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Nonradial Technical
Chemical Input Use

Efficiency and
in Agriculture

Jorge Fernandez-Cornejo

Radial and nonradial measures of technical efficiency are calculated empirically for Florida
vegetable farms using DEA (data envelopment analysis) techniques, Use of the nonradial
measures to calculate overuse of chemical inputs by inefficient farmers is demonstrated and
the potential for reduced environmental loading of pesticides and fertilizers by improving
efficiency is evaluated.

Over the last four decades, pesticides and fertiliz-
ers have played an integral role in the technologi-
cal advances that have doubled total factor produc-
tivity in U.S. agriculture (USDA, 1990). The use
of these chemical inputs, however, has also raised
health and environmental concerns (Cooper and
Loomis; Hallberg; Harper and Zilberman; Mott).
In particular, concern over the safety of our food
supply and the quality of groundwater has moti-
vated economists to examine ways for farmers to
reduce their dependence on these chemicals, with-
out a detrimental impact on consumers budget or
on farmers profitability.

In his seminal paper, Farrell noted in 1957 that
in addition to its theoretical importance, determi-
nation of efficiency is valuable for the economic
policy maker because it provides information on
how much a firm or industry can increase output
“by simply increasing its efficiency, without ab-
sorbing further resources. ” Equivalently, techni-
cally inefficient firms can be brought towards the
frontier (which describes the minimum amount of
inputs required to produce some desired output
level) by cutting back overused inputs. The im-
provement in the effectiveness of input use, par-
ticularly in the case of fertilizers and pesticides,
can increase farm profitability as well as alleviate
health and environmental concerns. In this regard,
the efficiency of fruit and vegetable production is
especially important because of its intensive use of
chemical inputs. For example, in 1990, pesticide
expenditures per acre by fruit and vegetable grow-
ers were about $100, nearly seven times the agri-
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cultural average (USDA, 1990; Gianessi and
Puffer). Also, food safety concerns about pesticide
residues are especially pertinent in fruits and veg-
etables which are often consumed with little post-
harvest processing (National Academy of Sci-
ences).

Florida is one of the nation’s largest fruit and
vegetable producing states, with over 358,600
acres of vegetable crops planted in 1990 (USDA,
1991). Moreover, Florida offers unique features:
Approximately 89 percent of its vegetable acres
are treated with nitrogen fertilizers, 92 percent
with insecticides, about 75 percent with herbi-
cides, and nearly 100 percent with fungicides
(USDA, 1991). Florida is also a large producer of
tomatoes, which rank first among foods in terms of
risk of exposure to pesticides in the daily diet (Na-
tional Research Council). Furthermore, nearly the
entire state of Florida is highly vulnerable to
groundwater contamination by pesticides and ni-
trates (EPA), and several large urban centers lie
above those vulnerable areas.

Efficiency issues are critical for winter vegeta-
ble farms (tomatoes, peppers, cucumbers), which
produce a large share of Florida’s vegetable out-
put, because their survival depends on their ability
to compete with Mexican vegetable farms. The
North American Free Trade Agreement (NAFTA)
is likely to enhance this competition, bringing neg-
ative repercussions on less efficient farms. At the
same time, a shift in winter vegetable production
from Florida to Mexico is likely to reduce fertilizer
and pesticide use in Florida because of the de-
creased production and the drop in input use per
unit of output, as the remaining farms in Florida
are likely to be the more efficient. From this per-
spective, NAFf’A may have a beneficial environ-
mental impact for Florida.

Previous empirical studies have been limited by
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the use of radial measures of efficiency. These
measures are restrictive because they imply that an
inefficient farm can only be brought toward the
frontier by shrinking all inputs equiproportionately
(input mix being constant along a ray in input
space). The use of radial efficiency to calculate
input overuse presents serious drawbacks because
it implicitly assumes that a technically inefficient
farm will have the same degree of input overuse
for all variable inputs. Using a nonradial measure,
on the other hand, one can shrink each component
of the observed input vector as much as possible
until the frontier is reached.

The objectives of this paper are: (i) To deter-
mine farm-level technical efficiencies using non-
radial and radial measures for winter vegetable
farms in Florida, (ii) to project the inefficient
farms onto the frontier, calculating the degree of
input overuse and the savings in chemical inputs
that could be obtained without sacrificing output,
and (iii) to evaluate the degree of association be-
tween technical efficiency and farm characteristics
or production practices. This paper provides the
first empirical results of technical efficiencies for
vegetable farms reported in the literature, to our
knowledge, More importantly, it shows the gen-
eral applicability of nonradial measures for ad-
dressing issues of input overuse and the potential
for reduction of environmental loadings in agricul-
ture.

Theoretical Background

DEA (data envelopment analysis) refers to non-
parametric techniques (in the sense of not requiring
the specification of a particular functional form)
that have been extensively used in agricultural eco-
nomics. Introduced by Farrell in 1957, this meth-
odology has been developed independently by
F&-e, Grosskopf and Lovell, and by Charnes and
Cooper. In addition, Banker and Morey general-
ized the model to allow for fixed and exogenous
factors, while Banker and Banker and Thrall fur-
ther developed the use of returns to scale in DEA
models. Other approaches to measure technical ef-
ficiency include those pioneered by Afriat and de-
veloped by Richmond and Greene.

To review the theoretical framework, consider J
farms (observations), each using N variable inputs
and K fixed inputs in the production of M outputs.
Letx=(x~ . . . XN)’C ‘XN+ denote the vector of
variable inputs; y = (yI . . . y~)’ C fi+~ the
vector of variable outputs; and z = (zl . . . zJ’ the
vector of nonnegative quasi-fixed inputs. In addi-
tion, let the matrix of observed inputs of dimension

N X J be represented by X and the matrix of ob-
served outputs of dimension M X J be represented
by Y.

In the presence of fixed inputs, the input set
(which yields at least output y) satisfying variable
returns to scale (V) and strong disposability of in-
puts and out uts (S) is given by (Fare, Grosskopf,
and Lovell):Y

f-

{

L(yv,s)= x: Yci = y, Xa s .x, Zcx s z,

(1)

j= 1 J
where & = (al . . . aJ)’ is the input utilization rate
or intensity vector (also interpreted as the vector of
weights associated with each observation) that
forms the convex combinations of the observed
input and output vectors. Nonincreasing returns to
scale are imposed by relaxing the constraint on the
intensity vector to ~tij s 1 and constant returns to
scale are imposed by eliminating the constraint al-
together, A farm is technically efficient in the pro-
duction of an output bundle y if, and only if, the
inputs used belong to the efficient subset, defined
by

(2) E&L(yp,s)= {x:xeL(ylv,s),
f > x+ 2@(y [ V,s)}

The input-based radial technical efficiency is de-
fined as:

(3) ER(V,$ = Mine,a {6:6XEL(Y I V,S)}

where L(,) is given by equation 1 and 6 is a scalar
(O s 8 s 1). The radial technical efficiency of a
farm with observed inputs and outputs (x”, y“) may
be interpreted as the ratio of observed inputs to
potential inputs (located in the frontier). 2 It is ra-
dial in the sense that for each observed point, the
corresponding frontier point has the same input
mix and thus the ratio of observed to potential
inputs is the same for all inputs. An inefficient
farm can be made more efficient by projecting it
into the frontier through proportional reduction of
all inputs keeping output constant, i.e., the input
levels are reduced (shrunk) along a ray until the
frontier is reached. Thus, an inefficient point (x,y)
projected to the frontier becomes (6x, y).

The notion of radial efficiency has some advan-
tages such as its duality relationships (the radial
efficiency is the inverse of the distance function)
and its cost interpretation, but it can lead to an
overstatement of the “true” technical efficiency of
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an input vector (Lovell and Schmidt), In addition,
the use of radial efficiency to calculate input over-
use presents serious drawbacks, because it is not
realistic to expect that a technically inefficient
farm will show thesame degree of input overuse
for all variable inputs.

Toovercome these difficulties one can use the
nonradial (or Russell) measure of technical effi-
ciency (Fiire and Lovell; F&e, Lovell and Zie-
schang). The nonradial overali efficiency of a farm
is obtained by shrinking each component of the
observed input vector as much as possible until the
frontier is reached. The nonradial overall (input
side) measure is defined as:

ENR(V,S) = Mine,.

[

i OnIN: (6,X,, . . . .
“=]

L

(4)
e~xfl,. . . . 6.i@AI)~ ~(?/lv,L$)

}
where ~ is the number of nonzero inputs (varies
for each farm), 6 = (el, . . 6., . . . , e~) is a
vector and each component en provides a measure
of the efficiency in the use of that input. 3 The
nonradial efficiency reduces to the radial case
whenel= dz=. ..=tln=. ..=e~=e for
all n that correspond to Xj. > 0. Fiire and Lovell
also establish severai properties of the nonradial
efficiency. In particular, they show that for x G
L(x) and x >0, the radial measure is greater than
or equal to the corresponding nonradial measure.
Intuitively, since the nonradial measure shrinks the
input bundle at least as much as the radial measure,
it follows that the ratio of the ‘‘shrinked” input
vector to the original vector, or input-based tech-
nical efficiency, should be larger (or equal) in the
radial case than in the nonradial case.

Figure 1 illustrates the radial and nonradial ef-
ficiency measures for a simple case with 2 variable
inputs (fertilizer and pesticides) and 5 observations
(A, B, C, D and E where the first 3 determine the
efficient frontier ABC). Point D can be made ra-
dially efficient by shrinking both inputs propor-
tional until the frontier is reached at D’. On the
other hand, point E (or any point outside the cone
LOL’) can not be made radially efficient because
E’ does not belong to the efficient subset. How-
ever, point E can be brought nonradially to a point
such as F, which belongs to the efficient subset.

Returns to Scale

As Chavas and Aliber note, multiproduct returns to
scale can be characterized from the production

/“
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Figure 1. Radial and Nonradial Technical Ef-
ficiency

technology as well as from the cost function. Be-
cause of data considerations, we use the first char-
acterization. 45 In either the radial or nonradial
case, one can estimate three sets of efficiencies.
First, the more restrictive condition on the weights
(~tij = 1), corresponds to the general case of vari-
able returns to scale (VRTS). Next, relaxing the
restriction to %j s 1 imposes non-increasing re-
turns to scale (NIRTS). Finally, the elimination of
the condition on 2Qj leads to the most restrictive
case with regard to returns to scale: it only allows
constant returns to scale (CRTS). These calcula-
tions enable us to classify each farm in terms of its
returns to scaIe as either increasing, constant or
decreasing. The method employed has been out-
lined by Ferrier and Lovell and is based on the
notion that the efficiencies calculated under a
NIRTS technology must be less than or equal to
the efficiencies calculated in the more general case
(VRTS). Similarly, the efficiency calculated under
the CRTS constraint is less than or equal to the
efficiency calculated under NIRTS. The reason is
that the CRTS frontier cannot envelop the data
more closely than the NIRTS can. Intuitively, the
data points are closer to the isoquant, and thus, are
more efficient in the NIRTS case. For the same
reason, the NIRTS frontier can not envelop the
data more tightly than the VRTS frontier.

The procedure for classifying each of the farms
in terms of returns to scale is as follows: For each
farm one compares the technical eftlciency calcu-
lated under the VRTS frontier to the efficiency
calculated under NIRTS. If they are not equal, one
classifies the farm as operating under increasing
returns to scale (IRTS). If they are equal, one com-
pares the efficiency based on the NIRTS technol-
ogy to the efficiency calculated under CRTS. If
these two efficiencies are equal, one classifies the
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farm under CRTS; otherwise,
operating under decreasing
(DRTS).

Data and Empirical Issues

the farm must be
returns to scale

The data were obtained from the Agricultural
Chemical Use Survey and its Economic Follow-On
for vegetables, administered by the National Ag-
ricultural Statistics Service of the U.S. Department
of Agriculture in several states including Florida.
This survey employs a two-frame probability sam-
ple: a list frame and an area frame, The list frame
is based on all known commercial growers of fresh
and/or processed vegetables, strawberries, or mel-
ons. In order to be included in the list, the growers
are required to have at least a tenth of an acre of
production. By comparison, the area frame is
taken from the 1990 Agricultural Survey Tracts,
and used only to provide additional information
(USDA, 1991).

A stratified sampling technique was used, where
each stratum was a mutually exclusive set of the
commodities of interest. Farms were partitioned so
that each farm would be associated with one, and
only one, stratum. After observations with missing
values were excluded, 87 usable observations of
winter vegetable Florida farms were available for
analysis.

The model is specified with six output catego-
ries (tomatoes, peppers, cucumbers, squash,
“other vegetables, ” and “other outputs”). Four
variable inputs (fertilizer, pesticides, labor, and
“other variable inputs”) and three categories of
quasi-fixed factors (land, capital, and “other fixed
factors” such as soil conservation improvements,

Agricuhural and Resource Economics Review

drainage, irrigation improvements, fences, etc) are
also considered. Outputs are expressed in physical
units (e.g. pounds), except the category “other
vegetables, ” which is expressed as an index cal-
culated from the production of each of the other
vegetables (asparagus, broccoli, celery, etc) in
physical units weighted by their value shares, cal-
culated using average prices for each of those veg-
etables. Among the variable inputs, fertilizer, pes-
ticides, and “other” are expressed as expendi-
tures, while labor is expressed in hours. Finally,
among the quasi-fixed factors, land is measured in
acres and capital and “other fixed factors” are
expressed in dollars. c Table 1 presents the means,
standard deviation, minimum and maximum value
for each of the most important variables used.’

The radial efficiency is obtained as the solution
to the following linear programming (LP):

(5) Min@ eo

J

St. x
o

~jymj 2 Ymt rn=l, . . ..M
j= 1

J

j= 1

J

x ~jzkj k Z:, k=l, .,. ,K

j= ~

J

2 ~j=l, @j>O j=l, . . ..J
j= 1

The nonradial efficiency is obtained as the solution
of the following LP problem:

Table 1. Data Summary— Winter Vegetable Florida Farms-1990

Sample Standard
Variable average deviation Minimum Maximum

Tomatoes, thousand pounds 1492 6410 0 54000
Cucumbers,thousandpounds 416 2035 0 16500
Peppers, thousand pounds 622 2871 0 18480
Squash, thousand pounds 60.0 169 0 945
Other Vegetables, index 69.1 197 0 434
Other, index number 14.3 59.4 0 518
Fertilizers, thousand $ 57.0 218 0 1800
Pesticides, thousand $ 75,9 223 0 1400
Labor, thousand hours 53.0 67.8 6.4 555
Other variable inputs, thousand $ 255 692 380 3623
Land, acres 371 746 5 5765
Capital, thousand $ 297 495 5 2525
Percent of farms located in

the southern counties 19.5 39.9 0 100
Percent of farms using 1PM 37.9 48.8 0 100
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(6)

N

n= 1

J

sot. z ~jymj 2 y;, m=l, . . ..ftl
j= 1

J

z 00CljXfljS 0~ X~, n=l, . . ..N
j= 1

~ CXjZ~j S r?~, k=l, . . ..K

j=]

J

z Q!j=l, lY.jZO j=l, . ..l.l

where J = 87, the matrix X is 4 x 87, the matrix
Y is 6 X 87, the matrix Z is 3 x 87, the vector (x
is 87 X 1, ,KO,y“, Z“ represent the (input/output)
vectors for the farm under examination. The radial
(nonradial) technical efficiency for all the farms is
calculated by solving 87 linear programming prob-
lems, each represented by Equation 5 (Equation
6), with the farm under evaluation defined by (x”,
y“, Zo) changing for each problem. All LP prob-
lems are formulated and written in GAMS (Gen-
eral Algebraic Modeling System) (Brooke, Ken-
drick and Meeraus).

A critical issue to be addressed when working
with DEA models is the selection of outputs and
inputs to be included. As Seiford and Thrall note,
since DEA relies on extremal points, the results
can be very sensitive to model specification. In
particular, the model’s ability to discriminate
among firms decreases as the numbers of outputs
(M) and inputs (N) increase. Seiford and Thrall
observe that, given enough factors, all or most of
the firms will be regarded as efficient. Thus, the
key factor is the dimensionality of the input/output
space (N + M) relative to the number of observa-
tions (J). While there are some ways to deal with
these difficulties by restricting the efficient set,
such as the “assurance region” (Thompson et al.)
and the “cone ratio” (Charnes et al. ) methods,
perhaps the best rule of thumb is for one to have a
dimensionality ratio Y/(N + M) large enough for
good discrimination, e.g., larger than 5. In this
study with 87 farms, six outputs, and four variable
inputs, the dimensionality ratio is 8.7 (In addition,
land, capital and “other” are included as quasi-
fixed factors).

In order to understand what factors or farmer
attributes might be associated with technical effi-
ciency, several regressions of efficiency on farmer
attributes are estimated. Ordinary least squares es-
timation methods are inappropriate because of the
characteristics of the survey data and the nature of
the dependent variable. Unlike simple random
sampling, the selection of an individual farm for
the survey is not equally likely across all farms on
the list because the sample was stratified. Some
farms have a higher probability of selection than
others. Differences in the probabilityy of selection
introduce bias in simple ordinary least squares es-
timates of the parameters and their variances.
Thus, weighted least squares estimation methods
are used, where the weights are equal to the in-
verse of the probability of selection.

In addition, a “two-limit tobit” regression
framework (Maddala) is used, since the dependent
variable is bounded between zero and one. The
two-limit model can be expressed as 0.* = X’~ +
●, where the matrix X represents the factors or
farmer attributes associated with technical effi-
ciency, ~ is a normally distributed error term with
zero mean and variance U, and the dependent vari-
able is the latent variable (ln*, which can be ex-
pressed in terms of the observed variable (technical
efficiency) 6. as follows:

Several researchers have attempted to explain
technical efficiency differences between firms. For
example Page, Timmer, Hall and LeVeen, Bagi,
Grisley and Mascarenhas, Bailey et al., Tauer and
Belbase, Garcia et al., Bravo-Ureta and Rieger,
Chavas and Aliber. In general, the single most
important predictor of efficiency (excluding input
factors) appears to be firm size and has been used
extensively (Page, Bailey et al., Grisley and Mas-
carenhas, Garcia et al., Bravo-Ureta and Rieger).
A relationship between firm size and technical ef-
ficiency is to be expected when there are econo-
mies of scale in the physical production function,
while a positive relationship between allocative ef-
ficiency and firm size might indicate that relative
prices are such that increasing size reduces costs
(Hall and LeVeen). Other firm attributes often
used as predictors of technical efficiency are edu-
cation, age, and experience of the entrepreneur,
managerial structure of the firm, characteristics of
the labor force, including part-time farming
(Ekanayake and Jayasuriya), degree of specializa-
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tion (Aly et al. (1990), Tauer and Belbase), finan-
cial ratios (Grisley and Mascarenhas, Tauer and
Belbase, Chavas and Aliber). Locational factors,
such as soil fertility, rainfall, and temperature, can
also affect technical efficiency because they can
cause differences among farms in yields, directly
through increased fertility, and indirectly through
influence on pests. Thus, in agriculture it is im-
portant to include land productivity effects using
regional dummies as proxies (e.g. Grisley and
Mascarehas, Tauer and Belbase, Ekanayake and
Jayasuriya, Chavas and Aliber). In this paper both
input-use and overall nonradial efficiencies are re-
gressed on farm attributes and locational factors,
The following factors or attributes are included:

1. LAND: Farm acres (in thousands), used as a
proxy for farm size.

2. OFFARM: Dummy variable equal to 1 if the
operator worked off-farm (including part time
work) O otherwise.

3. UNFAMLAB: Amount of unpaid work car-
ried out by the operator’s family, expressed in
thousands of hours per year.

4. PARTNER: Dummy variable equal to 1 if the
operator had a partner involved in management, O
otherwise.

5. Locational dummies: Two regions are con-
sidered for Florida, the south includes the 10
southern counties (SOUTHD = 1). Although pre-
cipitation differences between the south and north
are minor, temperature differences have caused
Florida’s fresh winter vegetable production to be
located primarily in the south.

6. 1PM: Dummy variable equal to 1 if the farm
used integrated pest management (1PM) tech-
niques, O otherwise.8

7. IPMLAND: Interaction variable equal to 1PM
times LAND.

8. Crop variables: Binary indicator variable for
each of the main crops grown in the state: TOMA-
TOD for tomatoes, MELOND for melons, etc.
The binary variable equals 1 if the given crop is
grown on that farm.

Agricultural and Resource Economics Review

Results

A comparison of the overall results for the radial
and nonradial measures of technical efficiency is
provided in Table 2, As expected from the theo-
retical discussion, the nonradial measures are
smaller than the corresponding radial measures of
efficiency, under all three cases of scale economies
imposed in the technology and the differences be-
tween the means of the technical efficiency based
on the radial and nonradial frameworks are signif-
icant at the 5 percent level. Average radial effi-
ciencies are 20 to 25 percent higher than the cor-
responding nonradial efficiencies and about a third
of the farms are efficient in the nonradial case
whereas more than forty percent of the farms are
radially efficient. While we are not aware of other
studies of technical efficiency in vegetable farms,
and few studies in agriculture report the percent of
efficient farms, our finding that between one third
and forty percent of the farms are efficient appears
reasonable, Our results lie between the results re-
ported by Grisley and Mascarenhas (6 to 19 per-
cent of farms efficient) and Chavas and Aliber (be-
tween 32 and 100 percent of farms efficient in the
short run and between 44 and 100 percent in the
long run). Differences in results among researchers
may arise because of differences in methodology,
types of farms evaluated (e.g., vegetable farms
may tend to be more efficient than other farms due
to their higher per acre value), measurement error,
etc.

With respect to scale economies, Table 3a
shows that, using the traditional concept of radial
efficiency, 52 percent of the small farms (less than
50 acres), about 45 percent of the medium farms
(between 50 and 600 acres), and only 18 percent of
the large farms are operating at increasing returns
to scale (IRTS). The rest of the farms are operating
at either constant or decreasing returns to scale.
The results for returns to scale based on the non-
radial concept follow the same tendency, the per-
cent of farms operating at IRTS decreasing as farm

Table 2. Comparison of Average Radial and Nonradial Technical Eftlciency of Florida
Vegetable Farms

Variable Returns Nonincreasing Constant Returns
to Scale Returns to Scale to Scale

Radial Efficiency
Average percent efficiency 71.9 65.3 64.2
Percent of farms that are efficient 47.1 42,1 41.4

Nonradlal Efficiency
Average percent efficiency 59.2 52.1 52.1
Percent of farms that are efficient 3s.4 32.0 32.0
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Table 3. Economies of Scale of Florida Vegetable Farms (percent of farms of the given size
range which belong to the given category)

a. Using Radial Efficiencies

Increasing Returns Constant Returns Decreasing Returns
Acres to Scale to Scale to Scale Total

o to 50 51.7 44.8 3.5
51to 300

100.0
48.2 37.0 14.9 100.0

301to 600 40.0 40.0 20.0 100.0
Morethan600 ]8.2 45.5 36.4 100.0
All 43.7 41.4 14.9 100.0

b, Using Nonradlal Efficiencies

Increasing Returns Constant Returns Decreasing Returns
Acres to Scale to Scale to Scale Totat

o to 50 84.2 15.8 — 100.0
51 to 300 81.8 18.2 — 100.0
301 to 600 76.5 23.5 — 100.0
More than 600 63.6 36.4 — 100.0
All 78.3 21.7 — 100.0

size increases. However, absolute number of farms
operating at IRTS is higher (table 3b).

Table 4 reveals that pesticide and fertilizer-use
inefficiencies (obtained by solving LP problem 6)
are the most important contributors to overall tech-
nical inefficiency, confirming the expectation of
chemical input overuse. Pesticide-use, averaged
over all farms in the sample, is lowest with about
50 percent, indicating that the average farm is ap-
plying twice as much pesticide as it could if it were
on the production frontier. Regarding the other in-
puts, average input-use efficiencies range from 53
percent for fertilizer-use to 64 percent for labor-
use. These results indicate that, on average, it
would be possible to reduce pesticide and fertilizer
use on these farms by almost half of the amounts
by increasing technical efficiency. Other variable
inputs use could also be reduced, but to a some-
what lesser extent. These results should be inter-
preted with caution and not extrapolated to farms
different from those in the sample because results
are sensitive to measurement error and calculated
efficiencies may be somewhat imprecise due to the

Table 4. Nonradial Technical Eftlciencies of
Florida Vegetable Farms

Percent of
Average Farms that

(percent)’ Are Efficient

Overall Efficiency 59.2 36.8
Fertilizer-Use Efficiency 53.1 36.8
Pesticide-Use Efficiency 50.1 36.0
Labor-Use Etlciency 64.4 34.5
Other Inputs-Use Efficiency 55.5 37.0

‘Variable returns to scale technology.

nature of DEA models, which do not allow for
stochastic errors. Still, the advantages of DEA
models (notably, their nonparametric nature) are
believed by many (see Fare, Grosskopf and Lov-
ell) to outweigh their disadvantages.

As shown in Table 5, there is a high correlation
(between 0.80 and 0.90) among the different in-
put-use (nonradial) efficiencies and also between
each of the input-use measures and the overall non-
radial efficiency (O,88 to O.96). The correlation
between the radial efficiency and nonradial effi-
ciencies is also very high, ranging from 0.90 to
0.95. This can be interpreted as an indication that,
on average, farms on our sample overusing a cer-
tain input are also likely to overuse all the other
inputs to a similar extent.

The regression results of nonradial efficiencies
(input-use and overall) on farm attributes and lo-
cational factors are provided in Table 6. The log
likelihood ratio test indicates that in every case the
covariates (excluding the intercept) are significant
at the one percent level of significance. In general,
technical efficiency appears to be positively related
to size, to location in the southern portion of the
state, and to a more formal organizational structure
(i.e. j partnerships), while it is negatively related to
off-farm work carried out by the operator, to the
use of unpaid family labor, and to melon produc-
tion.

From a theoretical perspective, a positive rela-
tionship between farm size and technical efficiency
is expected to exist because of physical economies
of scale, and on average, smaller firms will tend to
be less efficient and lie farther away from the ef-
ficient frontier in input space (Hall and LeVeen).
Efficiency is also found empirically to be posi-
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Table 5. Correlation Coeftlcients Between Technical Eftlciencies

Nonradial Efficiency

Fertilizer-Use Pesticide-Use Labor-Use Other inputs Overall
Efficiency Efficiency Efficiency Use Efficiency Efficiency

Radial Efficiency 0.901 0.904 0.910 0.929 0.952
Nonradial Efficiency

Fertilizer-Use Efficiency 0.871 0.836 0.899 0.946
Pesticide-Use Efficiency 0.803 0.912 0.948
Labor-Use Efficiency 0.819 0.878
Other Inputs-Use Efficiency 0.957

tively correlated with size by Aly et al., (1987) for
a sample of Illinois grain farms, Bagi for Tennes-
seegrain andmixedfarrns, Hall and LeVeen fora
sample of California farms, by Grisley and Mas-
carenhas for Pennsylvania dairy farms, and by
Tauer and Belbase for New York dairy farms,
Still, Bravo-Ureta and Rieger find that efficiency
of New England dairy farms is not markedly af-
fected by farm size and Garcia et al. find that small
Illinois grain f~s were just as efficient as larger
farms. Finally, it should be noted that it is also
plausible, as Feder, Just, and Zilberman caution
us, that farm size may be a surrogate for other
factors, such as wealth and access to credit, scarce
inputs, or information.

The notion that efficiency is negatively related
to off-farm labor also makes intuitive sense since
off-farm labor is inversely related to operator la-
bor. By reducing the amount of time that the op-
erator dedicates to managerial activities, off-farm
employment presents a constraint to technical ef-
ficiency. Similar considerations justify the associ-
ation of efficiency with more formal types of
organizational structures associated with “high-
tech” farms. Among the crop production vari-
ables, only melon production had a significant ef-
fect. Given that melons are a relatively simpler
crop to produce, the negative and very significant
coefficient for melons may only indicate that, un-
like melon producers, growers specializing in the

Table 6. Two-Limit Tobit Regression Results of Nonradial Efficiencies on Characteristics for
Florida Vegetable Farmsl

Overall Fertilizer Pesticide Labor Other inputs
Efficiency Efficiency Efficiency Efficiency Efficiency

Intercept 0.873*** 0.877*** 0.819*** 0.873*** 0,863***
(0.062) (0.065) (0.070)

SOUTH
(0.055)

o. 166**
(0.065)

0.180** O.183** 0.076 0,138*
(0.068) (0.072)

LAND
(0.078) (0.060)

o. 199**
(0,071)

O.148* 0.188** 0.094” 0. 169**
(0.078) (0.078) (0.084)

1PM
(0.057)

–0,282***
(0.077)

–0.354*** –0.249*** – 0.202*** –0.281***
(0.071) (0.069) (0.073) (0.060) (0.068)

IPMLAND 0.217* 0.276** 0.245” 0.278** 0.251*
(0.129) (0.127) (O.129) (o. 120) (0.132)

MELOND – 0.390*** –0,370*** –0.379*** –0.159*** –0.359***
(0.066) (0,065) (0.070)

UNFAMLAB
(0.056)

–0.195***
(0.064)

–0,166*** –0.173*** –0,126*** –0.157***
(0.031) (0.027) (0.029)

PARTNER
(0,023)

0.277***
(0.027)

0.192 0.109 0,045 0. 190**
(0.100) (0.097)** (o. 104)

OFFARM
(0.082)

– 0.0476
(0.096)

–0.038 –0.039 –0.012 –0.029
(0.059) (0.060) (0.064) (0.050) (–0.34)

– 2 Log-likelihood function
for covariatesz 111.0*** 128.6*** 115,4*** 83.6*** 115.8***

‘Asymptotic standard error in parentheses.
2– 2 log LJL1, where L, is the maximized log likelihood function for the intercept plus the covariates and LOis the maximized
log likelihood value of the intercept only.

*Significant at the 10 percent level.
**significmtat the 5 percent level.

***Significant at the 1 percent level.
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more difficult, but higher-priced, crops tend to be
more efficient farmers.

With respect to integrated pest management
(1PM), it is interesting to note that farms using
1PM techniques tend to be more efficient than
farms not using 1PM, except for smaller farms
(less than 120 acres) which make up approximately
less than a third of our sample size (table 1).9 One
reason for this is that large farms may adopt pro-
ductivity-improving innovations earlier than small
farms. Just, Zilberman, and Rauser show that
given the uncertainty, and the fixed transaction and
information costs associated with innovations,
there may be a critical lower limit on farm size,
which prevents smaller farms from adopting.

Concluding Comments

Nonradial measures of technical efficiency have
useful empirical applications in production eco-
nomics. Unlike radial measures of efficiency,
which are restrictive because they imply that an
inefficient farm can only be brought towards the
frontier by shrinking all inputs equi-proportionately,
the nonradial measures allows one to shrink each
component of the observed input vector as much as
possible until the frontier is reached. Thus, in the
context of input overuse, nonradial efficiency mea-
sures overcome a serious drawback of radial effi-
ciency measures, because they do not implicitly
assume that a technically inefficient farm will
overuse all variable inputs to the same degree.

The average radial efficiencies of winter vege-
table Florida farms in the sample are between 20 to
25 percent higher than the corresponding nonradial
efficiencies. Approximately one third of the farms
are efficient in the nonradical case while more than
forty percent of the farms are radially efficient.
There is a high correlation (between 0.80 and
0.96) among the different input-use and overall
measures of nonradial efficiency and between ra-
dial and nonradial efficiencies. This can be inter-
preted as an indication that, on average, farms on
our sample overusing a certain input are also likely
to overuse all the other inputs to a similar extent.

It maybe possible for the average farm to reduce
pesticide and fertilizer use by almost 50 percent by
increasing technical efficiency. The use of other
variable inputs could also be reduced, but to a
lesser extent. These results should be interpreted
with caution because they may be sensitive to mea-
surement error and calculated efficiencies may be
somewhat imprecise due to the nature of DEA
models, which do not allow for stochastic errors.

Efficiency appears to be positively related to
size, to location in the southern portion of the state

and to a more formal organizational structure (as
opposed to family farms) and is negatively related
to off farm work carried out by the operator and by
use of unpaid family labor. Farms using 1PM tech-
niques tend to be more efficient than those not
using 1PM, but this tendency is reversed for
smaller farms.

While one must be cautious against extrapolat-
ing these results to all Florida vegetable farms, the
general tendencies found regarding input overuse
are confined by conversations with farmers and
with extension professionals, Thus, it is likely that
improving technical efficiency of Florida’s winter
vegetable farms would not only be beneficial for
farm profitability and improve their chances of sur-
vival vis a vis competition with Mexican farms,
but would be environmentally beneficial as well.

Notes

1. Since we are focusing on the input side, this
paper uses input-based measures. A parallel devel-
opment exists for output-based efficiency mea-
sures (see F&e, Grosskopf and Lovell).

2, In fact, in their first DEA model, Chames,
Cooper and Rhodes start with a fractional (nonlin-
ear) pro ram minimizing efficiency, E = Min

f{U’yO/V’X} subject to u’yj/v’xj = 1 forj = 1, . . .
J, where the vectors u and v are called the virtual
multipliers. After transforming the fractional pro-
gramming problem into a LP program, a version of
the dual of (3) is obtained.

3. Of course, the nonradial measure is not free
from some drawbacks; for example, its cost inter-
pretation is not straightforward (Kopp).

4. Given the production possibility set T =

{(x,y)ly can be produced from x} and the usual
regularity conditions, the degreee of multiproduct
returns to scale for a competitive firm measures the
maximal proportionate rate of increase in outputs
(y) as all inputs (x) are expanded proportionally
(keeping the mix constant) (Baumol, Panzar and
Willig), More formally:

Local returns to scale can be described by SN,
which behaves as the local degree of homogeneity
of the production set (Baumol, Panzar and Willig).
Moreover, returns to sc~le at point (.r,y) arg de-
fined to be increasing if S~ > 1; constant if S~ =
1; or, decreasing if S~ < 1.

5. In addition to the concept of economies of
scale, which addresses the efficiency of firm size,
it is sometimes useful to understand why some
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firms produce more than one output. These type of
issue can be analyzed using the concept of econo-
mies of scope (Fernandez-Cornejo et al. (1992),
Chavas and Aliber). Lack of data does not allow
calculation of scope economies in this paper,

6. Using expenditures instead of physical units
assumes that all farmers in the sample are facing
the same prices, This assumption has often been
made for outputs and inputs due to a lack of data.
This study is less restrictive in that we are assum-
ing that Florida vegetable farmers face similar
prices only for three of the variable inputs.

7. As can be inferred from the minimum values
from table 1, some of the farms did not produce all
of the outputs and, in some rare occasions, some of
the farms did not use all the variable inputs. This
means that we have some “zeros in the data, ” as
this problem is called in the DEA literature Older
DEA models, such as Charnes, Cooper and
Rhodes, in fact did not allow for zeros in the data.
More recent DEA models (Charnes, Cooper and
Thrall; Seiford and Thrall) relax the requirements
that all the inputs and outputs must be positive,

8. For a definition of 1PM and its use by vege-
table growers see Fernandez-Cornejo et al.

9. The sign of the 1PM dummy is negative, in-
dicating that 1PM adopters are less efficient than
nonadopters at smaller (land) sizes. The positive
sign of the coefficient of the interaction term
(IPMLAND) indicates that (in a efficiency versus
size graph) the slope for 1PM adopters is greater
than that of nonadopters. At a farm size of about
120 acres 1PM adopters become more efficient
than nonadopters.
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