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Estimating Crop Yield Densities for
Counties with Missing Data

Eunchun Park, Ardian Harri, and Keith H. Coble

Crop yield densities are often estimated at the county level. However, county-level yield data
providers often omit county records due to low participation or other reasons. The data omission
can undermine insurance premiums’ credibility and thereby lead to restrictions on the provision
of area insurance products in specific locations. To address this problem, we propose a novel
Bayesian spatial interpolation method to estimate crop yield densities for counties with missing
data. Empirical results indicate that our approach is consistently superior to the benchmark
approaches. Importantly, our approach offers noticeable estimation accuracy even at a significant
level of data omission.

Key words: Bayesian spatial interpolation, crop yield density estimation, data omission, spatial
dependence

Introduction

In this study, we investigate how to use spatial dependence of crop yields to estimate crop yield
densities for counties with a significant level of missing yield data or no data at all. Although the
spatial dependence of crop yields has been broadly discussed in the literature, a methodological
approach to estimate yield densities in the presence of missing data has not yet been thoroughly
investigated.

Crop yield densities are often estimated at the county-level due to a lack of long series of
individual farm-level data and to support area-based commodity programs and crop insurance policy
designs. For instance, commodity programs such as the Agricultural Risk Coverage (ARC) and the
Supplemental Coverage Option (SCO) programs need county-level crop yield data. Therefore, many
studies have used county-level crop yield data (Coble et al., 1996; Annan et al., 2014; Ker, Tolhurst,
and Liu, 2016; Zhang, 2017; Park, Brorsen, and Harri, 2019; Ker and Tolhurst, 2019; Ramsey and
Goodwin, 2019; Liu and Ker, 2020a,b; Ramsey, 2020).

However, two primary data providers, the National Agricultural Statistics Service (NASS) and
the Risk Management Agency (RMA), often omit certain counties due to confidentiality concerns
that would only be resolved with greater sampling and respondent burden. In the case of NASS data,
over 24% of the corn yield records and 35% of the soybean records are omitted from 1950 to 2017.1
Based on the 2019 NASS corn production dataset, the production level of the counties with missing
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out of 92 Indiana counties, and 48 out of Missouri 114 counties. The data omission is more severe in non-Corn Belt states.
For instance, only 7 out of 82 Mississippi counties and 2 out of Colorado 64 have complete yield series. In the case of winter
wheat, NASS reports complete series of county-level data for 23 out of 114 Missouri counties and 13 out of 56 Montana
counties.
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records is approximately 19% of the total production in the United States, valued at more than $10
billion. The omission of the most recent data makes the data omission problem more significant.
This is primarily due to a declining survey response rate. According to Ridolfo, Boone, and Dickey
(2013), the response rates on NASS county agricultural production surveys have declined in the last
2 decades. Response rates were 80%–85% in the early 1990s but have fallen to around 60% in some
counties in recent years. This problem is especially challenging for crop insurance premium rating
since the use of the most recent data is essential for estimating crop yield density (Liu and Ker,
2020b).

Because of generally high crop insurance program participation, the Agriculture Improvement
Act of 2018 (also known as the 2018 Farm Bill) directed the USDA to prioritize using RMA data
over NASS data (Li et al., 2020). However, the missing data problem also affects the RMA dataset.
For example, around 20% of county-level irrigated corn yield records are omitted, and almost 26% of
the nonirrigated corn yields are omitted. The problem is magnified when soybean data are examined.
Over 36% of irrigated yields and almost 40% of the nonirrigated soybean yield reports are omitted.

County-level data generally have a short time dimension. With a few exceptions, most of the
previous approaches for crop yield density estimations—including the Harri–Coble–Ker–Goodwin
(HCKG) approach, on which the current RMA rating is based on (Harri et al., 2011)—estimate
densities of individual counties separately. These separately estimated densities are less accurate
due to the short history and limited information (Park, Brorsen, and Harri, 2019, 2020). Thus, such
inaccuracy is a significant problem of the counties with missing data. There are counties where the
crop insurance programs are not offered, specifically for minor crops and marginal producing areas,
due to missing data.

Our approach also has broader applications in the context of developing countries’ risk
management programs, where the missing data problem can be more problematic. Currently, most
insurance programs in developing countries are established based on index-based insurance instead
of area-based insurance due to the limited data provision. However, index insurance contains
naturally inherent design risk (Miranda, 1991; Jensen, Barrett, and Mude, 2016), which is the
difference between the index and the underlying covariate losses.2 Hence, the risk management
ability of such programs might be limited.

We use an out-of-sample premium rating (cede/retain) game developed by Ker and McGowan
(2000) to examine our approach’s performance. The rates derived using our approach are compared
with the rates from the HCKG approach (Harri et al., 2011) that the current RMA rating is based on
and the Bayesian model averaging (BMA) approach (Ker, Tolhurst, and Liu, 2016). For an empirical
application, we employ county-level corn yield data from NASS for the states of Iowa, Maryland,
and Colorado and winter wheat yield data for the states of Kansas, Indiana, and Colorado.

Our results show that the missing data problem significantly reduces the premium rate-making
credibility of current federal crop insurance programs. We also find that the proposed approach offers
a more accurate and less sensitive premium rating than the benchmark approaches in the presence
of the data omission. Our results consistently indicate a preference for our approach in all crop/state
combinations.

Literature Review

A growing body of literature has investigated ways to obtain density estimation accuracy by
incorporating a spatial dependence structure of crop yields into the density estimation process. This
is because crop yield densities are likely to be spatially dependent since nearby locations can share
similar climate, geological features, and other unknown factors that could affect crop yields (Annan
et al., 2014; Du et al., 2015).

2 Miranda (1991) separates basis risk into two parts: the idiosyncratic (systematic) and design components. The
idiosyncratic risk is the difference between an individual’s losses and average losses for an area (group), and the design
risk is the difference between the index and the underlying covariate losses.
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Li and Racine (2003) used a nonparametric kernel approach to smooth parameters for a joint
probability density function. Racine and Ker (2006) employed the nonparametric kernel approach
for crop insurance rating. Zhang (2017) proposed a density ratio estimator method to estimate crop
yield densities when the number of observations is small. The density ratio estimator method regards
individual density as a distortion from the baseline density. The technique offers accuracy gains
when the historical data dimension is short.

There are also many studies based on Bayesian statistics. Ozaki et al. (2008) suggested a
Bayesian method to generate crop yield densities by importing data from the neighboring counties
under a normality assumption. However, the method gives equal weights to the data from the
neighboring counties and gives zero weights beyond the adjoining counties. Ker, Tolhurst, and Liu
(2016) estimated crop yield distribution using the BMA method, which imports information from
outside counties’ yield history. They found that the BMA approach is strongly preferred to the
individual estimation approaches (e.g., the HCKG approach) when the historical dataset is limited.
Woodard (2016) employed the BMA approach to obtain a weighted average of trend parameters in
crop insurance rating. Liu and Ker (2020a) extended the BMA approach for borrowing information
across both time and space.

Bayesian kriging is another type of Bayesian approach. Park, Brorsen, and Harri (2019) used
Bayesian kriging to estimate spatially smoothed tail densities of crop yield under the extreme value
theory (EVT). The approach assumes a spatial process among the tail density parameters and updates
the structure under the Bayesian updating algorithm. They found that their approach generates
accuracy gains by taking into account the spatial structure of crop yield data. More recently, Ramsey
and Goodwin (2019) used a Bayesian quantile regression approach that borrows information across
space and quantile levels under the Bayesian kriging framework.

Despite efforts to explore possible options to get accuracy gains, previous studies have only used
balanced datasets. Indeed, counties with missing data have been discarded from the final dataset.
Therefore, the superiority of previous studies’ approaches might be limited since they measure
accuracy gains only in counties with complete data. Unlike previous studies, we include all counties
in the original dataset, regardless of data omission level, and recover crop yield densities of counties
with missing data.

Bayesian Modeling Framework

We use the Bayesian hierarchical structure to obtain estimates for our approach, referred to as
the Park–Harri–Coble (PHC) approach from here. The Bayesian hierarchical structure incorporates
three layers: the likelihood layer, the process layer, and the prior layer. The likelihood layer forms a
parametric probability density under normality.3

Likelihood Layer

We define the likelihood layer that models the crop yield density. Let yit be the crop yield of county
i at year t, where i = 1,. . . ,N and t = 1,. . . ,T . Since we assume normality, the likelihood layer can
be formed as

(1) P1(YYY | ���,���,⇥) =
TY

t=1

1p
2⇡ |⇤t |

exp
�
yyyt � ���xxxt

�
,⇤�1

t

�
yyyt � ���xxxt

�

2
,

3 Theoretically, any parametric distributional assumption, such as Gamma or Beta, can be applied in our PHC approach.
However, if there is a significant level of data omission (30% or 60%), the model with nonnormality does not converge
well. The main objective of the research is to suggest a practical way to estimate county-level crop yield density when there
are considerable levels of data omission. Therefore, we mainly use the model with the normality assumption in the study.
However, we report the results from the Beta distribution in the case of full data and a moderate level (10%) of the data
omission in Online Supplement A (see www.jareonline.org).

www.jareonline.org
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where yyyt is a vector of crop yield at year t that spans all counties, yyyt = [y1t ,. . . ,yNt ]0, and thus
Y = [yyy1,. . . ,yyyT ], xxxt is a 2 ⇥ 1 vector of explanatory variables at year t that includes intercept and
a linear trend variable, ��� = [���1, ���2] is a N ⇥ 2 vector of the mean equation coefficients, where
���1 = [�1i ,. . . , �1N ]0 and ���2 = [�2i ,. . . , �2N ]0,⇤t is a variance matrix at year t,⇤t = diag(!!!t ), which
is structured by a vector of standard deviation equations, !!!t = ���xxxt , where ��� = [���1,���2] is a N ⇥ 2
vector of the standard deviation equation coefficients, ���1 = [�1i ,. . . ,�1N ]0, and �2 = [�2i ,. . . ,�2N ]0.

Note that posteriors of ��� and ��� are conditionally drawn by hyper parameters priors
⇥ = [���1,���2,###1,###2,✓�1,✓�2✓�1,✓�2,⇢�1,⇢�2,⇢�1,⇢�2]0 through the process layer. The hyper
parameters consist of the deterministic constant and kriging parameters that determine the spatial
smoothing structure of the parameters of ��� and ���.

Process Layer

The process layer updates posteriors of ��� and ���. These county-specific coefficients are assumed
to follow a multivariate Gaussian spatial process.4 Then the coefficients are spatially smoothed by
kriging parameters of sill (⇢) and range (✓) via a spatial covariance function ⌃, which is an N ⇥ N

matrix structured by a function of standardized Euclidean distances (Di j ) between counties i and j

calculated from longitude/latitude coordinates.5
Under this setting, we accommodate not only county-specific trends in the mean equation (�2i)

but also county-specific heteroskedasticity from the standard deviation trend coefficient �2i . The
county-specific coefficients are obtained by assuming the following multivariate Gaussian spatial
process such that

���k | ���k ,✓�k ,⇢�k ⇠MVGP
⇣
���k ,⌃�k

⌘

(2)
���k | ###k ,✓�k ,⇢�k ⇠MVGP

⇣
###k ,⌃�k

⌘
,

where k = 1,2; ���k and ���k are vectors of the county-specific intercepts and trend parameters defined
in the previous layer; ���k and ###k are vectors of the deterministic part of each coefficients that
are uniform across all counties where ���k = [�k ,. . . ,�k ]0 and ###k = [#k ,. . . ,#k ]0; and ⌃�k and ⌃�k
are corresponding spatial covariance matrices for these coefficients.6 Intuitively, these spatially
smoothed parameters (���k and ���k ) are modeled as a deterministic constant plus a spatial random
effect. The spatial random effect generated from the Gaussian spatial process is included in the
mean so that the final posteriors of the parameters are county specific.

4 Under the multivariate Gaussian spatial process, any spatially distributed random variables (i.e., mean and standard
deviation coefficient of counties �i and �i ) are correlated and multivariate normally distributed with correlation dependent
on distance. Specifically, the level of correlation between coefficients for locations i and j is determined by the distance
between the two locations. Since these coefficients are spatially correlated, the crop yield densities of counties, generated by
a posterior predictive distribution, are spatially correlated as well.

5 In the study, we use an exponential-type spatial matrix where

cov
⇣
�i, � j

⌘
= ⌃ = ⇢e�Di j /✓ = ⇢

2666666664

1 e
�D1N /✓

...
. . .

...

e
�DN1/✓ 1

3777777775
.

6 Since the spatial process is based on a Bayesian framework, posteriors of ��� are multivariate normally distributed in
terms of space. Suppose ��� ⇠MVGP(���, ⌃) and we draw K number of random samples. Then, for any k th N ⇥ 1 sampled
vector ���k = [�1k , . . . , �Nk ]0, the average of the vector elements should be close to �, where 1

N

PN
i=1 �ik ⇡ �.
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We can now define the second layer of the hierarchy by multiplying the Gaussian spatial
processes, such that

P2(���,��� | ⇥) =
1

q
(2⇡)N ���⌃�1

���
exp

"
�1

2
�
���1 � ���1

� 0⌃�1
�1

�
���1 � ���1

�
#

⇥ 1
q

(2⇡)N ���⌃�2
���
exp

"
�1

2
�
���2 � ���2

� 0⌃�1
�2

�
���2 � ���2

�
#

(3)

⇥ 1
q

(2⇡)N ���⌃�1
���
exp

"
�1

2
�
���1 � ###1

� 0⌃�1
�1

�
���1 � ###1

�
#

⇥ 1
q

(2⇡)N ���⌃�2
���
exp

"
�1

2
�
���2 � ###2

� 0⌃�1
�2

�
���2 � ###2

�
#
.

Prior Layer

Prior selection is one of the most critical parts to sample good posteriors, specifically for a model
with a complex marginal posterior structure, like the model in this study. For most of the parameters
in the model, noninformative priors are used for the posterior sampling, yet some parameters
are sampled via informative priors. All vectors of the deterministic mean/variance coefficients
(���1,���2,###1,###2) are sampled using noninformative multivariate Gaussian priors, MV N (0,102

III).
Similarly, we impose general noninformative inverse Gamma priors, IG(0.1,0.1), for the sill
parameters ((⇢�1,⇢�2,⇢�1,⇢�2).

However, setting up priors for the range parameters (✓�1,✓�2✓�1 ,✓�2 ), which determine spatial
dependence structure (i.e., the maximum distance of spatial correlation) among mean/variance
coefficients, is more difficult than others. Following Bayesian statistic studies (Banerjee, Carlin,
and Gelfand, 2004; Cooley, Naveau, and Poncet, 2006; Cooley, Nychka, and Naveau, 2007) and
agricultural economics studies (Park, Brorsen, and Harri, 2019), we impose informative priors on
the range parameters based on the spatial information of the empirical dataset. First, we normalize
the longitude/latitude coordinates and calculate all possible distance Di j between counties i and
j. Then we give uniform priors for all range parameters (✓�1,✓�2✓�1,✓�2) such that Uniform
Uniform(0,2 ⇤max(Di j )), where max(Di j ) is the maximum distance among all Di j . Then the final
prior layer can be structured as

(4) P3(⇥) = p (�1) p (�2) p (#1) . . . p
⇣
⇢�1

⌘
p

⇣
⇢�2

⌘
.

Therefore, by Bayes’s theorem, we now have the joint posterior distribution P(���,���,⇥ | YYY ) by
multiplying three densities from each layer— P1(YYY | ���,���,⇥), P2(���,��� | ⇥), and P3(⇥)—such that

(5) P(���,���,⇥ | YYY ) / P1(YYY | ���,���,⇥)P2(���,��� | ⇥)P3(⇥).

We sample the final posteriors using the Metropolis–Hastings (MH) steps within a Gibbs sampler
algorithm written in R. Online Supplement B (see www.jareonline.org) describes the derivation of
the joint marginal posterior and computational details.

Review of Premium Calculation Procedures

This section reviews differences in the premium rating procedures of the HCKG, BMA, and PHC
approaches. In the following section, we conduct the out-of-sample premium rating game (Ker and

www.jareonline.org
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McGowan, 2000) to provide an out-of-sample prediction comparison of the PHC with the HCKG
(Harri et al., 2011) and BMA (Ker, Tolhurst, and Liu, 2016) approaches.

HCKG Approach

The first benchmark approach, suggested by Harri et al. (2011), is the current approach used by
US government agencies. Under this approach, a premium rating is conducted using a two-step
procedure. That is, a trend is estimated in the first stage (two-knots linear spline function) followed
by the second-stage heteroskedasticity adjustment of the residuals from the first-stage estimation.
Let "̂it and ŷit denote the detrended residuals and fitted values from the first-stage estimation. Then
the HCKG approach accounts for the heteroskedasticity via the following auxiliary regression:

(6) ln("̂2
it

) = ↵0 + ↵1 ln( ŷit ) + ✏ it .

The heteroskedasticity-adjusted yields, ŷ⇤
it

, can be obtained from a one-step-ahead forecast yield,
ŷi,T+1. and the estimated coefficient ↵̂1 from equation (6), such that

(7) ŷ⇤
it
= ŷi,T+1 + "̂it

 
ŷi,T+1

ŷit

! ↵̂1
2

,

where "̂it
⇣
ŷi,T+1
ŷi t

⌘ ↵̂1
2 is the heteroskedasticity-adjusted residuals.

After obtaining the heteroskedasticity-adjustment yield, ŷ⇤
it

, an empirical premium rate is
calculated from the following equation:

(8) premRMA

i,T+1 =
1
T

TX

t=1

max
"
0,
� ŷi,T+1 � ŷ⇤

it

ŷi,T+1

#
,

where � is the coverage level.
Under the empirical rating procedure, a lack of observations could be problematic because the

premiums are calculated from the residuals. Since the approach estimates premiums independently
using each county’s data, a county with a small number of observations due to missing data
issues (thus, a small number of residuals) could not provide accurate premium rates due to limited
information in the small sample.7 Moreover, no premiums would be calculated for counties with
yield histories that are less than the minimum sample size (the sample size needed to have nonzero
degrees of freedom) required to estimate the first-stage trend model.

BMA Approach

The BMA approach has, in general, been used to account for model uncertainty. Ker, Tolhurst,
and Liu (2016) adapted it to get accuracy gains by modeling unknown spatial similarity among a
set of county-level densities by importing information from other counties. The density generating
scheme of the approach is entirely data-driven. For instance, information from other counties with
some explanatory power to fit the target county’s data would receive weights to generate the final
target county’s density. The BMA approach is a two-step estimation procedure. In the first step,
county-level densities (�i) under a normal distribution (can also work for a normal-mixture) are
estimated individually from their own historical observations and the Bayesian information criterion
(BIC), BICi

i
, is calculated. In the next step, the approach utilizes the individual parameter estimates

7 We should note that the final premiums offered by the RMA have some additional adjustments beyond the HCKG
approach. These adjustments could partly reduce the effect of the missing data. For instance, RMA uses some restrictions on
the trend coefficient estimates at the region level. However, the premium rating is still based on independent estimation by
county.
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of the target county i from the first step to explain other counties’ (county j) yield realizations and
calculates the BICs, say BICi

j
. Then, the weight of county j’s density to reproduce county i’s yield

realizations (wi

j
) is estimated by using the following formula:

(9) wi

j
=

exp
f
� 1

2 BICi

j

g
P

K

k=1 exp
f
� 1

2 BICi

k

g .
Therefore, the final county-level density, f i , is a weighted average of individual density estimates
(�i) and the density estimates from outside of the county (� j ), such that

(10) f i =

KX

j=1

wi

j
� j .

After estimating the final density, f i , the premium rate for county i in year T + 1 for the area-
based insurance program with coverage level � (Ker and Coble, 2003) is obtained from the following
equation:

(11) prem
i,T+1 =

P
�
yi,T+1 < � ŷi,T+1

� �
� ŷi,T+1 � E

⇥�
yi,T+1 | yi,T+1 < � ŷi,T+1

�⇤ �

ŷi,T+1
,

where 0  �  1 is the coverage level and ŷi,T+1 is the predicted yield for county i in year T + 1. All
measures in equation (11), such as predictions and expectations, are obtained from the BMA density
function, f i .

Similar to the current empirical rating scheme used by RMA, the BMA approach can only
generate a density for a county with more yield observations than the minimum sample size needed
to estimate the first-stage individual density estimation. Therefore, counties that fail to meet this
threshold do not have density estimates under the BMA approach.

PHC Approach

Under the PHC approach, the premiums can also be calculated using equation (11). The predicted
yield, the expectation, and all probability measures in the equation are calculated from the
conditional predictive posterior distribution, P(yyyT+1 | YYY ), such that

(12) P
�
yyyT+1 | YYY

�
=

Z

⇥

Z

���

Z

���
P1

�
yyyT+1 | ���,���,⇥

�
P2(���,��� | ⇥)P(���,���,⇥ | YYY )d ���d���d⇥,

where YYY is a matrix of the whole dataset that spans all counties i = 1,. . . ,N and years t = 1,. . . ,T ;
yyyT+1 is a vector of predicted yield for year T + 1; P1(yyyT+1 | ���,���,⇥) is the likelihood layer in
equation (1); P2(���,��� | ⇥) is the process layer in equation (3); and P(���,���,⇥ | YYY ) is the posteriors
in equation (5) estimated from the Markov chain Monte Carlo (MCMC) sampling.

We can interpret equation (11) as the value that divides expected indemnity by the expected
yield. Both denominator and numerator values are calculated from the predicted posterior samples.
We calculate values that divide the indemnity calculated from each posterior predictive sample by
the expected yield and take an average of the values to get the premiums. We have 40,000 posterior
samples, and thus we have 40,000 posterior predictive yield samples. Therefore, we have 40,000
calculated premium values, and the final premium is the average of these values.

Empirical Analysis

We use county-level corn and winter wheat yield data obtained from NASS for the empirical
analysis. We select corn and winter wheat since they are US major crops. Corn yield has a clear
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upward time trend, while winter wheat does not. Thus, our crop choice would help compare and
contrast the model’s performance for a crop with and without a trend. We do not include soybean
since the reporting region and crop yield models for the soybean largely overlap with corn.

The data contain annual yields (bu/acre) for 1955–2017 for Iowa (99 counties) and Maryland (23
counties) and 1963–2017 for Colorado (53 counties) for corn and for 1955–2017 for Kansas (105
counties) and Indiana (92 counties) and for 1963–2017 for Colorado (53 counties) for winter wheat.
We discard counties with no yield report at all from the dataset. We choose these states to test the
performance under different characteristics (e.g., production level, climate or geographical features,
and level of the data omission).

We include Iowa and Kansas because they are the largest US producers of corn and winter wheat,
respectively. They also have relatively small levels of data omission due to their large production
level. One difference between Iowa and Kansas is their geographical characteristics. Iowa’s soil
characteristics and climate are very uniform, whereas Kansas does not. Indiana’s winter wheat is
used since it represents a minor production area but has uniform geography. Also, it would highlight
the characteristics of the winter wheat yield model in the Corn Belt region. Maryland is a minor
corn production area, but it has a surprisingly low level of data omission. Additionally, Maryland
has two different climates, highland west and coastal east. We use both corn and Colorado winter
wheat of to see the performance of the PHC with different crops in the same region. Colorado also
has significantly heterogeneous geographic characteristics from the eastern plains to the western
mountains.

In summary, the areas chosen represent major (Iowa and Kansas) and marginal (Maryland,
Indiana, and Colorado) production areas, homogeneous (Iowa and Indiana) and heterogeneous
(Maryland, Kansas, and Colorado) geographical features, and small (Iowa, Kansas, and Maryland)
and large (Colorado) portions of missing data.8

We use three benchmark approaches: HCKG, BMA-Normal, and BMA-Mixture. The BMA-
Normal is the BMA approach under the assumption of normality, and the BMA-Mixture is the
BMA approach with a bivariate-normal mixture distribution. We randomly drop 10%, 30%, and
60% of each state’s yield history to see how the data omission affects each approach’s crop density
estimation. We then calculate 70% and 90% coverage level loss ratios for each data omission
scenario. The following formula calculates the loss ratio:

(13) loss ratioi =

P
T

t=1 max
⇥
� ŷit � yit ,0

⇤
P

T

t=1 prem�
it
ŷit

,

where � is coverage level, ŷit is predicted yield of county i at year t, 4yit is the actual yield for
county i at year t, and prem�

it
is the premium rate of � coverage level for county i at year t. The loss

ratio is interpreted as total indemnity divided by total premium. If the loss ratio is higher (lower) than
1, the premium is underpriced (overpriced). Therefore, the loss ratio should be 1 under actuarially
fair premium rates.

We estimate crop yield densities using data up to 1997 and obtain predicted yields and premiums
for 1998. We repeat the procedure from 1998 to 2017 and calculate premium gains and losses. Note
that although the PHC can estimate densities for counties with no yield data reported, we include
only 27 counties in Colorado for the loss ratio calculation since neither the benchmark HCKG nor
BMA approach can provide accurate enough empirical premium rates for counties with a significant
data omission level.9

8 In the case of corn yield data, Iowa has only 8 missing observations out of 6,237 observations (0.1% omission) and
Maryland has 44 missing observations out of 1,449 observations (3% omission). In contrast, Colorado has 1,361 missing
observations out of 2,913 observations, which is approximately a 47% omission rate. In the winter wheat case, the number
of missing and total observations are, respectively, 153 out of 6,613 for Kansas (2% omission), 605 out of 5,796 for Indiana
(10% omission), and 548 out of 2,913 for Colorado (26% omission). We estimate the PHC approach for each state separately
since the estimation gets exponentially slower as the number of locations increases.

9 Counties with fewer than 20 yield observations are discarded from the out-of-sample rating game.
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(a) Before 60% Data Omission (b) After 60% Data Omission

Figure 1. Estimated Loss Ratios from the BMA-Mixture Approach for Iowa Corn Before and
After 60% Data Omission

(a) Before 60% Data Omission (b) After 60% Data Omission

Figure 2. Estimated Loss Ratios from the PHC Approach for Iowa Corn Before and After
60% Data Omission

Tables 1–4 report median, maximum, minimum, and 1st and 3rd quantiles of county-level loss
ratios for 20 years for each crop/state/coverage/omission level combination. These reported statistics
describe the within-state accuracy and inequality in the loss ratios. The maximum and minimum
statistics help to identify extreme cases of regional disparity in loss ratio calculation. In all cases, as
indicated by the narrow interquantile intervals, the PHC has fewer within-state disparities than the
HCKG and BMA approaches. As the data omission level increases and the coverage level moves
deeper in the tail, the benchmark approaches’ rating accuracy is dramatically diminished. They also
do not offer reasonable premiums in Colorado, with a considerable level of missing data reported
for corn and winter wheat. Loss ratio estimation results favor PHC over both HCKG and BMA
approaches, and more so when there is a large portion of missing data.

Figures 1 and 2 illustrate the 90% coverage level loss ratios for Iowa corn before (panel A) and
after (panel B) the 60% data omission for the BMA-Mixture and the PHC, respectively. Figures 3
and 4 are the loss ratios from the two approaches for Maryland corn. These figures illustrate that
the PHC is less sensitive to data omission. As stated in Table 1, in Iowa and Maryland corn, the
median loss ratios of the PHC’s 90% coverage level increased only from 0.51 to 0.61 and from
0.93 to 1.05, respectively, even after 60% of data were omitted. In the case of the BMA-Mixture
approach, however, the median loss ratios increased much more, from 1.10 to 4.29 and from 1.38
to 3.51, respectively, after the 60% of data omission. In detail, the BMA-Mixture’s 90% coverage
loss ratio for Allegany County in Maryland increased dramatically from 3.09 to 40.19, whereas the
PHC’s loss ratio changed only from 0.93 to 0.82.

Figure 5 illustrates Colorado corn’s loss ratios from the original dataset for the BMA-Mixture
and the PHC. In Colorado corn, the state with significant data omission, the median loss ratio of 90%
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(a) Before 60% Data Omission (b) After 60% Data Omission

Figure 3. Estimated 90% Coverage Level Loss Ratios from the BMA-Mixture Approach for
Maryland Corn Before and After 60% Data Omission

(a) Before 60% Data Omission (b) After 60% Data Omission

Figure 4. Estimated 90% Coverage Level Loss Ratios from the PHC Approach for Maryland
Corn Before and After 60% Data Omission

(a) BMA-Mixture Approach (b) PHC Approach

Figure 5. Estimated 90% Coverage Level Loss Ratios from the BMA-Mixture and PHC
Approaches for Colorado Corn

coverage level of the PHC is 2.74, whereas that of the BMA-Mixture approach is 6.69. Notably, in
some counties like Yuma County, the loss ratio estimation from the BMA-Mixture is 60.90, while
the PHC is 2.28. Like the 90% coverage loss ratio for Iowa, the BMA-Normal is less sensitive to the
data omission in Colorado. However, the BMA-Normal shows less accuracy in the 70% coverage
loss ratio.

The data omission sensitivity of the BMA approach is attributed to its way of importing
information. The BMA approach produces the density by importing information from counties
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with similar historical outcomes. Hence, it provides an accurate density estimation when the dataset
contains good references. However, if there are not enough outside references to import information
to estimate the target county’s density (i.e., counties with similar yield history), the BMA approach
would not be accurate.10 Therefore, it tends to provide relatively good estimates in states with
homogeneous yield history due to similar soil and climate conditions such as Iowa corn but not
in states with heterogeneous conditions.

On the other hand, the PHC estimates each county’s density as a variation from an integrated
yield density structure across space. The variation is determined by spatial structural parameters (i.e.,
kriging parameters) and Euclidean distances among counties. Therefore, the PHC can minimize the
estimation distortion from the missing observations as long as the integrated yield density structure
across space is well identified.

Premium Rating Game

In this section, we test the performance of the PHC in a more formal manner. To do that, we
employ the out-of-sample premium rating game suggested by Ker and McGowan (2000). For the
final comparison, we select two types of BMA approach (BMA-Normal and BMA-Mixture) as the
primary benchmarks; several studies (Ker, Tolhurst, and Liu, 2016; Liu and Ker, 2020a) have proved
that the BMA is statistically superior to the HCKG approach when the time dimension of the data
is short. We use the loss ratios in the previous section, from 1998 to 2017, to conduct the premium
rating game.

We first use the premium rating games to test across approaches (i.e., BMA vs. PHC). This is
referred to as the between test. In an alternative test, the comparison is between the case where the
complete original dataset is used, versus the case where an omission level is applied to the original
data. This is referred to as the within test. For Iowa and Maryland corn as well as Kansas and Indiana
winter wheat, states with no significant data omissions, we perform both the between and the within

test. For Colorado, a state with a large portion of the data omission, we only perform the between

test.
To avoid a possible advantage of the private company over the Federal Crop Insurance

Corporation (FCIC) that can determine retain/cede decisions after observing premiums from the
FCIC, we employ the relative loss ratio index suggested by Ker, Tolhurst, and Liu (2016). We utilize
the index to perform both the between test(BMA vs. PHC) and the within test(original vs. omitted
data), such that

RL
between =

LR
P

C
/LR

P

R

LR
B

C
/LR

B

R

;

(14)

RL
within =

LR
O

C
/LR

O

R

LR
M

C
/LR

M

R

;

where LR
P

C
and LR

P

R
are the average loss ratios across ceded and retained policies, respectively, from

the PHC; LR
B

C
and LR

B

R
are the ceded and retained loss ratio, respectively, from the BMA approach;

LR
O

C
and LR

O

R
are the ceded and retained loss ratio, respectively, using the original dataset; and

LR
M

C
and LR

M

R
are the ceded and retained loss ratio, respectively, using the dataset with missing

observations.

10 As noted previously, this article only considers a single state estimation. Therefore, the BMA approach might not have
valuable references to recover the target county’s density in a single state dataset. If we extend the dataset to a sufficiently
larger locational boundary beyond the state level, results for the BMA approach might improve. However, for states like
Colorado and Montana, where there is a significant level of missing data in the entire state, it might be hard to get valuable
references even when extending the boundary beyond the state level.
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First, under the setting of the relative loss ratio for the between test, RL
between, two players (a

private company and the FCIC) use different premium rating approaches; RL
between identifies the

accuracy of using the PHC relative to the BMA approach. That is, a higher RL
between indicates that

the PHC approach is more accurate than the BMA approach. In terms of the relative loss ratio for the
within test (original and omitted data), RL

within identifies the accuracy of using the original dataset
relative to using the dataset with missing observations. Therefore, an approach with higher RL

within

indicates higher levels of accuracy loss in the presence of missing data.
We first discuss the results for the between test. Under the null hypothesis that both approaches

estimate the yield density equally well, yield predictions and premiums calculated from the
approaches must be equally accurate. Therefore, the ceded-to-retained loss ratios from the two
approaches must be identical (i.e., under the null, the median of the distribution for RL

between is 1).
We obtain RL

between across counties for each year from 1998 to 2017 for each state in the presence of
the missing data. Like Ker, Tolhurst, and Liu (2016), we define the random variable RL

⇤, indicating
the number of RL

between greater than 1 within the 20-year period, where RL
⇤ ⇠Binomial(0.5,20).11

Table 5 presents the results of the between test. The p-values are obtained from the binomial
distribution of RL

⇤. A lower p-value indicates that the PHC dominates the benchmark approaches.
The PHC is preferred to both BMA approaches in all combinations of crop, state, coverage level,
and omission level and is statistically superior in 67 of the 72 combinations. Notably, the PHC
is preferred to both BMA approaches in a significant data omission (60% omission) and deeper
coverage levels (i.e., 70% coverage level). For instance, the PHC rejects the null in all the cases of
70% coverage and 60% omission. The BMA-Normal approach works comparatively better than the
BMA-Mixture in Iowa corn and Colorado winter wheat cases for the 90% coverage level, but the
PHC significantly dominates all other combinations.

As a complementary comparison of accuracy, we examine how missing data affects the accuracy
of premium rating via the within test. If an approach imported valuable information from other
counties and produced sufficiently accurate densities of counties with missing data, there would
be no notable changes in loss ratios after omitting data. Like the index for the between test, the
comparison index RL

within is distributed with a median of 1 under the null hypothesis, meaning that
the ceded-to-retained loss ratios calculated from the two datasets are identical. We repeat the same
process as for the between test for both the BMA approaches and the PHC. We then estimate the
random variable RL

⇤ for 20 years, where RL
⇤ ⇠Binomial(0.5,20).

Table 6 reports the within test results. Unlike the between test, the within test results should not
be statistically significant if the approaches adequately estimate densities via omitted datasets. A
lower p-value indicates that results from the original dataset outperform the results from the missing
data. As expected, in both approaches, yield predictions and premium calculations using the original
dataset provide better estimations (p-value < 0.5) in most cases. Neither BMA approach rejects the
null hypothesis in the 90% coverage/10% data omission combination. However, as the data omission
level increases, the number of rejections increases. For instance, the two BMA approaches reject the
null for 8 out of 16 combinations at the 30% data omission level and reject the null in all 60% data
omission cases.

In contrast, the accuracy of the PHC does not significantly decline with data omission. The PHC
does not reject the null hypothesis in all combinations of crop, state, and coverage level at the 10%
data omission level and rejects the null in 1 out of 12 combinations at the 30% data omission level
and 2 out of 12 combinations at the 60% data omission level. The results demonstrate that the PHC
is remarkably accurate even with a large portion of data omitted.

We further measure the approximate economic gains (losses) of using the PHC compared to the
HCKG and the BMA approaches when there is a data omission issue. The economic gains and losses
are based on the standpoint of a policy maker. That is, if a county’s loss ratio is higher than 1, we

11 A year that does not have indemnity payments (i.e., no counties with actual yield outcomes below the trigger level)
across all counties is discarded since the RL indices in equation (13) cannot be calculated. Therefore, if there are k years of
no indemnity payments, then the random variable follows RL

⇤ ⇠Binomial(0.5, 20 � k ).
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Table 6. Out-of-Sample Rating Game Results for the within Test (no omission vs. dataset with
omission)

State Model
Data

Omission
90% Coverage

(p-Value)
70% Coverage

(p-Value)
Corn

Iowa BMA-Normal No vs. 10% 0.696 0.059⇤

No vs. 30% 0.006⇤⇤⇤ 0.038⇤⇤

No vs. 60% 0.004⇤⇤⇤ 0.059⇤

BMA-Mixture No vs. 10% 0.500 0.059⇤

No vs. 30% 0.084⇤ 0.084⇤

No vs. 60% 2 ⇥ 10�5⇤⇤⇤ 2 ⇥ 10�6⇤⇤⇤

PHC No vs. 10% 0.212 0.313
No vs. 30% 0.227 0.345
No vs. 60% 0.313 0.524

Maryland BMA-Normal No vs. 10% 0.133 0.040⇤⇤

No vs. 30% 2 ⇥ 10�5⇤⇤⇤ 0.010⇤⇤

No vs. 60% 2 ⇥ 10�5⇤⇤⇤ 0.010⇤⇤

BMA-Mixture No vs. 10% 0.119 0.407
No vs. 30% 0.240 0.119
No vs. 60% 0.004⇤⇤⇤ 0.015⇤⇤

PHC No vs. 10% 0.377 0.345
No vs. 30% 0.805 0.254
No vs. 60% 0.377 0.500

Wheat
Kansas BMA-Normal No vs. 10% 0.407 2 ⇥ 10�5⇤⇤⇤

No vs. 30% 0.118 0.015⇤⇤

No vs. 60% 0.002⇤⇤⇤ 2 ⇥ 10�5⇤⇤⇤

BMA-Mixture No vs. 10% 0.500 0.676
No vs. 30% 0.032⇤⇤ 0.178
No vs. 60% 0.021⇤⇤ 0.058⇤

PHC No vs. 10% 0.274 0.773
No vs. 30% 0.928 0.605
No vs. 60% 0.015⇤⇤ 0.304

Indiana BMA-Normal No vs. 10% 0.227 0.105
No vs. 30% 0.105 0.227
No vs. 60% 0.095⇤ 0.002⇤⇤⇤

BMA-Mixture No vs. 10% 0.315 0.166
No vs. 30% 0.500 0.166
No vs. 60% 0.001⇤⇤⇤ 0.006⇤⇤⇤

PHC No vs. 10% 0.252 0.820
No vs. 30% 0.171 0.891
No vs. 60% 0.748 0.748

Notes: A lower p-value indicates that the PHC approach dominates the BMA approach and vice versa. Single, double, and
triple asterisks (*, **, ***) indicate the statistical significance of lower private (government) loss ratios at the 10%, 5%, and
1% level, respectively. Each omission level indicates that the empirical data from 1955 to 2017 are randomly omitted for
each respective percentage to test the performance. Insurance buyers collect indemnity when the actual county yield is lower
than the county production guarantee (coverage level ⇥ projected county yield). BMA-Normal refers to the Bayesian model
averaging approach under the normality assumption (Ker, Tolhurst, and Liu, 2016). BMA-Mixture refers to the Bayesian
model averaging approach under the normal mixture (Ker, Tolhurst, and Liu, 2016). PHC refers to the Park–Harri–Coble
approach, the proposed Bayesian kriging approach presented in this paper.



652 September 2022 Journal of Agricultural and Resource Economics

Table 7. Total Economic Gains (per year) of Using the PHC Approach
Model Program No Omission 10% Omission 30% Omission 60% Omission
PHC vs. HCKG ARP $19,108,725 $23,197,557 $73,850,230 $88,791,356

AYP $664,138 $870,289 $1,213,021 $924,206
GRP $3,977,403 $5,211,161 $6,231,629 $5,533,767
Total $23,750,266 $29,279,007 $81.294,880 $95,249,329

PHC vs. BMA-Mixture ARP $14,858,421 $17,847,984 $21,108,487 $61,234,994
AYP $128,410 $118,255 $115,833 $277,964
GRP $770,361 $709,775 $694,688 $1,665,448
Total $15,757,192 $18,676,014 $21,919,008 $63,178,406

Notes: ARP stands for Area Revenue Protection, AYP stands for Area Yield Protection, and GRP stands for Group Risk
Plan. Each omission level indicates that the empirical data from 1955 to 2017 are randomly omitted for each respective
percentage to test the performance. HCKG refers to the Harri–Coble–Ker–Goodwin approach (Harri et al., 2011).
BMA-Mixture refers to the Bayesian model averaging approach under the normal mixture (Ker, Tolhurst, and Liu, 2016).
PHC refers to the Park–Harri–Coble approach, the proposed Bayesian kriging approach presented in this paper.

consider the loss ratio deviation from 1 to be an economic loss of overpaying indemnity to insured
in the county. In contrast, a county with a loss ratio smaller than 1 is considered to be an economic
loss due to overrated premiums and, thus, a loss in higher subsidy payments. We use the county-
level loss ratios calculated from each approach in the previous section and obtain monetary values
of the economic significance of the PHC relative to other approaches by using the RMA Summary
of Business database from 2005 to 2015.

We use county-level indemnity payments, premiums, subsidies, and insured acreage of the Area
Revenue Protection (ARP), the Area Yield Protection (AYP), and the Group Risk Plan (GRP) from
the RMA data to calculate the economic gains and losses. Since the dataset merely covers the federal
insurance programs for corn, we only measure corn insurance products’ economic gains and losses.
We also choose to use the 90% coverage level premiums because roughly 95% of the current policies
sold are at this coverage level.

In order to calculate the overpaid indemnities and subsidies from the underpriced and overpriced
premium calculations, we measure the average indemnity/subsidy overpayments per unit loss
ratio difference from one due to the inaccuracy of the premium rating procedure.12 We then
compare the PHC’s economic gains/losses with two other benchmark approaches for different data
omission levels. Online Supplement C presents descriptive statistics of the RMA data, the estimated
overpayment measures, and the estimated per acre economic gains/losses.

Finally, we calculate the total economic gains by using the information of the total insured
acreage and the estimated (per acre) overpayment measures. Table 7 shows the total economic
gains per year of using the PHC compared to the HCKG and BMA-Mixture approaches. For the
10% data omission scenario, using the PHC results in total economics gains of $29,279,007/year
and $18,676,014/year compared to the HCKG and BMA-Mixture approaches respectively. For the
30% data omission scenario, using the PHC results in the total economic gains of $81,294,880/year
and $21,919,008/year compared to the HCKG and BMA-Mixture approaches, respectively. For the
60% data omission scenario, total economic gains are are $95,249,329/year and $63,178,406/year
compared to the HCKG and BMA-Mixture approaches, respectively.

12 First, we sort counties with underpriced (loss ratios > 1) and overpriced (loss ratios < 1) premiums by using the actual
county-level loss ratios obtained from the RMA Summary of Business database. Suppose an average indemnity payment per
acre and an average loss ratio of the counties with underpriced premiums (loss ratios > 1) are $100 and 1.2, respectively.
Then the deviation of the loss ratio from 1 is 0.2. In that case, the indemnity overpayment per unit is $500, which can be
calculated by dividing $100 by 0.2. Therefore, we consider that one unit of the overestimation of the loss ratio results in
a $500 overpayment of the indemnity per acre compared to the case with actuarially fair case (loss ratio =1), on average.
Similarly, we can measure a unit subsidy payment loss due to overpriced premiums by using the subsidy payments dataset of
counties with overpriced premiums (loss ratios < 1).
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However, one must carefully interpret the economic significance in the study since the
superiority in the premium rating of the PHC approach is only based on the empirical dataset
used here. Therefore, if we extend the scope of the empirical dataset, the value might be different.
Also, RMA does not offer area-based insurance products in counties with insufficient yield history.
Therefore, our data omission scenario might overestimate the economic gains in some cases. The
fact remains that there are significant economic gains in offering accurate premiums via the PHC
approach. Thus, we have demonstrated that the PHC would be significantly beneficial in some
states/crops, particularly where data provision is a concern.

Limitations and Further Research

This study investigates the problem of missing yield data and proposes a new approach to estimate
county-level densities in the presence of a significant level of missing data. We find that missing
data can result in a severe problem in the federal crop insurance premium rating. Our results show
that the proposed approach provides more accurate estimation and is less sensitive to the data
omission problem than the benchmark premium rating approaches in estimating county-level crop
yield densities.

The study has some limitations. The primary distributional assumption in the study is based
on normality. The Gaussian distribution has some advantages over other types of distribution (e.g.,
having computational brevity and thus fast convergence) but the distribution cannot accommodate
higher moments adjustment, such as skewness and kurtosis of crop yield densities. Still, even with
the normality assumption, our approach is computationally intensive. For example, the approach
takes approximately 36 hours to obtain 50,000 posteriors for Iowa with 99 counties via Intel

®
Xeon

®

W-2133 Processor (8.25M Cache, 3.60 GHz).
In this context, a possible extension of this research is to use a more efficient MCMC algorithm,

such as the Hamiltonian Monte Carlo (HMC) algorithm, to reduce the computational burden.
Updating missing observations under the current MCMC algorithm gets exponentially slower when
the dataset includes many locations. Therefore, we considered a single state estimation in the study,
but we may extend the scope to a broader area by resolving this computational limitation. The HMC
algorithm allows one to easily apply non-Gaussian distributions to the PHC, especially with a high
level of data omissions.

One valuable future research question is investigating how to calculate counties’ insurance
payouts with no data reported. One possible option is to use alternative data sources, such as
the RMA data, when NASS data are not available. This raises another question about how much
accuracy will be achieved when integrating two primary data sources in insurance premium rating
to reduce missing data problems.

[First submitted March 2021; accepted for publication August 2021.]
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Supplement A: Bayesian Interpolation Model under the Beta Distribution. 

The Hierarchical Structure of the Proposed Approach with Beta Distribution 

The estimation of the proposed approach is based on the Bayesian hierarchical framework. The 
Bayesian hierarchical structure incorporates three layers: the likelihood layer, the process layer, 
and the prior layer. However, a different distributional assumption on the crop yield changes forms 
of each hierarchy. 

Likelihood Layer 

The likelihood layer forms the crop yield density. Let !!" be the crop yield of county " at year #, 
where " = 1,… ,( and # = 1,… , ). We now assume that the crop yields follow Beta distribution, 
instead of Gaussian, the likelihood layer is formed as, 

(A1) *#(,|	/, 0, 1) 	=  ∏ 	
$!
"#!$%%$&&$!'

'#!$%

((*+!,-+!)%$&'
"#!('#!$%

/
"0#  

where 4"  is a vector of crop yield at year # for all counties, 4" = [!#" , … , !1"]′, and thus , =
[4#, … , 4/],	42 is the vector of yield ceiling, 42 = [!2 , … , !2]′, which is 20% greater than the 

highest historical yield following Norwood, Roberts, and Lusk (2004), 8"	is a 2 × 1 vector of 

explanatory variables at year # that includes intercept and a linear trend variable,  / = [/#, /3] is 

a ( × 2  vector of the mean equation coefficients, where /# = [;#! , … , ;#1]′	 and /3 =
[;3! , … , ;31]′,	 0 = [0#, 03] is a ( × 2 vector of the standard deviation equation coefficients, 
0# = [<#! , … , <#1]′ and 03 = [<3! , … , <31]′, =(∙) is the Beta function, and 1 is a vector of hyper 

parameters, 1 = ?@#, @3, A#, A3, B4#, B43B5#, B53, C4#, C43, C5#, C53D′. 

Process Layer 

The process layer forms the two shape parameters of the Beta distribution defined in the likelihood 
layer. In the layer, a spatial interpolation for the coefficients in the two shape parameters equations 
via a Gaussian spatial process.  

The county-specific coefficients are obtained by assuming the following multivariate 
Gaussian spatial process such that,  
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(A2) 

/6	|		@6 , B46 , C46		~		FGH*I@6 , Σ46K 

06	|		A6 , B56 , C56		~		FGH*IA6 , Σ56K 

where	P = 1, 2 

where /6	and 06 are vectors of the intercepts and trend parameters defined in the previous layer, 

@6 and A6 are vectors of the deterministic part of each coefficients that are uniform across all 
locations where @6 = [Q6 , … , Q6]′ and A6 = [R6 , … , R6]′, Σ46 and Σ56 are corresponding spatial 

covariance matrices for each coefficient, which are ( ×( matrices structured by a function of 
standardized Euclidean distances ( S!7 ) between counties 	"  and T  calculated from 

longitude/latitude coordinates.  
We now can define the second layer of the hierarchy such that,  

(A3) 

*3(/, 0|1) = 	
1

U(2V)1WΣ4#W
exp Z−

1
2
(/# − @#)8Σ4#

&#(/# − @#)\

×
1

U(2V)1WΣ43W
exp Z−

1
2
(/3 − @3)8Σ43

&#(/3 − @3)\

×	
1

U(2V)1WΣ5#W
exp Z−

1
2
(0# − A#)8Σ5#

&#(0# − A#)\

×
1

U(2V)1WΣ53W
exp Z−

1
2
(03 − A3)8Σ53

&#(03 − A3)\. 

Prior Layer 

Unlike Gaussian distribution, Beta distribution parameters are bounded at zero, ^, Q > 0. Also, 

due to the non-linearity of the Beta function =(∙), informative priors are required to achieve 
convergence. Therefore, we first fit Beta distribution via Maximum Likelihood Estimation (MLE) 
and use the estimated parameter information to impose informative priors. We use multivariate 

log-normal priors, Multi-lognormal (0, I), for the shape parameters coefficients (@#, @3, A#, A3). 
Identical to the Gaussian model in the manuscript, we impose general non-informative inverse 
gamma priors,	aH(0.1, 0.1) for the sill parameters (C4#, C43, C5#, C53) and informative priors for 

the range parameters (B4#, B43B5#, B53) , UniformI0, 2 ∗ maxIS!7KK , where maxIS!7K  is 

maximum distance among all S!7.  
Then the final prior layer can be structured as 

(A4) *9(1) = 	j(/#)j(/3)	j(0#)… 	jIC5#KjIC53K. 

Finally, we have the joint posterior distribution *(/, 0, 1	|	,) by multiplying three densities 

from each layer, *#(,|	/, 0, 1), *3(/, 0|1), and *9(1) such that 

(A5) *(/, 0, 1	|	,) ∝ 	*#(,|	/, 0, 1)*3(/, 0|1)*9(1). 

Premium Rating Game 

We conduct the out-of-sample prediction game for the PHC with the Beta distribution. As stated 
in Footnote 4 in the manuscript, any type of parametric distribution can be applied in the PHC 
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approach. However, a substantial level of data omission often results in convergence issues. 
Therefore, we only report the results from the Beta distribution in the case of full data and a 
moderate level (10%) of the data omission here.  

Table A1 presents the between test results. The “p-value” indicates the type 1 error obtained 
from the binomial distribution of lm∗ and a lower p-value indicates that the PHC with the Beta 
distribution dominates the BMA approach. Like the Gaussian model in the manuscript, the PHC 
outperforms both BMA approaches in all crop/state/coverage-level/omission-level combinations. 
The results show that the PHC tends to be less sensitive to the data missingness and offers more 
adequate risk measures in deeper tail probability.  

Table A2 shows the within test results. A lower p-value indicates that estimation results from 

the original dataset outperform the results from the data with missing observations. Therefore, 
the within test results are not statistically significant if the model suitably estimates densities from 
the omitted dataset. Similar to the comparison conducted in the manuscript for the within test, all 
approaches do not reject the null hypothesis in the case of 10% data omission in 90% coverage 
level. However, two BMA-based approaches show rejections in the 70% coverage level when 
10% data omission happened. 

Table A1. Out-of-Sample Rating Game Results of the Between Test  
    BMA-Normal¹ vs PHC³ BMA-Mixture² vs PHC 

Crop State 
No. of 

Counties 
Data 

omission 

90% 
Coverage 
(p-value) 

70% 
Coverage 
(p-value) 

90% 
Coverage 
(p-value) 

70% 
Coverage 
(p-value) 

Corn Iowa 99 No 

omission 

0.084* 0.000*** 0.048** 0.000*** 

   10% 0.021** 0.000*** 0.073* 0.015** 

 Maryland 23 No 

omission 

0.084** 0.005*** 0.090** 0.015** 

   10% 0.000*** 0.000*** 0.001** 0.000*** 

 Colorado 27 No 

omission 

0.000*** 0.000*** 0.001*** 0.000*** 

        

        

Wheat Kansas 105 No 

omission 

0.005*** 0.005*** 0.015** 0.000*** 

   10% 0.000*** 0.000*** 0.001*** 0.000*** 

 Indiana 92 No 

omission 

0.015** 0.000*** 0.010** 0.000*** 

   10% 0.000*** 0.025** 0.001*** 0.018** 

 Colorado 27 No 

omission 

0.000*** 0.000*** 0.000*** 0.000*** 

Note : A lower p-value indicates the proposed approach dominates the BMA approach, vice versa. 

Statistical significance of lower private (government) loss ratios indicated by ∗–10%, ∗∗–5%, and ∗∗∗–1%. 
¹ Bayesian Model Averaging approach under the normality assumption (Ker, Tolhurst, and Liu 2016). 

² Bayesian Model Averaging approach under the normal mixture (Ker, Tolhurst, and Liu 2016). 

³ Park-Harri-Coble (PHC), the proposed Bayesian Kriging approach in the paper.   
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Table A2. Out-of-Sample Rating Game Results for the Within Test (no omission vs dataset 
with omission) 

Crop State Model Data omission 
90% Coverage 

(p-value) 
70% Coverage 

(p-value) 
Corn Iowa BMA-Normal¹ No vs 10% 0.696 0.059* 

  BMA-

Mixture² 
No vs 10% 0.500 0.059* 

  PHC³ No vs 10% 0.212 0.313 

 Maryland BMA-Normal No vs 10% 0.133 0.040** 

  BMA-Mixture No vs 10% 0.119 0.407 

  PHC No vs 10% 0.377 0.345 

      

Wheat Kansas BMA-Normal No vs 10% 0.407 0.000*** 

  BMA-Mixture No vs 10% 0.500 0.676 

  PHC No vs 10% 0.274 0.773 

 Indiana BMA-Normal No vs 10% 0.227 0.105 

  BMA-Mixture No vs 10% 0.315 0.166 

  PHC No vs 10% 0.252 0.820 

Note : A lower p-value indicates the proposed approach dominates the BMA approach, vice versa. 

Statistical significance of lower private (government) loss ratios indicated by ∗–10%, ∗∗–5%, and ∗∗∗	–
1%. 
¹ Bayesian Model Averaging approach under the normality assumption (Ker, Tolhurst, and Liu 2016). 

² Bayesian Model Averaging approach under the normal mixture (Ker, Tolhurst, and Liu 2016). 

³ Park-Harri-Coble (PHC), the proposed Bayesian Kriging approach in the paper. 

 

Supplement B: Computational Details. 

The hierarchy of the model is structured as following three stages, 

*#(,|	/, 0, 1) 

*3(	/, 0	|1) 

*9(1). 

By Bayes’ theorem, the prior distribution for the likelihood layer, say *(/, 0, 1	), can be 
separated into two components,  

*(/, 0, 1	) = 	*3(	/, 0	|1)*9(1) 

Under this setting, the joint posterior distribution of the hierarchical model can be estimated as 
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*(/, 0, 1	|	,) =
*(/, 0, 1, ,)

*(,)
=

*#(,|	/, 0, 1)*(/, 0, 1	)

∭*#(,|	/, 0, 1)*(/, 0, 1	)o1o0o/
 

and thus the joint posterior distribution *(/, 0, 1	|	,) is proportional to the multiplication of the 
likelihood *#(,|	/, 0, 1) and *(/, 0, 1	) 

*(/, 0, 1	|	,) ∝ *#(,|	/, 0, 1)*(/, 0, 1	). 

Next, we plug in *3(	/, 0	|1)*9(1) instead of *(/, 0, 1), resulting in the final formula 

*(/, 0, 1	|	,) ∝ *#(,|	/, 0, 1)*3(	/, 0	|1)*9(1). 

We sample posteriors using the Metropolis-Hastings (MH) steps within a Gibbs sampler 
algorithm written in R. We use Gibbs sampling to update vectors of all coefficients of mean and 

standard deviation equations that spans all counties (/# , /3 , 0# , and 03 ), including missing 

observations !!"
;, via a Gaussian candidate density. The sill and range (C and B) parameters, also 

known as Kriging parameters, are also updated by Gibbs sampling. The mean and variance of the 
Gaussian candidate are obtained by maximum likelihood estimation under the specification in (2). 
Missing observations are also updated within the Markov Chain Monte Carlo (MCMC) draws. 
We use a Gaussian candidate for missing observations !!"

;~((E[4"], var[4"]) where !!"
;  is a 

missing observation for county "  in year # , E[4"]  and var[4"]  are the cross-sectional (across 

counties) mean and variance of yields in year #. The spatial smoothing to get county-specific 
parameter estimates is conducted when updating the coefficients within the MCMC. For the final 
estimation, we generate 50,000 MCMC samples to get posterior densities and drop the first 10,000 
observations as burn-in. 

We follow a general Bayesian spatial interpolation algorithm. The spatial smoothing to get 
county-specific parameter estimates is conducted when the model updates the coefficients within 
the MCMC. We first generate a random Gaussian spatial process r6= [s#6 , … , s16]′, r6~((0, 1), 

where P = 1,… , t. Note that since the model assumes the Gaussian process,  lim
<→>

∑ @)*+
),%
< = 0 for 

every Pth MCMC draw. The model then conducts a Cholesky decomposition with the spatial 

correlation matrix, Σ6 = vIS!7; B6 , C6	K = xAxA
8 , where xA  is a lower triangular matrix from 

the 	Kriging parameters B  and C . Then we draw /6 = /6 + xAr6  from the random Gaussian 

process r6 and then update location specific coefficient parameters /6.  
The Metropolis-Hastings within Gibbs sampler algorithm is used to draw posterior samples 

implemented in R. Gibbs sampling updates all coefficient parameters and Kriging parameters. For 

the final estimation, we generate 50,000 MCMC samples to get posterior densities and drop the 
first 10,000 observations as burn-in. A trace plot is used to monitor a graphical convergence of 
the MCMC samples. We also check the convergence of the selected counties via Geweke (1992) 
convergence diagnostic for Markov chains, which is based on a test for equality of the means of 
the first 20% and last 50% part of a Markov chain. In general, the range parameters B4#, B43, B5# 

and B53 are the parameters with the convergence issue. Therefore, we also check the convergence 

of the range parameters via both the traceplot and the Geweke diagnostic test. All range 
parameters satisfy the convergence criteria. The following figures are the traceplots of the range 
parameters.  
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Figure B1. Posterior Range Parameters of Mean (;#, ;3) and Variance (<#, <3) Equations in 
Iowa Corn 

 

 

Figure B2. Posterior Range Parameters of Mean (;#, ;3) and Variance (<#, <3) Equations in 
Maryland Corn 
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Figure B3. Posterior Range Parameters of Mean (;#, ;3) and Variance (<#, <3) Equations in 
Colorado Corn 

  

 

Figure B4. Posterior Range Parameters of Mean (;#, ;3) and Variance (<#, <3) Equations in 
Kansas Wheat  
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Figure B5. Posterior Range Parameters of Mean (;#, ;3) and Variance (<#, <3) Equations in 
Indiana Wheat 

 

Figure B6. Posterior Range Parameters of Mean (;#, ;3) and Variance (<#, <3) Equations in 
Colorado Wheat  
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Supplements C: Economic Significance of Adopting the Proposed Approach 

Table C1. Descriptive Statistics of the RMA County-level Business Database 

Programs 
(Years) Variable 

Mean 
($, acre) 

Maximum 
($, acre) 

Minimum 
($, acre) 

Total 
($, acre) 

ARP     
(2014 -
2015) 

Indemnity 75,555 7,530,528 50,608 38,004,188 

Premium 96,562 6,258,555 0 48,571,095 

Subsidy 42,768 2,753,766 0 21,512,308 

Acreage 1,108 50,608 0 557,811 

      

AYP     
(2014 -
2015) 

Indemnity 2,265 212,838 0 1,094,053 

Premium 8,619 438,395 0 4,163,260 

Subsidy 4,631 223,582 0 2,236,803 

 Acreage 207 5,259 0 130,574 

      

GRP    
(2005-
2013) 

Indemnity 5,885 1,806,200 0 23,742,318 

Premium 11,430 1,041,273 0 46,111,154 

Subsidy 6,289 531,049 0 25,371,615 

Acreage 645 23,821 0 2,603,692 

Note: ARP stands for Area Revenue Protection, AYP stands for Area Yield Protection, and GRP stands for 

Group Risk Plan. 
The sample is covering 1,590 counties over 11 years (2005−2015), with a total of 5,020 observations.  

Table C2. Estimated Overpayment Measures 

Programs Variable Value 
ARP Unit indemnity loss per acre $54.56 

 Unit subsidy loss per acre $43.11 

   

AYP Unit indemnity loss per acre $3.72 

 Unit subsidy loss per acre $17.29 

   

GRP Unit indemnity loss per acre $2.10 

 Unit subsidy loss per acre $9.84 

Note: ARP stands for Area Revenue Protection, AYP stands for Area Yield Protection, and GRP stands for 

Group Risk Plan. 
The unit indemnity/subsidy losses in the table represent that an increment of one loss ratio deviation leads 

to overpayments of the respective indemnity/subsidy per acre. 
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Table C3. Estimated Overpayment Savings (per acre) of Using the PHC Approach 

Model Program Variable 
No 

omission 
10% 

omission 
30% 

omission 
60% 

omission 
PHC vs 
HCKG 

ARP Indemnity 
saving per acre 

$59.58 $75.60 $259.04 $311.46 

  Subsidy saving 
per acre 

$8.93 $7.57 $5.75 $6.68 

 AYP Indemnity 
saving per acre 

$9.29 $12.58 $15.45 $13.48 

  Subsidy saving 
per acre 

$0.87 $0.74 $0.56 $0.67 

 GRP Indemnity 
saving per acre 

$12.56 $17.00 $19.21 $18.21 

  Subsidy saving 
per acre 

$1.19 $1.00 $0.76 $0.92 

PHC vs 
BMA-
Mixture 

ARP Indemnity 

saving per acre 

$45.03 $54.78 $69.32 $212.05 

 Subsidy saving 
per acre 

$8.62 $9.21 $6.36 $7.05 

 AYP Indemnity 
saving per acre 

$0.75 $0.91 $1.15 $3.52 

  Subsidy saving 
per acre 

$0.84 $1.23 $0.62 $0.73 

 GRP Indemnity 
saving per acre 

$1.01 $1.01 $1.56 $4.76 

  Subsidy saving 
per acre 

$1.14 $1.22 $0.85 $0.99 
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