at 

least 20% and 60% lower GHG emissions intensity than petroleum gasoline fuel. Cellulosic 

biofuel is defined as biofuel from sources of cellulose, hemicellulose, or lignin, which has a 

potential of 60% lifecycle GHG reduction relative to the petroleum counterparts. The high blend 

of biofuel beyond the current blend level of 10% is compatible with the dual-fuel engine 

equipped by the flexible-fuel vehicle (FFV) that can significantly reduce GHG emissions 

(Dwivedi et al. 2015; Wang et al. 2012), which even outweighs the electric vehicle in the 

lifetime emission intensity (Gelfand et al. 2020). The electric vehicles (EV) running on the 

electric-powered engine enhances fuel efficiency and eliminate tailpipe emissions (US EPA 

2012). The declining costs and continuing government support spur the optimism about 

expanding transportation electrification as electric vehicles are becoming competitive with both 

favorable economic and environmental performance.  

Regardless of the incentives for the alternatives, petroleum liquid-fuel vehicles still 

dominate the US vehicle fleet. The GHG emissions of the transportation sector have increased by 

9.6% from 2012 to 2019 (EPA 2019) due to growing demand for mileage, although the emission 

per mile reaches a record low since 2005 (EPA 2018). The recent observed conventional vehicle 

stocks and the future projections of petroleum-fueled vehicles show an expanding trend, whereas 

the alternative fuel vehicle shares are limited and projected to be only 10% by 2040 (US DOE 

2019; EIA 2021). The demand rigidities in high ethanol blends is restricted by the limited 

incentives both for the adoption of flex-fuel vehicle (FFV) and for the retail price (Khanna, 

Rajagopal and Zilberman 2021). The electro-mobility also confronts the techno-economic and 
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behavioral challenges (Zhong and Khanna 2021b), where the abatement costs of GHG mitigation 

of electrification are more costly than the social cost of carbon. 

To accelerate the GHG reduction in the transportation sector, we consider imposing the 61 

billion liters of cellulosic biofuel mandate of the Renewable Fuel Standard (RFS) in addition to 

the existing 56 billion liters of corn ethanol currently mandated. Although the volumetric targets 

of various types of biofuels beyond 2022 are yet to be determined, forward-looking analysis can 

inform the policy discussions of the potential economic and environmental implications on the 

transportation fleet of extending the corn ethanol mandate and adding the cellulosic biofuel 

mandate to be achieved in the long term. A substantial literature has examined the cost-

effectiveness of cellulosic biofuel in reducing GHG emissions by replacing fossil fuel and soil 

carbon (Robertson et al. 2017; Lynd 2017; Hudiburg et al. 2016; Dwivedi et al. 2015; 

Pourhashem et al. 2013). However, the biofuel policy implication with consideration of the 

electrification of transportation is rarely studied. This study examines how the replaced gasoline 

consumption by EV purchase interacts with biofuel policy and the role of blend mandate in the 

transportation sector. The leading policy support for EVs, such as EV tax credit and gasoline-

vehicle ban, are analyzed jointly with and without the extended cellulosic biofuel policy. We 

compare the effect of these policy scenarios and aim at the implications on vehicle fleet and fuel 

consumptions, as well as the lifecycle GHG emission intensity of each car type. We examine the 

cost-effectiveness in abating the emission by measuring the welfare cost of the transportation, 

electricity sectors, and government revenue in the US economy. 

The environmental performance of cellulosic biofuels and electrification in transportation is 

ambiguous. Cellulosic ethanol production offers the highest GHG emission benefit among 

bioethanol feedstocks (Wang et al. 2012). The upscaling cellulosic biofuel production using the 
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carbon capture technique could lower the carbon intensity of biofuel (−179 to 20 g CO2 per MJ), 

which are comparable to electric vehicles (Gelfand et al. 2020). Meier et al. (2015) find that up 

to 56.4 billion gallons of cellulosic biofuel is required in addition to a 40% of mileage 

electrification to achieve the 80% GHG reduction target. The emission benefit of EVs can reduce 

GHG emission by as high as 64% (Meier et al. 2015), though restricted by the regional sources 

for electricity (Tong and Azevedo 2020; Holland et al. 2016). These lifecycle analyses of low 

carbon transportation energy do not discuss the market friction of adopting alternative fuel 

vehicles, neither consider the feedback effect of the fleet change back on the fuel market. 

The feasibility of high ethanol-blended fuel widely accepted by US consumers (with an 

average blend of 74%, also known as E85) depends on the key factors of fuel prices and 

availability of refueling stations, as well as behavioral preferences. The demand for E85 fuel is 

driven by the fuel prices that are found discounted by consumers 55% to 76% of regular motor 

fuel (E10) for most regions, but the price ratio of E85 to E10 in California can be as high as 

131% in California (Pouliot, Liao and Babcock 2018). Moreover, the owners of FFV are 

reported unaware of the dual-fuel capabilities and associated costs of using E85 (Liao and 

Pouliot 2016; Pouliot et al. 2018). The E85 demand is also driven by the geographical locations 

of the E85 pumps as consumers are sensitive to the inconvenience cost of detours (Pouliot and 

Babcock 2014). Empirical evidence shows that the increasing deployment of E85 fuel stations 

induces adoptions of government FFV fleet more than private FFVs (Corts 2010). However, 

rarely has the literature discussed the role of biofuels play in the presence of electrified 

transportation and the substitutable or complementary effect between FFV with the electric 

vehicle (EV). 
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Our approach of the integrated dynamic vehicle choice model also contributes to the 

literature of modeling the transportation sector. The Biofuel and Environmental Policy Analysis 

Model (BEPAM) widely studies the implications of biofuel policy on agriculture and 

transportation fuels, but it does not consider the endogenous vehicle choices under heterogenous 

driving demand. Behaviorally realistic vehicle choice models with the consideration of 

inconveniences costs and idiosyncratic preferences are incorporated into the energy system 

models to mimic the vehicle stock change under alternative policies (Bunch, Ramea and Yeh 

2015; Ramea et al. 2018; McCollum et al. 2017). The model, however, does not discuss the 

economic mechanism of vehicle choices with varying fuel prices and traveling demand that 

affect the vehicle choices.  

Our model contributes to the literature with the policy analysis for the market acceptance of 

emerging technologies, such as EVs (plug-in hybrid electric and battery electric) and low carbon 

fuel vehicles (flex-fuel vehicles) using the welfare framework. We first provide a conceptual 

graphical analysis of policy analysis to study the extent to which the combination of the policies 

affect the price incentives for the fuel prices that determine the cost-effectiveness and GHG 

mitigation. We then undertake the numerical analysis based on the vehicle choice model 

integrated with the dynamic, open-economy, multi-market optimization model BEPAM (Biofuel 

and Environmental Policy Analysis Model) that specifies the fuel, transportation, electricity, and 

agriculture sectors under a welfare-economic framework (Zhong and Khanna 2021b). The 

specification of the dynamics of vehicle fleet and the stock turnover considers five fuel types that 

take 99% of the total US light-duty vehicle stock (in Table S1): conventional vehicle (CV), 

flexible-fuel vehicle (FFV), hybrid gasoline vehicle (HBV), plug-in hybrid vehicle (PHEV), and 

battery electric vehicle (BEV).  One feature that differentiates our model from previous literature 
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is that we endogenously solve the consumers’ choice of the vehicle type, fuel consumption, 

mileage driven, and charge modes by maximizing social welfare. We represent consumer 

heterogeneity by specifying spatial variation across 20 regions, three driving demand groups, 

four charging modes, and up to 24 vehicle ages, for five vehicle drivetrain types. We further 

apply the realistically stochastic variable of daily mileage traveled, time valuation, and 

idiosyncratic preference. We quantify welfare change incurred by the policy incentives and 

calculate the abatement cost of the GHG mitigation. 

The rest of the paper is organized as follows. The following section first describes the 

conceptual framework of the policy analysis considering both incentives for the electrification 

and low carbon fuel blend mandate. We then introduce the numerical simulation model and 

scenarios to analyze. Section 4 presents the impact of the cellulosic biofuel policy and 

electrification incentives on the transportation sector, focusing on vehicle stocks, energy 

consumption, and welfare and environmental implications. Lastly, in Section 5, we conclude the 

paper with a discussion of the implications of our findings. 

2 Conceptual Framework 

We first analyze the implication of policy interaction between the ethanol blend mandate 

(denoted as M) and the policy incentive for EV, such as tax credit (denoted as T), with a simple 

graphical analysis in Figure 1. We examine the fuel market under four alternative scenarios: 

without any policy intervention (denoted as 0),  with EV tax credit (T), the ethanol blend 

mandate (M), and the joint implementation of ethanol blend mandate and EV tax credit (M+T). 

First, ethanol demand is comprised of the ethanol blended in E10 and E85 (in panel a and b 

of Figure 1). Without any policy intervention, the aggregated ethanol demand curve is limited at 

a low ethanol blend (De
0 in Figure 1a), whereas E85 demand is negligible. The ethanol blend 



   

 

7 

mandate raises the demand for ethanol blended up to 10% (De
M in Figure 1a) and also for E85 

(Dc
M in Figure 1b). The aggregated ethanol demand has a kink and prioritizes the ethanol 

blended in E10 until it reaches the blend wall1 , and then followed by the ethanol demand in E85 

(DE
M). The price difference between the supply and aggregated demand curve is the implicit 

subsidy granted by the ethanol blend mandate (shown as subsidyM in Figure 1c). Theoretically, it 

is the shadow price of the policy constraints. 

The EV tax credit alone without blend mandate promotes EV adoptions, thus reduces the 

dependence on E10 and the corresponding blended ethanol (De
T in Figure 1a) without any E85 

consumption. The addition of the ethanol blend mandate at the presence of the EV tax credit 

(M+T) indicates a higher blend rate applied to the fossil fuel base of the sum of gasoline and 

diesel volumes2 to secure the same amount of ethanol to be blended and consumed. Therefore, 

the EV tax credit (T+M) shifts the demand for E10 outward (De
M+T in Figure 1a), but lower than 

the original demand under blend mandate (De
M) due to the lower demand of E10 caused by the 

EV tax credit. The demand for E85, however, shift outwards (Dc
M+T in Figure 1b) as the 

volumetric ethanol target pushes E85 consumption as E10 demand declines. The aggregated 

demand for ethanol, therefore, shifts downwards with the kink moved to the left and followed by 

flatter E85 demand that intersects with the mandated level of ethanol with the implicit subsidy 

wedging between the supply and new demand (denoted as subsidyM+T  in Figure 1c). The slopes 

of the piecewise demand curve (DE
M+T) are greater due to the increasing blend rate 

corresponding to the decline in fossil fuel consumption. We find that whether the subsidyM+T is 

 
1 The literature describes the blend wall as the limit on ethanol blend rate that can be consumed by the existing 

fleet of vehicles due to technological constraints (Du and Li 2015; Luo and Moschini 2019; Tyner, Taheripour and 

Perkis 2010; Taheripour and Tyner 2008). 
2 As speficied in Federal Register, the ethanol mandate is implemented by setting blend rates applied to a fossil 

fuel base that jointly include gasoline and diesel. Source: https://www.epa.gov/renewable-fuel-standard-

program/regulations-and-volume-standards-renewable-fuel-standards 
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greater or smaller than the original implicit subsidyM is ambiguous. It largely depends on the 

extent to which both the E10 is substituted, how much E85 is induced, as well as the blend rate 

that determines the slope of the demand curve. As the case illustrated in Figure 1c, the lower E10 

demand but flatter demand curve could result in lower implicit subsidy meanwhile increase the 

E85 consumption. 

The revenue-neutral policy also imposes the same amount of implicit tax on both gasoline 

and diesel due to the joint base of the ethanol blend mandate (Zhong and Khanna 2021a). The 

implicit taxes under the joint-base policy is the multiplication of the blend rate and the shadow 

price of the policy constraints (Zhong and Khanna 2021a). As found in previous studies 

(Babcock, Agroicone and Peng 2013; Thompson, Meyer and Westhoff 2010), the ethanol blend 

mandate alone shifts the demand for gasoline inward from Dg
0 to Dg

M (Figure 1d) that creates the 

price wedge between the demand and supply, which is the implicit taxM. The EV tax credit 

without ethanol blend mandate parallelly reduces the demand for gasoline (Dg
T). If jointly 

implement both the biofuel blend mandate and EV tax credit, the demand curve shifts inward 

from Dg
T to Dg

M+T with a steeper slope with a higher blend rate than Dg
T. The quantity of 

gasoline is reduced to Qg
M+T. We note that the change of implicit taxes is also ambiguous from 

taxM to taxM+T. It depends on how much gasoline is replaced by the EV tax credit (Dg
T), and the 

increase of the ethanol rate that determines the slope and the quantity of gasoline at the 

equilibrium (Qg
M+T).  

3 Numerical Model  

We undertake this analysis by using the open-economy, price-endogenous, partial 

equilibrium model— Biofuel and Environmental Policy Analysis Model (BEPAM) that 

integrates the multiple markets of transportation, electricity, and agriculture sectors (Chen et al. 
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2020). The model maximizes the discounted sum of consumer and producer surplus in the three 

sectors, subject to policy constraints in the form of corn ethanol only mandate and cellulosic with 

corn ethanol mandate, and various technological and material balance constraints. The 

technological constraints of the transportation sector describe the assumptions about the 

compatible fuel type for each vehicle engine, fuel economy that determines the conversion 

efficiency of fuel into mileage driven. Material balance constraints ensure that demand is equal 

to supply, which is defined as market equilibrium achieved in the transportation, electricity, and 

agriculture sectors. In the transportation sector, the equilibrium of the mobility service is defined 

as traveling demand met by the capacity of driving mileage supplied by driving the vehicle in 

stock and consuming the fuel and energy. 

3.1 Transportation sector 

The heterogenous driving demand of transportation is specified by the downward sloping 

linear demand functions for vehicle kilometers traveled (VKT) of twenty electricity market 

regions and three driving demand groups based on the driving cost from Alternative Fuel Data 

Center (AFDC 2019) and annual VKT from National Household Travel Survey (Federal 

Highway Administration 2017). The consumers’ utility of the transportation sector is 

incorporated with the specification of the consumer surplus from driving demand net the vehicle 

ownership costs, including the economic costs (procurement cost, operation and management 

cost) and intangible disutility costs (range limitation, waiting, and detour). The randomness in 

consumers’ behavioral characteristics of daily driving demand, and value of time, and 

idiosyncratic preferences are considered to embody the realistic market dynamics. 

We address economic costs and intangible disutility costs associated with ownership of 

alternative powertrain vehicles (range limitation, waiting, and detour). Range limitation cost 
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quantifies the cost of the alternative modes of transportation if BEV runs out of battery. Waiting 

cost is the valuation of time summing over all the visits to the public charging stations. Detour 

cost is measured by the time cost to find the nearest station. The idiosyncratic preference term 

for each vehicle type is added to the consumer utility that mimics the random utility framework 

following Gumbel distributions (Bunch and Rocke 2016). We also incorporate the stochastic 

process by randomly drawing the preference terms, daily driving demand, and value of time from 

predefined distributions. The full details of mathematical modeling and data source are described 

in Appendix in Zhong and Khanna (2021). 

The fuel supply of the transportation module in BEPAM model includes the crude oil 

markets for both US and the rest of the world, the refinery product of petroleum gasoline and 

diesel used for blended retail products, and the regional electricity grid.  Following the same fuel 

modeling assumption in Chen et al. (2021), gasoline and diesel are jointly distilled products from 

crude oil and US as a price-taking exporter of petroleum products as US only export a small 

portion of the petroleum product to the rest of the world. The gasoline and diesel prices are 

capped by the prices of world markets. The model endogenously determines the implicit cost of 

VKT depending on the marginal cost of oil, costs of conversion of oil to gasoline and diesel, 

extent and mix of biofuels blended, and the operation and maintenance costs of vehicles.  

3.2 Electricity sector 

We also include the regional supply and demand of the electricity generation at the 

electricity market region, where the generation capacity, cost of generation, and conversion 

efficiency are specified for each energy source in each region. The electricity demand is 

specified in each region with a linear demand curve that is an aggregation of demand across 

residential, commercial, and industrial sectors. The model endogenously determines prices and 
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quantities of electricity consumption in the electricity sector (Oliver and Khanna 2017b). We 

further update the electricity markets with the updated eGRID data (EPA 2016). The additional 

electricity demand due to the increasing electric vehicle use shifts the aggregate demand 

outward. The endogenous solutions of market equilibrium of electricity prices determine the 

energy sources and fuel costs of driving EV. We estimate the cost of expanding the charging 

portals for both L2 and fast-charging by using the estimates of a single outlet from DOE (2015) 

times the numbers of the portals required for stations, assuming each station on average having 

three portals. 

3.3 Agricultural sector 

The agricultural sector endogenously determines the quantities of row crops, biomass 

feedstock, biofuels, and fossil fuels and their prices that ensure that market demand and supply 

are in equilibrium. It incorporates domestic agricultural and fuel markets in the U.S. and trade in 

agricultural commodities and petroleum products with the rest of the world. The model considers 

spatial heterogeneity in crop and livestock production, where costs of production, yields, and 

land availability differ across crop reporting districts (CRDs). Crops can be produced using 

alternative rotation, tillage, and irrigation practices. The model simulates optimal land use 

allocation for major row crops and energy crops on active cropland endogenously based on the 

availability of land, the net returns to crop production, endogenously determined crop prices, 

historical land mix constraints, policy, and technology constraints. More details are documented 

in Chen et al. (2021). 

3.4 Welfare Analysis 

To determine the social welfare effects of the policy incentives for decarbonization, we 

assess the change in fuel prices, energy consumptions, and vehicle kilometer traveled (VKT) 
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and, thus, on the discounted value of the sum of consumer and producer net benefits of 

agricultural, transportation, and electricity sectors relative to the existing policy scenario. The 

consumer utility gained from the transportation service is calculated as the consumer surplus 

from VKT demand net the vehicle ownership cost, disutility cost, and the cost of home charging. 

We demonstrate the welfare change for consumers of each vehicle type as well as diesel users. 

The profit of fuel producers is the total benefit from retail fuel sales less the crude oil production 

cost, crude oil process cost, and excise taxes of gasoline and diesel. We calculate the surpluses 

for both producers and consumers of the electricity sector the same way as (Oliver and Khanna 

2017a). We also consider the government costs and benefit from fuel tax revenue, the investment 

in the tax credit, and establishing the charging infrastructure. We assume a social discount rate of 

3% (for more discussion of the welfare framework of the agriculture sector, see Chen et al. 

2020).  

3.5 GHG Estimation 

Unlike EPA and NHTSA overlook the upstream emission with only consideration of tailpipe 

emissions, we investigate the lifecycle GHG emission sources from the agriculture, 

transportation, and electricity sectors following Chen et al. (2021) by multiplying the lifecycle 

carbon intensity with the fuel consumptions of gasoline, diesel, biofuels, and electricity of 

different sources. We estimate the carbon intensity per km for each vehicle type by dividing the 

vehicle emission by the vehicle kilometer traveled (VKT) under each scenario. We examine the 

cumulative emissions and their social costs of each scenario from 2016 to 2040 and the GHG 

emission in 2040. We calculate the total social cost of GHG emissions from agriculture, 

transportation, electricity sectors based on the carbon price.  There is a wide disparity in the 

range of estimates of the social cost of carbon but a considerable consensus that $50 per metric 



   

 

13 

ton of CO2 equivalent (Mg CO2) is a reasonable estimate with the same 3% social discount rate 

assumed here (Watkiss and Downing 2008; Tol 2005).  

3.6 Scenarios  

We first investigate three potential policy scenarios that promote electrification in the 

transportation sector over 2016 - 2040 period. Baseline scenario (1) defines the existing policy 

mix of 56 billion liters of corn ethanol blend mandate, the underlying fuel efficiency standard 

featuring the increasing fuel economy of all vehicle types, as well as the Renewable Portfolio 

Standard with minimum percentage requirement for renewable energy. Scenario (2) extends the 

federal tax credit policy for battery and plug-in hybrid vehicles in addition to scenario (1). 

Scenario (3) imposes the ban on conventional vehicles with only internal combustion engines 

starting 2020 in addition to scenario (2) that jointly represent the most aggressive incentives to 

facilitate the decarbonization.  

We then analyze the above three scenarios under the extended cellulosic biofuel mandate to 

achieve 61 billion liters of cellulosic biofuel production of the Renewable Fuel Standard (RFS) 

by 2040 and we number the three scenarios (4) to (6). We assume the cellulosic ethanol 

production grows linearly from 0.87 billion liters in 2016 to 61 billion liters in 2040 while annual 

corn ethanol levels are constant at 56 billion liters.  

4 Results 

We validate the model by comparing simulated outcomes in the fuel and vehicle sectors 

under scenario (1) over 2016-2019 period with observed data. We find the fuel consumption and 

production both in the US and the rest of the world generally deviate by less than 2% from 

observed data (Table A3 in appendix A.4). The fuel prices are within a 12% deviation. The 

vehicle stocks are within a 9% deviation from the observed level from 2016 to 2019. The 
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deviations of the simulated outcomes of the updated BEPAM for 2016–2019 from their observed 

values over the 2016–2019 period are generally within a similar level of tolerance as in previous 

studies applying BEPAM (Chen et al. 2020; Hudiburg et al. 2016; Oliver and Khanna 2017b). 

4.1 Effect of Policy Interaction on Fuel Incentives 

The implicit price incentive of biofuel policy on gasoline, diesel, and ethanol are provided in 

Table 1. We find that implicit subsidy of ethanol blend mandate on ethanol production increases 

from $0.33 L-1 of baseline scenario (1) to $0.39 L-1 with EV tax credit in scenario (2), and 

implicit tax also increases from $0.04 L-1 to $0.06 L-1 in 2040. The gasoline and diesel share the 

same amount of implicit tax as the volumetric total of gasoline and diesel are jointly used for the 

ethanol blend mandate. As we illustrated in Figure 1, the price incentive increases when the 

demand for E85 does not grow fast enough to meet the volumetric target of ethanol production 

and requires greater subsidy. The addition of the CV ban on the top of the EV tax credit, 

however, reduces the implicit subsidy to $0.31 L-1 when E85 market demand rise more than the 

decrease in the E10 consumption (as illustrated in Figure 1), whereas the implicit tax on 

petroleum fuels remains the same with increased blend rate despite the lower incentive. 

The scenarios (4) to (6) with cellulosic ethanol mandate increase the implicit subsidies and 

taxes because of more stringent policy relative to counterpart scenarios without cellulosic ethanol 

mandate. Follow the same direction as above, and the EV tax credit increases the implicit 

subsidy from $0.38 L-1 to 0.56 L-1 and implicit tax from $0.10 L-1 to $0.18 L-1, driven by the 

reduced E10 demand. Similarly, the CV ban reduces the implicit tax and subsidy relative to 

otherwise when E85 demand is pushed by the volumetric target.  

4.2 Effect of Electrification Incentives 
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The outcome of vehicle choices, energy consumption, and vehicles kilometer traveled (VKT) 

are presented in Error! Reference source not found. for policy scenarios under study 2040. As 

EIA predicted, the VKT demand in 2040 is 23% above the 2016 level; BEVs are 11% cheaper, 

and vehicles of all types are more efficient (details in Appendix A.1 and A.2). By 2040, the total 

amount of vehicle stock expands to 298 million (as shown in Table 2) with a diversified 

alternative-vehicle fleet. Though the BEVs stock is only 4 million by 2040, the electrification 

jointly achieved by BEVs and PHEVs rises to 10%, whereas the ethanol blend of the VKT 

remains at 10%. The efficient and diversified vehicle fleet saves E10 consumption in 2040 by 

11% compared to the baseline scenario that reversely pushes the E85 consumption and FFV 

purchase to maintain the 56 billion liters of corn ethanol production. However, the detour 

distances for E85 and charging stations decline as the infrastructure slowly diffuses across the 

country (2% annually), which needs less price incentive for the E85 users to offset the 

inconvenience cost to switch fuel choices. E85 price is higher than the level in 2016. The 

increasing driving demand raises the E10 price above the 2016 level, despite the fact that the 

vehicles are more efficient and E10 are displaced by other fuel types. 

In case tax credit of $7,500 and $2,500 for BEV and PHEV extended to 2040 in scenario (2), 

BEVs and PHEVs stocks are further enlarged to 46 million and 51 million and together account 

for 32% of the total vehicle fleet. They contribute to the electrification of the vehicle fleet to 36% 

but only 15% of reduction in total energy consumption compared to scenario (1) without the tax 

credit. We find E85 consumption increases by 12 billion liters to meet the 56 billion liters of 

ethanol mandate and 29 billion increase of gasoline-equivalent liters of electricity offset the 

reduction of 74 billion liters of E10 consumption. The EV tax credit lowers the E85 price due to 
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higher incentives received in 2040. The higher incentive indicates E10 displacement reducing the 

ethanol demand dominates the increase in the price incentive.  

Under the aggressive policy restriction of tax credit and CV bans over the 2016-2040 period, 

the new CV purchases are replaced entirely by the alternative fuel vehicle, with only 5 million 

stocks remaining in 2040. The PHEV becomes the next popular vehicle type with a drastic 

increase in the stock to 108 million, followed by FFV of 84 million and BEV of 72 million. E10 

consumption drops by 224 million liters in the E10 consumption, and E85 increases by 24 billion 

liters compared to the baseline scenario. The electricity consumption increases by 54 billion 

liters, whereas diesel consumption remains unchanged as an implicit tax on both diesel and 

gasoline does not change (Table 1). Altogether, they contribute to 148 billion liters of reduction 

(-22%) in the total energy consumption compared to the baseline scenario (1) in 2040. The 

regulated market favoring advanced vehicles raises the overall ownership cost that marginally 

reduces both the total light-duty VKT and total vehicle stocks but enhances the fuel efficiency to 

24 km per liter. 

4.3 Effect of Cellulosic Ethanol Mandate  

The implementation of Corn + Cellulosic Ethanol Mandate increases the requirement of 

cellulosic ethanol linearly to the goal of 61 billion liters by 2040 in addition to the extant 

production capacity of 56 billion liters of corn ethanol and thus doubles the ethanol consumed 

for light-duty VKT to 18% (Table 2). The stringent ethanol policy induces 50 million FFV 

adoption and 90 billion liters of E85 in 2040 than the baseline scenario (1) without cellulosic 

biofuel mandate (Table 2). The total energy consumption reduces by 2% due to the cellulosic 

ethanol mandate, contributed mostly by 71 billion liters and 5 billion liters less E10 and diesel 

consumption, respectively, but they are offset with the addition of 68 billion liters of E85 and 2 
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billion energy equivalent electricity. The fuel prices of E85 decrease by $0.02 per liter, whereas 

E10 increases by $0.05 per liter compared to the baseline scenario (2). The E85 is thus priced 

25% lower than the E10 to secure the market demand, which is also found in Pouliot et al. 

(2018). 

The cellulosic biofuel policy with the extended EV tax credit in scenario (5) synergizes the 

adoptions of alternative fuel vehicles. Compared to scenario (1), the stock increases of FFV by 

40 million and BEV by 48 million are greater than the sum of the increase from EV tax credit 

and from cellulosic ethanol mandate alone. It is because EV tax credit contracts the demand for 

gasoline that furthers the ethanol blend rate required to meet the required 61 million cellulosic 

biofuel mandate. The higher blend rate and increased implicit tax raises the E10 prices and 

consequently reduces CVs stock to only 130 million. The reduction in total energy consumption 

by 84 billion liters compared to the baseline scenario (1) is higher than the sum of the reduction 

(by 74 billion liters) achieved by the single EV tax credit in scenario (2) and the cellulosic 

ethanol policy (by 6 billion liters) in scenario (4). 

The cellulosic ethanol mandate with the ambitious EV tax credit and CV ban in scenario (6) 

increases the FFV adoption to 111 million, which becomes the primary choice of vehicle. The 

BEVs increases by 5 million by the cellulosic ethanol mandate, whereas PHEV is replaced by 

FFV stock. FFVs and BEVs are complementary in taking the market share while replacing the 

E10 fuels.  An increase of 66 billion liters of E85 consumption replaces 49 billion liters of E10 

fuel use. The total energy reversely increases by 5 billion liters compared to the counterpart 

without cellulosic blend mandate in scenario (3) as electrification minorly decline due to the shift 

of the primary vehicle choice from PHEV to FFV and increased E85 consumption surpasses the 

reduced E10. Though FFVs dominate the market now, the E85 price is higher than the case 
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without the CV ban in scenario (5). It is because of the synergy of the CV ban and cellulosic 

ethanol mandate that is similar to the analysis we discussed in Figure 1 that reduces the implicit 

tax and subsidy of the cellulosic ethanol mandate.  

4.4 GHG Intensity of Vehicle 

The greenhouse gas (GHG) emissions per mile of five vehicle types under different policy 

scenarios are displayed in Figure 2. Enhanced fuel efficiency predicted in 2040 leads to reduced 

emission intensities for all vehicles across scenarios. Under the baseline policy scenario (1) in 

Figure 2, the CV still has the highest emission intensity for all three scenarios, followed by FFV 

with 26% less emission due to the consumption of E85 fuel that has lower carbon intensity. HBV 

and PHEV with higher efficiency show a 30% and 67% less emission than CV, whereas BEV 

has zero-emission intensity as the electricity sources are marginally from clean sources. Scenario 

(2) with EV tax credit further reduces the emission intensities for FFV even lower than the level 

of HBV as EV tax credit synergically induces the FFV adoption. The joint imposition of EV tax 

credit and CV ban of scenario (3) raises the intensity of CVs by 15% compared to scenario (2) as 

they are the remaining aged and inefficient vehicles still in use since 2016. FFVs also have a 

19% increase in the average emission intensity as they mostly consume E10 as the second 

cheapest vehicle option substituting for CV. Whereas HBV, PHEV, and BEV relative remain the 

same intensity.  

Lastly, we find the Cellulosic Ethanol Mandate in 2040 cuts the emission intensity of FFV by 

47% compared to scenario (1) without cellulosic ethanol. The emission intensities of all other 

vehicles reduce by 3% universally in 2040 relative to no cellulosic ethanol mandate in scenario 

(1). It is because the higher E10 prices induce the adoption of alternative fuel vehicles that raise 

the average fuel efficiency, whereas the retirement of the old CVs also reduces the intensity. The 
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cellulosic biofuel mandate further downgrades the emission levels of FFV close to PHEV, which 

are 60%-67% lower than that of the CV and driven by the high ethanol blend. The Cellulosic 

Ethanol Mandate with the EV tax credit lowers the carbon intensity for FFV but barely for 

others, whereas the CV ban together with the EV tax credit raises the carbon intensity of CV by 

15% and that of FFV by 12% and reduces 0.1% for PHEV, for the same reason discussed above 

without Cellulosic Ethanol Mandate. 

4.5 Total GHG Emission  

We calculate the GHG emissions of transportation, electricity, and agriculture sectors, as 

shown in Table 3. In 2040, the transportation and electricity sectors account for 47% and 50% of 

the total emissions, whereas the share of cumulative GHG emissions by both transportation and 

electricity sector are 48%. It shows a declining emission intensity with the improving fuel 

efficiency to reduce the transportation emission in the long run. The addition of EV tax credit in 

scenario (2) enhances the GHG reduction in the transportation sector by 17% in 2040 but 

reversely increases the emission of the electricity sector by 4% for transportation that leads to a 

net decrease of 6% of the GHG emissions compared to the baseline scenario (1). The magnitude 

of cumulative emission reduction caused by the EV tax is relatively smaller compared to the 

2040 reduction as the fuel efficiency and GHG reduction potential is the highest in 2040 over the 

2016- 2040 period. The joint implementation of EV tax credit and CV ban enlarges the GHG 

reduction to 11% in 2040 and 5% cumulatively from 2016-2040. 

The imposition of the cellulosic policy in scenario 4-6 contributes to an overall 3% reduction 

in the cumulative emission over 2016-2040 compared to that of the counterpart scenarios 1-3 

without cellulosic ethanol mandate, whereas 2040 reductions reach 6-7% less GHG emission 

compared to the counterparts. The percentage emission reductions in agricultural sectors are as 
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high as 24%-27%, but the absolute contribution is not comparable to that of the transportation 

sector.  The Cellulosic Ethanol Mandate alone in scenario (4) outperforms the EV tax credit in 

scenario (2) in cumulative emission reduction. The joint implementation of the cellulosic ethanol 

mandate and EV tax credit increases the GHG reduction in 2040 and is additive in achieving a 

5% reduction in cumulative GHG emissions over the 2016-2040 period. The CV ban jointly 

implemented with the cellulosic ethanol mandate also shows the additive cumulative reduction of 

8% compared to the EV tax credit and CV ban in scenario (3) and cellulosic ethanol mandate in 

scenario (4) by itself, but the 2040 emission shows the GHG reduction is less than the sum of 

those of scenario (3) and (4) when FFV compete PHEV to be the primary vehicle type with the 

addition of the cellulosic ethanol mandate. 

4.6 Welfare analysis 

We find that the EV tax credit will lead to an overall decrease of $125 billion in the 

economic net benefit over 2016-2040 relative to the baseline scenario. In the transportation 

sector, consumers of light-duty vehicle fleet benefit with a net of $287 billion relative to the 

baseline scenario (1) by increasing the consumers’ utility of the BEV and PHEV owners but 

reducing those of the CV and HBV. The higher implicit subsidy discussed in section 4.1 driven 

by less fuel demand reduces the consumer benefit of diesel fuels by $72 billion. Electricity 

producers’ benefit increases by $95 billion (1%) as more electrification is created for 

transportation use, but the higher electricity price reduces the consumers’ benefit. The 

government revenue from fuel taxes falls by $62 billion (-5%) with less petroleum consumption 

and is further exacerbated by $369 billion of EV tax credit expenditure on the EV purchase. We 

find the expense of EV tax credit is greater than the gain in the transportation fuel sector and 

electricity sector. As the cumulative GHG emission reduces by 2,334 million Mg CO2 (-2%), the 
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abatement cost of CO2 with the tax credit for EV is $54 per MgCO2. It is close to the widely 

accepted value of the social cost of carbon at $50 per MgCO2. 

The additional CV ban in scenario (3) forces drivers to buy more expensive alternative fuel 

vehicles, leading to a net economic loss of $607 billion. The declining CV stocks lead to a 

drastic loss of $44,518 billion (-30%) for the CV fleet but enhance consumers surplus of all other 

alternative fuel vehicles that offset the CV loss with a net gain of $117 billion (-0.1%) for light-

duty vehicles compared to the baseline scenario (1). The electricity sector further enhances the 

economic benefit by $202 billion by benefiting the producers but reducing the welfare for 

consumers with higher electricity prices. The welfare loss exacerbates for the government as fuel 

tax revenue cut by $145 billion and vehicle tax credit required $678 billion. The abatement cost 

of implementing the CV ban more than doubles to $111 per Mg CO2 as the economic loss grows 

faster than the GHG reduction. 

The cellulosic ethanol mandate reduces the economic surpluses by a loss of $417 billion (-

0.1%). The stringent policy raises the E10 and diesel prices and reduces the profits of CV, HBV, 

and diesel fuel drivers by $6,045 billion (-4%), $454 billion (-5%), and $412 billion (-3%) 

compared to the baseline scenario (1). The increased benefit for EVs and FFV drivers reduces 

the net welfare loss by 478 billion (-0.1%), which is greater than the sum of $53 billion in the 

agricultural sector, $1 billion increase in the electricity sector synergistically caused by the 

cellulosic ethanol mandate, and the $7 billion increase of the fuel tax revenue from ethanol 

import tariff. The cumulative GHG emission of 2,945 Million Mg CO2 (-3%) is higher than that 

of the scenario with EV Tax credit in scenario (2) and leads to an abatement cost of $142 per Mg 

CO2. 
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The cellulosic ethanol mandate, together with the EV tax credit, worsens the overall 

economic benefit by $668 billion (-0.3%). It is greater than the sum of welfare loss from the EV 

tax credit in scenario (8) and cellulosic ethanol mandate in scenario (10). Though the light-duty 

consumers benefit from the EV tax credit by $237 billion, the diesel fuel users bear the loss of 

$606 billion that leads to a net of $370 billion loss in the transportation sector. And the 

substantial government payment of $462 billion further deteriorates welfare loss despite the 

electricity sector benefits by $98 billion. The overlapping EV tax credit and the cellulosic 

ethanol mandate have a synergistic effect on welfare gain of the agricultural sector and electricity 

sector, as well as on welfare loss of diesel consumer surplus and government revenue. The 

cumulative GHG emission reduction of the policy interaction between the EV tax credit and 

cellulosic ethanol mandate at 5,425 Million Mg (-5%) is also more than the sum of the reduction 

of single implementation of the EV tax credit and cellulosic ethanol mandate. The abatement 

cost reduces to $123 per Mg CO2, lower than the level of cellulosic ethanol alone ($142 per Mg 

CO2) but higher than that of the EV tax credit ($54 per Mg CO2). It is because the light-duty 

consumer gain from the EV tax credit, but bear the high fuel cost caused by the cellulosic ethanol 

mandate that reduces the net costs of the transportation sector. As a result, the joint 

implementation of EV tax credit and cellulosic ethanol mandate achieves 5 % of GHG reduction 

but reducing the abatement cost by 13%, compared to the cellulosic ethanol mandate alone. 

The addition of the CV ban to the EV tax credit and the cellulosic ethanol mandate 

deteriorates the total welfare loss by $1,022 billion compared to the baseline scenario (1). 

Compare the results summing the cellulosic ethanol mandate in scenario (4) and EV tax credit 

and CV ban in scenario (3), the joint imposition of these policies does not bring the synergy for 
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the economic surplus, nor for the GHG emissions. The abatement cost is $126 per Mg CO2, 

between $111 per Mg CO2 and $142 per Mg CO2. 

5 Discussion 

This paper estimates the economic and environmental implications of decarbonization 

policies of the biofuel mandate, EV tax credit, and conventional vehicle ban on the 

transportation, electricity, and agricultural sectors in the US over the 2016-2040 periods. We 

apply a multi-period, multi-market, partial equilibrium, open-economy model (BEPAM) of the 

transportation, electricity, and agricultural sectors to endogenously determine vehicle choices, 

fuel mix, electricity demand, and prices to meet the policy mandate. We also examine the change 

of GHG emissions associated with each sector in response to the decarbonized strategies and 

their abatement costs. 

Our findings show that the interaction between the ethanol blend mandate and the 

electrification incentives affect the implicit price incentive of the ethanol blend mandate, but the 

direction is ambiguous depends on the extent to which both E10 is substituted, the increase of 

E85 to meet the volumetric mandate as well as the blend rate that determines the stringency of 

policy. The numerical results show that the EV tax combined with ethanol blend mandate 

increases the price incentives for ethanol and petroleum fuels. The aggressive electrification 

effort of the CV ban and EV tax credit, however, reduces the subsidy of E85 as market demand 

is high enough chosen by the market, 

The numerical simulations show the EV tax credit alone and scenario with both the EV tax 

credit and CV ban diverse the vehicle fleet with 34% and 53% of VKT electrification, but liquid 

fuel vehicles running on the gasoline still dominate the fleet. Cellulosic Ethanol Mandate induces 

the flexible-fuel vehicle (FFV) adoptions and E85 consumption by replacing the conventional 
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vehicle (CV) and E10 use. The Cellulosic Ethanol Mandate synergizes with the EV tax credit in 

diversifying the vehicle adoptions by raising the blend rate and cutting the E10 demand. The 

aggressive CV ban even prioritizes the flex-fuel vehicle and eases the pressure for wide adoption 

of E85 fuels.  

The cellulosic ethanol mandate helps to lower the carbon intensity of FFV from being the 

second-highest emission-intensive vehicle to close to what PHEV can achieve by raising the 

ethanol blend. Overall, the cellulosic ethanol mandate mitigates the GHG emissions by 6-7% and 

has better performance in reducing GHG emissions from both transportation and agricultural 

sectors than the counterparts without the cellulosic ethanol mandate. The synergy between 

cellulosic ethanol mandate and EV tax credit as well as CV bans leads to additive results in GHG 

emissions reduction in 2040 by 16 % and 8% of cumulative reduction over the 2016-2040 

period.  

We find the abatement cost of the EV tax credit is comparable to the social cost of carbon at 

$54 per MgCO2 that reduces 2% of the cumulative GHG emission compared to the baseline 

scenario. The scenario with the CV ban and EV tax credit doubles both the emission reduction 

and abatement cost relative to the scenario with EV tax credit alone. The cellulosic ethanol 

mandate increases the abatement cost to $142 MgCO2, born mainly by the fuel consumers. The 

synergy between the cellulosic ethanol mandate and EV tax credit reversely reduces the 

abatement cost to $123 per MgCO2 and the cumulative GHG emissions by 5%, which is due to 

the benefit of EV tax credit offsetting the loss caused by the ethanol blend mandate. The 

abatement cost of the CV ban, together with the EV tax credit, is also lower than the cellulosic 

ethanol only for the same reason. 
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While the agriculture producers benefit from the cellulosic ethanol mandate, the majority of 

consumers pay for expensive liquid fuels that lead to net economic loss compared to the 

counterpart scenario without cellulosic ethanol policies. However, the extended EV tax credit 

benefits the consumers with cheaper vehicle choices and welfare gain in the electricity market, 

but the required government investment for the increased EV adoption still surpasses the benefit 

and leads to a net welfare loss. In the scenario combining cellulosic ethanol mandate with EV tax 

credit and the CV ban, both transportation consumers and government pay more than the benefit 

obtained from the agriculture and electricity sectors, which leads to a substantial welfare loss. 

But they are not as high as the cellulosic ethanol mandate alone achieved in 2040. 

Our analysis has several policy implications. It shows the conditions under which cellulosic 

biofuel mandate has the potential to reduce energy consumption, reduce GHG emissions, and the 

complementary effect with other climate policy and would, therefore, warrant policy support. 

The complementary electrification and biofuel displacement by raising E10 price is effective in 

reducing both energy consumption and emission. Our findings should also provide normative 

evidence to policymakers to extend the blend rate requirement to 2040 for the cellulosic 

mandate. Our approach does provide the first estimation of the implication of the biofuel 

mandate implementation amid the trend of electrification and enables an assessment of the 

distributional welfare considering the consumers’ utility obtained by vehicle choices associated 

with behavioral considerations. 
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Tables and Figures 

Table 1 Effect of policy scenarios on implicit tax and subsidy ($ per liter) 

 

Baseline 

policy 

(1) 

(1) 

+EV 

Tax 

credit 

(2)  

(2) 

+ CV 

ban 

(3)  

(1) 
+Cellulosic 

Ethanol 

Mandate 
(4) 

(4) 

+EV 

Tax 

credit 

(5) 

(5) 

+ CV 

ban 

(6)  

Implicit subsidy      

Ethanol 0.33 0.39 0.31 0.38 0.56 0.41 

E85       

Implicit tax      

Gasoline -0.04 -0.06 -0.06 -0.10 -0.18 -0.16 

Diesel -0.04 -0.06 -0.06 -0.10 -0.18 -0.16 

E10       

 

Table 2 Effect of policy scenarios on transportation sector in 2040 

 

2016 Baseline 

policy 

(1) 

(1)+EV 

Tax credit 

(2)  

(2)+ CV 

ban 

(3)  

(1)+Cell

ulosic 

Ethanol 

Mandate 
(4) 

(4)+EV 

Tax 

credit 

(5) 

(5)+ CV 

ban 

(6)  

Total Vehicle 

Stock (million) 241 298 299 298 298 298 298 

CV 216 221 166 5 191 130 4 

FFV 20 21 25 84 50 61 111 

HBV 4 20 11 29 17 9 21 

PHEV 0 32 51 108 35 47 83 

BEV 0 4 46 72 5 52 77 

Energy 

Consumption by 

Transportation 

(billion liter)* 758 656 582 508 650 572 513 

E10 523 351 237 127 280 169 78 

E85 0 22 34 46 90 101 111 

Diesel fuel 234 269 267 267 264 258 259 

Electricity 0.3 14 43 68 16 44 65 

VKT by light-duty 

fleet (billion km) 

                                          

4,423  

           

5,827  

           

5,834  

          

5,823  

           

5,823  

           

5,830  

          

5,820  

VKT by diesel 

fleet (billion km) 

                                             

699  

           

1,072  

           

1,065  

          

1,066  

           

1,053  

           

1,026  

          

1,031  

Fuel efficiency 

(km per liter) 8 15 19 24 15 19 23 
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Electrification 

 (% of total 

VKT) 0 10 34 53 11 35 52 

Low 0 2 7 21 2 8 18 

Medium 0 4 24 51 5 28 47 

High 0 20 57 71 22 56 72 

Ethanol  

(% of total VKT) 7 10 9 10 18 18 19 

Low 6.9 10 11 22 13 15 37 

Medium 7.0 9 11 10 17 22 20 

High 6.9 9 8 4 22 16 8 

Fuel prices   

($ per liter)*               

E10 0.64 0.83 0.83 0.85 0.88 0.94 0.94 

E85 0.44 0.55 0.49 0.58 0.53 0.37 0.52 

Blended diesel  0.43 0.44 0.44 0.44 0.44 0.44 0.44 

Electricity 

($ per MWh) 120 108 112 115 108 112 114 

* Volumes are converted to gasoline-equivalent liter. 

 

Table 3 GHG emissions of last year and cumulative GHG emissions in 2040 

  

Baseline 

policy 

(1) 

(1) 

+EV Tax 

credit 

(2) 

(2) 

+ CV 

ban 

(3) 

(1) 
+Cellulosic 

Ethanol 

Mandate 
(4) 

(4) 

+EV Tax 

credit 

(5) 

(5) 

+ CV 

ban 

(6) 

 

Million Mg 

CO2 
% change relative to (1) 

GHG emission 

in 2040  4,100  -6% -11% -6% -7% -16% 

Transportation 1,918  -17% -32% -10% -27% -40% 

Electricity 2,007  4% 9% 0% 4% 8% 

Agriculture 175  0% 1% -24% -28% -27% 

Cumulative 

GHG emissions 

over 2016-2040 107,844 -2% -5% -3% -5% -8% 

Transportation 51,946 -6% -14% -5% -11% -18% 

Electricity 51,572 1% 3% 0% 1% 3% 

Agriculture 4,326 -1% -1% -14% -13% -14% 
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Table 4 Effect of alternative biofuels mandate on social welfare over 2016-2040 

 

Baseline 

policy 

(1) 

(1) 

+EV Tax 

credit 

(2)  

(2) 

+ CV ban 

(3)  

(1) 

+Cellulosic 

Ethanol 

Mandate 

(4) 

(4) 

+EV 

Tax 

credit 

(5) 

(5) 

+ CV ban 

(6)  

 ($ billion) Relative change to (1) ($ billion) 

Economic surplus (a) 217,541 -125 -607 -417 -668 -1,022 

Agricultural sector 4,586 -3 -2 53 67 55 

  Agricultural consumers 3,203 1 0 -9 -9 -10 

  Agricultural producers 1,383 -4 -1 62 76 64 

Transportation fuel sector 196,982 214 16 -478 -370 -471 

  VKT light-duty consumers 179,038 287 117 -65 237 69 

      CV consumers 150,158 -10,540 -44,518 -6,045 -17,839 -45,633 

      FFV consumers 13,770 631 12,248 5,728 7,026 15,643 

      HBV consumers 8,774 -2,265 3,574  -454 -2,382 2,178 

      PHEV consumers 5,524 4,425 14,772 577 4,091 13,004 

      BEV consumers 812 8,036 14,041 129 9,342 14,878 

  VKT diesel fuel consumers 16,353 -72 -99 -412 -606 -538 

  Fuel producer 1,591 -1 -1 -1 -2 -2 

Electricity sector 14,643 95 202 1 98 192 

  Electricity consumers 10,173 -124 -263 -6 -140 -261 

  Electricity producers 4,470 220 465 8 238 452 

Government revenue 1,330 -431 -823 7 -462 -798 

Fuel tax 1,330 -62 -145 7 -59 -131 

EV tax credit 0 -369 -678 0 -403 -667 

Cumulative GHG emissions 

(Million Mg) 107,589 -2,334 -5,480 -2,945 -5,425 -8,143 

Abatement cost  

($ per MgCO2)   54 111 142 123 126 
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Figure 1 Policy Implication of joint implementation of biofuel policy and EV tax credit 

 

 

 

Figure 2 The carbon intensity of vehicle mileage under each scenario (g CO2 per mile) 
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Appendix 

A.1 Existing vehicle and driving demand 

We construct the demand for vehicle fleet specifically for the light-duty fleet in 2016. We 

consider both light-duty vehicles and medium-/heavy-duty trucks in the vehicle sector. The fuel 

compatibility varies across vehicle types: CV, HBV, and PHEV under charge-sustaining mode 

drive on conventional fuel (currently with 10% ethanol blend E10); BEV and PHEV under 

charge-depleting mode run on electricity; FFV can run on any ethanol-gasoline blends of E10 

and E85 (higher ethanol blend of 53% to 74%). The medium- or heavy-duty trucks are mostly 

freight trucks consuming diesel.  

The annual mileage and the vehicle count for each age group and mileage group are from 

2017 National Household Travel Survey (as shown in Figure A3 and Figure A4). We roughly 

categorize the driving demand into three groups first and demonstrate the annualized demand by 

using the data statistics from NHTS. The low driving demand group categorizes the consumers 

having similar yearly driving mileage of less than 8 thousand miles; the medium group drives 

between 8 and 16 thousand miles per year, whereas the high group has greater demand of more 

than 16 thousand miles. Due to the lack of information for alternative vehicles and for simplicity, 

we assume that the maximum annual mileages driven by alternative vehicles follow the same 

pattern as the conventional vehicle owners.  

 Following the same practices of establishing the demand of transportation in BEPAM model 

(Chen et al. 2021), we first aggregate the vehicle demand into national demand function and 

further disaggregate the total mileage of the US for each of 20 regions and three driving demand 

groups based on the distributional pattern from 2017 National Household Travel Survey. 
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Figure A3 The annual mileage demand for each driving group across ages (NHTS, 2017) 

 

Figure A4 Vehicle count probability distribution in age and mileage group (NHTS, 2017) 

 

We obtain the vehicle registration in the vehicle stocks by fuel types, by state, by driving 

behavior group, and by age in 2016.  The initial vehicle stock by fuel type is based on the 

observed data from EIA (2019). The age distribution of the CV is obtained from NHTS and age 

distributions of other alternative fuel vehicles are from Transportation Energy Data Book (Davis 
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and Boundy 2018). The spatial distribution of liquid-fuel vehicle (CV and HBV) are from 

Highway Statistics Series (Federal Highway Administration 2016). FFV spatial distribution by 

state is from IHS automotive purchase, and PHEV and BEV spatial distributions are from the 

vehicle density of NREL (2016). We assume the above distributions are independent to get the 

joint distribution by fuel type, by age, and by region. We use the electricity market region (EMR) 

to identify the spatial variation across the region given the defined electricity prices at EMR 

level. Further, the vehicle purchase and driving behavior are not restricted by any jurisdictions. 

We therefore analyze the spatial variation and distribution across the electricity market region. 

We calibrate the fuel economy of the existing conventional vehicle with the data from 

NHSTA (Federal Highway Administration 2016a) in 2016. For other alternative fuel vehicles 

(FFV, HBV, PHEV, and BEV), we use the fuel efficiencies from the vehicle database of the 

alternative fuel data center (DOE 2017). The increasing efficiencies of the new vehicles of all 

vehicle types beyond 2020 are based on the AEO database, which implies the vehicles produced 

by the automakers are in compliance with Corporate Fuel Efficiency Standard (US Energy 

Information Administration 2019). 

The vehicle stock dynamics are defined by equations A2 to A3 with the specification of the 

vehicle age, which allows us to update the age distribution of the vehicle stock at each year t. 

Equation A2 defines the number of new purchases of vehicle type i as the group of age 1 

(denoted as a1) in year t. Equation A3 shows the turnover of the existing vehicles (age a that is 

greater than 1) is equal to the amount of vehicle stock from the previous year t-1 at age a-1 times 

the functional retirement (r) minus the possible early retirement. We apply the vehicle scrappage 

rate (r) by age (Belzowski et al. 2010) to allow functional retirement due to tears and wears for 

all five powertrains vehicles. The vehicle stocks defined for each powertrain type, at age a and 



   

 

37 

time t define the maximum amount of the mileage the fleet is capable of running, where 𝑚𝑐𝑎𝑝 is 

denoted as the annual mileage from NHTS discussed in Figure A3. The numbers of the new 

vehicle purchase (N), existing vehicle fleet (V), early retirement (R), and yearly mileage driven 

(M) are endogenously determined by the model. 

𝑁𝑡
𝑖

𝑖,𝑡
= 𝑉𝑎1,𝑡

𝑖   ∀𝑖,t  (A2) 

𝑉𝑎,𝑡
𝑖 = 𝑉𝑎−1,𝑡−1

𝑖 × 𝑟𝑎−1 − 𝑅𝑎−1,𝑡−1
𝑖   ∀𝑖, 𝑎24 ≥ 𝑎 ≥ 𝑎2, 𝑇 ≥ 𝑡 ≥ 𝑡2   (A3) 

𝑉𝑎,𝑡
𝑖 × 𝑚𝑐𝑎𝑝 ≥ 𝑀𝑎,𝑡

𝑖   ∀𝑖, 𝑎, 𝑡    (A4) 

Because vehicles are still drivable before reaching the extreme of the vehicle life span (age 

24) 3 , we take into account their depreciated vehicle value remained by the end of the simulation 

period T in the objective function of total welfare as the term 𝜌𝑇𝛽 ∑ 𝜙𝑖𝜋𝑎𝑉𝑎,𝑡
𝑖

𝑖,𝑎  . By selling the 

auto parts to the dealer or recycling center, or sending the vehicle to the auto parts auction, the 

driver could recover the scrappage value, as showed in the last term of equation Error! 

Reference source not found. in year T. The coefficient β represents the vehicle market value 

loss once the vehicle is sold by the vehicle dealer (85% in this study). Further depreciation a  is 

relevant to the aging problems after a years of wear and tear.  

A.2 Vehicle Ownership cost 

As shown in Table A5, we take the average of the purchase price and fuel efficiency of the 

new vehicles from AEO by using the market share of each vehicle class from AEO as weights 

from 2016 to 2050. The data showed that except for the battery electric vehicles, the prices for 

the other vehicles are projected to be leveling up. It is due to the incremental costs in the newly 

adopted technology cost, whereas the BEV price is proportionally reduced with battery costs 

 
3 For purpose of setting up the age property of vehicle fleet, we use the full age range of the vehicle up to age 

24 that is observed from the National Household Transportation Survey. 
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(BloombergNEF 2019).  The fuel economies of all vehicle types are also projected to increase 

from 2016 to 2040. PHEV has two efficiencies in charge-depleting mode (all-electric), and 

charge-sustaining mode (only on gasoline). The report statistics indicate around 40% of the VMT 

driven by the PHEV are on charging-depleting mode. We apply this assumption to calculate the 

electrified mileage and electricity consumed by the PHEV. 

We account for the annual operating and maintenance costs per mile of driving for each 

powertrain (Alternative Fuels Data Center 2020) and the vehicle registration cost, insurance, and 

license cost per vehicle at $1,616 per year from the American Automobile Association (AAA). 

We take the operational and maintenance cost from AAA 2016 report for CVS, HBV, and BEV. 

We assume the FFV has the same operational cost as CVS, and PHEV has the same operational 

cost as HBV. The depreciation rate of the vehicle values due to wears and tear is applied to the 

vehicles still in use at the end of the study period from the National Automobile Dealers 

Association (2014). 

Table A5 Specification of Light-Duty Vehicle in 2016. 

Vehicle type Energy sources Fuel efficiency  

(miles per 

gasoline gallon) 

Purchase 

cost 

($) 

Operational and  

maintenance cost 

($ per mile) 

CVS E10 20 25,720 0.0683 

FFV E10, E85 19 25,750 0.0683 

HBV E10 33 32,400 0.0699 

PHEV E10, 

Electricity 

35, 85 39,700 0.0699 

BEV Electricity 90 51,500 0.0655 

 

 According to the EIA outlook projection, the increasing fuel economy of all vehicle types 

results from the compliance of CAFE standards and the technology improvement. We take the 
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MPG projection from AEO data and apply the factor of 0.7 to alter the compliance MPG to the 

actual non-experimental on-road MPG, according to the EPA (2016). 

A.2.1 Range limitation cost 

Based on Lin et al. (2011), the range limitation cost is quantified by the cost of the backup 

plans of reaching the destination when EV is running out of battery. That includes many 

alternative costs of renting a car, car tolling service, and ride-hailing service as alternative 

transportation modes when the vehicle runs out of battery in the middle of the trip. We use a 

conservative cost of $10 per day as a conservative estimate of alternative transportation mode. 

We estimate the number of days in a year running out of battery based on the daily vehicle miles 

traveled (VMT) demand distribution calibrated using the average mileage capacity for three 

driving demand groups following the gamma distributions (Figure A5). The parameters of the 

gamma distribution of three driving groups are adjusted with the data from National Travel 

Household Survey (2017) for all age groups.  
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Figure A5 The Gamma distribution of the daily mileage driven  

The effective mileage (eVMT) is defined as the sum of total mileage it can get from the 

available fixed charging (home and work if applied) and the public charging sources. The 

available charging portals (Qchrg) depends on the options of charge modes chosen by the drivers 

and are endogenously solved by the model, plus the public charging. And QH=1 when the home 

charge is selected, QW=1 when the work charge is selected, Qp is the ratio of the numbers of 

public charging to the gasoline charging stations in each region based on the data of alternative 

fuel data center and North American Industry Classification System. We assume four charging 

groups in 2016: Home and Work, Home only, Work only, and None of above. We follow the 

same assumption as Ramea et al. (2018) that of all BEV owners, 52% have home charges, 5% 

have work charging). The model endogenously solves the optimal number of vehicle adoption 

given the option of each charging mode, where the home charging requires a $2,500 installation 

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200

P
ro

b
ab

il
it

y
 d

is
tr

ib
u
ti

o
n

Daily Mileage Driven (mile)

Distribution of daily mileage driven of three groups

Low Medium High



   

 

41 

fee and public charging is subject to the substantial range limitation cost, the work only charging 

group is the most optimal choice. 

The effective mileage is a function of the availability of the fixed charging portals, the 

time required for charging, and the charging capacity. 

eVMTchrg = 𝑚𝑖𝑛(𝑅𝑚𝑎𝑥, 𝐸𝐻𝑇𝐻𝑄𝐻) + 𝑚𝑖𝑛(𝑅𝑚𝑎𝑥 , 𝐸𝑊𝑇𝑊𝑄𝑊) + 𝑚𝑖𝑛 (𝑅𝑚𝑎𝑥, ∑ 𝑇𝑘𝐸𝑘𝑄𝑃,𝑘

𝑘

 ) 

where T is the time spent at the charging place (8 hour at home and working place); E is the 

charging capacity (assuming 6.6 kW for L2 charging portal mostly at home, at working, and 

public charging has 6.6 kW and 50 kW for L2 and fast charging respectively); The Rmax is the 

maximum range of a fully charged BEV. We take the minimum of the mileage from charging 

and the range capacity to have a conservative upper bound of the effective mileage. It determines 

the probability of driving demand exceeds the driving ability. The probability of the VMT 

demand (X) exceeds the effective mileage range (eVMT) is 1 minus the integral of the 

probability distribution function from 0 to eVMT miles. The number of days running out of the 

battery is the probability times the 365 days in a year. The final range limitation cost per vehicle 

(Crange) for both the existing vehicle and new purchase is the penalty cost from the cost of 

alternative transportation mode times the days out of battery. 

𝑃𝑎(𝑋 > eVMT) = 1 − ∫ 𝑝(𝑥)
eVMT

0

𝑑𝑥  (%) 

𝑁𝑎 = 365 × 𝑃𝑎  (𝑑𝑎𝑦/𝑣𝑒ℎ𝑖𝑐𝑙𝑒) 

𝐶𝑟𝑎𝑛𝑔𝑒 = 𝑁𝑎 × $20/𝑑𝑎𝑦    ($/𝑣𝑒ℎ) 
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 Unlike the deterministic range limitation cost from Kubendran (2016), we add the 

stochastic choice of the daily miles traveled based on the Gamma distribution shown in Figure 

A5 and redefine the probability of running out of the battery as the total number of days in a year 

when mileage demand exceeds the effective mileage (eVMT).  We randomly pick the VMT 10 

times for each age group (age from 1 to 24), charge group (4 groups), mileage demand group (3 

groups), electric market region (20 regions), and each day (365 days per year). The total range 

limitation cost is the penalty cost ($10 per day) times the total number of days where the demand 

of VMT exceeds the mileage capacity given the charging availability.  

𝑃𝑎 = ∑ 1(𝑉𝑀𝑇𝑑𝑎𝑦 > 𝑒𝑉𝑀𝑇)

365

𝑑𝑎𝑦=1

/365 

𝐶𝑟𝑎𝑛𝑔𝑒 = ∑ 1(𝑉𝑀𝑇𝑑𝑎𝑦 > 𝑒𝑉𝑀𝑇)

365

𝑑𝑎𝑦=1

× $10/𝑑𝑎𝑦    ($/𝑣𝑒ℎ) 

A.2.2 Waiting cost 

We define the waiting cost as the time spent in the stations waiting for the recharge, 

specifically for the charging of a battery-electric vehicle. We quantify the number of visits to the 

public charging needed for the electric vehicle based on the mileage demand (V𝑀𝑇𝑣) and a 

mileage range of the vehicle (𝑅𝑚𝑎𝑥), as well as the probability (𝑝𝑝𝑢𝑏,𝑘) of public charging and 

time spent in the charging station. To determine the probability of using public charging and the 

average time spent in the charging, we use the similar the probability of running out of battery 

based on the daily mileage distribution described above, but only including the efficient mileage 

from fixed charging portals at home or work in the efficient mileage (eVMTfix). The probability 

of exceeding the efficient mileage at fixed charging portal then is interpreted as the need to visit 
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the public charging to meet the mileage demand (𝑃𝑎𝑓𝑖𝑥
). Note that the probability of the using 

public charging is not related to the availability of the public charging portals. 

eVMTfix = 𝑚𝑖𝑛(𝑅𝑚𝑎𝑥, 𝐸𝐻𝑇𝐻𝑄𝐻 + 𝐸𝑊𝑇𝑊𝑄𝑊) 

𝑃𝑎,𝑓𝑖𝑥
(𝑋 > eVMT) = 1 − ∫ 𝑝(𝑥)

eVMTfix

0

𝑑𝑥   

Rather, the time spent in the charging station is related to the availability of the fast-

charging portals. Based on the point data of the public charging stations (DOE 2019), we have 

the coverage rate of the regular portal of L2 portal and DC fast-charging for public charging 

versus the gasoline station differentiated by the electricity market region. The time spent in the 

public charging stations is assumed to be limited by a 2-hour duration for simplicity. Fast DC 

charging needs less time to fully charge an electric vehicle with a capacity of 50 kW. 

Considering the vehicle owner mostly likely would search for charging when the battery state-of-

charge (SOC) is 20% and stop at 80% of SOC, the time fast charging requires is 

min (2,
𝑅𝑚𝑎𝑥

𝛾𝐵𝐸𝑉×50
). The weighted time spent at the fast-charging station thus varies across regions 

based on the availability of the fast charging. 

𝑇 = (2 × 𝑄𝑃,𝐿2 + min (2,
𝑅𝑚𝑎𝑥

𝛾𝐵𝐸𝑉 × 50
) × 𝑄𝑃,𝐷𝐶)/(𝑄𝑃,𝐿2 + 𝑄𝑃,𝐷𝐶) 

The value of time (𝑉𝑡) is the opportunity cost of half of the income based on the (DOT 

2015). We further randomly draw the value of the time from the income distribution of the US 

population from the Census Bureau (Semega, Fontenot and Kollar 2017) for ten times for each 

VMT demand group, vehicle age, and each year from 2016 to 2040 to show the representative 

value of time across US. The valuation of the waiting cost therefore is formulated as the 
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multiplication of the total number of visits, the probability of public charging, the average time 

spent in the charging station, and the valuation of the time. 

𝐶𝑤𝑎𝑖𝑡𝑖𝑛𝑔 =
𝑉𝑀𝑇

𝑅𝑚𝑎𝑥
× 𝑃𝑎,𝑓𝑖𝑥

× 𝑇 × 𝑣𝑡 

We assume the plug-in hybrid vehicle (PHEV) owner has the closer option to fuel 

gasoline thus will not spend any extra time in the charging station or detour. Also, we assume the 

PHEV owner has the accessibility of charging at home or at work that would be sufficient for use 

on the charge-depleting mode. We, therefore, exclude the waiting costs from the PHEV 

ownership costs. 

A.2.3 Detour cost modeling 

Pouliot and Babcock (2014) used the upward-sloped curves to show the increasing per 

gallon cost when the refueling stations sit farther away. It is the cost of time spent to find the 

nearest station, which is a function of the value of time, mileage, time, and speed. The linear 

form of the cost shows the economic calculation and differentiates it from the range limitation 

cost associated with psychological anxiety. The increasing detour cost function with respect to 

the detour distance indicates the consumers’ aversion to the long-distance searching.  

𝐶𝑑𝑒𝑡𝑜𝑢𝑟 = 𝑉𝑡 ×
V𝑀𝑇𝑣

 𝑅𝑚𝑎𝑥 × ddetour × 𝑃𝑎,𝑓𝑖𝑥
×

2×1.3 Euclidean coefficient

32 mph
 = 0.082 × 𝑉𝑡 ×

V𝑀𝑇𝑣

 𝑅𝑚𝑎𝑥 ×

ddetour 

The detour cost is rewritten as above as the total amount of time visiting the public station 

running the detour distance that is monetized by the value of time, where the 𝑉𝑡 is the value of 

the time; VMT is the total VMT consumption endogenously determined by the model; d is the 

detour distance that varies across states. We note that the improved accessibility of the charging 
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station with a shorter distance reduces the detour cost of refueling. Following the same method, 

we apply the mileage range of a FFV or a BEV ( 𝑅𝑚𝑎𝑥) that increases over time and the value of 

time (𝑉𝑡) from the income distribution. We assume a representative car with a running speed of 

32 miles per hour and a fuel tank volume of 16.2 gallons as Pouliot (2014), the detour price of 

E85 is calculated to be $0.06 per gallon per mile of the detour distance. In the paper, we 

randomly draw the value of time from income distribution based on the source of the Bureau of 

Census for each representative consumer of each segment to show the heterogeneity of 

consumers. Similarly, we construct the detour cost function for BEV to the nearest charging 

station based on the value of time, total VMT, the mileage range of BEV, and the distance to the 

nearest charging. 

𝐶𝑑𝑒𝑡𝑜𝑢𝑟
𝐸85  = 0.082 × 𝑉𝑡 ×

V𝑀𝑇𝐹𝐹𝑉

𝛾𝐹𝐹𝑉×16.2
× dE85     

𝐶𝑑𝑒𝑡𝑜𝑢𝑟
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

 = 0.082 × 𝑉𝑡 ×
V𝑀𝑇𝐵𝐸𝑉

 𝑅𝑚𝑎𝑥  × 𝑃𝑎,𝑓𝑖𝑥
× dcharging     

We obtain the detour distance (denoted as d in the unit of mile) by measuring the distance 

from the centroid of the zip code zone to the nearest refueling stations of charging or E85 

refueling stations. The dataset is available from the developer API request of NREL for the 

nearest stations4. The state-level detour distance is shown in Figure A6 and averaged to the 

electricity market region.   

 Based on the estimated value of time during the commuting trip is about half of the 

income (DOT 2015), and that income distribution does not correlate with VMT demand or ages 

of vehicle they own, we randomly draw the value of time ten times for each age group of the 

 
4 https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/ 
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vehicle, VMT demand group, and each year from 2016 to 2040 and divided by 2 to show the 

representative value of time across US. However, the value of time might be correlated across 

the region and vehicle choice. Therefore, we did not consider the random draw of the value 

across the region and vehicle choices. 

 

Figure A6 State average mileage distance to the nearest station in the US 

 

A.3 Idiosyncratic preferences 

We capture the idiosyncratic preference towards the vehicle fuel type by adjusting the error 

terms of the random utility framework. In the theory of discrete choice model, the relative 

difference between error term determines the probability of the choice over other alternatives and 

define the relative correlation between options (Train 2003). We apply the correlated error term 

provided by Ramea et al. (2018) that represents the choices under nested multinomial logit 

model that has correlated error term within the nest of choices with the same drivetrain but 

independent across the different drivetrain nests (Bunch and Rocke 2016). It is a marginal 

distribution of standard Gumbel distribution with the location parameter of 0 and scale parameter 

of 1 for each vehicle type but correlated within the nests. We adjust the mean of distribution for 

each vehicle and scale the error terms with the regional multipliers from Google Trend to show 
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the systematic differences in the variance of choices across regions, and for different driving 

demand groups.  

The adjustment of the error terms reflects the alternative-specific constants and the scaling 

approach (across regions and the driving demand groups) that captures the average effect on the 

utility of all factors that are not included in the model and normalizes the heteroskedastic errors 

in different segments of the market. By doing so, the adjustment keeps the correlation coefficient 

matrix of the error terms and the variance-covariance matrix following the same pattern as the 

original nested error terms (as shown Figure A7).  

 

Figure A7 The heatmap of the correlation coefficient matrix and variance-covariance matrix 

compared to the nested error terms by Ramea et al. (2018) 

Google Trend provides the normalized count of the total number of search requests made to 

Google in a given time frame and across the region. We first use representative car models or 

brands as the keywords for three vehicle types: Toyota Camry for the conventional vehicle (CV), 

Tesla for battery electric vehicle (BEV), and Toyota Prius for Plug-in Hybrid Electric Vehicle 
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(PHEV). To represent the search interest for the flex-fuel vehicle (FFV) and hybrid electric 

vehicle (HBV) that do not have a representative vehicle model in the US market, we use “E85” 

and “Hybrid Electric” as the search keyword. We also use the normalized cross-sectional data at 

the state level for each vehicle type for each year from 2016 to 2040 from Google Trend. Within 

each year and each vehicle type, the regional data are normalized relative to the state with the 

highest search volume and show the spatial variation of search interest across the state. We 

repeat the data retrieval process for all five keywords and each year between 2016 to 2020 and 

have a total of 5×5 sets of cross-sectional data. The data of five keywords in 2020 is illustrated 

in Figure A8 as an example. These 25 sets of cross-sectional data, however, are not comparable 

between vehicles and across time as each data is normalized to 100, relative to its peak value. 

For example, the highest search interest to Toyota Camry is at the state of Mississippi, but the 

data shows a relatively universal interest spreading across the states, whereas the searches of 

electric vehicles (Tesla, Toyota Prius, and hybrid electric) are mostly concentrated in California; 

and searches for E85 cluster in the Midwest. We rescale this dataset from 0% to 100% and 

denote it as InterestRv,t,r for vehicle type v, year t, and state r. To convert the data into the scale 

of 20 electric market regions, we take the average of the states within the same electric market 

region.  
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Figure A8 The normalized cross-sectional data of search interest for five keywords in 2020 

To show the heterogeneous preference across driving demand group (low, medium, and 

high) for each vehicle type, we apply the vehicle stock distribution from 2016 based on the 

National Household Travel Survey as we mentioned in section A1, denoted as Vgroupv,m for 

vehicle v and driving group m. The Vgroupv,m  indicates the relative extent of acceptance across 

driving demand groups compared to the group with the highest share of the stock for each 

vehicle type v. Using the same normalization strategy as Google Trend, we rescale the data from 

0% to 100% relative to the highest stock share within each vehicle type. We observe that three 

liquid-fuel vehicles (conventional, flex-fuel, and hybrid) have the highest vehicle stock in the 

low VMT demand group (Vgroupv,low = 100%), whereas the electric vehicles (battery, plug-in 

hybrid) have a Vgroupv,medium of 100% for medium VMT demand group. We multiply this 

distribution across the driving demand group with the cross-sectional dataset from Google Trend 

abovementioned to obtain heterogeneity across driving demand.  
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The multiplication of two-level normalization processes (InterestRv,r×Vgroupv,m) together 

indicate the relative purchase interests for each vehicle type v, in time t, in region r, of driving 

demand group m. By doing so, the battery electric vehicle (“Tesla”) has the highest interest of 

100% in the year 2019 in California with a medium driving demand will have the highest 

purchase interest (InterestRv,t,r×Vgroupv,m=100%). Because InterestRv,t,r=100% for Tesla in 

California, and Vgroupv,m=100% for Tesla in medium driving demand group. 

Idiosyncratic Preferencev,t,r,m = InterestRv,t,r×Vgroupv,m×A×εv 

Finally, we use the universal scalar (A) to validate the model from 2016 to 2040. The 

systematic differentiation of preference across vehicle type, region, and driving demand 

(Idiosyncratic Preferencev,t,r,m) would help identify the unobserved psychological preference 

(Train 2003) under the nested multinomial logit model framework.  
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Figure A9 The descriptive statistics of the error term 

A.4 Model validation 

The validation of the model is shown by comparing the closeness of model outcomes for 

several endogenous variables in the past four years from 2016 to 2019 with observed data for key 

variables. The 2020 year is abnormal in fuel consumption and production due to pandemics; 

thus, we do not include 2020 for validation. We calibrate the elasticity for the crude oil market 

for US supply and rest of the world supply to 1.5 and 0.8 and keep the demand function of the 

rest of the world same as Chen et al. (2020) to be -4. The results compared to the observed price 

and quantity are shown in Error! Reference source not found.. We find the fuel consumption 

and production both in the US and the rest of the world generally deviate by less 2%. The fuel 

prices are within 12% deviation. We calibrate the vehicle stocks by incorporating the behavioral 
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factors as well as the idiosyncratic preference by scaling the error term universally. The vehicle 

stocks are within 9% deviation from the observed level from 2016 to 2019. The deviation of 9% 

could be explained by the smaller scales of alternative fuel vehicle stocks compared to the 

conventional vehicle. The deviations of the simulated outcomes of the updated BEPAM for 

2016–2019 from their observed values over the 2016–2019 period are generally within a similar 

level of tolerance as in previous studies applying BEPAM (Chen et al. 2020; Hudiburg et al. 

2016; Oliver and Khanna 2017b). 
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Table A6 Model validation from 2016 to 2019 

  

Observed Model outcome Source Average 

difference% 
 2016 2017 2018 2019 2016 2017 2018 2019    

Fuel gallons (billion gallon)                   

US oil consumption 249 254 260 254  260  265  256  262 DOE 2% 

US oil supply 136 144 168 188 144  144  185  175 DOE 2% 

ROW oil use 1,124 1,132 1,176 1,196 1,122  1,124  1,191  1180 DOE 0% 

ROW oil supply 1,238 1,243 1,268 1,262 1,239  1,244  1,262  1267 DOE 0% 

E10 143 143 143 143 143  143  140  141 EIA -1% 

Blended diesel 51 52 55 54 53  53  53  53 EIA 0% 

Prices ($ per gge)                     

US oil price 1.03 1.21 1.55 1.36 1.04 1.15 1.49 1.37 WTI -2% 

ROW oil price 1.04 1.29 1.70 1.53 1.04 1.15 1.49 1.37 Brent -9% 

US wholesale ethanol 1.55 1.45 1.23 1.26 1.59 1.46 1.49 1.46 NEO price 10% 

US retail E10 ($/gge) 2.13 2.36 2.74 2.62 2.44 2.54 3.19 2.85 AFDC 12% 

US retail diesel  1.94 2.05 2.38 2.29 2.44 2.54 3.19 2.85 AFDC 0% 

Vehicle miles traveled (billion miles)                   

Gasoline vehicle miles 2,747 2,836 2,883 2,917 2,747 2,787 2,835 2,970 EIA 0% 

Diesel vehicle miles 410 415 437 433 434 444 444 449 EIA 4% 

Vehicle stocks (million)                     

CV 215 228 228 229 216 212 214 224 AEO -4% 

FFV 19.8 19.4 19.7 20.2 20.0 19.2 18.7 18.2 AEO -4% 

HBV 4.07 4.21 4.68 4.69 4.17 3.93 3.86 4.16 AEO -9% 

PHEV 0.32 0.36 0.53 0.64 0.32 0.30 0.34 0.84 AEO -2% 

BEV 0.29 0.37 0.57 0.87 0.31 0.30 0.55 1.15 AEO 9% 

Total 239 252 254 255 241 235 238 248 AEO -4% 
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A.5 Model output of 2030 

The policy analysis with a shorter time scale over the 2016-2030 period is also studied. We 

discuss the results of 2030 and cumulative results from 2016-2030 as below. 

A.5.1 Effect of Electrification Incentives  

Under the baseline policy scenario (1) in 2030, the battery electric vehicle (BEV) fails to 

penetrate the market with at most 1 million stock. The plug-in hybrid (PHEV) and hybrid (HBV) 

vehicles gain 10% of the market share. The liquid fuel vehicles (CVs and FFVs) remain to 

dominate the vehicle stocks. Though the electrification is low at 3%, the increasingly efficient 

fleet raises the fuel economy of the whole US fleet to 13 km per liter (63% above 2016 level of 8 

km per liter) and saves total energy to 673 billion liters (-11%), of which 59% is from E10. 

The extended federal tax credits of $7,500 and $2,500 for BEV and PHEV significantly 

increase the stocks of BEVs and PHEVs to 16 million and 19 million units in 2030 by replacing 

the CV and HBV stocks. The overall electrification of light-duty VKT improves to 14%, mostly 

contributed by the high driving demand group. About 46 billion liters reduction in E10 

consumption is replaced by an increase of 13 billion gasoline-equivalent liters in electricity 

compared to no tax credit scenario (1). The E85 consumption rises to meet the 56 billion liters of 

ethanol mandate that slightly drive FFV purchases. However, the E85 price rises, and the diesel 

fuel price falls due to the decline of the implicit subsidy and tax from the ethanol mandate. The 

shrinking demand for E10 reduces the E10 price, whereas the increased E85 fuel demand 

requires less price incentive to meet the energy equivalent parity with E10 after including the 

detour costs.  

The ban on the new conventional vehicle in addition to federal tax credit scenario (2) 

significantly reduces the existing stock of CVs to only 75 million, whereas FFV becomes the 
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next cheapest option and picks up the market with a total of 83 million of stock, followed by 

PHEV, HBV, and BEV with total stocks of 50 million, 34 million, and 32  million. Compared to 

the existing policy scenario, the E10 consumption drops by 30%, whereas E85 increases by 29%, 

and electricity for transportation increases to 34 billion gasoline-equivalent liters. The VKT 

running on electricity and ethanol reach 28% and 9%, respectively.  

A.5.2 Effect of Cellulosic Ethanol Mandate  

The implementation of Corn + Cellulosic Ethanol Mandate in the short run requires 61 

billion liters of cellulosic ethanol to be blended in addition to the extant production capacity of 

56 billion liters of corn ethanol and thus doubles the ethanol consumed for light-duty VKT to 

18%. The stringent ethanol policy induces 41 million FFV adoption and 68 billion liters of E85 

in 2030 compared to scenario (1) baseline policy without cellulosic biofuel mandate (Table 

A7Error! Reference source not found.). Compared to the existing policy scenario (1), the total 

energy consumption reduces by 2%, contributed mostly by less E10 and diesel consumption 

under high implicit taxes. The stringent biofuel mandate achieves a lower VKT consumption 

than scenario (2) with the EV tax credit. 

The cellulosic biofuel policy with the extended tax credit for electric vehicles of scenario (5) 

synergizes the adoptions of alternative fuel vehicles. FFV stock increases by 4 million by tax 

credit compared to otherwise; both PHEV and BEV increases by 1 million by cellulosic ethanol 

mandate compared scenario (2). It is because EV tax credit contracts the demand for gasoline 

that furthers the ethanol blend rate required to meet the required 61 million cellulosic biofuel 

mandate. The higher blend rate and increased implicit tax raises the E10 prices and consequently 

reduces CVs stock to 181 million. The reduction in total energy consumption of 40 billion liters 
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compared to the existing policy (1) is higher than the sum of the reduction achieved by the single 

EV tax credit in scenario (2) and the cellulosic ethanol policy in scenario (4). 

The Cellulosic Ethanol Mandate added to the ambitious EV tax credit, and CV ban in 

scenario (6) only increases 12 million of FFV and decreases 3 million CVs in addition to the 

counterpart scenario without the Cellulosic Ethanol Mandate. We find the price differential 

between E85 and E10 is reduced to $0.39 per liter and needs less incentive than those of 

scenarios (4) and (5) to offset the differences between FFVs and CVs in vehicle price and the 

idiosyncratic preferences for CVs. As a result, the reduced implicit subsidy raises the E85 price 

even if more E85 is required to meet the 61 million cellulosic mandate. 

Table A7 Effect of alternative biofuels mandate on transportation sector in 2030 

 Corn Ethanol Mandate Corn+Cellulosic Ethanol Mandate 

 

2016 Baseline 

policy 

(1) 

+ EV Tax 

credit 

(2) 

+ EV Tax 

credit 

+ CV ban 

(3) 

Baseline 

policy 

(4) 

+ EV 

Tax 

credit 

(5) 

+ EV Tax 

credit 

+ CV ban 

(6) 
Vehicle Stock 

(million) 241 275 275 274 275 275 274 

CV 216 230 209 75 205 181 72 

FFV 20 18 19 83 41 45 95 

HBV 4 17 12 34 17 11 28 

PHEV 0 9 19 50 11 20 46 

BEV 0 1 16 32 1 17 32 

Energy 

Consumption 

for 

Transportation  

(billion liter)* 758 673 641 589 659 623 584 

E10 523 398 352 278 327 275 207 

E85 0 17 18 22 85 90 97 

Diesel fuel 234 254 255 256 242 239 246 

Electricity 0.3 4 17 34 5 18 33 

VKT by light-

duty fleet 

(billion km) 

                                          

4,423  

          

5,368  

          

5,370  

          

5,355  

             

5,367  

             

5,368  

           

5,354  
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VKT by diesel 

fleet (billion 

km) 

                                             

699  

            

898  

            

900  

            

906  

               

856  

               

844  

              

869  

Fuel efficiency 

(km per liter)* 8 13 14 16 13 14 16 

Electrification 

(% of light-

duty VKT) 0 3 14 28 4 15 27 

Low 0 0 2 8 0 3 8 

Medium 0 2 8 25 3 9 25 

High 0 5 27 41 6 27 40 

Ethanol (% of 

light-duty 

VKT) 7 9 8 9 18 18 19 

Low 6.9 8.5 8.7 11 12 12 29 

Medium 7.0 8.4 8.5 10 15 17 19 

High 6.9 9.7 8.0 6 24 22 14 

Fuel prices  

($ per liter)*               

E10  0.64 0.75 0.75 0.75 0.84 0.87 0.83 

E85  0.44 0.40 0.47 0.62 0.15 0.10 0.44 

Diesel fuel 0.43 0.44 0.43 0.43 0.44 0.44 0.44 

Electricity 

($ per MWh) 120 104 108 111 104 107 110 

* Fuel volumes are converted to gasoline-equivalent liter. 

A.5.3 GHG Intensity of Vehicle 

The greenhouse gas (GHG) emissions per mile of five vehicle types under different policy 

scenarios are displayed in Figure A10. Under the baseline policy scenario (1) in Figure 2, the CV 

has the highest emission intensity for all three scenarios, followed by FFV with 20% less 

emission due to the E85 fuel that has lower carbon intensity. HBV and PHEV with higher 

efficiency show a 31% and 69% less emission, whereas BEV has zero-emission intensity as the 

electricity sources are marginally from clean sources. Scenario (2) with EV tax credit slightly 

deteriorates the emission intensities for CV and FFV as their average fuel efficiencies are lower 

with less new and efficient vehicles purchased. The joint imposition of EV tax credit and CV ban 

of scenario (3) raises the intensity of CVs by 14% compared to scenario (2) as they are the 

remaining aged and inefficient vehicles still in use since 2016. FFVs also have a 10% increase in 
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the average emission intensity as they mostly consume E10 as the second cheapest vehicle option 

substituting for CV. The aggressive adoption of HBV and PHEV reduces the intensity by 2% and 

1%, respectively. 

The implementation of the Cellulosic Ethanol Mandate not only reduces the carbon intensity 

of FFV by 49% with a doubled ethanol blend but also those of all other vehicles by 2-3%. It is 

because the higher E10 prices induce the adoption of alternative fuel vehicles that raise the 

average fuel efficiency, whereas the retirement of the old CVs also reduces the intensity. The 

emission intensity of FFV is even lower than that of HBV and close to PHEV, driven by the 

ethanol blend. The Cellulosic Ethanol Mandate with the EV tax credit lowers the carbon 

intensity for FFV but barely for others, whereas the CV ban together with the EV tax credit 

raises the carbon intensity of CV by 12% and that of FFV by 32% and reduces 1% and 0.1% for 

HBV and PHEV, for the same reason discussed above without Cellulosic Ethanol Mandate. 

Table A8 GHG emissions of last year and cumulative GHG emissions in 2030 

  
Corn Ethanol Mandate in 2030 

Corn+Cellulosic Ethanol 

Mandate in 2030 

  

2016 (Million 

Mg CO2) 

Baseline 

policy 

(1) 

+EV 

Tax 

credit  

(2) 

+EV Tax 

credit 

+ CV ban 

(3) 

Baseline 

policy 

(4) 

+EV 

Tax 

credit 

(5) 

+ EV Tax 

credit 

+ CV ban  

(6) 

GHG emission of last year             % change relative to 2016  

Total 4,639  -10% -11% -15% -14% -18% -21% 

Transportation 2,277  -12% -18% -27% -21% -28% -35% 

Electricity 2,182  -8% -5% -3% -7% -6% -6% 

Agriculture         180  -5% -7% -9% -22% -25% -28% 

Cumulative GHG emissions   Over 2016-2030  

 
Million 

Mg CO2 

% change relative to (1) 

Total  
66,232 -1% -2% -3% -4% -5% 

Transportation  32,449 -2% -6% -4% -7% -10% 

Electricity  
31,249 1% 2% 0% 1% 1% 

Agriculture  2,534 0% -1% -12% -14% -13% 
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A.5.4 Total GHG Emission  

We calculate the GHG emissions of transportation, electricity, and agriculture sectors, as 

shown in Table A8. In 2016, the transportation and electricity sectors account for 49% and 47% 

of the total emissions. Compared to the benchmark year of 2016, the baseline scenario in 2030 

still achieves a 12% reduction in transportation emissions with an increasingly efficient vehicle 

fleet. The emission of the electricity sector reduces by 8% due to the underlying Renewable 

Portfolio Standard. The increasing crop yield reduces the emission-intensive agriculture land use 

and also emission by 4%. The cumulative GHG emissions of transportation and electricity 

sectors still account for 49% and 47% of the total emission over the 2016-2030 period. The EV 

tax credit enhances the GHG reduction in the transportation sector by 18% in 2030 but reversely 

increases the emission of the electricity sector that overall contribution by EV tax credit in 

addition to the existing policy is minimal. The ban on CV purchases pushes the 2030 emission 

15% below the 2016 level and cumulatively reduces by 2% compared to the existing policy. 

The implementation of the Cellulosic Ethanol Mandate in scenario 4-6 contributes to an 

overall 3% - 5% reduction in the cumulative emission over 2016-2030 compared to that of the 

existing policy scenario (1) and reduce 14% - 17% of the emission in 2030 below the 2016 level. 

The Cellulosic Ethanol Mandate alone in scenario (4) outperforms the EV tax credit in scenario 

(2) and has lower cumulative GHG emission than scenario (3) with the CV ban. The changes in 

the transportation emission contribute most to the GHG emission mitigation. The comparable 

percentage changes in agricultural emissions in Table 3, however, have smaller effects with 

lower absolute changes in million Mg CO2.  
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A.5.5 Welfare analysis 

We find that the EV tax credit will lead to an overall increase of $17 billion in the economic 

net benefit over 2016-2030 relative to the existing policy scenario 1 (Table A9). In the 

transportation sector, consumers of light-duty vehicle fleet benefit with a net of $49 billion 

relative to the existing policy scenario (1) by increasing the consumers’ utility of the BEV and 

PHEV owners but reducing those of the CV and HBV. The less implicit subsidy discussed in 

section 4.1 driven by less fuel demand raises the consumer benefit of diesel fuels by $59 billion. 

Electricity producers’ benefit increases by $136 billion (1%) as more electrification is created for 

transportation use, but the higher electricity price reduces the consumers’ benefit by $70 billion. 

The government revenue from fuel taxes falls by $17 billion (-8%) with less gasoline 

consumption and is further reduced by $137 billion of EV tax credit expenditure on the EV 

purchase. We find the expense of EV tax credit is greater than the gain in the transportation fuel 

sector. However, the net benefit of the electricity sector offset the above loss. As the cumulative 

GHG emission reduces by 351 million Mg CO2, the abatement cost of CO2 with the tax credit for 

EV is negative at -$49 per MgCO2, which indicates an efficient GHG reduction with a welfare 

gain. 

The additional CV ban in scenario (3) forces drivers to buy more expensive alternative fuel 

vehicles and leads to a net economic loss of $411 billion. The declining CV stocks lead to a 

drastic loss of $21,808 billion (-18%) for the CV fleet but enhance consumers surplus of other 

alternative fuel vehicles that results in net welfare loss of  $222 billion (-0.1%) for light-duty 

vehicles compared to the Existing policy scenario (1). The electricity sector further enhances the 

economic benefit for the producers but reduces the benefit for consumers with higher electricity 

prices. The welfare loss exacerbates for the government as fuel tax contracts by $47 billion and 
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vehicle tax credit needed grows by $294 billion. The abatement cost of implementing the CV ban 

turns out to be $304 per Mg CO2 even though the cumulative GHG emissions reduction is 3.8 

times greater than that of the EV tax credit of scenario (2). 

Cellulosic ethanol mandate in scenario (4) leads to an overall $352 billion loss. The stringent 

policy raises the E10 prices and diesel prices and thus reduces the profits of CV, HBV, and 

diesel fuel drivers by $4,723 billion (-4%), $195 billion (-3%), and $354 billion (-3%) compared 

to the Existing policy scenario (1). They lead to a net loss of $386 (-0.2%) even after considering 

the increased benefit for EVs and FFV drivers. The addition of a net of $30 billion in the 

agricultural sector with support for biomass. The cumulative GHG emission of 1,670 Million Mg 

CO2 is higher than that of the EV Tax credit and CV ban in scenario (3) and leads to an 

abatement cost of $211 per Mg CO2. The cellulosic ethanol mandate, together with the EV tax 

credit, worsens the overall economic benefit by $461 billion (-0.2%). Similar to the EV tax credit 

without Cellulosic Ethanol Mandate, the light-duty consumers benefit from the EV tax credit, but 

this gain is then offset by the government expenses on the vehicle tax credit. On the contrary, the 

consumers’ surplus of diesel reduces with a higher diesel price. The abatement cost decreases to 

$192 per Mg CO2. The addition of the CV ban imposed with the tax credit deteriorates the 

welfare loss by $862 billion compared to the Existing policy scenario (1) for light-duty vehicle 

consumers, diesel consumers, and also the government expenditure. The 3,148 million Mg CO2 of 

emission reduction upscales the abatement cost to $274 per Mg CO2. 

Table A9 Effect of alternative biofuels mandate on social welfare over 2016-2030 (billion $) 

  Corn Ethanol Mandate Corn+Cellulosic Ethanol Mandate 

 Existing 

policy 

 (1) 

+EV 

Tax 

credit  

(2) 

+EV Tax 

credit 

+ CV ban  

(3) 

Existing 

policy  

(4) 

+EV 

Tax 

credit 

(5) 

+EV Tax 

credit 

+ CV ban   

(6) 
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 ($ billion) Relative change to (1) ($ billion) 

Economic surplus (a) 168,742 17 -411 -352 -461 -862 

Agricultural sector 3,004 -2 -3 30 30 31 

  Agricultural consumers 2,111 1 2 -7 -9 -10 

  Agricultural producers 893 -3 -5 36 39 40 

Transportation fuel sector 154,774 107 -164 -386 -356 -621 

 Light-duty vehicle 

consumers 143,580 49 -222 -30 38 -267 

      CV 123,945 -4,160 -21,808 -4,723 -10,197 -23,609 

      FFV 11,425 119 7,042 4,536 5,431 9,977 

      HBV 5,953 -1,078 2,267 -195 -1,058 1,336 

      PHEV 1,901 2,022 6,346 302 2,426 6,395 

      BEV 358 3,146 5,930 51 3,436 5,633 

  VKT diesel consumers 10,270 59 60 -354 -391 -351 

  Crude oil producer 924 -1 -2 -1 -2 -3 

Electricity sector 10,023 66 98 1 30 56 

  Electricity consumers 6,943 -70 -135 1 -44 -105 

  Electricity producers 3,080 136 233 0 74 161 

Government revenue 941 -154 -342 3 -165 -328 

Liquid fuel taxes 941 -17 -47 3 -17 -41 

Vehicle tax credit 0 -137 -294 0 -148 -287 

Cumulative GHG 

emissions (Million Mg) 66,232 -351 -1,351 -1,670 -2,396 -3,148 

Abatement cost  

($ per MgCO2)   -49 304 211 192 274 

 

 

 

Figure A10 The carbon intensity of vehicle mileage under each scenario (g CO2 per mile) 
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