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A bstract

This thesis develops a new model of regulated open access resource exploitation. 

The basic H.S. Gordon model of open access rent dissipation is extended in two ways, by 

adding a model of regulatory behavior and by adding a market sector. The regulatory model 

assumes that regulators are goal oriented, choosing target harvest levels according to a safe 

stock concept. These harvest quotas are implemented by setting season lengths, conditioned 

on the industry fishing capacity. The industry, in turn, enters according to rents, conditioned 

on season length regulations. Harvest levels, fishing capacity, season length, and biomass 

are determined jointly and dynamically. Joint dynamics depend upon speeds of adjustment 

and parameters of the system and may be complex, including asymptotic and oscillatory 

patterns.

The market sector model endogenizes exvessel prices, by modeling wholesale inven

tory dissipation behavior with an adjustment cost framework. A dynamic model of optimal 

inventory dissipation within each marketing period is coupled with a  dynamic model of op

timal carryover between marketing periods. This forms the basis for characterizing exvessel 

prices, which emerge as a derived demand for additions to inventory based on the optimal

iii
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dissipation, model. Exvessel prices are linked to the industry/regulator and wholesale mar

ket sectors via total harvest and season length regulations, which determine the marketing 

period length and optimal dissipation/carryover plans.

The parameters of both the industry/regulator and the market model are esti

mated for the North Pacific Halibut fishery. Simulations compare predictions from the 

basic Gordon model with those from the new model. Predictions from the modified model 

are significantly different from the Gordon model. In particular, the role of the regulatory 

sector is critical, producing higher biomass levels than under pure open access. These larger 

capacity levels must be stifled, resulting in very short seasons such as those currently in 

the halibut fishery. The introduction of the marketing sector clarifies complicated interre

lationships between rents, regulations, and revenues. Recent changes associated with new 

fisheries programs that have been largely unanticipated by economists using the old Gordon 

paradigm are better explained by the new model.
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C hapter 1

Introduction, O bjectives, and  

Outline

1.1 In troduction

One of the most important and oft-cited publications in the natural resource eco

nomics literature is the paper published in 1954 by H. Scott Gordon[39] entitled “The 

Economic Theory of a Common Property Resource: The Fishery.” Gordon’s paper made 

two fundamental contributions. First, Gordon’s model of the rent dissipation process laid 

the foundations for subsequent p red ic tiv e  analysis of common property resource use, in 

fisheries and a wide variety of other settings. Second, the n o rm a tiv e  implications of Gor

don’s paper formed the basis for much of the discussion of the economic rationale for fisheries 

policy that has appeared in the economics literature over the past forty years.

It is difficult to overestimate just how im portant and how persistent Gordon’s ideas 

have been in framing the manner in which economists have come to think about fisheries and 

fisheries policy. Part of the reason for this prominence lies in the elegance and simplicity of
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his model, coupled with the fact that it seemed to describe so well many important fisheries 

in the early fifties. There is compelling reason to believe, however, that Gordon’s model 

does not fit the circumstances of today’s fisheries as well as it did when he wrote in 1954. 

Perhaps most important is the fact that most of today’s fisheries are no longer pure open 

access fisheries. Instead, most have come under the purview of some regulatory body and 

hence are more properly thought of as re g u la te d  open access, or regulated closed access in 

some cases. Thus, at minimum, the proper paradigm for analyzing modern fisheries ought 

to account for the role of the regulatory structure and the role that regulatory institutions 

play in affecting incentives and industry behavior.

In addition, for various reasons, the focus of the Gordon paper was on in p u t 

use to the almost total exclusion of the marketing or rev e n u e  side. This focus on inputs 

has colored the manner in which economists have viewed the open access problem and 

consequently on the way in which they have come to recommend solutions. In particular, 

almost all of the attention by economists to policy design issues over the past several decades 

has focused on controlling input use. No one has paid attention to the possibility tha t open 

access alone, or open access in concert with regulations, might also have an im portant 

impact on revenues. This might occur, for example, through regulations on catch volumes 

or catch size composition, or through restrictions on open seasons, or via impacts on quality 

induced by the incentives in open access.

This thesis develops and tests a new model of renewable resource exploitation, one 

based on H. Scott Gordon’s influential paper, but modified to account for important features 

of modern fisheries. In particular, we examine the basic Gordon model under conditions that 

incorporate a regulatory structure and allow for dynamic interaction between the regulated 

industry and the regulators. In addition, we incorporate a marketing sector and allow for 

the feedback effects between regulations, input and output selection, product quality, and 

the strength of the rent dissipation process. The combination of these two added features
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leads to a richer set of predictive conclusions and normative implications, more suited to 

the analysis of current conditions in fisheries. We apply the model to the important Pacific 

Halibut fishery.

In the remainder of this chapter we develop the Gordon model and discuss the na

ture of fisheries regulatory institutions in some detail. Then we outline the thesis objectives 

and briefly discuss the case study.

1.2 T he G ordon M odel

H. Scott Gordon’s paper appeared in the Journal of Political Economy in 1954. 

Gordon’s paper focused on the consequences of common property in general, illustrating 

those consequences for fisheries in particular. Economists had not paid much attention to 

either of these topics as of the fifties. Similarly, fisheries science and fisheries policy making 

were also ju st emerging at this date. In biology, biologists were beginning to  make consider

able headway into understanding and studying population dynamics and a well developed 

set of techniques was emerging in the literature by the time th a t Gordon’s paper appeared. 

W ith regard to fisheries policy at the time, most fisheries were essentially unregulated, with 

a few im portant exceptions in North America, notably the lobster, salmon, and halibut 

fisheries.

Gordon’s paper was exceptional for the elegance and simplicity of his structure, 

and for the range and importance of the implications of his predictions. Gordon’s model 

focused on the economic incentives at work in an industry where the resource being utilized 

is not privately owned. Gordon developed his predictions with a simple value of marginal 

product formulation of input choice. Suppose that there is a single composite fishing input 

E  (effort) and suppose further that this input has an opportunity cost w.  Assume that the 

input may be combined with a fish stock X  to produce a harvest level under the condition of
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Effort

Figure 1.1: The Gordon Model

diminishing marginal production. Assume also that the output price P  is constant. Then 

(see Figure 1.1) a sole owner of the resource would choose an amount E" of the input, 

bringing the value of marginal physical product (V M P P e ) into equality with the marginal 

input cost w.  This level of input choice would produce a rent and wage bill as indicated 

by the shaded boxes in the diagram. Gordon contrasted this sole owner case with the case 

where the fish resource is unowned. Gordon’s insight was to suggest th a t if no one owns the 

resource, inputs will flow in beyond the level E ” because each unit initially will be able to 

earn more than its opportunity cost by an amount reflecting a share of the rents. The entry 

of inputs will proceed until the level of inputs Eo is reached, at which point the earnings of 

each input in the fishery are driven down to the level attainable outside of the fishery.

The Gordon theory describing the manner in which inputs can be expected to flow 

into a common property exploitation setting is simple and elegant. The process is driven by
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incentives operating through a  dynamic mechanism, in the sense th a t inputs will continue 

to be drawn in as long as rents exist in the production process. Because of the absence 

of enforceable property rights to the fish stock, the normal resource owner’s function of 

guiding input use is absent also and inputs are overapplied. The process is predicted to 

equilibrate when the value of average physical product (V A P P e ) equals the opportunity 

cost of inputs.

Gordon was particularly interested in the normative implications of this rent dissi

pation process. The most important normative conclusion is that inputs beyond E m create 

no social value and, in fact, lead to the waste of the potential surplus represented by the 

resource rents. Thus even though employment of variable inputs may be high, input pro

portions are inefficient and if these inputs have other socially productive uses, overall social 

welfare will be lower than it might be. Gordon also believed, following the im portant work 

of Scott[81], that proper conservation of resources meant wise stewardship that maximizes 

social values rather than simple biological criteria. Although there were only a handful of 

fisheries subject to active fisheries policy in the fifties, Gordon used these to emphasize the 

problem with policies focusing only on goals such as maximizing sustainable harvests. As 

Gordon wrote (in 1955):

Neglect of the cost side of the question has had the result that certain con
servation programmes are regarded as successful by biologists when from the 
economic point of view they are palpable failures... (the halibut case) has been 
hailed many times as the outstanding case of successful fisheries conservation 
policy, yet I feel quite certain that it must go down in the economic annals as 
one of the clearest cases of failure.[40, p.69]

In summary, the paper by H. S. Gordon lays out the consequences of common 

property and open access institutions of resource exploitation. Gordon’s paper is notable 

for its simplicity and for the wide range of positive and normative conclusions. It is certainly 

one of the few, if not the, fundamental contributions to the paradigm that economists have
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come to adopt when thinking about fisheries and fisheries policy making.

1.3 O m issions and R efinem ents o f  th e  G ordon M odel

The Gordon model abstracted from many dimensions that might have been in

cluded, probably in order to focus on what he believed most important, namely the eco

nomic consequences of common property. One obvious component that is only treated 

peripherally is the connection between common property incentives, input levels, and the 

health of the biological stocks. A second component that is assumed away is the marketing 

side of the rent dissipation process. A final im portant component is the regulatory structure 

and the role it plays in the rent dissipation process.

1.3.1 R en t D issipation  and B io logy

Gordon developed his model of a fishery without much explicit consideration of 

the nature of fish biology and particularly the dynamics of harvests and stock growth. 

Presumably, we would expect some connection between input levels, the harvest level, 

and the population dynamics of the harvested species. Gordon did append some simple 

stock/flow relationships to his basic model a t the end of the paper, but it is clear that 

he didn’t  regard this part of the story as really important. In other writings, in fact, he 

expressed a view that other biologists had held for some time, which was that environmental 

factors were the most important determinants of biological population sizes and th a t m an’s 

role as a predator was generally insignificant[84, p. 135]. While this may be true for some 

species, it is certainly not universally the case. Hence the lack of connection between the 

economic and biological systems is an important omission.

This connection was, in fact, developed in some detail in another important paper
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published by Vernon Smith in 1968[82]. Smith’s model is notable also for its elegance 

and for the range of implications and testable hypotheses developed. Smith began with a 

simple description of a biological system in differential equation form, following the early 

developments by Lotka[56] and Volterra[85]. Let X  (t) be the stock or population size of some 

species and assume that the species grows naturally according to some function F (X (t)). 

F(X( t ) )  incorporates the role of density dependent factors which operate in most biological 

systems. For example, when species density is low, we generally observe rapid growth as 

natality rates are high and mortality and predation rates are low. As the population begins 

to impinge on its resource base, however, we also observe mortality increasing and growth 

dropping as the species approaches some level supported by the environmental carrying 

capacity. A representative form for F(X( t ) )  thus might be a quadratic, so the species 

grows naturally by:

X  =  F(X( i ) )  = a*  X( t )  - b *  X ( t f .  (1.3.1)

The differential equation representation of the growth process in Equation (1.3.1) can be 

solved to yield an S-shaped population growth path as a function of time which asymptot

ically approaches the steady state population level X  = f . At that point births axe ju st 

matched by deaths each period and the population level remains constant. Smith adds a 

simple representation of a  harvesting industry to the above mechanism by incorporating a 

process similar to that postulated by Gordon. In particular, assume th a t the harvest level 

is some function of the amount of effort E(t)  and the density of the stock X(i )  so th a t 

we have H  = H( E( t ) ,X( t ) ) .  Then the above biological relationship can be modified to 

incorporate the harvesting by writing:

X  =  F(X( t ) )  -  X( t ) ) .  (1.3.2)

Now the species will either grow or decline according to  whether the harvest level in any 

period is less or greater than the natural biological growth at that stock level.
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To close the model, Smith adds another differential equation describing the manner 

in which we might expect the harvesting industry to expand or contract. In particular, 

assume that the harvest can be sold at some price P , and th a t total industry costs are 

C(E(t) ,  X(t)) .  Then a reasonable assumption about entry and exit behavior is that effort 

enters or exits according to something like:

E  = 6 * ( P *  H( E( t ) ,X( t ) )  -  C(E(t) ,  X( i ) ) ) .  (1.3.3)

Here 6 is a reaction parameter which describes how quickly the industry responds to rents. 

Note also that entry occurs when rents are positive as Gordon hypothesized and effort exits 

when rents are negative. An equilibrium occurs when total revenues equal total costs, or 

when the value of average product equals average costs as in the Gordon model.

Equations (1.3.2) and (1.3.3) form a simultaneous dynamic system in which effort 

is drawn in in response to rents, leading to a harvest level which either causes the population 

level to increase or decrease. Smith’s model is actually quite general and capable of incor

porating production externalities, intertemporal externalities, different price assumptions, 

etc. For purposes of exposition, it is convenient to focus on a simple version of his model in 

which costs are a proportion of effort, price is fixed, and the production function is linear in 

both the effort level and the stock level.1 Then with a quadratic biological growth function, 

the phase diagram in Figure 1.2 depicts some of the dynamic properties of the system.

Figure 1.2 shows the combined dynamics of the industry and biology. Note first

that an equilibrium exists a t the intersection of the two isoclines which individually describe

1In particular, assume the cost function C( E( t ) , X( i ) )  is cE( t ), and the harvest function H( E( t ) , X( t ) )  
is qE( t )X( t )  Then, with the quadratic growth function (1.3.1), we have the system:

X  =  aX( t )  -  bX( t )2 -  qE( t )X( t )
E  =  « [P ?£ (t)X (t) -  c£ (i)].

The isoclines are then defined by:
X  =  0 — X  =
E  =  0 -  X = f i .
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points of rest for either the industry or the biology. This bioeconomic equilibrium is defined 

as a stock and effort level for which the industry has dissipated all rents and is in economic 

equilibrium, and the corresponding level of effort supports a harvest level which also holds 

the species at some steady state level. The second thing to note is th a t various approaches 

to this equilibrium are possible. The system’s stability properties can be examined by 

linearizing around the equilibrium point and examining the eigenvalues. Among other 

things, the nature of behavior during the approach to equilibrium depends on the strength 

of the response parameter 8. When response to rents is sluggish (8 low), the industry will 

gradually and asymptotically approach the equilibrium but when response is fast, there 

will be a tendency to  overshoot. This is seen by the oscillatory approach which at first 

overshoots, then undershoots, and so on.

The Smith model thus refines the Gordon model in two im portant ways. First, it 

adds the connection between effort, harvest, and the species biology which Gordon consid

ered only partially. Second, it makes explicit the nature of industry entry/exit dynamics and 

connects these with the biological dynamics. The result is a combined dynamic model which 

embeds the rent dissipation predictions of the Gordon model as the equilibrium, but which 

also adds richness by describing what might happen in the transition to the equilibrium.

1.3.2 R en t D issipation  and R evenues

A second dimension of the common property resource exploitation mechanism that 

Gordon chose to ignore is the role of the market or revenue side of the rent equation. Gordon 

foc.used almost exclusively on the role of inputs and costs and assumed that prices were 

given. While this is no doubt defensible as a first level of abstraction for many fisheries, in 

others it may not be. Revenues may be affected by the process of common property resource 

use in several ways. For example, if input entry drives the stock to  a low level, harvests
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may also fall and if there is some price flexibility, this will impact the entry process. Or, if 

input choices such as mesh size affect fish sizes landed, we might expect common property 

exploitation to result in smaller and smaller fish being landed, perhaps reducing average 

exvessel prices. Another example (mentioned by Gordon) might arise if nearby grounds are 

overexploited, reducing sizes and harvests over what they might be under sole ownership 

with a more spatially rationalized pattern of exploitation.

In these and other cases, the common property exploitation process may affect 

revenues, which may in turn feed back into the common property entry process. Of par

ticular relevance is the possibility that exploitation not only draws in excess inputs, but it 

also reduces output price below what might be earned under optimal management. If this 

is the case, then ignoring the revenue side could have two important consequences. First, 

any analysis focusing on inputs alone would miss a whole component of rent losses, namely 

those suffered on the marketing side. Second, with lower actual prices being received by 

industry entrants, the rent dissipation process would be mitigated somewhat over what we 

would expect without a revenue effect.

1.3.3 R en t D issip ation  and R egulations

A third aspect of common property rent dissipation that Gordon did not address 

is the role of regulations on the process. This omission is not surprising since at the time of 

Gordon’s paper, very few fisheries were in fact regulated. Since his work, however, virtually 

all im portant fisheries have come under some form of regulation. Movement towards active 

fisheries management began in the sixties after the collapse of severed important fisheries. 

Additional impetus was provided by the Law of the Sea convention which led, in 1976, to 

the establishment of exclusive economic zones (EEZ’s) off the coast of all coastal nations. 

These set up the legal infrastructure for coastal nations to control fishing and other resource
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exploitation out to  a 200 mile limit. This important institutional change effectively con

verted many of the common property fisheries in coastal waters into fisheries that could, 

in principle, be managed rationally as sole ownership fisheries. In practice, the 200 mile 

extension (and the enabling legislation in the U.S.—the Magnuson Act) led to the devel

opment of new regulatory systems, the operation of which were based on biological, if not 

always economic, criteria.

The omission of the role of the regulatory structure is thus potentially serious if 

one is concerned with modeling contemporary fisheries. There are virtually no completely 

open access fisheries, save a few in high seas such as tuna fisheries. The remainder are 

properly considered either re g u la te d  o p en  access, or reg u la te d  re s t r ic te d  access. 

Regulated open access fisheries are essentially open to participation by any citizen, but 

participants are subject to  a variety of (generally) biologically based restrictions. Typical 

restrictions include closed areas, closed seasons, terminal gear restrictions (e.g., minimum 

mesh sizes, net dimension regulations, prohibited gear regulations) and landings restrictions 

(fish size limits, trip limits, restrictions on catching female fish). Regulated restricted access 

fisheries typically utilize some of the same biologically motivated restrictions and in addition 

employ some form of limited access mechanism. Typical limited entry programs have limited 

participation with general licenses to  participate, with specific licenses to  utilize units of 

gear (e.g., lobster trap licenses), with licenses to use particular sizes and types of vessels, 

and recently with individual quota license programs (IQs or if transferable, ITQs) which 

allow a participant to land a certain quantity dictated by quota held.

1.4 T hesis O bjectives and O utline

As discussed above, the Gordon model, elegant as it is, omits several components 

that are im portant to the increasingly complicated task of analyzing modern fisheries. The
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demands on fisheries management for ex ante analysis of policy options have escalated since 

the extension of jurisdiction and passage of the Magnuson Act in 1976. Today, virtually 

any changes in management policy must be justified with cost/benefit and impact analyses 

before being implemented. Often these changes are incremental, such as a season or area 

closure change, but increasingly managers are also considering wholesale changes to radically 

different systems that would operate under completely new incentive systems. For example, 

many fisheries that have been conducted under regulated open access, with season length 

and gear restrictions, are now being considered candidates for adoptions of ITQs.

W hether changes being analyzed are incremental or quantum, most studies that 

are done are hampered by an overly simplified view of the rent dissipation process inherited 

from the Gordon paradigm. For example, a  typical study of an impending season length 

reduction (to counter a falling resource stock) might assume that product prices would 

remain unchanged, and that inputs would simply be saved as fishermen cut back effort. 

Little account would be taken of the possibility that fishermen might intensify effort over 

the remaining shorter season, and that this might lead to the need for another round of 

season adjustments, and so on, or that shorter seasons would cause more fish to be stored, 

leading to lower prices and a less intense rent dissipation process.

As the demands for assessment of fisheries management changes continues to inten

sify, it  is im portant that accurate analysis is made of both the status quo and any impending 

options in order to generate responsible policy. As discussed above, the status quo for most 

fisheries includes a regulatory structure at minimum, and potentially important links with 

the marketing and biological sectors that ought to be included generally. While policy an

alysts almost always include the biological links, no one has recognized the importance of 

modeling regulatory behavior and the marketing links. The main objective of the thesis 

is to develop a more complete conceptual model and demonstrate its application in a case 

study of the Pacific Halibut fishery.
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Figure 1.3 outlines the structure of the model developed in this thesis. Outlined 

in bold borders in the lower left is the component of the system as developed by Gor

don. In particular, Gordon showed how in d u s try  beh av io r, driven by common property 

incentives to enter when rents exist, would lead to a particular level of in p u t choice in 

the fishery. Gordon took exvessel prices as given. Vernon Smith added the connection 

between b iom ass and the h a rv e s t level and made the Gordon model explicitly dynamic 

in his bioeconomic model. This thesis adds a regulatory sector and a marketing sector. 

The regulatory sector is assumed to be motivated by re g u la to ry  goals a n d  behav io r, 

which lead to in s tru m e n t choice. The instrument choices (e.g., season length) interact 

with industry choice in a simultaneous way to generate a re g u la te d  level o f  e ffo rt and 

corresponding h a rv e s t level. The harvest level feeds back via the biological mechanisms 

generating biomass changes, and these in turn affect regulatory behavior. In addition to 

affecting raw product quantity, instrument choices may have other effects on the product 

q u a lity  (by intensifying the race for fish, or by affecting size distribution, etc.). They may 

also affect the structure of the wholesale market and indirectly affect prices. In the case 

chosen here, the primary instrument is season length, which affects how much of the har

vest must be frozen and held in in ven to ry , which in turn affects the w ho lesale  derived  

d e m a n d  price. Thus the exvessel p rice , which is generated as a derived demand from the 

marketing sector, is affected by regulations, and in turn affects the rent dissipation process, 

which affects the strength of the regulations needed and so on. The model developed here 

accounts for both the simultaneous nature of these interactions and also the dynamic nature 

of the processes.

The remaining chapters are ordered as follows. First, in Chapter Two we present 

a brief outline and history of the case study to be analyzed. Chapter Three then develops 

the model of a regulated open access fishery, incorporating both behavioral motivations of 

an industry subject to regulations and those of a regulatory sector charged with manag
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ing the fishery. The model in Chapter Three abstracts from the marketing sector link by 

holding exvessel prices as given. Chapter Four then estimates the model developed in the 

Chapter Three using a variety of specifications from the simple to the sophisticated. Chap

ter Five begins the task of adding the marketing sector by modeling wholesalers’ inventory 

dissipation decisions under various assumptions about season length, perishability, carry

over possibilities, etc. Chapter Six discusses econometric issues associated with modeling 

dynamic inventory decisions and then estimates a simplified version in order to simulate 

the case study chosen here. Chapter Seven then draws together the two components—the 

regulatory and marketing sectors—into a unified structure. Simulation results are presented 

and a  range of conclusions are drawn from the conceptual and empirical model. Chapter 

Eight concludes.
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Chapter 2

The Pacific Halibut Fishery

2.1 In troduction

This chapter describes the history and institutional details of the fishery selected 

as the case study for this thesis, the Pacific Halibut fishery. The halibut fishery is a valuable 

and im portant West Coast fishery. Its institutional structure has followed the classic pattern 

of evolving from pure open access to regulated open access to regulated restricted access. It 

is especially appropriate for this study for two reasons. First, the halibut fishery has a long 

history of regulation. Hence there is a substantial amount of data  including a wide range 

of variables with which to test various hypotheses. Second, despite the long history of the 

fishery, many aspects of the structure, including fishing technology, have remained relatively 

unchanged. Both of these features make the task of model estimation more straightforward.
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2.2 B iology

Halibut are relatively large flat groundfish that inhabit both the East and West 

Coasts.1 The West Coast species (Hippoglossus stenolopis) extends from California to the 

Bering Sea with the largest concentrations off both Alaska and British Columbia. Halibut 

are long-lived and can grow to sizes of several hundred pounds. Sexual m aturity is reached 

at about eight years for males and about twelve years for females.

Biologists believe that there are not distinct stocks of halibut and th a t there is 

commingling among virtually all regions along the Alaska and British Columbia Coasts. 

Tagging studies have shown some very long movements by individual fish but most are 

recovered close to where they were tagged. There appears to be some seasonal movement 

to feeding grounds in shallow coastal waters during the summer and back to deeper spawning 

areas off the Continental Shelf in the winter. Biologists have identified some areas where a 

substantial amount of spawning seems to take place but spawning is generally diffuse across 

many areas.

Because of the longevity of halibut, an unexploited population is widely based 

across many different age classes from young to old. Hence the population as a whole 

exhibits slow dynamics. Exploited populations of halibut exhibit a similarly wide age dis

tribution which means that the fishery will simultaneously draw from several age classes. 

Thus, in contrast to other species with dominant year classes and faster inherent dynamics, 

the catch per unit of effort may not change quickly. It is also the case that sin unselective 

fishery will take from both mature and immature age classes. Hence the impact of high 

levels of harvests may occur several years after the fact.

1 Much of the material in this and following sections is torn a report of the International Pacific Halibut 
Commission[53] and articles by Crutchfield [22] and Skud[80].

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



2.3 F ish ing Technology

19

Halibut are caught either in directed fisheries specifically targeting the species, 

or as incidental catch in other fisheries. Northwest Indians including Tlingit, Haida, and 

Kwakiutl caught significant quantities of halibut with baited hardwood hooks shaped like 

a “V” with a bone barb on one side. Once a commercial fishery established itself, directed 

halibut fishing also adopted a method of hook-based long-line fishing that has endured since 

the turn  of the century. The basic method of fishing for halibut utilizes a unit of gear called 

a “skate.” A standardized skate consists of a longline th a t is 1800 feet long, with lighter 

lines attached at regular intervals upon which are attached baited hooks. Most skates are 

rigged with hooks spaced 18 feet apart, up from 12 feet during the early history of the 

fishery. Hooks were originally J-shaped but the industry has switched to  more efficient 

circle-shaped hooks more recently.

Skates are fished by ganging several skates together with anchors and buoys a t

tached at the ends. Baited skates are fed over a chute a t the stern of a vessel and left 

at depths between 90 and 900 feet. Skates are left for a “skate soak” that averages 12 

hours and then retrieved with a power winch. If conditions and time permit, skates are 

rebaited and left for subsequent soaks after the catch has been removed. In recent years 

another innovation utilizing snap-on hooks has been used, particularly on smaller boats 

with small crews. Snap-on gear involves less clutter and storage space and can be arranged 

with variable spacing if desired.

2.4 H istory  o f th e  F ishery and R egu latory  Structure

Commercial fishing began in 1888 when three schooners displaced from the New 

England halibut fishery started fishing off the Washington Coast. The Pacific fishery had
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been largely untapped except by Native Indians and the commercial fishery grew rapidly. 

Important factors in this growth were the virgin condition of the stocks, the ready supply of 

vessels that converted from other fisheries (including the fur seal industry), and the growing 

markets both on the East and West coasts. Market expansion was aided by the completion 

of the trans-continental railroad in the U.S. in 1869 and the Canadian system in 1885.

Early fishing for halibut was conducted by sailing schooners equipped with about 

ten small dories. The schooner would sail up the coast, drop anchor, and dispatch the small 

two or three man dories. The dories would row out and drop the skates and then return to 

retrieve them. A significant boost to productivity occurred with the conversion to motor 

powered vessels, first steam and then gasoline and diesel in the early part of the century. 

Typical vessels ranged from 50 to 80 feet and 25 to 60 tons. W ith the development of other 

fisheries off the West Coast, many halibut vessels were also capable of fishing other gear 

types including trawls and seines. More recent innovations including radar and lor an and 

other electronics as well as refrigeration and power gear handling have also increased fishing 

power.

As the commercial fishery developed steadily from the 1880s, the early boom 

period conducted over a virgin fishery soon witnessed declining catches and rising costs. 

For example, catch per skate soak dropped from a reported 1000 pounds in 1890 to 271 

pounds in 1910 and 84 by 1920. Recognition of the declining catches led to two early 

attempts to  establish U.S./Canadian treaties in 1908 and 1919. The later attem pt grew out 

of the post World War I spirit of cooperation and the establishment of the International 

Fisheries Commission formulated to supervise Fraser River Salmon management. Both 

of these attem pts failed, however, and it wasn’t until 1923 that the Convention for the 

Preservation of the Halibut Fishery of the North Pacific Ocean was signed. This Convention 

established one of the first international agencies charged with managing a transboundary 

resource.
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The Convention of 1923 laid a modest start for the regulatory system which was 

to follow. Specifically, the Convention established the International Fisheries Commission 

(later the International Pacific Halibut Commission) to conduct scientific research and rec

ommend management measures. The commission in turn immediately established a fisheries 

closure during the three month winter spawning period, formulated rules for the surrender 

of incidentally caught halibut, and established research plans to examine the halibut life 

history and to recommend further management measures. Importantly, the Convention also 

was given enforcement muscle by prohibiting non-treaty boats from landing in Canadian or 

U.S. ports.

During the period between the Convention of 1923 and the end of the decade, 

the halibut fishery continued to slide. Catch per skate soak fell to an all time low of 35 

pounds in 1930. In that year, another halibut convention was held to assess the scientific 

knowledge gained and to recommend more stringent measures to deal with the continued 

decline in stocks. The 1930 Halibut Convention followed scientific recommendations and 

embarked upon a stock rebuilding program. Two weeks were added to  the closure period, 

certain nursery areas were protected from fishing, and directed catch gear was mandated 

to be long line only. In addition, the Pacific was divided up into separate regulatory zones. 

The larger ones were Area 2 (off British Columbia and the Alaskan panhandle) and Area 

3 (north of the Alaskan panhandle). Area 1 encompassed the areas off the lower Pacific 

States. Each of these areas was to be managed by establishing harvest quotas designed 

to reduce catch until stocks were sufficiently built up to levels th a t would sustain higher 

catches. The quotas were met by monitoring harvest levels and using season closures to 

ensure that targets were not grossly exceeded.

During the period between 1930 and 1960, some dramatic changes occurred in the 

halibut fishery as a result of the regulatory structure established. First, biomass began a 

slow recovery to  levels similar to those at the turn of the century. As Figure 2.1 shows,
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Figure 2.1: Biomass

biomass in regulatory area 2 grew from about 64 million pounds to about 135 million 

pounds. Area 3 recovered in a similar fashion from about 115 to about 225 million pounds. 

Although there is a disagreement over whether all of this was due to the harvest regulations, 

there is little question that the scientific recommendations were instrumental in the stock 

recovery.

Between 1935 and 1960, and as a result of the stock buildups, harvest quotas were 

gradually relaxed (see Figure 2.2). Catch per skate soak rose from 25 pounds in 1930 to 

60 pounds in 1940 to around 1940 in 1956. But as catch per skate and fishing profitability 

rose, H. Scott Gordon’s scenario began to unfold as new entrants appeared. In 1930 there
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Figure 2.3: Capacity

were 459 vessels participating in the halibut fishery and by 1951 this number had risen to 

820. Thus as a result of the very success of the biologically based conservation program, 

rents appeared and began to  attract larger amounts of potential effort (see Figure 2.3). This 

increase in fishing capacity was not allowed to exert itself on the stocks, however, and season 

lengths were gradually reduced in order to ensure that harvest targets were met. Season 

length reductions continued until the entire quota for Area 2 was caught in one month in 

the mid 1950s (see Figure 2.4).

Partly as a result of these developments, some im portant changes were imple

mented when the Halibut Convention re-met in 1953. The most important changes divided
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the Pacific up into even finer areas and made provision to establish quotas in each of these in 

order to manage both harvests and effort distribution more finely. Concern was expressed, 

particularly as seasons were shortened, that some areas were being over-utilized and others 

under-utilized. Thus new means were set up to use time and area closures to redistribute 

effort pressure. Opening dates were rotated, individual small areas were opened up after 

the main season closed, and early openings were established in some areas to encourage 

fishermen to exploit those stocks. In addition, the fishing industry itself established a vol

untary layover program in order to lengthen the season. The layover program was enforced 

by fishing unions and required vessels to  remain in port a  certain period after each landing. 

This effectively allowed the nominal season to increase to avoid product gluts and exces

sively long work periods. After dropping to lows in the mid 1950s, season lengths gradually 

increased again until they reached four months in the early 1960s.

The decade of the sixties witnessed a dramatic collapse of the halibut stocks in a 

short period of 10 years which effectively lost all that had been gained during the previous 

25 years. As Figure 2.1 shows, Area 2 stocks dropped from 131 million pounds in 1962 to  63 

million pounds in 1972 and Area 3 stocks similarly fell precipitously from 228 to  76 in the 

same period. There are various theories about why and how this happened. One is simply 

that environmental factors might have switched from favorable during the buildup phase to 

unfavorable during the post sixties phase. Another is that the collapse was purposeful and 

a reaction to encroachment by foreign trawlers that were beginning to  take large amounts 

of halibut during this period. Former Halibut Commissioner Bell, in his book [6, p.210] 

states “it would have been naive to believe that imposing greater and greater reductions 

on the domestic halibut fleet would have benefited any group other than foreign fishing.” 

Still another theory is that regulators erred in pushing the system too hard. Again, a quote 

from former Commissioner Bell is revealing. He states

. . .  by the late 50s most segments of the population appeared to have reached
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levels of their MSYs under the then prevailing environmental conditions. While 
such levels had been estimated by both empirical and model studies, they were 
only estimates, and as with all statistical data they possessed an upper and 
lower limit of confidence. To test the upper limits, the perm itted removals were 
raised by the Commission[6, p.210].

By far the explanation favored by most fisheries scientists is one developed by 

Skud[79]. That theory maintains that the data  gathering system contained the seeds of its 

own undoing. In particular, from 1930 onward, fishermen were required to keep extensive log 

books recording, among other things, fishing location and catch per skate soak. These were 

used to assess the biomass and in turn  to set catch quotas. During the late 50s fishermen 

switched from skates with 12 foot spacing to skates with 18 foot spacing. Scientists assumed 

that catching efficiency per hook would remain constant but in fact, it increased. Thus, 

estimates of biomass using the new skate soaks attributed relatively higher catches to a 

healthy biomass when in fact they should have been attributed to more effective gear. The 

result was a seriously overestimated biomass and correspondingly overestimated sustainable 

harvests.

Whatever the real reason, in the 1960s the stocks collapsed in all areas, driving 

out participants in a mirror image to the build up and rent generation period of the 40s and 

50s. As the stocks collapsed, regulators clamped down on allowable catch. By the late 1970s 

it was apparent tha t this biologically based conservation strategy pursued by the Halibut 

Commission had worked again and the fishery went through another phase of prosperity and 

buildup. Again, the increases in fishing capacity were met with severe seasonal restrictions.

In 1978, the extension of jurisdiction by both Canada and the U.S. changed the 

institutional setting for halibut management in a significant way. The extension of juris

diction essentially ended the cooperative joint management that had been practiced under 

the Halibut Conventions and began a new era of effectively nationalized fisheries, although 

still under Halibut Commission management. Since Area 3 had not been heavily fished by
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Canadians, the change did not impact Alaskan regulations significantly. In Area 2, however, 

a mixed fleet operated and catch was split between the two nations. The distribution issue 

was resolved by prohibiting Canadian fishing in U.S. waters and vice versa. From 1979 on, 

each nation went its separate way in conducting fishery management within the umbrella of 

the IPHC. Canada adopted a limited entry program in 1979 which froze the fleet at slightly 

over 435 vessels. The U.S. resisted adopting limited entry and continued with the previous 

structure.

In the 1980s the halibut fishery reached an extreme conclusion of this long period 

of interaction between an industry responding a la Gordon to rents and a  regulatory struc

ture attempting to rein in the capacity and protect the stocks from overharvesting. The 

regulatory authority was still limited to using the same quota setting/season restriction 

tools to prevent stock depletion. Yet, even with the short seasons, the fishery was profitable 

enough to encourage substantial entry. In response to overwhelming entry, the regulatory 

authority has had to place severe restrictions on fishing days. During the 1990s the entire 

halibut catch in U.S. waters was caught during seasons of 1-2 days. Conditions during 

these periods were understandably frenzied, with thousands of vessels vying to  catch, load, 

and transport as much as possible before the short period closed. Fishermen worked con

tinually with little sleep, vessels were dangerously overloaded and sometimes sank, and fish 

were delivered in poor condition, only to pile up as processors tried to handle a season’s 

production in a couple of days.

In 1991, Canada adopted a radical change in regulatory structure; they instituted 

an ITQ program. The ITQ program is radical because it changes the individual incentives 

away from those described by Gordon and towards incentives more compatible with rational 

exploitation. ITQs give each fisherman a share of the total allowable catch, to be landed 

whenever they wish. Thus instead of needing to rush out and engage in a frenzied fishery 

before their neighbors do, each fisherman can plan to catch, handle, and market in a way that
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maximizes profit per unit quota. The impact of this program has been dramatic already. In 

the first year of operation, Canadian fishermen received about 40% higher exvessel prices 

from supplying higher quality fish during the off-glut period produced by the regulated open 

access Alaska fishery (Fishermen’s News [31]). The second year produced similar price 

premiums. These profit gains are not going unnoticed by U.S. fishermen although there 

is a  considerable amount of inertia against any change. Currently the U.S. system is in 

the process of making a similar change towards a rights based system similar to Canada’s. 

It is premature to expect th a t the system will be adopted soon; current stipulations of 

the Magnuson Act preclude fisheries from taxing themselves for important functions like 

enforcement and monitoring. Thus the U.S. system may be hung up for several years before 

adopting anything like the Canadian system.
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C hapter 3

M odeling Industry/R egu lator  

Behavior

3.1 Introduction

In this chapter we develop a model of a system of industry/regulator interaction. 

As discussed above, one im portant difference between fisheries today and those typical 

during the time that Gordon’s paper appeared is that most contemporary fisheries are 

regulated. One of the main impacts of a regulatory structure is th a t it should affect rents 

and hence the process of rent dissipation. In addition, however, regulations are purposeful 

in the sense that they are guided by regulatory goals. These goals in turn  depend on 

the status of both the industry and biology and hence we would expect th a t industry and 

regulatory behavior to be endogenous. In the next sections we outline a model that views 

regulation setting and industry response as the outcome of a jointly determined process. 

We first present a static representation of the process and then move to a more general 

dynamic representation which nests the static model.
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3.2 F isherm en’s Behavior

H.S. Gordon’s model of rent dissipation is a useful point of departure for consid

ering industry behavior. We assume that fishermen behave as Gordon suggested, that is, 

they enter in response to rents and entry proceeds until effort is earning its opportunity 

cost. The form of the model presented here adds some concreteness to his formulation by 

adopting production and cost functional forms which make explicit the connection between 

behavior and the fishery stock, the regulatory instrument, and relevant parameters.

Rents will be assumed to be simply the difference between industry revenues and 

industry costs, defined over a given fishing season. Revenues are defined as to ta l seasonal 

harvest multiplied by an exvessel price P  per pound. In this chapter we take P  to be given 

in order to focus on the manner in which adding a regulatory sector modifies the basic 

Gordon model. In later chapters we endogenize P  by adding a marketing sector. Assume 

that there is an instantaneous harvest rate function defined by:

h(t) =  qEX{t).  (3.2.1)

This is the most common assumption used in fisheries biology. Here h is the harvest rate, 

q is the catchability parameter, E  is a measure of fishing capacity or power, and X  is the 

biomass in period t. We will assume that the industry commits an amount of effort E  so 

that E  can be assumed fixed over any given season.

To determine how much will be harvested over a season, assume that the level of

biomass at the beginning of any given season is X q. Assume also that biomass declines over

the fishing season according to:

X ( t )  = - q E X ( t ) .  (3.2.2)

We ignore natural mortality in the equation determining the evolution of biomass during the 

season for analytical convenience. For the fishery we look at, natural mortality is low relative
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to fishing mortality during the season. In addition we account for natural mortality between 

seasons by assuming that the beginning biomass adjusts for between-season mortality and 

other environmental factors. Equation (3.2.2) is a differential equation describing within- 

season biomass that can be solved over a season beginning at time 0 and ending at time T.  

Solving the differential equation gives

X{t)  =  X o e - ^  (3.2.3)

for the biomass level at any date t. At the end of the season, ending biomass is given by 

X ( T )  =  Xoe~qET. Total cumulative harvest over the season of length T  is thus:

H(T)  = X 0 -  X ( T )  =  X0(l -  e~qET). (3.2.4)

This aggregate industry production function for a given season is depicted in Fig

ure 3.1 as a function of total effort ET.  As the product of daily fishing capacity E  and 

season length T  approaches infinity, production approaches the entire initial biomass A'o. In 

addition, the marginal product of effort is positive and diminishing. W ith the fixed amount 

of fishing capacity throughout the season, the harvest rate declines as the season progresses. 

This is due to the stock effect: harvesting reduces the stock and since the harvest rate is 

stock dependent (equation 3.2.1) the harvest rate falls as the biomass is reduced.1

W ith respect to costs, we assume simple linear costs related to both the level of 

capacity and to  the amount of variable effort expended over the season. Consider first 

capacity costs. We assume a cost /  per season per unit of capacity must be incurred to 

participate in the fishery. In the case study examined here, capacity will be measured 

in skates, although in other fisheries capacity might be measured in other variables, such 

as standardized vessels. These costs may thus be assumed to be outfitting, repair, and

preparation costs associated with the gear, opportunity cost of the investment, and implicit

1 Note that alternative production function forms used in other settings have undesirable and less realistic 
properties. For example, a Cobb-Douglas form for the harvest rate or the cumulative harvest would permit 
production to exceed the total biomass.
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Figure 3.1: Production Function

rent associated with other inputs. We also assume that there are variable costs associated 

with the (assumed constant) rate of input use over the season. Thus the setting and 

retrieving of a skate requires fuel and bait costs and crew wages. Assume th a t these costs 

are v per skate soak per unit time.

W ith both cost and revenue formulations described above we can write total in

dustry rents anticipated for a season of length T  as:

H =  f T[Ph(t) -  vE]dt -  f E .  (3.2.5)
Jo

We ignore discounting for analytical convenience. Note that the above expression has total 

variable profits depending on season length under the integral and total fixed costs depend

ing upon capacity outside the integral. Substituting the harvest function from equation
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(3.2.4) into the revenue function and integrating leads to an expression for seasonal rents:

Rents = [PX0(1 -  e~qET)] -  [vET +  fE].  (3.2.6)

Total revenues are given by the left hand term and total costs are given by the right hand 

term. Setting rents equal to zero yields an implicit equation for E  as a function of T, P, 

Xo, v, / ,  and q. This gives the rent dissipating level of capacity identified by Gordon and 

Smith as the equilibrium level of effort expected in an open access fishery.

3.3 T he Entry Function and Industry B ehavior

The implicit equation J ( E , T ) =  0 derived by setting rents equal to zero describes 

industry behavior associated with effort levels that dissipate rents. The addition of a regu

latory instrument, the season length T, adds only minor complexity. The forms appropriate 

for sensible production and cost functions create some analytical complexities, however, be

cause it is not possible to explicitly isolate the rent dissipating capacity E  as a  function of 

the other variables and parameters. Hence it is necessary to characterize the entry function 

E  =  E(T-,Xo,P,ct q , f )  via indirect methods. In what follows we discuss the shape of E  

heuristically and then show the properties of the implicit function more formally.

A key feature of this model is the assumption that fishermen commit a given 

amount of effort for the season and must pay a fixed cost in order to  outfit for the fishery. 

As it turns out, this assumption partially bounds the range of equilibria possible and helps 

determine the shape of the rent dissipating E  function over the relevant range. Figure 3.2 

depicts the shape of the function which is identified by the implicit relationship described 

above. The function generally describes a monotonic relationship between E  and T.  That 

is, as the season length gets longer, the amount of capacity that will dissipate rents is larger. 

Note that there is a  minimum season length below which no effort will be attracted. In
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addition, it will be shown that there is a maximum season length associated with the largest 

level of capac :y, beyond which the notion of rent dissipating equilibrium breaks down.

Consider first the general shape of the relationship between E  and T  given by the 

implicit function J (E ,T \X o ,p ,  v ,q , f )  = 0. We can examine the first derivative of the rent 

dissipating level of capacity as a function of T  through the implicit function theorem. If 

J ( E ,T )  =  0 is the rent dissipating equilibrium condition, then the derivative is:

E [ v -  P qX 0e-*ET1dE_
dT

Jt (3.3.1)
JE T [ P q X 0e-<ET - v ] - f

Note that this derivative is positive in the relevant range because the numerator and de

nominator are both negative. This can be verified because we know that Je  is the net value 

of marginal physical product of an extra unit of capacity. But we know that the net value
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of average product is zero (from the rent dissipating condition) and since the net value of 

marginal product is less than the average product, the denominator must be negative. The 

numerator is the negative of the marginal value of E T.  In the relevant range, the marginal

[PqXoe'qET -  v\ is zero. This defines a maximum of the E  function because the second 

derivative can be shown to be:

which is negative since the first term  in the numerator drops out. Thus the rent dissipating 

level E  has a peak. As discussed below, levels of E  that are larger than this peak are not 

consistent with an equilibrium as we are defining it.

W hat about levels of E  less than those defined by the maximum? Note first that 

there is a non-zero minimum season length necessary to induce a positive level of effort to 

enter as long as fixed costs are positive. This can be understood as follows. First define 

variable profits 11(1?, T) to be those associated with a  variable season length. Variable 

profits will be revenues less variable costs vET,  or:

The marginal variable profit associated with another unit of capacity evaluated where E  

equals zero is:

value of E T  is positive. Note also that this derivative is zero where the term  in brackets

cPE _  E(PqXoe~qET -  v)2 -  E 2{Pq2T X 0e~qET) 
d T 2 ~  [T{PqX0e~qET - v ) -  f]2

E =  P X q(1 -  e~qET) -  vET. (3.3.2)

P q T X o -  vT. (3.3.3)

Hence marginal variable profits will compensate for the fixed cost of entry only if the season 

length is large enough to make marginal variable profits (3.3.3) greater than  the cost of 

entry f  per unit of E,  th a t is:

T ( P X o q - v ) - f > O i S T >  f
PXoq — v
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The intuition behind this is that as the fixed cost of entry increases, a longer season length is 

required to generate the variable profits to compensate for the fixed costs. Note that these 

marginal profits defined at E  = 0 are also a function of the price, the initial biomass, and 

cost and production parameters so that a higher initial marginal profit (3.3.3) will allow the 

minimum season length to be shorter. Note also that a necessary condition for any effort 

to be profitable is that the first units contribute some positive marginal profits, or:

dU
d E T

=  P q X 0e - gET -  v
E T = 0

=  PqXa — v > 0 .
E T = 0

This states that the marginal profit from harvesting the first unit of stock Xo with variable 

effort E T  must be positive.

Thus there is some minimum length season which will induce some positive entry 

of capacity. As the season is lengthened the rent dissipating level increases monotonically 

until the season length reaches some maximum Tmax- W hat about seasons longer than 

^max? As it turns out, these are not compatible with a rent dissipating equilibrium that 

sustains commitments of effort as we have assumed. This can be seen by examining Figure 

3.3. This figure depicts the marginal value and cost of an amount of total seasonal effort 

ET.  Since the variable profit function (3.3.2) is concave in ET,  the marginal value of 

additional seasonal effort declines. Suppose that costs of variable effort v must be incurred. 

Then an amount of seasonal effort E T  yields maximum variable profits. These are depicted 

as a function of E T  equal to the shaded area. Note that it would be most profitable for the 

industry to select a low level of E  combined with a long season length T  to  produce E T  in 

order to minimize capacity costs. However, in open access, incentives will be for capacity 

to grow until the total payment for fixed capacity costs equals variable profits. Thus in 

an open access equilibrium, for any season length T, the shaded area will be dissipated by 

fixed costs f E .

Now consider two candidate season lengths, one shorter and the other longer than
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Figure 3.3: Marginal Revenue and Cost Functions when Capacity is a t its Maximum

Tmaxi and a given level of capacity Eq. Figures 3.4 and 3.5 describe positions of potential 

equilibrium. Consider EqT\ first. W ith a season length T \, variable profit indicated by 

the shaded area would be generated and dissipated by an amount of fixed capacity costs 

fEo.  Note th a t at this point, the marginal value to  the industry of another day of season 

is positive. O ther things equal, on the last day of the season, fishermen would want to fish 

another day and push to tal effort towards the point where the marginal value of E T  was 

equal to its marginal cost. The extra variable profits that could be earned are shown by 

the area shaded in + ’s.

Consider another candidate equilibrium where the season length is T2 and the 

relationship PqXoe~qET — v is negative. This candidate season length has been drawn so 

that all profits made by expanding the season length to E T  are just balanced by losses made 

by fishing beyond the point where marginal revenues exceed marginal costs. In Figure 3.4 

the area shaded by - ’s is equal to that shaded by + ’s. Clearly, if given the choice, it would 

not be in the interests of fishermen to fish over the periods of the season where the marginal
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Figure 3.4: Marginal Conditions at an Alternative Capacity Level
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Figure 3.5: One Capacity Level with Two Rent Dissipating Season Lengths
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value of more days is negative. We can conceive of a situation where they are coerced  into 

fishing these extra days but this is unreasonable as an equilibrium assumption.

In summary, the portion of the rent dissipating capacity equation which is beyond 

and to the right of the peak implies behavior that is unsustainable as an equilibrium. In 

particular, while positions to the left of the peak involve equilibria where the industry would 

like the season length expanded, positions to the right imply th a t the marginal value of the 

last days of the season are negative. We would thus expect that the industry would not 

voluntarily choose to fish on those days. This is intuitive because the condition describing 

the derivative of the capacity equation has the term  v — PqXoe~qET in the numerator. Note 

that the second part of this is basically P q X j ,  but this is precisely the value of the marginal 

harvest rate on the last day of the season. Admitting potential equilibria where the whole 

term is negative thus implies tha t the value of the marginal units of effort in taking the last 

units of harvest are negative.

3.4 R egulator B ehavior

Although economists have not paid much attention to analyzing how agencies 

operate, there are several alternatives tha t might be maintained as working hypotheses. 

One that economists have explored is the notion of rent seeking (Bhagwati[9],Buchanan 

et. al.[ll] and Rowley et. al.[73]). Under a  rent seeking model, constituents are assumed 

to lobby the regulators for actions tha t generate rents. Various mechanisms are assumed 

whereby regulators know this and are assumed to act in ways tha t generate shares of the 

rent. A similar idea is tha t of regulatory capture whereby it is assumed th a t the regulatees 

“capture” the regulators through political or voting processes and manipulate outcomes 

(Karpoff[54]). A third theory tha t economists have paid some attention to is a  sort of welfare 

maximizing theory, whereby regulators are assumed to be acting as if they are maximizing
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a  social welfare function (Alston and Carter[2], Coggins[17] De Gorter et.al.[25], Rausser 

and Zusman[70j). In empirical examples, some have estimated the welfare weights that are 

consistent with observed behavior (Fulton and Karp[34]).

In this thesis, we assume a simplified goal structure for the regulatory body which 

emphasizes the biological orientation of most real world fisheries regulatory bodies. In par

ticular, we assume a hierarchical decision process that focuses, first, on selecting a targeted 

harvest quota that ensures stock safety. For example, during the early phases of the hal

ibut regulatory history, quotas were set purposely below biological yield in order to bring 

the stocks up to higher levels. During the period following the 1953 convention, explicit 

attem pts were made to  hold the stock at a level as close as scientists could determine was 

yielding maximum sustainable yield (MSY). In any case, we assume that a  stock assessment 

is made before each season to determine the stock health. Then a quota Q is set according 

to some explicit or implicit criteria. Thus, we assume at this stage th a t both Q and X  are 

given each period.

In the second stage of the regulatory process, we assume that regulatory instru

ments are chosen to achieve the quota target. Regulators rue assumed to be knowledgeable 

about the industry’s aggregate production function, about the size of the stock, and about 

the potential capacity of the industry. For the case study examined here, we assume that 

the primary instrument used by regulators is control of season length T . Suppose that 

biomass X q and the target Q are given. Then, regulators are assumed to set the season 

length to ensure that aggregate harvest equals the quota. Using 3.2.4, we have:

Q =  X 0(l  -  e~qET) (3.4.1)

which can be solved for the season length T  as a  function of effort, biomass, the quota, and 

the catchability coefficient. In particular, the regulators are assumed to behave by choosing
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T  so that:

[*£<?]■ <M'2>

Graphically, this equation is a rectangular hyperbola (see Figure 3.6) since the 

product of capacity E  and season length T  is set to equal a constant determined by the 

biomass and quota. This simple form is in part due to the production function which is a 

function of the product of capacity and season length E T .  It is assumed that regulators are 

simply concerned about controlling total effort, which may be composed of a high level of 

capacity exerted over a short season, or a low level of capacity exerted over a long season. 

Note that the position of the hyperbola depends upon both the biomass and quota (and 

catchability coefficient). Other things equal, as the quota increases, the hyperbola shifts 

out since a larger amount of total effort E T  will be needed to catch it. On the other hand, 

a larger biomass with the same quota will shift the hyperbola inward, because the biomass
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plays a positive productive role in the harvest process.

3.5 Equilibrium  in a R egulated  O pen A ccess F ishery

The preceding sections have developed two sides of a theory of interaction between 

a regulated industry and the regulators. The industry makes a capacity “choice” which 

results in a level of capacity which dissipates rent for any given season length. Regulators, in 

contrast, are assumed to select a season length, given the capacity choice by the industry and 

conditional on a biomass and target quota. It remains to discuss the nature of equilibrium 

under various possible mechanisms.

The simplest assumption to make about an equilibrating mechanism is to draw 

the analogy from economic models of markets and assume some sort of an auctioneer. 

For example, assume that the auctioneer posits a potential season length of To- Then we 

could assume that the industry announces a rent dissipating capacity decision to “supply” 

E{Tq) and that the regulators announce a corresponding desired or “demanded” capacity 

level E(Tq) capacity level consistent with their regulatory goals. Assume that the auctioneer 

follows the rule: adjust To in proportion to the “excess demand.” Then if To is lower than the 

equilibrium so tha t excess demand for season days is positive, the trial season length will be 

increased to To +  S and so on. After repeated trial announcements, the process would reach 

an equilibrium where the industry’s capacity choice contingent on season length exactly 

matches the choice assumed by regulators when they make their season length choice. Thus 

the “market” would clear as in Figure 3.7, where an equilibrium is reached for both sets of 

participants.

There are, of course, alternatives to this analog to the supply/demand mechanism. 

If agents do not know what the equilibrium decision of the other party will be, they might use 

proxies or estimators. For example, regulators may not know what capacity the industry will
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use and may predict this year’s capacity by using past capacity in a forecasting mechanism. 

On the other side, the industry may not believe announce season lengths and may use 

information about how announced and actual season lengths diverged in the past to estimate 

actual season lengths. These alternatives may lead either or both agents to operate off their 

respective schedules so tha t (for example) the industry may be making rents and/or the 

catch may diverge from the quota.

Another alternative story is that there is sluggishness in behavior so th a t the 

industry and/or the regulators do not adjust instantly to the levels as defined by the above 

models of individual behavior. For example, the industry may tend towards rent dissipation 

but if capacity can only be changed slowly, dissipation may not occur instantly. This is the 

assumption essentially used by Vernon Smith. Regulators, on the other hand, may be able 

to change season length rapidly but may decide not to in order to avoid disrupting the 

industry too much. Obviously there are many potential assumptions that might be made 

about the nature of the equilibrating process in the system and the implied dynamics.

We take an encompassing approach here by developing a dynamic model th a t nests 

the instantaneous static equilibrium model as a special case. This partial adjustment model 

is presented at the end of this chapter, following a discussion of the comparative statics of 

the instantaneous Walrasian model.

3.6 C om parative S tatics

Under the assumption that the system of industry/regulator behavior clears per

fectly and instantly, we can examine some of the properties of the equilibrium under various 

parameter changes. The equilibrium values of capacity and season length are determined as 

those values that satisfy both  the zero rent condition (equation (3.2.6)) and the regulators’ 

equation (3.4.2). In equilibrium, we can solve to determine a reduced form equation for
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both the rent dissipating capacity level and the season length. These are:

/  qf [X0 -  Q\ (3.6.1)

and
My

To = ---------- ~̂ r r "  1-  (3.6.2)
P g Q - u l n } ^ ]

Comparative statics properties of the model can be deduced from these. The 

parameters P,v,  and /  shift the schedule that determines capacity alone. An increase in 

price induces more capacity for each season length while increases in costs prompt less 

capacity for each level of T.  To offset capacity changes, regulators adjust season length. 

Thus, changes in prices and costs shift the entry equation, which induces a movement 

along the season length determination schedule. A quota change induces an outward shift 

of the regulator schedule so that more total effort can be allowed. If the entry schedule 

remains fixed, the quota increase will thus produce an equilibrium with higher capacity and 

a longer season length. Changes in the stock and in the catchability coefficient shift both 

schedules. Increases in catchability and biomass shift the season length schedule inward, 

resulting in less equilibrium effort, other things equal. But these same increases also shift 

the capacity equation upward. The net result is a reduction in equilibrium season length 

and a capacity increase. These comparative statics properties are summarized in Table 3.1. 

Analytic results are derived from the equilibrium values above and the signs are presented 

to the right of each derivative.

I t should be noted that these properties of equilibria are valid for in te r io r  equi

libria. As the discussion of industry behavior suggested, the set of viable rent dissipating 

equilibria are contained within minimum and maximum season lengths. The configuration 

of parameters may be such that no seasonal regulation is necessary. For example, with 

a very high allowed quota, the rectangular hyperbola describing the regulator equilibrium 

may be shifted out far enough so that it doesn’t intersect the peak of the industry equi-
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Figure 3.8: Nonexistence of Equilibrium

librium curve (see Figure 3.8). In this case there is no need for a season length regulation 

because the unregulated choices of E q and To by the industry do not lead to a harvest as 

large as the quota. This situation is more likely with lower prices, higher costs, and a lower 

biomass level.

3.7  A D ynam ic M odel o f  the R egulated O pen A ccess F ish 

ery

As we discussed in the section on equilibrium assumptions, there are several reasons 

why this system of interaction might not reach equilibrium in each period. If it does 

not adjust instantly, we can model a representative process with variants of the sluggish 

adjustment or partial adjustment models that have been successfully utilized in supply
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response and investment theory. Partial adjustment models essentially allow for endogenous 

variables to adjust partially in any given period to their long run values. Often, no specific 

mechanism is proposed as a reason for the sluggishness but rather it is simply assumed as 

a maintained hypothesis.2 The adjustment parameter dictates whether adjustment will be 

fast or slow. In a simultaneous system such as the one developed here, if partial adjustment 

is assumed on the part of both participants, a rich variety of outcomes is possible. These 

are discussed below.

The simplest way to develop a dynamic version of the static models discussed above 

is to assume a simple proportional adjustment process. Recall that we have developed two 

models of individual behavior, one for the industry and one for the regulatory agency. The 

industry model is based on the assumption that a level of capacity E  can be identified 

which just dissipates available rents at any given season length. Although we did not (and 

cannot given our functional forms) derive an explicit expression for this equation, we can 

define the implicit relationship E  = j ( T ; P, X q, q, v,  f )  that yields the rent dissipating level 

of capacity. Similarly, we have an (explicit) expression for the season length that regulators 

would choose, conditioned on the industry’s capacity choice, namely T  = g(E;Xo,Q,q)-

The partial adjustment model makes the assumption that variables move towards 

their equilibrium levels with some sluggishness, where the sluggishness is captured by ad

justm ent parameters. Specifically, let 7  and $ be the adjustment parameters. Then the

2One reason for the lack of specificity is that many different stories have been shown to be indistinguish
able empirically. For example, in the literature on rational expectations, it has been shown that optimal 
forecasting in a MA(1) setting generates the same decision structure as if the decision maker were using 
adaptive expectations a la Nerlove. The main point is that any sluggishness in the adjustment to equilibrium 
can be motivated by a number of mechanisms. This includes the possibility that sluggishness is dynamically 
optimal. For example, the quadratic adjustment cost model of investment under simple myopic expectations 
assumptions reduces to an equation for the optimal level of the capital stock which is basically a sluggish 
adjustment model.
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dynamic model may be specified as:

f  =  7 \g(E;XQ>Q , q ) - T ]  = G(E ,T )
(3.7.1)

E  = 8\j(T-,P,X0, q , v , f ) - E ]  =  J ( E ,T )

If the season length is below the level associated with the target, then T  will be positive 

and T  will increase at a speed determined in part by 7 . Similarly, if E  is larger than the 

rent dissipating level, it will tend to fall, at a speed associated with 6.

In order to analyze the motion of this system, we can first plot the isoclines that

identify pairs of E  and T  with leave each part of the system in equilibrium. These are. of 

course, simply the behavioral equations that depict the static model as shown in Figure 3.9. 

These show that the level of capacity is in equilibrium when the capacity level is the rent 

dissipating level identified in the model of the industry. Similarly, the regulators will be in 

equilibrium when the season length is equal to the one associated with the target quota. 

The whole system is in equilibrium at E q and To when both equations are satisfied.

Now, what if the system is not in equilibrium? W hat does the approach path  look 

like? How is it different depending upon where we start the process? How does it depend 

on parameters, including the important speed of adjustment parameters? These and other 

questions about the nature of the dynamic paths can be analyzed by examining the stability 

of the system. Since this is a non-linear system, we can analyze (local) stability around Eq,To 

by linearizing and evaluating the eigenvalues of the linearized system. In particular, consider 

the system in (3.7.1) above evaluated at its equilibrium point. A Taylor’s approximation 

gives:
r 1 r 1

Gt  Ge - 7  79E  

8jx —8
(3.7.2)A  =

Jt  Je
Eo,To E o ,Tq

where A  is the coefficient matrix of first partial derivatives of the system in 3.7.1 above, 

evaluated at the equilibrium. In the system analyzed here the coefficient m atrix is fairly
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Figure 3.9: The Phase Plane

simple since g j  =  j g  =  0. The eigenvalues are found by taking the determinant of the 

matrix A  — r l  and setting it equal to zero, or:

det(A  — r l ) =
- y - r  7  gE

8jx —8 — r 

This yelds a quadratic equation whose roots satisfy:

1

=  ( “ 7  ~  r ) ( -8  -  r) -  S y g s j r  =  0 (3.7.3)

- —( 7  + 8 ) ±  yj ( 7  — 6 ) 2 +  i 8 jg E j r (3.7.4)

The eigenvalues or roots of this equation determine the qualitative nature of the 

dynamic system when it is in the neighborhood of the equilibrium. Specifically, the sys

tem will be dynamically stable and converge directly to the equilibrium from any initial 

conditions if the eigenvalues axe distinct, real, and negative. In this case, the equilibrium 

can be characterized as a stable node. If the roots are imaginary with a negative real part, 

the equilibrium will be approached in an oscillatory path. The equilibrium would then be
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a stable focus. If the roots are real and positive the equilibrium will be an unstable node 

and the system will diverge directly from the equilibrium. If the roots are imaginary with 

positive real parts, the equilibrium will be an unstable focus, and the system will diverge 

with an oscillatory pattern.

As can be seen from the quadratic equation, the critical factor determining the 

nature of the approach path is the sign of the discriminant. If the term under the square root 

sign is negative, the approach path will be oscillatory. The oscillations will be convergent 

because the real part is the (negative) sum of the adjustment parameters. The sign of the 

discriminant depends upon the size of the second term  relative to the first. The second term 

contains the product qeJt  which is the ratio of slopes of the two equilibrium conditions 

evaluated the equilibrium. Since qe is always negative and j x  is positive, this ratio is 

negative. If the absolute value of this second term in the discriminant is large, the system 

will have imaginary roots and, with a negative real part, will result in the equilibrium being 

a stable focus. Then, the system will exhibit convergent oscillations towards the equilibrium. 

If the second term  is small so that the discriminant is positive, both roots will be negative 

and real and the equilibrium will be a stable node. Then, the system will converge directly 

from any point in the phase space.

Thus the critical determinants of the nature of the approach to equilibrium are the 

respective sizes of the adjustment parameters and the slopes of the two isoclines which, in 

turn, depend on system parameters. The specific relationship between these can be further 

examined as follows. First define the ratio of the two adjustment parameters to be R. Then 

7  = R*6.  Next define the absolute value of the ratio of slopes of the isoclines (i.e., the slope 

of the industry equation divided by the slope of the regulator equation) to be Z.  Then the 

eigenvalues of the system can be redefined as:

n , r2 = 1 1 - (1  +  R)6 ±  ^ ( R  — 1)262 + AR62g s j x ^
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Figure 3.10: Characterization of the Dynamics

=  ^  j - ( l  +  R)6 ±  6 ^ { R  -  l ) 2 -  4 R z }  .

which is now expressed in terms of the two ratios. From this we can note that there is a 

critical value of Z  which ju st makes the discriminant zero for any value of R.  This critical 

value is Z “ =  ( R / 4) — (1/2) +  (1 /4 i?). The function Z*(R)  describing the critical value 

which separates the cases qualitatively is upward convex and upward sloping for R  greater 

than one and downward sloping and convex for R  less than one as shown in Figure 3.10. 

Now consider any given level of R  and alternative levels of Z.  If Z  is greater than Z u 

the whole term  under the square root will be negative and thus the approach path will be 

oscillatory. Similarly if Z  is less than Z" the approach path will be stable and convergent 

as shown in the figure.

Now we are ready to summarize how various combinations of circumstances will 

come together to determine the qualitative nature of the equilibrium between the industry
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and the regulators. W hat happens, for example, if the industry reacts quickly to rents and 

the regulators react slowly to their targets? Or what happens as the equilibrium approaches 

the minimum and maximum season lengths? Or what if both parties adjust equally fast, 

or slow? First, note that whatever the value of the ratio of slopes at the equilibrium 

the closer the adjustment speeds are to each other the more likely that an oscillatory 

approach will result. Hence if one group reacts slowly and the other quickly, these differing 

adjustment speeds act as a stabilizing factor. Second, suppose that adjustment speeds are 

approximately, but not exactly, equal. Then as the absolute value of the ratio of the slopes 

gets larger, the system will be more likely to oscillate rather than converge directly. This 

occurs, for example, when the slope of the entry equation is steep and the slope of the 

regulatory equation is flat. But when is the absolute value of the ratio of slopes large? As 

it turns out, we can express this ratio in terms of parameters to arrive at the expression:

{ X o - Q ) - ( y / P q)
(X0 -  Q) -  Q\in{Xo/{X0 -  <?))]-!

This ratio will be large when the quota is small or when the price and/or catchability

coefficient is large. The ratio will also be larger as the variable cost coefficient is smaller

and it is ambiguously related to the biomass.

In summary, this chapter has developed a new theory of open access behavior that 

combines behavioral models of both an industry subject to regulations and a regulatory 

body which sets regulations in a manner conditioned on the industry’s behavior and on 

specific goals. In the first part of the chapter we discussed a static version of the model 

and described comparative statics of the equilibrium properties. In the last section, we 

developed a more general model which explicitly incorporates dynamics and which nests 

the static model. The more general model is capable of describing a wide range of behavior, 

the qualitative properties of which depend on the structural model parameters as well 

as adjustment speeds. As Figure 3.11 summarizes, the approach to equilibrium can be 

either direct or oscillatory. The specific behavior that we might expect depends upon the
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Figure 3.11: Alternative Paths to Equilibrium

system. If, for example, the industry and regulators are relatively “matched” with respect 

to adjustment speeds, the system will tend to exhibit oscillations. On the other hand, with 

one party relatively slow, the system will tend to converge asymptotically. In addition, the 

nature of the approach will depend in a  relatively complicated way on the location of the 

equilibrium, and specifically on the slopes of the respective decision functions.

R ep ro d u ced  with p erm issio n  o f  th e  cop yrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



Chapter 4

E stim ation of the  

Industry/R egulator M odel

4.1 In troduction

In this chapter we estimate the model of industry/regulator interaction developed 

in Chapter Three. As outlined in Chapter Three, the conceptual underpinning for our 

model of industry behavior is the hypothesis that entry of fishing capacity is governed by a 

tendency to enter until rents are dissipated. Similarly, the behavioral hypothesis for mod

eling regulatory behavior is that regulators have goals in terms of targeted catch, biomass 

levels, etc., and policy instruments are chosen to meet those goals. An important issue 

for empirical specification concerns the equilibrium properties of the interactions between 

the two groups of agents. Should it be assumed that equilibrium is reached each period, or 

should some sluggishness be allowed? We leave this as an issue to be decided empirically, by 

nesting the static model in a more general dynamic model. In the next section, we review 

the complete system to be modeled and briefly discuss some of the econometric issues it
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poses. Then we discuss the data  used to estimate the model parameters. Following this, 

we discuss the parameter estimates under the assumption of instantaneous equilibrium and 

a  more general model that allows us to test hypotheses about sluggish adjustment. In the 

final section we present some simulations of the paths of the endogenous variables generated 

with the dynamic model.

4.2 Em pirical E stim ation  Issues

In the previous chapter we modeled the behavior of the industry and regulators 

as a simultaneous system. Regulators are assumed to choose the season length T , based on 

the fishing capacity E  of the industry, the targeted catch or quota Q, and the beginning 

of the season biomass X .  The industry is assumed to choose capacity depending upon the 

season length chosen by the regulators, the biomass X ,  and the exvessel price P.  In the 

dynamic specification of the system, contemporaneous values of season length and capacity 

depend also on past values. The actual harvest taken H  depends upon total actual effort 

ET,  which is the daily capacity E  multiplied by the to tal number of days T  that fishing is 

allowed. The basic system to estimate can thus be written as follows:

E t =  j (T t , E t- i ,P t ,X o t -,<i>)

Tt =  g(E t ,T t - i ,Q t ,X o t ;<f>)

H t =  h(Et ,Tt]<j>),

where <f> is a vector of parameters, including cost and production parameters and adjustment 

speed parameters. In this system, we assume that E, T ,  and H  are endogenous variables 

and the exvessel price P,  the biomass X , and the quota Q are predetermined.

There are several econometric issues to be considered in estimating parameters of 

the above model. F irst we need to choose functional forms and consider the origin and
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form of the econometric error term. The choice of functional form will affect the estimation 

procedure, including whether linear or nonlinear methods must be used. Second, we need to 

account for the simultaneity of capacity and season length choices since there is unavoidable 

correlation of the contemporaneous error term with explanatory variables. Finally, we need 

to consider the covariance among equations and determine whether imposing cross equation 

restrictions and taking advantage of the covariance structure to increase efficiency is worth 

potential misspecification problems.

There are essentially two options to consider when faced with simultaneous equa

tions: maximum likelihood and instrumental variables. Maximum likelihood estimation is 

attractive in that it yields all of the desirable asymptotic properties, including asymptotic 

efficiency. The desirability of maximum likelihood depends, however, on a correct specifica

tion of the distribution of the error term  (e.g., multivariate normal). In addition, estimation 

can become quite cumbersome if nonlinearities are present.

The second possibility is instrumental variables estimation. There are several fea

tures of instrumental variables estimation that make it attractive, even though instrumental 

variables estimators are not efficient. First, consistency is preserved, and this property does 

not depend on an accurate specification of the distribution of the error term. Second, the 

technique for estimating nonlinear systems has been well developed,1 although the success 

of instrumental variables estimation depends on the choice of instruments. In linear sys

tems, the instruments th a t yield the best estimates are, in principle, easy to determine, 

namely all of the predetermined variables in the system. In nonlinear systems, in contrast, 

the instruments tha t yield the most efficient estimates depend on the true parameter vec

tor which is, of course, unknown. Hansen and Singleton suggest using any predetermined 

variable as an instrument including any lagged endogenous variable.

1 Both Hansen and Singleton [45] and Araemiya [3] have developed nonlinear instrumental variables tech
niques. These have been further refined and incorporated into the econometrics package SHAZAM [78].
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4.3 D ata

The halibut case was chosen as a case study in part because of the unusually 

lengthy and high quality data base that has been collected and published. The International 

Pacific Halibut Commission has consistently compiled an extensive data series on critical 

variables as well as numerous reports discussing management approaches and goals, scientific 

findings from studies of the fishery, and annual reports. Much of the important information 

comes from logbooks that fishermen are required to fill out and report at the point of 

landing. Logbooks report the number of units of gear fished, where fished, how long each 

unit is soaked, and the catch per gear haul, including size breakdowns. These data are 

gathered by the IPHC, compiled and standardized, and utilized for stock assessment, catch 

estimation, and effort measurement.

In the results reported in this chapter, we estimate equation systems over the 

period 1935-1978 for two regulatory areas that comprise the bulk (over 90%) of total North 

Pacific halibut landings. The two regulatory areas encompass most of Area 2 and Area 

3 (see map in Figure 4.1). These areas have been treated as separate regulatory regions 

since the halibut regulatory program began in the 1930s. Thus each region has had its own 

biomass estimates, effort level compilations, catch quotas, and season lengths. Estimation 

over the two regions allows a consistency check of the param eter estimates for the models 

since there are effectively two individual time series.

From 1935 until 1966, Area 2  consisted of the waters off of the Canadian coast 

of British Columbia and the Alaskan waters up to  Cape Spencer in Southeast Alaska. In 

1967, Area 2 was merged with Area 1, which had been the waters off of the Continental 

U.S. In 1981, Area 2 was split up into three distinct subregions (2A, 2B, and 2C) which 

effectively split Area 2 by national boundaries. The estimates reported here treat Area 2 

and the former Area 1 as a single aggregate by summing biomass, catch, and effort for both
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regions. The season lengths and quotas we use are for the regulatory Area 2. Since the 

catch in Area 1 was negligible (less than 5% of Area 2’s catch), and the area was fished 

without a quota imposed, this approximation seems permissible.

Area 3 has typically encompassed waters north of Cape Spencer off Alaska but 

excluding waters in the western Aleutians and in the Bering Sea. Area 3 was divided into 

subareas in 1952. This fact and the fact that the western boundary of Area 3 has changed 

from time to time presents a problem for the compilation of a consistent data series because 

season lengths have not always been the same across the finer subdivisions where geographic 

boundaries were changing. We compiled a pseudo “Area 3” data  series by summing biomass, 

catch, and effort over an area whose size remained fixed. The season length and quota we 

use covered the larger part of the geographical area. As it turns out, this approximation 

is not of great quantitative significance since the areas where changes in boundaries and 

different seasons occurred have contributed only a  small part of the larger area catches.

The estimation period chosen for this study stops in 1978. In 1978 several changes 

in management were initiated which made adding more recent years problematic. First, the 

jurisdiction extension by both the U.S. and Canada led to a separation of Area 2 waters 

into separate Canadian and U.S. waters. This in turn  led to  different management practices 

over the newly formed areas (essentially Areas 2B and 2C). Thus the data  series, including 

quotas and season lengths, split in Area 2 after 1978. In addition, Canada initiated a limited 

entry program in 1979. We might expect some structural change as a  result, adding new 

problems in return for more degrees of freedom.

4.3 .1  B iom ass D ata  (X ( t ))

Estimates of biomass have been computed on a  yearly basis and updated periodi

cally since the program began in the late 1920s. The series we use is from Quinn, et.al.,[69]
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and was published in 1985. These data were estimated using data from logbook entries over 

the entire halibut program history. The logbook data reveals the density of different year 

classes via the catch per unit of standardized gear. Each year’s catch by size is then used 

to estimate parameters of an age/size structured biological model by maximum likelihood 

methods. Population biologists regard this study to be the best source of biomass estimates 

for the Pacific Halibut.

In the econometric estimates discussed here, biomass enters the regulator’s season 

length choice equation explicitly and the industry entry equation implicitly. Thus one issue 

is whether the series we use is a good representation of that actually used by regulators over 

the whole period and by potential entrants, when assessing the profitability of participating. 

We assume that it is an unbiased representation. We also assume that biomass estimates 

refer to beginning of the season estimates Xo rather than end of season estimates X j .  This 

does not seem to make much difference to estimates; the estimating structure could be 

appropriately modified if the alternative interpretation were more accurate.

4.3.2 F ish ing C apacity  (E ( t ) )

Our measure of capacity is also derived ultimately from logbook data  compiled 

by the IPHC. These logs are used to calculate the total number of standard skates (units 

of longline gear, as discussed in Chapter 2) fished in each region. A standard skate is an 

1800 foot long groundline with 100 hooks attached at 18 foot intervals set in the water for 

12 hours. Fishermen report actual skate soak times and gear configurations and these are 

converted into standardized units.

In order to estimate the parameters of the behavioral model of both industry and 

regulator choice, we need a relatively simple and consistent measure of potential fishing 

capacity that approximates both the measure utilized by managers and a  measure of capac
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ity reflected in actual technology. This is because we are estimating actual season length 

choices by regulators and cost parameters for the industry, which are influenced by actual 

gear and capacity configurations. Our measure of fishing capacity is simply total standard

ized skate soaks fished as published by the IPHC, divided by season length. This measure 

assumes that effort intensity does not vary over the sample and that each unit of standard

ized capacity has costs proportional by their conversion factors to actual costs. Thus, for 

example, if a  fisherman utilizes 900 foot skates instead of 1800 foot skates, we assume that 

the cost of both setting and retrieving a single skate and the cost of outfitting that skate 

will be half that of a standardized skate.

4.3.3  H arvest (H ( t )) and Exvessel P rices (P ( t ))

We use published data for both total harvest in both Areas 2 and 3. These sum 

up catches of both Canadian and U.S. fishermen and are measured in dressed weight (evis

cerated and head off). Similarly, exvessel prices are the weighted average prices reported 

for the whole North Pacific halibut fishery by the IPHC. These essentially sum up total 

exvessel values derived from fish- delivery tickets and divide by the total harvest level over 

the season. We deflate nominal exvessel prices by a wholesale price index with base year 

1982 to create a series of real prices.

4.3.4  Q uotas((3(f)) and Season Lengths (T(f))

Quotas for each of the areas are published in annual reports of the IPHC. This is 

somewhat unique in fisheries management; often quotas are set and known by the regulatory 

agency and not published or recorded. It should also be pointed out that the quotas are 

targets used by the regulatory agency to choose the season length instrument. The actual 

catch H(t)  may be and usually is different from the target catch Q{t).
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Season lengths are derived from annual reports of the IPHC and from a summary 

in Skud[80]. These are expressed in days of season length and are essentially continuous 

seasons. Another reason for truncating the estimation at 1978 is that the subsequent years 

witnessed split seasons. Hence instead of having continuous seasons, a total season was split 

into several short openings. In the last few years in Alaska, for example, there have been 

three one day openings in June, July, and September, following a single two day opening in 

May. We would expect the industry behavior associated with these types of regulations to be 

different from what was observed between 1935 and 1978 when seasons ranged continuously 

from 25 to 250 days.

4.4 P aram eter Estim ates: S tatic M odel

The first model examined is the simplest representation mirroring the first model 

discussed in the previous chapter. Critical to the estimation is the assumption of instanta

neous and complete equilibrium. The process is assumed to work analogously to  the Wal

rasian tatonnement mechanism in that both the industry and the regulators make choices 

based on expectations about each other’s behavior tha t are realized each period. We refer 

to this as a “static” model because the equilibrium is simply a sequence of static equilib

ria. This model was estimated by treating the industry capacity choice equation and the 

regulator choice equation separately. We make the judgment that possible contamination 

of estimates from misspecification is more of a  problem than the potential efficiency losses 

from ignoring covariances. Since each contains endogenous variables, we use an instru

mental variables method, two stage least squares, to purge the effects of contemporaneous 

correlation between the error terms and explanatory variables.

We are interested in estimating three parameters of the system, namely the catch- 

ability coefficient q, and two cost coefficients /  and v, one each for fixed and variable costs.
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The two cost coefficients axe embedded in the industry behavioral equation. The industry 

behavioral equation essentially assumes that capacity enters each period in a manner that 

completely dissipates rents as in:

Rents  =  [PX0(1 -  e~qET)] -  [vET  +  fE].  (4.4.1)

Equation (4.4.1) presents a specification problem because there is no closed form for the 

equilibrium level of capacity. As discussed earlier, this occurs because of the functional 

forms of the production and cost functions. In particular, as long as we wish to retain 

the desirable features of the exponential production function and the simple linear cost 

function, it is not possible to solve for and isolate the level of rent dissipating capacity E q 

as a function of the other variables.

One way of addressing this problem is to give up trying to retain the exact func

tional form and instead approximate the production function with a form that allows solving 

for E.  For example, a second order Taylor’s series approximation can be written as:

H t = f ( E t ,Tt) ~  qXotEtTt 1 -  (4.4.2)

and when inserted into the rent dissipation equation, one can solve for the resulting ap

proximation to the rent dissipating level E q ,  namely:

/r ,  2  r i  VE q —  I —' _  —  ■ —

q Lit qXot qXotTt \ ‘ (4A 3)

This approximation has desirable properties for estimation since the resulting equation is

linear in the inverses of T,  X q ,  and T X o, respectively. The second order Taylor’s series 

approximation is not a particularly good approximation, however, because the production 

function is an asymptotic functional form. A better approximation can be obtained using:

rr E tT tX o t ,  \

H t = ( iA A )

This asymptotes at a catch of ATo as E T  approaches oo as does the production function in 

3.2.4. When plugged into the rent dissipating equation, this gives rise to another equation
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for E,  namely:
F X o t T t ( l - f a ) - v a X o t
^  =  T r fT S i  ' (4'4'0)

Unfortunately, this equation, while a more accurate approximation, ends up nonlinear in 

both the variables and parameters and hence becomes more difficult to estimate.

Given the undesirable outcomes of trying to use approximations, another approach 

to specifying the rent dissipating equation tha t retains the specific functional form is to 

simply estimate the zero rent equation using a nonlinear estimation routine. T hat is, one 

could define the equation as:

0 =  [PXot{l ~  e~qEtT')} -  [vEtTt +  f E t] +  et (4.4.6)

and estimate q, f ,  and v nonlinearly. The only apparently feasible assumption about the 

error structure is one which appends an additive error. One must also account for the 

endogeneity of E  and T, for example, by using nonlinear instrumental variables. We were 

successful in using this specification, particularly when appending the catch equation and 

estimating both simultaneously. A problem is that this system is extremely sensitive to 

starting values (particularly starting values for the catchability coefficient). This problem, 

in fact, led us to a third approach which we adopt for the discussion to follow.

The third approach simply estimates a linear rent dissipation equation which im

plicitly incorporates the rent dissipating capacity E.  The equation is:

0 =  T R t  -  v0E Tt -  f E t +  €t. (4.4.7)

which substitutes total revenues for the specific, but nonlinear functional form for revenues 

used in equation (4.4.6) above. This equation is an advantageous specification because it can 

be estimated as a linear system. The simplest expression regresses total revenues against 

the two variables explaining total costs, or total seasonal effort E T  and total capacity 

E.  Simple linear estimation techniques can be used to  recover estimates of the two cost
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coefficients v and /  and q can be recovered by estimating a separate catch or total revenue 

equation. These can be estimated separately using two stage least squares or as a system 

using three stage least squares. Alternatively, 4.4.7 may be rearranged in various ways. 

Two possibilities are to: (i) divide through by price and estimate a normalized form, and 

(ii) isolate E  and estimate the resulting ratio form model using nonlinear methods. Finally, 

equation (4.4.7) can be estimated in implicit form instead of isolating total revenues or effort 

or any other variables on the left hand side. The procedure is relatively straightforward. 

First define a variable called Z E R O  = 0. Then using any linear or nonlinear package (we 

use SHAZAM 7.0 [78]) to regress Z E R O  on the rent equation. This effectively assumes an 

additive error, which is about the only error specification possible in any case.

We settled on the last specification after trying and comparing all of the others 

suggested above. We found that parameter estimates were relatively stable across all spec

ifications and the implicit equation with total revenues embedded generally turns out to be 

the easiest specification to estimate econometrically. Its linearity in variables is the most 

attractive feature, particularly in light of our findings that the fully nonlinear specification 

with the catchability coefficient embedded explicitly in revenues is especially sensitive to 

starting values.2

Two simple modifications of the basic model are presented here. First, we gener

alized the variable cost coefficient by adding a time trend to account for the possibilities of 

cost increases associated with the rent dissipation process. Although fishing technology has 

not changed appreciably, we would anticipate some cost increases associated with inefficien

cies induced by the race to catch fish. Thus we define variable costs to be vq + v\ * t rather 

than a  simple constant as in our theoretical discussion. In addition, since our estimation

2 Our comparisons suggest close agreement between estimates to m  the model with total revenues and the 
catch equation estimated separately, and the nonlinear equation embedding the catchability coefficient in 
the revenue function explicitly. In fact, we first used the linear specification to generate starting values for 
the nonlinear specification but found such close accord as to make the full nonlinear specification redundant.
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period spans the disruptive World War II period, we modified the fixed cost coefficient by 

including a  dummy variable for the years 1943-1945 when the war was active in the Pacific. 

This dummy variable is multiplied by the capacity variable to represent an implicit change 

in opportunity costs. Total fixed costs thus become f  + f w * D W A R  where D W A R  equals 

one in 1943-1945.

The equation we estimate for both Areas 2 and 3 is:

0 =  T R t -  v0E T t -  V!t * ETt -  f E t  -  f wD W A R t  * E t + et . (4.4.8)

Both capacity and season length are endogenous variables (as is total revenues) and hence 

we estimate this equation using instrumental variables. The instruments we use are all of 

the predetermined variables in the system, including biomass, the quota, price, the war 

dummy, and the regulatory variable that determines season length (ln(ATo/(Xo -  Q))). In 

this formulation, this is a two stage least squares (2SLS) estimation. The error is assumed 

to be additive, and composed of random errors in expected revenues as well as a random 

error associated with the industry’s “choice” of E q .

The results of this estimation of the simple static model are presented in Tables 

4.1 and 4.2 for Areas 2 and 3 respectively. The models for both regions fit well and pro

duce coefficients tha t are generally significant and of the correct signs. W ith respect to 

magnitudes, the parameter estimates are also reasonable.3 We would expect costs to be 

of the same relative magnitudes with Area 3’s remoteness perhaps generating higher costs 

estimates. The variable costs per skate soak, evaluated in 1978, are approximately 880 in 

Area 2 and 871 in Area 3 while fixed costs are approximately 8768 per unit of gear in Area 

2 and almost 85,000 per unit in Area 3. These are within reasonable ranges. The War also 

had the expected effect of increasing the implicit opportunity cost of participating in the

3 A word about units. Price is in price per pound, catch is in millions of pounds, and effort is in thousands 
of skate soaks. The implication of this is that the cost coefficients measure thousands of dollars per unit of 
effort. For example, if vo is .01, the cost per skate soak is S10.
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Coefficient Estimate asymptotic t-ratio

VQ2 .0291" 5.17

V12 .0 0 1 2 " 6 .0 0

.7679" 2.34

fw 2 1.5941" 4.01

D.W. 2 .2 2

significant at 1 0 % level 
" :  significant at 5% level

Table 4.1: Estimates of the Entry Equation for Area 2: Static Model

Halibut fishery. The implicit opportunity cost added by the hazards of the war amount to 

an extra $1,600 per unit of gear in Area 2 and a significant $14,500 in Area 3. Management 

reports suggest that fishermen were warned against fishing in the Bering Sea during the 

War due to dangers presented by Japanese submarines.

In summary, these are satisfactory results for the first cut at estimating the pa

rameters of the behavioral model of joint industry/regulator interaction. The coefficients 

all pass a reality check in terms of signs and relative magnitudes. The models also track 

the data well over the span of 43 years, although with some evidence of autocorrelation 

in Area 3. This suggests a couple of possibilities, including problems with variables used 

(e.g., whether biomass estimates generated in the 1985 study are good proxies for what the 

industry anticipated over the period), or perhaps some issues related to dynamics. We thus 

now turn to estimates of the dynamic specification that nests the static models presented
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Coefficient Estimate asymptotic t-ratio

V03 .0071 .282

Vl3 .0015’* 2.94

f 3 4.9888*“ 2.48

fw3 14.511*“ 4.10

D.W. 1.08

*: significant a t 1 0% level 
**: significant at 5% level

Table 4.2: Estimates of the Entry Equation for Area 3: Static Model

here.

4.5 Param eter E stim ates: D ynam ic M odels

In Chapter Three a simple dynamic model was developed based on a  sluggish ad

justm ent modification of the basic static model. The essential idea for that generalization 

is that effort and season length may be expected to adjust towards the levels specified by 

the static models but that they might not reach the respective levels in each period. The 

dynamic model in Chapter Three captured sluggish adjustment possibilities with two ad

justm ent speed parameters and demonstrated the implications of various assumptions about 

adjustment speeds. For example, slow adjustment speeds and divergent relative speeds (in

dustry vis a vis regulators) lead to  slow asymptotic approaches to the joint equilibrium,
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whereas faster reaction speeds and similar adjustment speeds may produce oscillatory ap

proaches. In this section, we estimate a more general model of both industry and regulatory 

behavior which incorporates the above static model as a special case.

There are various ways one might specify a dynamic model of industry behavior 

that captures both sluggishness and the tendency towards rent dissipation. Again, we are 

hindered by the inability to solve explicitly for the rent dissipating level E0 in the dynamic 

specification. Approximations are possible but we choose to  follow a  procedure similar to 

th a t discussed in the previous section in which we estimate the parameters of an implicit 

equation using total revenues as an explanatory variable. The basic model estimated here 

assumes that total industry costs adjusts sluggishly to to tal revenues, or:

TCt -  T C t-i  =  (1 -  9)[TRt -  T C t-i]. (4.5.1)

The adjustment factor 1 — 9 measures how quickly the gap is made up between total costs 

and total revenues. If 6 =  0 then total costs adjust instantly to  to ta l contemporaneous 

revenues and this is effectively the static model discussed above. As 9 approaches one, 

adjustment is less complete and more time is taken to dissipate rents.

Lying behind to tal costs adjusting to total revenues is the notion that capacity E  

is entering and driving up total costs for any given season length. Hence we express total 

industry costs as a function of capacity as in the static formulation. Dividing the equation

through by the adjustment factor leads to the estimating equation:

0 =  T R t — +  gvo1̂ t- 1 -  2 4 ^  +  — -  (4.5.2)

fE t  , BfEt- i  fwDWARtEt  , 8fwD W A R t*Et- i  , _
1 = 8  +  ~T=e — 1=8------- + ------------------------- j r e-b e «-

This equation can be estimated using linear methods but the estimated parameters would 

be composites rather than individual parameters. The option is thus to use a nonlinear 

instrumental variables procedure. We use the same instruments as in the static estimation,
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adding lagged to tal revenues. We estimate this equation for each region, using variables 

and instruments from that region only.

The cost and adjustment coefficients from these estimations are presented in Tables

4.3 and 4.4. Again the results are very reasonable and significant. For Area 2 the variable 

cost estimates are similar to those estimated in the static model ($77.90 per skate soak), 

although the intercept is less significant. Fixed costs are also in the same range, with the 

implied non-Wartime fixed outfitting costs estimated at $1200 per skate compared with 

$767 in the static model. For Area 2, the adjustment parameter 8 is .6450 and highly 

significant. A simple asymptotic t-test shows that it is significantly different from one and 

significantly different from zero. Hence we have evidence that rents are not completely 

dissipated instantly in each period.

Area 3 parameter estimates are reasonable and comparable to the static results 

presented also. Variable costs are close to those for Area 2 ($80.57) and fixed costs are 

also closer than in the static model estimates. Implied non-Wartime fixed costs are $3,193 

which is two and a  half times that for Area 2. The adjustment coefficient is also highly 

significant, different from one and zero, and indicative of a faster speed of adjustment in 

Area 3 than in Area 2. (Recall that low values of the adjustment parameter mean faster 

speeds of adjustment.)

As a  next step, we modeled industry behavior jointly over the two regions. Since 

entry was open over the period examined and since fishermen were free to choose either area, 

we might expect some covariance between the two behavioral equations. We incorporated 

this possibility by estimating a system of two equations (4.5.2), using nonlinear three stage 

least squares. The instrument list contained all the variables used in the two stage least 

squares estimations from both areas. Table 4.5 reports the dynamic model with Areas 2 and 

3 modeled jointly. As expected, there is some increase in efficiency, with smaller variances
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Coefficient Estimate asymptotic t-ratio

V02 .0177* 1.63

Vl2 .0014** 4.59

h 1 .2 1 2 1 *“ 1.81

f w  2 1.4595** 2.49

62 .6450** 7.00

D.W. 1.90

*: significant at 1 0% level 
**: significant at 5% level

Table 4.3: Estimates of the Entry Equation for Area 2: Dynamic Model
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^03 .03327” 2.04

t>13 .0 0 1 1 ” 2.63

h 3.1930” 2.61

CO 11.633” 4.13

.4519” 4.16

D.W. 1.81

significant at 1 0% level 
sigii. '% level

Table 4.4: Estimates of the Enu- Equation for Area 3: Dynamic Model
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for most parameter estimates. In general the parameter estimates are similar to  two stage 

least squares estimates although the joint model produces parameter estimates that are 

more alike across the two regions. Variable cost estimates are $84 and $87 per skate soak 

for Areas 2 and 3 respectively and fixed cost estimates are $1,600 and $1,700. Adjustment 

coefficient estimates are slightly larger for Area 2 and slightly smaller for Area 3, bringing 

them closer together in magnitude.

A final set of estimations allowed for the possibility of covariance between regions 

and, in addition, imposed a between-region equilibrium condition. W ith sluggish behavior 

one is allowing for less than complete rent dissipation at any point in time. This could arise, 

for example, because capacity constraints on fishing capital preclude rapid adjustment in 

response to rents. A question which arises, however, is would we expect fishing capacity 

in the fleet as a whole to distribute itself across the regions to  equalize returns? Since 

fishermen could choose either region, we might expect some such process, even when rents 

in total are not completely and instantly dissipated.

One way to test this is to  examine returns per skate, or

TRt -  vqETt — vitETt , A c ,n
 j ,  ■ <4 -6-3>

If returns per skate are equalized across regions 2 and 3, we would have:

TRn — t)Q2 ETii — v t̂ET t̂ _  TRzt — vozETzt — v\ztETzt 
E2t E3t

which can be imposed as an extra condition to be estimated jointly with the two dynamic 

adjustment equations. The extra condition imposed on the system can be w ritten as:

0 =  [(TR2t — vo2ET2t — vi2tET2t)Ezt\ — [(TRzt — v^zETzt — viztETzt)E2t\ +  wt- (4.5.4)

Before running the equal returns formulation, we examined average revenues per skate over 

the period 1935-1978. This is only a  proxy of equation (4.5.3) above since it does not include
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Coefficient Estimate asymptotic t-ratio

V02 .0192’" 2.65

V12 .0015" 6 .1 0

h .9931" 2 .8 8

fw  2 1.6097" 3.49

62 .558" 5.57

D.W. 1 .8 6

VQ3 .0569" 4.79

VIZ .0007" 2.15

h 1.7327" 1.93

fw3 9.82" 4.14

03 .4728" 5.52

D.W. 2.18

*: significant at 1 0 % level 
" :  significant at 5% level

Table 4.5: Estimates of the Entry Equation for Both Areas Modeled Jointly: Dynamic 

Model
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average costs, which are to be estimated. Nevertheless average revenues were suggestive of 

a pattern  of convergence over the period. During the 1930s and 1940s, average revenues 

in Area 3 were considerably higher than those for Area 2. This is consistent with the fact 

that Area 3 is considerably more remote and subject to inclement weather than Area 2. By 

the late 1940s this divergence between average revenues had disappeared. It is likely that 

fleet expansion and development of other fisheries in Alaska helped open up Area 3 to more 

fishing pressure and hence eroded the earlier quasi-rents tha t seemed to exist.

We ran several sets of joint models including the new cross-region equation. One 

tested for a  significant difference over the whole sample between returns per skate soak. We 

found a significant positive difference favoring Area 3, but this was obviously influenced by 

the early period tha t showed up in the data  plots. Table 4.6 reports a set of estimates from 

a three stage least squares regression run over the later part (1949-1978) of the sample only, 

when plots showed a convergence of average revenues. An initial run of this regression over 

the truncated sample testing for a positive difference revealed no significant difference in 

estimated average rents per skate. Again, parameter estimates are reasonable and signifi

cant. Estim ated variable costs are $74 and $84 for Areas 2 and 3 and fixed costs are close 

to equal across the two regions.

4.6 E stim ating  R egulatory Behavior

The estimates reported above recover cost parameters and speeds of adjustment 

of the industry as revealed in their behavior over the sample period. In this section we 

discuss similar results for the regulatory sector. The basis for these estimates are the 

models discussed in Chapter Three which postulate that regulators choose season length 

to achieve targeted catches, given the level of biomass and the industry’s level of fishing 

capacity. We report parameter estimates as above, beginning with a static version of the
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Coefficient Estimate asymptotic t-ratio

V02 -.0286’"' -1.69

V12 .0024*“ 5.28

h 2.2183** 6 .1 0

62 .4741*“ 4.24

D.W. 2.25

V03 .0323*“ 6 .1 0

V13 .0 0 1 2 ** 5.34

/3 2.2841** 5.34

03 .4072** 5.34

D.W. 2.18

*: significant at 1 0% level 
**: significant at 5% level

Table 4.6: Estimates of the Entry Equation for Both Areas Modeled Jointly and Average 

Revenues Equal Across Areas: Dynamic Model
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model and progressing to  dynamic versions.

As presented in Chapter Three, regulators are assumed to  choose season length T  

according to:

T‘ = 7 E , ' a x ~ Q + n -  ( 4 ' 6 ' 1 }

This falls out of the functional form assumed for the industry harvest function and the 

assumption that T  is chosen to achieve the published quota Q(t).  We assume that the 

season length is set following the specific rule so that regulators are in their equilibrium at 

each point in time except for random errors. The single param eter to  be estimated is the 

catchability coefficient q and it is important to  note that this is the coefficient assumed by 

the re g u la to rs  to  be correct. We compare estimates derived from the regulatory behavior 

to those arising from actual catch behavior below.

This static regulatory model was first run for the two areas, treating each as in

dependent equations and estimated using nonlinear two stage least squares to  account for 

the endogeneity of E.  Instruments used included biomass, quota, price, and the regulatory 

variable ln(Ao/(Xo — Q))- Tables 4.7 and 4.8 report estimated catchability coefficients. 

These both are reasonable, with very small variances. The error plots reveal significant au

tocorrelation however, suggesting, among other possibilities, that the dynamics of behavior 

might be im portant for the regulatory structure also.

For comparison, we estimated the a c tu a l aggregate harvest functions jointly with 

the regulator equations for each area. We performed simple hypothesis tests (for each region) 

that determined tha t there is no significant difference between the coefficients estimated 

from assumed re g u la to ry  behavior in setting season lengths and coefficients from a c tu a l 

aggregate industry harvest levels. This is not particularly important here, but in simulations 

reported later, we distinguish between catch targeted by regulators and actual catch realized 

by the industry. These tests allow us to assume that the catchability coefficients are the
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Coefficient Estimate asymptotic t-ratio

<12 .0 0 1 2 “ 21.65

D.W. .84

“ : significant at 5% level

Table 4.7: Estimates of Regulatory Equation for Area 2: Static Model

Coefficient Estimate asymptotic t-ratio

93 .0 0 1 0  " 26.82

D.W. .39

“ : significant at 5% level

Table 4.8: Estimates of Regulatory Equation for Area 3: Static Model
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same.

The more interesting tests of regulatory behavior examine a model based on slug

gish adjustment similar to that used in the industry behavior equations. In particular, we 

assume that seasons are set according to:

Tt — =  (1 -  /z)
.qEt

In X qt 
.Xot

'0T 1 T  1 + Vt. (4.6.2)

In this formulation, (i measures the adjustment speed of regulators. When fj. is small or 

close to zero, regulators adjust season length quickly to the level governed by the quota rule 

and industry capacity. When p is large, the response speed of regulators is assumed slower, 

with only partial adjustment towards the quota goal.

This formulation is inherently ad hoc as was the dynamic industry model, but 

interestingly, one can derive the above form as an e x a c t optimal rule for a slightly more 

general regulator problem. Suppose that regulators are concerned about two goals in setting 

season length. One is staying close to their quota goals to ensure stock safety and the other 

is not changing the season length too radically from season to season. The latter could fall 

out of the belief that fishermen need consistent and predictable regulatory rules to plan 

effectively. Assume that these goals can be represented by a utility loss function that is 

quadratic in deviations from the quota rule season and in changes in season length, or

mm
E

Here m  and n measure the relative weights placed on each respective goal. This function 

can be minimized by choosing a season length according to:

Tt-Tt-x  =  ( l - —5— )  
\  m + n j

r i  
qE t

In X qt

.Xot — Qt.
- T t - ! (4.6.4)

Note that this is exactly the sluggish adjustment model presented in equation (4.6.2) above 

but with an interpretation based on a two goal minimization framework. In particular, note
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that as the weight m placed on remaining close to the quota goal rises relative to the weight 

n place on season stability, 1 — ja rises, implying faster adjustment speeds. In contrast, if n 

is large relative to m, season lengths will be adjusted towards the ones appropriate to the 

quota target, but at a slower rate. Hence the adjustment speed parameter can be thought 

of as reflecting the relative weights that regulators place on the two goals of coming close 

to the quota and instrument stability for the industry’s benefit.

The two dynamic equations representing regulatory behavior for Areas 2  and 3 

were estimated separately using nonlinear two stage least squares. The form shown above 

in equation (4.6.2) was used, appending an additive error and using for instruments variables 

including biomass, quota, price, the regulatory variable, and lagged season length. Tables 

4.9 and 4.10 report results over the whole sample from 1935-1978. These reveal virtually 

identical behavior between the two regions and relatively sluggish adjustment. Adjustment 

coefficients in the range of .7 suggest that regulators set season length pursuant to their 

quota goals but only achieve the targets gradually, coming within 30% of the target each 

period. Another way to interpret this is that the relative weights placed on achieving the 

season based quota goals and achieving instrument stability are 30% and 70% respectively.

These results are somewhat surprising and led us to further investigate the behav

ior of the regulatory authorities over the entire period. We ran the dynamic model over 

various different sample periods and also rail some diagnostic tests a la Harvey[46]. One 

of the diagnostic checks included a recursive estimation over the sample and Chow tests of 

parameter change. Although these are strictly appropriate when conditions dictating OLS 

hold, they appeared suggestive of a significant change in adjustment speed behavior in the 

early 1960s. We then estimated a new set of regressions that allowed for a  discrete shift in 

the adjustment speed from 1965 forward.

Tables 4.11 and 4.12 report results of the nonlinear two stage least squares spec-
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Coefficient Estimate asymptotic t-ratio

32 .0014" 5.98

M2 .7360” 5.57

D.W. 2.05

significant a t 1 0 % level 
" :  significant a t 5 % level

Table 4.9: Estimates of Regulatory Equation for Area 2: Dynamic Model

Coefficient Estimate asymptotic t-ratio

3 3 .0 0 1 2 " 8.62

Ms .7322" 8.76

D.W. 1.79

*: significant a t 1 0 % level 
" :  significant a t 5% level

Table 4.10: Estimates of Regulatory Equation for Area 3: Dynamic Model
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Coefficient Estimate asymptotic t-ratio

92 .0015’* 1 0 .0 2

1.028” 6.92

H§02 -.6424” -2.41

D.W. 2.56

’ : significant at 1 0 % level 
” : significant at 5% level

Table 4.11: Estimates of Regulatory Equation for Area 2, Allowing for Structural Change: 

Dynamic Model

ification testing for structural change in the regulators’ behavior. W hat these show are 

increases in adjustment speeds from 1965 onward. The increase in reaction speed is sub

stantial and significant a t the 5% level in Area 2 and less significant but in the same direction 

in Area 3. The post 1965 adjustment coefficients are 0.386 and 0.527 for Areas 2 and 3 

respectively. Thus the adjustment coefficients averaging about .7 over the whole sample 

in the above reported results appear to mask a different scenario, namely one with very 

sluggish adjustment before the sixties and relatively quick adjustment after.

These results raise the question, what might have happened to  alter the manner in 

which regulators operated and, in particular, why would they have changed their “utility” 

weights to emphasize quota targets rather than instrument stability? An examination of 

the history of the fishery, supported by regulatory documents and data, suggests a  plausible 

answer. As discussed in Chapter Two, the early sixties is precisely when the halibut stocks
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Coefficient Estimate asymptotic t-ratio

93 .0 0 1 2 ” 11.72

0 3 .8061” 1 0 .2 1

yu653 -.2788" -1.47

D.W. 1.756

*: significant at 1 0% level 
significant at 5% level

Table 4.12: Estimates of Regulatory Equation for Area 2, Allowing for Structural Change: 

Dynamic Model

first began to show evidence of the catastrophic collapse that erased all of the gains that 

had been won during the buildup phase starting in the 1930s. Biomass peaked in Area 2 in 

1955 and in Area 3 in 1961 and thereafter dropped precipitously to lows reached in 1974, 

13 years later. Annual reports and scientific background papers suggest that regulators 

took this fishery collapse very seriously and sought measures of regaining control almost 

immediately. Quotas were cut and seasons were reduced, but more importantly, it appears 

that regulators changed behavior so that seasons began to “track” those consistent with 

quota goals more precisely. This meant more variable seasons when industry capacity 

varied which is easily seen in Figure 2.4 in Chapter Two. Although other reasons for these 

results are plausible (including simply spurious factors or omitted variables), we find these 

explanations compelling.
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4.7  S im ulations

In this section we simulate paths of the endogenous variables from the dynamic 

model of industry and regulator interaction. We do this at this stage for two reasons. 

First, we wish to investigate the stability of the system to ensure th a t simulations generate 

reasonable results under the parameters estimated. Second, we would like to examine how 

the model that ignores the marketing impacts of regulation performs qualitatively in order 

to be able to interpret results from the more complicated model incorporating an inventory 

and exvessel price determination mechanism. Thus these simulations can be looked at 

as a model of the first part of the generalization of the Gordon model discussed in the 

introduction, namely the addition of an endogenous regulatory sector. In the next two 

chapters we will be discussing the second part of the generalization, or how the marketing 

sector is impacted by regulations and how this feeds back into the regulator/industry model. 

In Chapter Eight, we draw together the complete model in a more comprehensive simulation 

exercise.

The parameter estimates discussed above are quite consistent across various spec

ifications. As a general summary, industry cost coefficients are in accord with what one 

might expect in terms of magnitude and are also relatively similar across the two regions. 

All parameters have correct signs and low standard errors and each equation fits well with 

reasonable error patterns. The speed of adjustment parameters for the industry are stable 

while those for the regulators appear to have undergone structural change in the sixties. 

Thus among other interesting questions, one might examine how various speeds of regula

tory response affect predicted dynamic paths.

To investigate these issues, we simulated several scenarios using parameters from
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Area 2 estimations. The basic simulation model can be written in implicit form as:

Et  =  j { E t - i ,T t ; X 0,P , v , f , 9 )

Tt =  g(Tt-i,Et' ,Xo,Q,q,iJ.).

Parameters used are given in Table 4.13. This system is not easy to simulate because it 

is dynamic, nonlinear, and simultaneous. For any given set of starting values, the two 

nonlinear equations above must be solved simultaneously to generate values for Et and Tt. 

Then these are used as starting values for another simultaneous solution for Et+\ and Tt+1  

and so on. We use the General Algebraic Modeling Simulation (GAMS[10]) package to 

solve for a complete set of dynamic paths for each specification. This is done by appending 

errors to each equation above and finding the complete simultaneous solution to  the 2 N  

equations, where N  is the simulation period length, which minimizes the sum of squared 

errors. The package thus searches over the parameter space for N  values of E  and T  that 

drive errors within e of zero. Simulation runs of about 50 time periods converged completely 

and relatively quickly on a DEC Dec Station 5000-125 computer. Those of 100 periods took 

considerably longer. We thus generated some simulation runs by splicing shorter runs, using 

ending values of the first as starting values for the next and so on.

We present the below results using various adjustment speed parameters on sim

ulated phase diagrams. For the system simulated here, the simulated long run equilibrium 

is (E  = 4.846, T  =  43.58). This compares with sample mean values of E  = 4.359 and 

T  =  94.35 over the estimation period. At this equilibrium point, the ratio of the slopes 

of the isoclines is .4255. Qualitative properties of the approach to  the equilibrium depend 

upon the adjustment speeds of both the industry and regulators as discussed in Chapter 

Three. Figure 4.2 below shows simulated dynamic approach paths using parameters appro

priate for the post 1965 period where regulators were responding relatively quickly. As can 

be seen, the combined dynamics of industry and regulatory behavior generate an oscillatory 

path around the long run equilibrium with over- and under-shooting, particularly by the
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Parameter Value

V 0.0835

f .99

q .0015

Xo 91

Q 24.71

p .9079

9 .558

V .37

E - 1 14

T_i 8 .6

Table 4.13: Simulation Param eters
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Figure 4.2: Simulation with Post-1965 Parameters

industry adjusting towards the rent dissipation equilibrium.

As discussed above in the section on regulatory behavior estimates, regulators 

increased their reaction speed, or the weight placed on being close to  the quota determined 

season length, after 1965. A question that arises is thus, what behavior would have prevailed 

over the earlier period? Figure 4.3 shows the simulated dynamics with much slower regulator 

dynamics (fx = .9), assuming the same (estimated) industry adjustment speed {6 =  .558). 

Note that an oscillatory path  is still the result, although with a slightly different character. 

In particular, the over- and under-shooting is more pronounced and the regulators are not 

as close to their isocline. This reflects the obvious fact that if the decision rule places heavy 

weight on instrument stability, instrument accuracy (in the sense of season lengths chosen so 

that the target is met) will be sacrificed. This also means that targeted and actual catches 

will diverge during the approach to  equilibrium as the dynamics swing wide and away from 

the E T  combination coincident with the quota.
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Figure 4.3: Simulation with Slow Regulatory Adjustment

W hat would happen if both the industry an regulators reacted very slowly? Figure

4.4 shows simulated dynamics, assuming that p and 9 are both .9. In this case, the results 

are qualitatively similar to the case above. During the first pass towards equilibrium, the 

industry does not overshoot to the degree it does when entry dynamics are faster, and hence 

the season length does go beyond its maximum from the case above. This case ultimately 

takes longer to arrive in the neighborhood of the equilibrium, of course.

Lastly, we simulated two cases where the relative adjustment speeds diverge sub

stantially so that the approach path is more likely to be convergent rather than oscillatory. 

In Figure 4.5 below, we show the case with slow industry dynamics and fast regulatory 

dynamics (9 =  .9,p =  .1). In this case, the approach path hugs the regulatory isocline so 

tha t the quota target is adhered to almost exactly, while the industry slowly exits towards 

the long run rent dissipation level. During this long adjustment period, the industry would 

be earning losses, although this result depends upon our arbitrary initial conditions which
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Figure 4.4: Simulation with Slow Regulatory and Industry Adjustment

set E0 at a level too high compared with the long run equilibrium. The equilibrium is 

approached directly in this case and hence is classified as a proper stable node.

At the other extreme, if the industry reacts very quickly to the appearance of rents 

and the regulators react slowly (6 = .1 ,/z =  .9), a  dynamic path like th a t in Figure 4.6 will 

result. This one involves season lengths tha t are far off those that would be chosen to meet 

the targeted quota and hence actual and targeted catches diverge widely. On the other 

hand, the industry quickly approaches the region of its isocline, indicating rents close to 

zero as the system approaches the long run equilibrium. This approach path passes once 

through the industry isocline and hence the equilibrium is characterized as an improper 

node.

In sum, the param eter estimates discussed in this chapter generate reasonable 

dynamic simulations which are not only in accord with historically observed values but 

which also conform to the theory and intuition developed in Chapter Three. In the next
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Figure 4.5: Simulation with Slow Industry Adjustment and Fast Regulatory Adjustment
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Figure 4.6: Simulation with Fast Industry Adjustment and Slow Regulatory Adjustment
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two chapters, we relax the assumption that the exvessel prices are exogenous by developing 

a model of the market and its relationship with the industry /regulator dynamics discussed 

up to this point. Then, in Chapter Seven we bring all components together to discuss 

properties and simulation results from the full model.
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Chapter 5

M odeling Inventory D issipation  

and Carryover

5.1 In troduction

As discussed in the introductory chapter, the objectives of this thesis are to explore 

two important facets of contemporary fisheries that Gordon’s model of exploitation ignored, 

namely the role of the regulatory structure and the role of the market. In the previous two 

chapters, we developed and estimated a new model of a regulated open access industry, 

holding exvessel prices constant. The workings of the market were held exogenous for 

analytical convenience and to highlight the implications of adding regulations to the basic 

Gordon model. In the next two chapters, we close the structure by developing a model 

of the market for a fishery product th a t is harvested in a regulated setting. Again, for 

analytical convenience, we hold constant the rest of the system by assuming tha t effort, the 

harvest level, the biomass, and the fishing season length are given. Then the marketing 

problem reduces to the determination of an exvessel price, which in turn depends upon the

\
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workings of the wholesale sector.

To foreshadow the modeling structure in the next two chapters, we note that 

in the fishery we are examining (as well as many others), the impact of the regulatory 

structure mainly affects the market by impacting raw  p ro d u c t q u a lity  and by affecting 

the d is tr ib u t io n  o f  final p ro d u c t types. As seasons have shortened in the halibut 

fishery, raw product quality has been reduced simply by the frenzy associated with the race 

to catch fish. In 1992, for example, it was reported that in the two day Alaska opening, over 

one third of the landed fish had never been iced and over half were delivered without being 

gutted. Inevitably, it has also become common for long queues to  develop at processing 

plants so that recently caught fish sit for hours before first handling. After delivery, further 

processing has also become bottlenecked as massive amounts of fish delivered cause peak 

load problems.

W ith a compressed fishing season, there is a further impact in addition to simply 

reduced quality raw product and th a t is that a large proportion of the fish must be converted 

to processed products rather than sold fresh. W ith long seasons, it is possible to deliver more 

fish to the generally more lucrative fresh markets but with seasons of five or even two days, 

virtually all fish must be processed, stored, and marketed over the remaining marketing 

period. Processing can take many forms including canning, smoking, pickling, and freezing. 

In the fishery we examine here, the primary form of processing for the marketing period 

is freezing. Raw product is first cut into slabs and/or fillets, then flash frozen a t sub-zero 

temperatures, and then stored at close to freezing until marketed. At the point of marketing, 

the frozen product is further processed by trimming, packaging, and sometimes breading 

and cooking and so on.

The importance of this is to highlight that factors originating in the interaction 

between regulators and the industry also have an impact on the market and vice versa.
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Critical to understanding these links is the notion that exvessel prices (which drive the 

entry/exit/regulatory process) are themselves determined as a d e riv ed  dem and. In par

ticular, when most of the product is frozen or otherwise processed and held in inventory, the 

prices tha t the fishing sector receives will reflect the w illingness to  pay  of inventory hold

ers fo r a d d itio n s  to  a  stock  o f  inven to ry . This willingness to pay, in turn, is forward 

looking because it depends upon a dynamic supply plan and on an assessment of market 

conditions over the upcoming marketing period. Thus a proper modeling of exvessel prices 

in this setting must begin with a model of inventory holders’ dynamic plans and then derive 

the corresponding willingness to pay for additions to stocks held.

In the remainder of this chapter we develop an increasingly complicated model 

of optimal inventory behavior. We begin first with a stylized model of optimal inventory 

dissipation plan for a single firm operating in a single marketing period .1 Then we general

ize to an industry level model which incorporates expectations and explores the nature of 

the dynamic equilibrium path of prices and quantities. We then move to  a multiple period 

model in which periodic infusions of new additions to inventory arise and in which carry

over between marketing periods is possible. We derive a number of qualitative conclusions 

about optimal inventory behavior under various assumptions. In Chapter 6 we draw from 

these conceptual foundations in order to specify an exvessel price equation that reflects the 

wholesale market behavior modeled here.

1 We define m ark etin g  p er iod  to be the time between the end of this year’s production period and the 
beginning of next year’s production period.
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5.2 O ptim al Inventory Behavior w ith  Sem iperishable C om 

m odities

The incorporation of inventories into empirical models of both agricultural and 

industrial sectors of the economy has always proven problematic. This is significant be

cause inventory levels often seem to be important factors influencing the levels of farm-gate 

prices and wholesale orders. The difficulties in modeling inventory behavior stem  from the 

durability of inventories. Durability means that inventories may be subject to speculative 

pressures as well as more tangible marketing and production oriented motives. This in turn 

suggests th a t modeling inventory behavior must account for the forward looking dynamic 

nature of the plans of decision makers.

The nature of the dynamic plan of inventory holders depends upon the character

istics of the product being stored and of the production process. For industrial goods, it 

is generally the case that production is continuous and th a t inventories are held to reduce 

costs of stockouts. There are many models of optimal inventory holding in both the oper

ations research and economics literature. The simplest of these arrive at optimal levels of 

inventories while more sophisticated models derive closed loop policies which are functions 

of certain state variables at each point in time.

There is also a significant body of literature treating inventories and storage of 

agricultural commodities. Most of this has been developed to deed with the non-continuous 

nature of agricultural production which necessitates storing the year’s production and mar

keting during the post harvest period. Early work in agriculture examined relationships 

between storage of grain crops and prices, particularly futures and spot prices (Working[90]) 

during the marketing period. More recent work has embodied dynamic optimization frame

works to account for the forward looking nature of the problem. Most of this work has 

embodied the implicit assumption that the commodity is infinitely or a t least very durable.
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The main problem investigated is then how much of a crop to carry over between crop years 

under stochastic production. Early work of this type included a dynamic programming 

based approach by Gustafson[41] and more recent theoretical work has been published by 

Helmberger and Weaver[47], Scheinkman and Schechtman[76], and Gardner[36]. Perhaps 

the most comprehensive treatm ent of the agricultural storage and carryover problem is that 

by Williams and Wright[89].

Most of the literature on inventory behavior in agriculture deals with relatively 

durable commodities such as grains. Less attention has been paid to products that are 

semiperishable. Exceptions include some work on fruit crops such as apples (Ben David and 

Tomek[7]), blueberries (Hoelper and Marra[51]), and potatoes (Glauber and Miranda[60]). 

For the most part, empirical specifications in these examples are ad hoc, although sensible 

intuitively. For these and for the product investigated in this thesis, perishability plays a 

critical role in specification of the problem. In particular, perishable products may not even 

last long enough to engender a carryover problem. If this is the case, then the essential 

decision problem of inventory holders will be how fast to dissipate a  given initial infusion 

of inventories over a marketing period.

In the model developed here, in fact, we need a  flexible structure capable of deal

ing with a variable marketing period and hence variable need for carryover. This is the 

case because the model of regulator/industry interaction developed in previous chapters 

essentially makes season length endogenous. Hence if exogenous factors axe such that the 

harvest season length turns out to be long, the marketing period will be short and hence 

carryover will be likely, if any product is stored at all. On the other hand, with a short 

harvesting season, the corresponding marketing period will be long and inventory holding 

will be likely. But if the marketing period is very long relative to the product’s durability, 

less carryover will be likely. In the next section, we begin by developing a simple model of 

optimal inventory dissipation in a single marketing period, assuming that planned carryover
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is given parametrically. In later sections, we allow carryover to be endogenously determined 

and influenced by harvest production period length.

5.3 Inventory B ehavior W ith  P aram etric Carryover

The simplest way to begin is to examine a model in which it is assumed that the 

level of carryover is given (and possibly zero). Let the marketing period run from period 

0 to period r  and assume that there is some given initial inventory stock level 5(0) to be 

dissipated. The initial level of inventory 5(0) will be assumed to consist of an “infusion” 

of new product Jo th a t comes from the current harvest together with some carryout Co 

from the previous marketing period. We will use a  labeling convention where variables 

that are taken as parametric at a given time are subscripted and those that are choice 

variables or state variables will have time in parentheses. We assume th a t inventory holders 

take wholesale prices and costs as given and attem pt to maximize discounted profits from 

holding and selling inventory. The dynamic problem is thus:

where q(t) is sales, S(t)  is the stock level, r  is the discount factor, 0 and r  are the starting 

and closing dates of the marketing period, and t  indexes time. The inventory holder starts 

with a given stock level, Co +  Jo, and plans to have CT at time r .

We can solve this problem with a variety of dynamic optimization techniques, 

and we choose to use the Pontyragin conditions of optimal control theory. The Pontryagin 

conditions are necessary conditions that a path  of chosen variables must satisfy for the path

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .

max (5.3.1)

subject to S  = —q

5(0) =  Co +  Jo 

S ( t ) = CT,



100

to be optimal. The solution method is to form a current value Hamiltonian function and 

derive the necessary conditions from the Hamiltonian. For this problem, the current value 

Hamiltonian and necessary conditions for an interior optimum2 are:

H(S(t) ,q(t ) ,X(t) , t )  =  n(5(<),?(<)><) -  X(t)q(t) (5.3.2)

dH/dq  =  0 (5.3.3)

- d H / d S  = X - r X  (5.3.4)

dH/dX -  S.  (5.3.5)

In addition to these conditions, the endpoint conditions must be satisfied: the optimal 

solution must start with the given initial stock Co +  lo and end with the target stock CT at 

the end of the marketing period (time r).

We can characterize the solution by carrying out the differentiation indicated and 

interpreting the necessary conditions. The first condition (equation(5.3.3)) is restated as 

follows (where subscripts indicate partial derivatives):

H q = 0=> H, -  A =  0 

or n ,  =  A.
(5.3.6)

This condition states that sales must be chosen so that instantaneous marginal profits are 

equal to the current shadow value of the stock at every moment of the planning horizon. If 

a unit is sold, it is no longer part of the stock, so the instantaneous marginal return from 

selling it (n 9) must compensate for the foregone loss in its value as a unit of stock (A).

The second equation (equation(5.3.4)) is the costate equation, and it describes the 

evolution of A, the current value of a marginal unit of the stock along the optimal inventory

2It is possible that the configuration of parameters might lead to a solution with negative sales. For 
instance, if prices rise sharply towards the end of the period, it would pay to build up stock at the beginning 
in order to sell it later. If this is so, we need to employ a control restriction: g(t) >  0, Vt £  [0, r]. This 
would introduce substantial complexities, and so we choose to focus on the simpler case where parameters 
are configured so that negative sales are not optimal.
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dissipation path:

—Hs  =  A — rX => —II5 =  A — rX.
(5.3.7)

or A =  rX — II5 .

This condition states that the current marginal value of the stock must grow to cover the 

cost of holding on to the stock. If the level of the stock has no effect on instantaneous profits 

(i.e., if II5  =  0), then the cost of holding the stock is solely an opportunity cost. The rate 

of change of A along an optimal inventory path thus will be the discount rate (A/A =  r). 

In this case a marginal unit left in inventory must grow in value by a  rate reflecting the 

opportunity cost of holding capital in inventory instead of alternative investments. However, 

it is plausible to expect tha t profits are affected by the stock level. In an inventory problem, 

the effect should be negative because it costs more to have more stock on hand due to the 

need for more storage space, cooling capacity, and so on. Thus, if n s  <  0, the cost of 

holding the stock will consist of more than simply the opportunity cost of capital tied up in 

inventory, and the marginal value of the stock must grow more quickly than the discount 

rate (A/A =  r — Us/X).  W ith II5  <  0, this extra amount reflects the marginal storage costs 

associated with holding inventory.

Integrating equation (5.3.7) from some date v in the plan yields:

A(t») =  A ( r ) e - r(T- w> +  /  V ’̂ I I s W ] ^  (5.3.8)
Jv

This shows tha t the marginal value of unit of inventory a t any time (u) should be equal to 

the terminal marginal value (A(r)) discounted to time v less the integral of the discounted 

marginal cost of holding the stock (n s) . The particular terminal marginal value is as 

yet unknown but it can solved for using the fixed endpoint conditions. Still, we have the 

economic insight afforded by this condition. The path of A is determined by holding costs 

and the opportunity cost, anchored by the shadow value in the terminal period which in

turn depends on the endpoint conditions.3

3 An alternative solution method is to solve the two differential equations and find the constants of
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Thus, we have two optimality conditions: one static and the other dynamic. The 

optimal inventory dissipation plan should reflect, a t each date v, a  tradeoff between selling a 

marginal unit and leaving it in inventory (5.3.6). If it is left in inventory, its marginal value 

at some date v should reflect its opportunity cost (what it might earn if sold at some future 

date t ) less the discounted holding costs of carrying it to tha t date (equation (5.3.8)).

Finally, the third condition returns the equation of motion. The evolution of the 

inventory stock is determined by the quantity of sales:

H \  =  S  =f> —q = S.  (5.3.9)

The integral of this expression from the beginning of the period to the end introduces the 

endpoint conditions:

/  [5]df =  -  /  [?(*)]dt, or 
J o  Jo

5(0) -  5 ( r )  =  f  [q(t)]dt, or 
Jo

Co + I o - C T = f T[q(t)]dt. (5.3.10)
J o

The complete solution to this problem is thus embodied in three equations, (5.3.6),

(5.3.7), and (5.3.9), together with endpoint conditions. These three equations can be 

reduced to a system of two first order differential equations by using the instantaneous 

marginal profit of sales equation (5.3.6) in the equation of motion (5.3.9). For example, if 

integration using the endpoint conditions. For example, the differential equations can be specified to be:

A -  rA =  - n 5 -  f  [£ A (t)e“ rt] er'dt =  f  - I I s ( t )d t

^ = -3  ^ d t  =  /-g (t)d t.
So that the solution can by solving the following system for the constants of integration (ci and c2) using 
the endpoint conditions (5(0) =  C0 +  Io and 5 (r )  =  CT)

\ ( v )  =  J  - n s ( t )e~Ttdt +  c1e-rt 

5 (v ) =  j - q ( t ) d t  +  c2.

Both solution methods yield the same result, but we find the solution method in the text to be more intuitive 
both here and in the carryover problem in subsequent sections.
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ITqq ^  0, then by the Implicit Function Theorem, we can solve (5.3.6) for q as a function 

of the stock, the shadow price, and time, say q = Inserting q =  d>(5, A, t) in the

equation of motion (5.3.9) yields the system:

5=-<4(S,A ,i)
(5.3.11)

\ = r \  -  dE(S ,<KS, \ , t ) , t ) /dS.

Alternatively, the instantaneous marginal profit of sales equation (5.3.6) can be differenti

ated with respect to time, substituting out A using the costate equation (5.3.7), to  get:

4 = / ( 5 ' ? ' <) (5.3.12)
S = - { .

Either system of first order differential equations can be solved with the endpoint conditions 

5(0) = Co + Iq and 5 (r)  =  CT to  yield optimal trajectories for the optimal inventory level

S'(t;  Co + Io, CT, t ) or the optimal sales path q"(t] Co + Io, Cr ,r).

W hat does the optimal sales profile look like and what determines its qualita

tive properties generally? For this general model, various possibilities emerge and can be 

examined as follows. First, we can take the derivative with respect to time of equation 

(5.3.6):

n q(q{t),S(t),t) =  \(t).

Differentiating both sides with respect to time gives:

n „ 3  +  n , s 5  +  Ilgf =  A. (5.3.13)

The time derivative of the shadow value can be substituted out using A =  rA — II5  and 

E , =  A to get:

TTqijS "b n q55  +  Ilgt =  rllq — II5 .

If we assume that the second derivative of the profit function with respect to sales (II9?) is 

nonzero, we can rearrange this equation to obtain the time derivative of sales:

q = rUg ~ U s ~  n gl. (5.3.14)
IT??
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This gives the rate of change of the optimal sales path. Although the sign of this equation 

is indeterminate without further specification of the profit function’s characteristics, under 

reasonable assumptions, (5.3.14) is likely to be negative, so optimal sales are likely to 

decline. We can see this as follows. First, profits should be increasing in sales, so II? >  0. 

In addition, storage costs should be positive or zero, but not negative, implying that profits 

depend negatively or not at all on S, so that IIs < 0. Thus, the first term  in the numerator 

is positive and the second term is nonnegative. The cross effects of stock on marginal sales 

profits (n,s) are likely to be either positive or zero. IIgs might be positive if, for example, 

larger stocks imply lower access costs or if inventory holders sell higher quality stocks first. 

Finally, it is reasonable to assume that II is concave in q. Concavity in q implies II9? <  0. 

We have to add the additional requirement that II99 ^  0 to obtain a  solution. Thus, the 

first three terms in the numerator are likely to be positive and the denominator negative. 

If n 9i is negative or zero, q is unequivocally negative, and optimal sales decline over time.

If n ?t is positive and large it may offset the first three terms and make it optimal 

to tilt sales towards the future by selling less early and more at the end of the period. n gt 

will be positive if marginal revenues grow with time which might occur, for example, if 

prices rise over the marketing period. If this effect is significant enough, it may pay to  plan 

optimal sales so that sales rise. It may even be optimal to postpone sales completely until 

the later part of the marketing period.

In the relatively general form discussed above, the inventory decision problem is 

thus capable of predicting a variety of dissipation patterns, depending upon the nature of 

coats and the anticipated pattern of wholesale prices over the marketing period. In prin

ciple, it is possible to numerically solve for the optimal sales path and other variables of 

interest for almost any general system. In practice, it will be desirable to impose some 

structure, particularly to carry out empirical work which will necessitate explicit specifi

cation of optimal decision variables. In what follows, we explore some exact solutions to
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inventory dissipation problems with more explicit structure.

5.4 A  Linear Q uadratic A djustm ent C ost M odel o f Inven

tory  Behavior

A convenient structure for both theoretical and empirical models of dynamic de

cision making is one in which profits and the state equation are assumed to be either linear 

or quadratic or some combination. There is a rich literature on these types of problems 

and they all benefit from the restrictions on form which allow explicit dynamic solutions 

to be derived. This falls out of the fact that linear quadratic forms themselves produce 

Pontryagin conditions which are linear in the state and costate variables and hence subject 

to well known solution methods for simultaneous linear differential equations.

In this section we develop and characterize some explicit solutions for a specifi

cation of the inventory problem that is similar to models of investment in the so-called 

adjustment cost literature. This is a new approach which takes advantage of some of 

the theoretical insights derived in applications to investment problems. In addition, while 

limited in generality, these models nevertheless admit a wealth of outcomes with consider

able qualitative and quantitative range suitable to econometric estimation. This feature, 

combined with the possibility of deriving explicit dynamic solutions, makes the framework 

attractive for our dual purposes of exploring both conceptual and empirical relationships in 

the marketing sector.

Assume th a t the profit function is linear/quadratic so th a t instantaneous sales 

revenues are a quadratic function of sales. This parallels the adjustment cost literature 

which assumes that attempting higher rates of investment increases marginal investment 

costs; here attem pting to move larger amounts of inventory reduces marginal profits per unit
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sold. This is a reasonable assumption: marginal profits could fall for a variety of reasons 

including production and shipping bottlenecks, the need to discount to increase sales, etc. 

We also make the simple assumption that holding costs are linear in the existing inventory 

level. Assume in this first model that wholesale prices are expected to  be constant over the 

marketing period. Then the inventory decision problem is:

max
Jo
Jo [P<L ~  | ? ( * ) 2 ~  hS(t)]dt (5.4.1)

subject to 5  =  —q

5(0) =  Cb +  Jo 

S(r )  = CT,

where q (sales) and 5  (inventory stock) are as defined before, c is the adjustment cost param

eter, h is the holding cost parameter, and P  is the wholesale price. We ignore discounting 

in this simple model for analytical convenience. The sales rate, q, is under the control of 

the inventory holder. As in the general model considered earlier, a path of sales is chosen 

to maximize net revenues, which depend upon both the rate of sales and the level of the 

stock. The Hamiltonian and necessary conditions for an interior solution to this problem 

are:

H = P q - U 2 - h S - X q  (5.4.2)
£i

Hq =  P - c q - X - Q  (5.4.3)

- H s = X = h (5.4.4)

HX =  S  = - q .  (5.4.5)

Instantaneous marginal profits, nq, are the difference between constant marginal revenue,

P,  and marginal sales cost, cq. Marginal profits are set equal to the marginal shadow value 

of the stock, X. Because there is no discount rate, there is no opportunity cost to holding 

inventory and so the cost of holding the stock is only h, the storage cost.
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Equations (5.4.3), (5.4.4), and (5.4.5) can be solved for a path of sales that maxi

mizes net revenues. First, we integrate equation (5.4.4) over the time period t to r  to yield 

A(r) — A(i) =  h(r  — t). Then, we substitute A(f) into equation (5.4.3) to solve for sales in 

terms of the (as yet unknown) terminal shadow value, A(r) 4:

«(») =  P  ~ eAW (5.4.6)

^  -AM (54?)

Equation (5.4.7) is an expression for the optimal sales path in terms of known parameters 

of the problem and the shadow value of the stock at the terminal time, A(r). To solve for 

A(r), we substitute the sales equation (5.4.7) into the stock constraint (5.3.10), carry out 

the integration, and solve the resulting equation for A(r). This yields:

A(r) = P +  c(C V -(C o +  i°)) +  hr  
r  2

Finally, we substitute A(r) into the sales equation (5.4.7), and obtain the solution:

q”(t ; C0 +  Io, CT, t , h, c) =  +  ^ ^ t . (5.4.9)

4 Alternatively, we can solve:

A =  h — \ ( t )  =  kt  +  ci 

S =  —q — S(t) =  — f  q(t)dt  +  C2

using the endpoint conditions. We know that g(t) =  , so

sw=y[z£±iL±"]*+a
S(0) =  Co + / o ,5 ( r )  =  CT

C 2 = So, C l =  -
T

hT* + —  + (Cr - C 0 - /o )2c c

Substituting these constants of integration into S(t)  yields:

S(t )  =  A (< 2 _  tT) +  {C0 +  Io) +  (C r ~  ^° - /o)t

as the solution for 5 (i)  and
A _  Co /o — CT hr kt

_ S =  9 ( 1 ) = ----------------   ~2c c"

as the solution for optimal sales.
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If storage costs are zero, only the first term remains, so sales are simply a constant 

fraction of the stock to be dissipated. T hat fraction is basically the total marketable stock 

(beginning stock less planned carryover) divided by the number of days in the marketing pe

riod. Note, though, that the presence of storage costs shifts sales more toward the present. 

This is intuitive because more current sales allow the inventory holder to avoid payment of 

storage costs. In contrast, adjustment costs increase with the rate of sales, so adjustment 

costs motivate the inventory holder to flatten out sales. Therefore, the degree of concen

tration of sales towards the beginning of the horizon depends on the relative magnitudes of 

storage and adjustment costs, h and c. Note, however, that with the combination of posi

tive sales and adjustment costs, sales are tilted towards the early part of the sales period. 

Note also that, for this problem, the output price does not enter into the inventory holder’s 

decisions since, without discounting, the revenue that inventory holders receive does not 

depend upon the timing of sales. Figure 5.1 contains a  diagram of the optimal path of sales 

and of the stock of inventory. The slope of the sales equation is - h / c :  a higher storage cost 

and a lower adjustment cost steepens the sales function, while a lower storage cost and a 

higher adjustment cost flattens it. Note also that the optimal inventory level is convex over 

time, declining from the initial level Co 4- Io to the planned carryover CT by the end of the 

marketing period.

We can carry out the comparative dynamics of this problem more formally, and 

the results are presented in Table 5.1. The comparative dynamics show th a t changing the 

parameters h and c tilts the sales profile around the midpoint, at time where the stock 

level is c o + i q t c t  _ The interpretation of these results are discussed above: firms want to 

avoid storage costs by selling earlier, but the existence of adjustment costs motivate the 

firm to even out sales over time. Since the sales path is linear and symmetric around its 

midpoint, a change in the cost ratio rotates the path. Thus whether sales at a particular 

date rise or fall due to cost changes depends upon whether the date is before or after the
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Figure 5.1: Sales and Stocks in a Marketing Period
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midpoint. In contrast, changes in the beginning and ending stock shift the entire sales 

profile. A higher initial stock (Co +  Jo) increases sales at every time because there is more 

stock to dissipate by the end of the horizon. Similarly, a higher planned ending stock lowers

sales at every date since more must remain by the end.

The solution above is written in o pen  loop form, i.e., the problem is solved once 

over the whole horizon, [0, r]. This yields the terminal shadow price (5.4.8) expressed in 

terms of beginning and ending stocks (Co+Jo and CT) and the length of the whole marketing 

period (r). The solution equation defining the optimal sales path (5.4.9) is then simply a

function of the d a te  t  G [0 , r] with all other factors taken as given.

It is also possible to express the solution in closed loop  form, i.e., where the 

optimal sales at any date is expressed as a function of s ta te  v a riab les  a t that date. The 

procedure is as above, except that the problem is solved over some interval [t, r], t >  0. In 

this case, the terminal shadow value (5.4.8) is a function of the stock St  a t th a t date, and 

the remaining time in the horizon, ( r  — t). The problem is:

max
9

Jt ip <l ~  p ( s ) 2 -  hS(s)]ds (5.4.10)

subject to S  =  —q 

S(t)  =  St

S ( T )  =  Cr.

The necessary conditions are the same as before, but the terminal shadow value is expressed 

in terms of the stock at date t :

A(T) = P + <C V Z^1 +  M 2 jli) . (5.4.H)
T  —  I  2

We substitute this expression for A(r) into equation (5.4.7) to solve for sales a t any date s 

between i and r:

U a n  u \ S t - C r  , h(T + t) hsq ( s ; t ,S t ,T,Cr,h,c) = —  + — — --------------------------------------------------------- (5.4.12)
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Table 5.1: Comparative Dynamics Results for Sales in a Marketing Period
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Then, we evaluate at s =  t to find sales at the initial date t:

qm( t ; t , S t ,Tt C ^ h , c) =  +  j - ( r - t ) .  (5.4.13)
\ T  — t )  2.C

Note that the feedback solution is expressed in terms of two state variables, namely the 

c u rre n t stock , S(t),  and the rem a in in g  tim e, (r - t) in the marketing period.. In a 

deterministic problem, the open loop and closed loop representations give the same solution 

for a given problem. The optimal sales solution at every “beginning" date t leads to an 

inherited stock S*+£ at time t +  e so that the optimal sales a t time t +  e that is the same as 

the open loop solution for s =  f 4 - e. We will find it convenient to work only with the closed 

loop solution concept in what follows.5

Now we examine how the introduction of discounting modifies the results of our 

basic model of inventory dissipation. We would expect, of course, th a t inventory holders 

would choose a different sales path in the presence of a discount rate. If inventory holders 

discount future earnings a t a rate r > 0 , the problem becomes:

max 
9

subject to S  =  —q

S(t) = St 

S (r) =  Cr .

We find the solution for this problem by following the same steps as before. The Hamiltonian 

and necessary conditions are:

H  =  P q - ^ q 2 - h S - \ q  (5.4.15)

H q =  Q = P - c q - X  (5.4.16)

sThe closed loop solution is particularly appealing for empirical work. W ith the introduction of stochas
tics, it doesn’t make sense to refer to the start of the program (date 0) when conditions have changed by
time / due to shocks. Therefore, we will want a solution in terms of the current state: the amount of stock
on hand and the time left in the horizon. Though the solutions are exactly the same in the deterministic 
context, we want to set the stage for empirical models to follow.
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-Hs  = X — r \  = h 

H X = S  — —q.

(5.4.17)

(5.4.18)

We solve for A(s) in terms of A(r) by integrating the costate equation (5.4.17):

A(s) =  A (r)e-r(T- s) +  -  [e"r(T- a) -  l] . (5.4.19)

Then, we integrate the stock constraint to solve for A(r):

_  rc(CT -  S t) P r { r - t ) h
 ̂ ' 1 -  e~r(T-t) 1 -  e - r(T-t) r

r (r  — t )
-  1 (5.4.20)Ll -  e~>-(T-t)

Finally, we find \ ( t )  in terms of A(r) and substitute it into the sales equation (equation 

(5.4.6)) and evaluate at time t, to obtain:

— (St ~  Ct) er(r-t) _  1
h 

+  -  C
( T - t ) P  

+  -  C
r ( r  — t) 

er(r-t) _  I (5.4.21)
Lr er(T-t) -  1.

The limit of this expression as r  approaches zero is the equation for sales without a discount 

rate, equation (5.4.13). This is not obvious from inspection, but multiple applications of 

L’Hopital’s Rule can be used to show the equivalence.

When inventory holders discount future profits, they sell more at the beginning 

and less at the end than they do in the absence of a discount rate. Inventory holders would 

rather have current profits than distant profits under discounting, so that if sales do in fact 

yield positive profits, inventory holders will shift sales towards the present. The output price 

also becomes relevant to the inventory holder’s decisions when a discount rate is introduced, 

since discounted revenue is no longer invariant to the timing of sales.

Note that the rate at which that sales decline is directly related to the rate at 

which A grows: q = -A /c . Since A is growing faster with a discount rate than without one 

in order to cover the opportunity cost, the sales rate slows more quickly with a discount 

rate than without. We can calculate the rate of change of sales explicitly from the general 

equation for q, equation (5.3.14). Instantaneous marginal profits, II9, are equal to P —cq and
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the second derivative of the profit function with respect to sales, II9?, is —c. The marginal 

profit of holding stock, II5 , is —h. Using this information, we find that without a discount 

rate q =  —h/c  and with a discount rate, q =  —[r(P — cq) +  h]/c. Since marginal revenue 

(P — cq =  A) is positive, the rate of change of sales is more negative with a discount rate 

than without one. From this expression for q, we see that a higher output price, storage 

cost parameter, and discount rate encourage the inventory holder to sell more quickly, while 

a higher adjustment cost parameter mitigates those effects.

The same amount of stock is sold in either case, and sales decline more quickly 

with a discount rate than without. These facts together imply that inventory holders sell 

more stock at the beginning of the period and less at the end when they discount future 

earnings as intuition would suggest. To see this, note that the slope of the sales function is 

everywhere steeper with a discount rate. Also, the area under the sales function is the total 

quantity of stock sold. The implication is that the sales path with a discount rate must 

cross the no discount rate sales path from above. Figure 5.2 displays the path of sales and 

stock in the presence of a  discount rate. The sales path is steeper, and the stock declines 

more quickly than without a discount rate.

In summary, the fundamental result that emerges in these two cases is that marginal 

profits have to rise over time to cover the costs incurred by waiting, here interest charges 

and storage costs. In the absence of increasing output prices, this function is fulfilled by 

changes in adjustment costs over the dissipation plan. W ith higher initial sales, adjustment 

costs are large but as sales become slower, adjustment costs are reduced. This reduction 

of marginal cost acts to increase marginal profits over time. It remains to discuss what 

happens in markets where adjustment costs are unlikely to play such a prevalent role, or 

where output prices do, in fact, change over time. In the next section, we endogenize prices 

by assuming a market demand curve and equilibrium behavior on the part of an industry 

of competitive inventory holders.
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Figure 5.2: Sales and Stocks With a Discount Rate
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5.5 Industry  Equilibrium  W ith  Inventory H olding

The previous section lays out a relatively rich structure for examining the prop

erties of the path of optimal inventory dissipation that a firm might choose under the 

conditions specified for profits and costs. An important simplifying assumption is that 

wholesale prices remain constant over the marketing period. As we showed in the first 

model with a more general structure, whether profits are shifting over time is important to 

the determination of the tilt of inventory dissipation. If wholesale prices were allowed to 

vary with time, of course, profits would shift about and hence we would expect the optimal 

path to be more complicated.

It is simple in principle to modify the above model of the firm to allow for time 

varying prices. For example, we could simply assume th a t the firm expects some price path 

P(t)  which it takes as given, and we could correspondingly modify either the zero discount 

or positive discount case. This would result in a non-autonomous control problem so that 

the optimal sales path would depend explicitly on time in more complicated ways than just 

through the discount factor in equation (5.4.21). This is demonstrated next.

It does not make logical sense, however, to simply posit an y  arbitrary price path 

as an equilibrium path, particularly when one moves to a description of the industry. This 

is obvious because if, for example, every firm expected prices to rise dramatically in the 

future, then every firm would postpone sales, producing a glut in the future and a shortage 

in the present. This is clearly not in general a sustainable equilibrium. The sensible way 

to close the model thus is to posit an industry demand curve for the product sold out of 

inventory. Then an equilibrium will be sustainable if: (i) each firm taking a price path 

P ( t ) as given, makes a present value maximizing inventory path which (ii) results in an 

aggregate supply path Q(t) which not only (iii) exhausts the toted supply to be sold but 

also (iv) produces an equilibrium price path which is exactly what was expected by all
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firms in the first place. This is the basis for the following discussion of a model of optimal 

inventory decisions arising from an in d u s try  of competitive dynamic decision makers.6

Assume that n identical firms make sales plans conditioned on an arbitrary path 

of prices, P (s). Planned optimal supplies out of inventory depend on these price paths, 

which are taken as parametric to the firm. For simplicity, consider the problem without a 

discount rate. Individual inventory holders solve the following problem:

max /  [P{s)q(s) -  ^q(s)2 -  hS(s)]ds (5.5.1), J> 2

subject to S  = —q

S(t)  =  St 

S ( t ) =  Cr.

The difference between this problem and (5.4.10) is that prices are a function of time. The 

difference in the solution comes in the expression for A(r). A(r) now depends on the path 

of prices, instead of a constant price:

A(r)= c J C ^ S J  +  Afr-J)  + J _ £ p {s¥ s (552)

The solution for sales in period t  is therefore:

,-(«) =  + M lz*) + l  [p(i) _  _ i _ ^ * ( , ) * ]  . (5.5.3)

Note that in comparison with either equation (5.4.13) or equation (5.4.21), individual in

ventory holder supply decisions are shown here to be a function of the path  of future prices 

as well as other variables. W ith the assumption th a t all inventory holders have the same 

expectations of future prices, we can sum the individual decisions to arrive at a market 

supply function:

r — t 2c c p V )-^ Z T t f t n s )d s (5.5.4)

6This approach is closely related to the rational expectations literature. Our exposition is carried out in 
a model that is deterministic in order to first clarify the nature of the equilibrium and its properties under 
perfect certainty.
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Industry supply depends on the total stock of inventory existing in the industry, 

storage and adjustment costs, and the time left until the end of the marketing period. Also, 

supply depends critically on the path of future prices. The formulation of price expectations 

thus will determine the form and location of the supply function. We will examine t»vo 

plausible expectation formation mechanisms and explore their implications for the industry 

supply path.

Myopic Expectations

First, suppose tha t firms are myopic and so expect tha t prices will remain fixed at 

the current level. Then, the third term in equation (5.5.4) vanishes, and industry supply is 

simply:

(5.0.5)

In this case, industry supply is the same as the sum of the individual decisions derived 

without a discount rate and with constant prices, i.e., it is equation (5.4.13) times n. Note 

that since supply does not depend on price, the supply curve is vertical, and the level of 

supply is established as a function solely of available stock, time left in the marketing period, 

and cost parameters. The time derivative of market supply is —nh/c  J

7This follows from the derivative of equation (5.5.5) with respect to t:

■ . nS  n(St — C t) nh
Q  =  n g = _  +  _ _ ------------------

Now, the derivative of the stock at date t is exactly the optimal sales at date t, g'(t):

n _  S , - C T h( r  — t)S=-9 it)-—— ----------— .

So, substituting this S  into the Q  equation, we get:

n(St  — C T) n h ( r - t )  n(St — CT) nh 
nq ~  (r  - 1)2 "  2 c ( r - f )  (r  - 1)2 ~  ~ c

_  nh 
c

Note that this is precisely the same as the time derivative of sales derived in an open loop framework. It is 
the same because we have assumed that the stock changes optimally.
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Figure 5.3: Sales with Myopic Price Expectations

The market clearing current price is determined by the intersection of demand and 

the vertical market supply curve. Now, suppose that demand is a  linear function of price, or 

Q(s) =  a —/3P(s). In inverse demand form, P ( s ) =  a //? —Q(s)/@, or P(s)  = A —BQ(s).  We 

can take the time derivative of price to see the actual price path implied by the behavior 

associated with myopic price expectations. Since Q = —nh/c,  P  =  nh/cf3. Thus, even 

though individual firms a ssu m e that prices will remain fixed, or th a t P  =  0, prices will 

actually rise at a positive rate. The only case where prices will not rise is if demand 

is infinitely elastic, or /? =  oo. Then, the expected and actual price paths will coincide 

because firms will be correct in their utilization of a myopic expectations framework.

We illustrate this in Figure 5.3. The vertical supply function is implied by myopic 

expectations. Sales will shrink over time (from Q(t) to Q(v)),  which will give rise to 

increasing prices (from P ( t ) to P(v)).  If the demand curve is flat, prices will not rise.
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Perfect Foresight

At the other end of the spectrum, firms might forecast prices correctly. For this 

to be true, the series of optimal individual supply decisions must aggregate to a series of 

market supply functions which, in concert with demand, will generate the set of prices that 

firms expect. This is the concept of rational competitive market equilibrium that is used 

in the rational expectations literature. We derive the equilibrium sequence of prices by 

imposing the condition that market demand always equals market supply.

The inverse demand form for the market demand function is P(s ) =  A — BQ(s).  

Under perfect foresight, we can express the integral of future prices in equation (5.5.4) as a 

function of future quantities sold:

JtT P(s)ds = f tT [ A - B Q { s ) ] d s

= f f  Ads — B  f f  Q(s)ds 

= A ( t — t) — B  f t  Q(s)ds.

We can then restrict the sequence of equilibrium future prices to  be those that clear the 

market by substituting in the demand function for the prices. Write current supply as a 

function of the current price and the integral of future sales:

W )  H n ,« )  =  +  = i ^ a +

? [no -  A  W r  -  <) -  b  s ;  q (»>*)].
But, the integral of future sales is amount of stock left to be sold in the industry ( / /  Q(s)ds = 

n f f  q(s)ds = n(St — CT)), so that the equation (5.5.6) can be expressed in terms of the 

current stock:

+  nh l -T ~ t )  +  "  
T — t  2c c P ( t ) - A  + ^ n ( S t - C T) (5.5.7)

Now, we can express current supply in price dependent form,

r,/,N „ (n B  + c){St ~  CT) h(r  — t) , cQ(t)
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and current demand can be equated to current supply to yield the current market equilib

rium quantity 8:

A  -  BQjt) = A -  -  CV>. _  +  g W  (5.5.9,
t* ”  i 2 n

_  _  n ( s t -  Cr) , n h ( T - t )
=> Q ( t ) -  r _ t +  2(„ B  +  C)- ('>•‘>•10)

Now, we take the derivative of the equilibrium market quantity with respect to time to find 

the rate of change of sales as well as the rate a t which prices rise.

^  n S t , n(5< -  CT) nh
Q = — t + ' ( r - t y  - w T t j -  (0'° 'u )

Recall that, by definition, nS t = —Q(t), so substituting the definition for Q(t) found in

equation (5.5.10), we find:

± _  n(St — Cr ) nh n(St — CT) nh
(r  — t )2 2(ni? +  c) (T — t)2 2(nB + c ) ’01

■ _  — nh _  —nh
n B  + c c + n/j3'

Therefore, since the demand function is P(s) = A  — BQ(s ) and P  — —BQ,  the derivative 

of price with respect to time is:

p  =  =  _ ! *  (5.5.12)
n B  + c n+cj3

Note that in comparison with the myopic expectations case, prices rise more slowly if firms 

perfectly anticipate prices and if the demand function is not perfectly elastic (if /? >  0). 

Since firms know that prices will rise, they delay sales to take advantage of higher prices

We can also derive the equilibrium quantity of sales if the demand function shifts over time. If the 
intercept is a  function of time, A(s), then the equilibrium quantity is:

W )  -  +  $ = 3  +  TFTi -  A t  j f  w (5 .5 .8)

As with the case where prices are exogenous, if  the average of future demand intercepts is more than the 
current intercept, the current equilibrium market quantity is less than otherwise. Firms are motivated to 
delay sales until demand conditions improve. This is important for empirical work since the role of demand 
shifters and exogenous shocks can be incorporated into A(s).
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later. This phenomenon acts to tilt current sales towards the future and drive the initial 

price above what it would be under myopic expectations. Individual firms’ sales decisions, 

in the aggregate, cause their expectations to be borne out. Any other expected price path 

will cause the individual firms decisions to give rise to a price path that diverges from what 

they expect.

In summary, the previous three sections explore a conceptual model of inventory 

holding behavior appropriate for analyzing an industry that is marketing a semiperishable 

commodity. The modeling approach utilizes some simplifying assumptions which are im

portant to clarifying how various parameters affect the optimal sales and inventory paths.9 

First, a general model is examined with minimal explicit structure to show how the shape of 

the optimal dissipation path depends upon the respective roles of sales, the inventory level, 

and exogenous time varying factors in affecting instantaneous profits. Then, an explicit 

model similar to optimal investment models in the adjustment cost literature is utilized 

to derive exact dynamic solution paths. Severed variants are developed, beginning with 

the simplest which assumes fixed wholesale prices and no discounting. Simple closed and 

open loop forms for the optimal,sales paths and inventory levels suitable for estimation 

can be developed. Two generalizations add discounting and time varying prices. The last 

generalization is used as the basis to discuss industry equilibrium in a setting of identical 

competitive firms. It is demonstrated that the nature of the equilibrium depends upon the 

wholesale market demand function and on the expectations mechanisms utilized by individ

ual firms. A rational expectations solution can be developed (again suitable for estimation), 

which describes industry equilibrium time paths for sales, the inventory level, and the time 

path of wholesale prices.

9 Recall that all models assume that the marketing horizon is fixed and known, that beginning and ending 
stocks are given parametrically, and a deterministic environment.
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5.6 Carryover

The models developed above all share a common characteristic: the assumption 

that carryover and carryin are parametric. In markets where the commodity is perishable 

relative to the length of the marketing period, there may be no carryover and hence these 

models could be directly used, simply by setting C0 and CT equal to zero. If the marketing 

period is short and/or the product is more durable, carryover will be likely positive and 

endogenous rather than parametric. In this section we generalize our model of optimal 

inventory dissipation by including optimal carryover as part of the basic decision problem. 

As done above, we move to the general formulation by first exploring a series of simplified 

problems and their implications.

A diagram of the general problem as well as possible optimal sales paths is pre

sented in Figure 5.4 to introduce notation and to set the stage for the discussions that 

follow. For simplicity in this diagram assume that the length of the production period is 

negligible so tha t time can be expressed in multiples of r, defined as the length of the mar

keting period. The first marketing period starts at date 0 and ends a t date t , the second 

starts at r  and continues to 2r , and so on. At harvest time, inventories are augmented by 

an infusion of stock (I). The amount of stock (5) at the beginning of any period (S ( i r )) is 

the sum of the infusion (/,>) and the quantity carried over from the previous period (C (ir)). 

Sales (q) are simply sales out of the stock of inventory, and so as the commodity is sold, the 

quantity of stock on hand is depleted. The path of the stock is depicted as where t

is the time index.

There are several sales paths shown here. In one, shown in marketing period 1, 

there is no carryover at the end of period 1 into period 2, and sales take place continuously 

until the end of the marketing period (until 2r). In another, period 2, there is no carryover 

from period 2 to period 3 and the inventory holder chooses to sell out before the end of the

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



124

s
t
o
c
k

S*(t)

0 2x 3x 4ttx

Time(t)

Figure 5.4: Overview of Carryover

period (at time t). A more typical case is shown in period 0, where there are sales over the 

entire marketing period and some stock is carried over.

Optimal control theory is particularly suitable to generalizing to include carryover 

through the use of transversality (or endpoint) conditions. In particular, the optimal level 

of carryover can be determined by allowing the terminal value of the inventory stock to be 

a choice variable, similar to what might be done, for example, in a capital problem with a 

scrap value.

Recall tha t the transversality condition for a scrap value problem is that the ter

minal shadow value of the chosen ending stock is equal to its marginal scrap value. If the 

terminal shadow value is always greater than the marginal scrap value, the optimal choice 

would be to carry no stock beyond into the last period. The terminal shadow value of a 

unit of carryover to the current marketing period (period 0) is Ao(r), or its foregone value 

in the period 0 marketing plan. On the other hand, the marginal scrap value would be
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the marginal value of the stock in the subsequent period, Ai(r). The value of the stock in 

the subsequent period will depend on the economic conditions that are expected to unfold 

then; the optimal sales plan in the next period, given the output price and the level of stock 

infusion, will imply various values for additions to the starting level of the stock. Once we 

derive the optimal sales plan of the next period, we can infer the shadow value of an extra 

unit of carryover (or carryin) stock.

Equivalently, we can think of a (shadow) market for carryover stock. The supply 

function is the marginal cost schedule of carryout, or the marginal cost (to the current 

period) of n o t selling the stock in the current period. This marginal cost is its foregone 

marginal value, or A0(r). The demand function is the marginal benefit of carryin to the 

next period, or Ai(r). In equilibrium, the optimal carryover from one period to  the next 

will be such that the marginal cost to the period sending carryout will ju st be balanced by 

the marginal benefit of the period receiving carryin.

To illustrate the principles involved, consider the simple problem where there are 

only two marketing intervals over which to plan and wholesale prices are constant, but 

perhaps different, within each marketing interval. The inventory holder must decide in 

the first marketing period how much of the initial stock to allocate to the second interval. 

This choice of the carryover stock will then influence sales decisions in the next or second 

marketing period.

The objective function is the same as the one in the first model, (5.4.1), except 

that the condition tha t the firm must reach a given terminal stock at the end of the current 

marketing period is replaced by the transversality condition for a free ending stock. Prices 

may differ between the two periods. The problem for the first marketing period is:

max [  [Po5(s) — t:Q(s)2 — hS(s)]ds (5.6.1)
,  J> 2
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subject to S — —q

S(t)  =  S t 

C(t ) >  0.

The transversality conditions imply:

[A0(r)  -  Ai(r)]C(r) =  0 

Aq(t) — Ai(r) > 0, C(r)  >  0.

To solve and characterize the solution to this problem, first integrate the optimal sales

equation and set it equal to the stock constraint to find Ao(r):

S t -  C ( t )  =  q(s)ds = P q  — A0(s)]ds

= f  - [P 0 -  A0(r) +  h(r  -  s)]ds, 
Jt c

(5.6.2)

(5.6.3)

This is the marginal cost to the first marketing period’s program, (evaluated at some date 

t) of the last unit carried out C(r).

To solve for the optimal carryover we need to next find the marginal value of the 

carryover into the following period, A i(r). We can solve for Ax(r) with the second period’s 

problem, which is:

i:Tom the perspective of the second period, first assume that this carryin stock, CT, is given. 

Then we can solve for the shadow value of extra units of carryin stock. We solve for the
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initial shadow value by integrating A from the beginning of the second marketing period to 

an arbitrary time in the second period (from r  to s):

A (s) — Ai(r) =  h(s — r).

We integrate the state equation and set it equal to the second marketing period stock 

constraint:

CT + IT — C2t  = J q(s)ds =  j  -[Pi  -  A(s)]ds (5.6.5)

=  j f  ^ [ P i - ( h { r )  + h ( s - r ) ) ] d s ,

Ar(r) = P i - ^  + (5 .6 .6 )
l  T

This is the value (from the perspective of date r )  of an extra unit of beginning stock 

(or carryin), assuming that the subsequent sales plan is optimized. The determination of 

optimal carryover is completed by noting that C (r) must be chosen so that the marginal 

cost (to the first marketing period) of having to carry out stock is equal to  the marginal

value of this carryin to the second period. C (r) may thus be determined by setting equation

(5.6.3) equal to equation (5.6.6) and retrieving the corresponding carryout. This leaves us 

with:

2 t  — t

h r ( T - t ) , ( C 2T - I r ) ( r - t )  +  StT , e
2c +  2 7 = 1  ’ (5-6 J )

This is a closed loop form (since it depends upon St and r  — t )  and we can simplify 

the expression for carryover if we view the decision from the perspective of the beginning 

of the first period. We evaluate this expression at t  = 0 so that the carryover stock is

C ( t ) = ( P l ~ Po)T -  —  +  ( 5 .6 .8)
2c 2c 2

Note th a t the optimal carryover depends in an important way on the price differential 

between the two marketing periods. The larger the positive difference between future and
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current prices, the larger will be the optimal carryover. In addition, carryover depends 

positively on the beginning inventory (Jo +  Co) and planned end of period stock (C 2r) 

and negatively on the expected infusion between marketing periods. These and remaining 

comparative statics derivatives are reported in Table 5.2.

We can summarize the intuition underlying these determinants of carryover by 

examining the shadow market for carryover in Figure 5.5. The above determinants act 

through either the marginal cost or marginal benefit curves (or both) to determine carryover. 

For example, an increase in the first marketing period wholesale price shifts the marginal 

cost curve upwards, reducing carryover. Similarly, an increase in holding costs shifts both 

the marginal cost of carryout upwards and the marginal benefit of carryin downwards, 

reinforcing effects which reduce carryover. A change in the adjustment cost parameter 

affects both the intercepts and slopes of both equations, resulting in an ambiguous overall 

impact.

The above solution for the optimal carryover thus embodies the factors that we 

might expect to determine carryover and in a manner th a t accords with intuition. This 

solution may then be embedded back into the problem associated with maximizing the 

profits from the sales flow during the marketing period. This is done by substituting the 

solution to the carryover problem (equation (5.6.7)) into the equation determining the 

optimal end of period shadow price (equation (5.6.3)). Then, we recall th a t sales are equal 

to q(t) = (Po — A(<))/c, and the current shadow value is equal to A(t) =  A(ro) +  h(t — to). 

Therefore, sales can be written q(t) =  (Po — A (to) +  /i ( to —t ))/c.  Performing the substitution 

of A(ro) into this equation yields:

m  ! P o - P l ) r  , S, +  IT- C lr h K r - t )  
q(t) ~ c(2r - i )  +  2 r  - 1  +  ~ j T - ' (5 '6-9)

Note that this can be compared with the feedback form (5.4.13) for the simpler problem 

with carryover parametric. T hat problem (with no discounting) showed the optimal sales
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s ig n

8C*( r )  
dP i

r
2c +

8 C '{  r ) T
2 c -

T 2
2c -

(Po- P i )t +Ht 2 
2c2

> 0 i f  P i  <  P o  4- h r  

=  0 i f  P i  =  P o  4- h r  

< 0 i f  P i  >  P q +  h r

9 C "(r)
m

r
2c +

9C *(r)
dll

1
2 -

a c - ( r )  a c * W
9/o ’ dCo 1 dC 2r

1
2 +

Table 5.2: Comparative Statics Results for Carryover between Two Marketing Periods
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Figure 5.5: Shadow Values of Carryover
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path to be a simple variant of one that divides current stock by the remaining time, modified 

by a term  involving the ratio of holding cost to adjustment cost and time remaining in the 

marketing period. The absence of discounting and the assumed constant prices held revenues 

constant regardless of the sales path and hence the price level did not appear in the sales 

solution. This problem, in contrast, reveals explicitly that current sales patterns depend 

upon conditions expected in future marketing periods such as future wholesale prices, the 

infusion expected due to harvest between periods, and the future targeted carryout. In 

particular, if prices are unequal between marketing periods, the optimal sales profile in the 

first period will be tilted to produce more (or less) carryover, depending on relative prices.

Figure 5.5 also illustrates conditions that might lead to a corner solution with zero 

carryover. Generally, if the marginal cost of carryout is everywhere above the marginal 

benefit of carryin, the optimal carryover from the first marketing period to the second will 

be zero. This might occur, for example, if the wholesale price in the first period is higher 

than th a t in the second period and if the current stock were low. In this case inventory 

holders would want to market all of their available stock in the current period since the 

opportunity costs would be too high to warrant carryover. If parameters are configured 

such that the optimal choice is to carry no stock into the second period, the solution for 

sales is:

«(<) =  7 Z 7  +  <^(r - *)- (5.6.10)

It should be noted that current sales still depend upon future conditions, though implicitly 

through the transversality condition which dictates a corner solution.

Finally, it should be pointed out that the comparative statics properties may 

depend in interesting ways on when a prospective change occurs in the marketing period. 

Table 5.2 comparative statics are computed from the perspective of the beginning of the first 

marketing period. However, we might also imagine an unforeseen change in a parameter that 

occurs somewhere in the middle of the first marketing period. For example, suppose that
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the expected level of infusion that is expected from the upcoming harvest is revised. If more 

infusion is expected, we would anticipate less carryover and consequently an acceleration of 

sales in the current marketing period. However, with less time to adjust, there should be 

less responsiveness. This can be seen by using equation (5.6.7) which shows the functional 

dependence of the carryover decision on the inherited stock and on time t .  Assuming an 

interior solution, the derivative of the carryover with respect to the infusion is:

d C ( r ) _ - { T - t )

(5'6'U )

As this shows, carryover is negatively related to the infusion. Interestingly, the magnitude of 

the response depends upon the timing of the parametric change. If the change in expected 

infusion occurs a t the beginning of the marketing period, that is, when t  = 0, the change 

in carryover will be —1/2 per unit infusion change. The closer the time is to the end of the 

marketing period, the smaller the response will be. For example, as t  approaches the end 

of the marketing period, there will be no revision of carryover.

It is straightforward to extend this model to multiple periods and examine carry

over in a long horizon setting with multiple infusions and multiple marketing period prices. 

It is easiest to see how to proceed by considering how results change with the addition of 

a third period and then generalizing to many periods by induction. Thus suppose that 

there are three marketing periods denoted 0 ,1 , and 2. The transversality condition that 

pins down the amount of carryover from period 0 to period 1 is that Ao(r) =  Ai(-r), or the 

marginal cost of carryout to period 0 equals the marginal benefit of carryin to period 1. 

The marginal benefit of a unit of carryin stock to period 1 depends on the carryover from 

period 1 to period 2 (C(2r)), which we assume is endogenous in this three period case. 

Therefore, the optimal carryover from period 1 to 2 must be embedded into the expres

sion for marginal benefit (Ai(r)) for it to correctly reflect the marginal benefit of carryover 

from period 0 to 1. Similarly, the marginal cost of carrying a unit of stock out of period 

1 (AfC(l) =  Ai(2r)) depends on the carryin to that period, (C (r)). The optimal solution
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for C ( t ) can be embedded into marginal cost of carryout in period 1, Ai(2r), to correctly 

reflect the effect on period 0 of carryover from period 1 to 2.

It is straightforward to solve for the shadow values in terms of any date t in the 

initial marketing period, but for ease of presentation, we will solve them from the perspective 

of the beginning of the horizon, time 0. First, we solve for the carryover between periods 1 

and 2 in terms of the conditions in those periods. Then, we will embed that solution into 

the marginal benefit equation for a unit of stock at the beginning of period 1. Second, we 

solve for the carryover between periods 0 and 1 in terms of the conditions in periods 0 and 

1. Then, we will embed that solution into the marginal cost equation for a unit of stock 

carried out a t the end of period 1. We will then obtain the complete optimal solution for 

both carryover decisions.

For the carryover between periods 1 and 2, the marginal condition is that marginal 

cost (Ai(2r)) is equal to marginal benefit (A2(2r)), or:

c[G'(2r) -  (CV + /.)] „ hr . c[C-„ -  I ,r -  C(2r)]
1 t  ----------;---------- - p* ~ t + -----------;----------•

From this equality, carryover is expressed in terms of the conditions in periods 1 and 2:

( P l - P l ) r  />T2 , C s r - h r  +  ( I r  +  Cr)
C (2 r) =  Tc----------"2T ---------------- 2---------------- '

The marginal benefit of carryin to period 1 is:

A ,(r) =  f t - | + c^ - f; - C W l . (5.6.12)

and substituting in the optimal C(2r) for C2t  gives:

M B {  1) =  Ai(r) =  -f t -t  _  h r  +  ^  ~  h r  Ir ~  C (r)] . (5.6.13)

Now we equate this modified marginal benefit to the marginal cost of carryout from period 

0, that is A0(r)  =  A j(r), hence

MCVI) = M r )  = Ph + £  +2 T
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=  - h r +  c[Czr ~  h r ~T U  C(r)] =  Ax(r) =  M B (  1).

The optimal carryover from period 0 to 1 is found by solving this last equation for C(r):

(7(r ) =  (~^-Po +  Pi +  Pz)t  _  h r 2 ^  2(Jq +  C q )  — IT — I2t +  C3r ^  g ^
3c c 3

Now we can find the marginal cost to period 1 of carryout. We embed the ex

pression for carryover from period 0 and 1 in terms of conditions in those periods into the 

marginal cost of carryout (from period 1) equation:

M C (  1) =  Ax(2r) =  Pl +  hr  +  c[C (2 r ) (J° +  (5.6.15)
2 2 r

which, when equated to the marginal benefit of carryin to period 2

M B ( 2) =  A2(2r) =  P2 -  ^  +  c[C3t ~  , (5.6.16)
2 T

yields optimal carryover from periods 1 to 2 in terms of all the exogenous variables:

C(2r) = T( ~ ^ >0 ~  ^  +  2^2) _  h r 2 ^  (ip +  Cq) +  IT — 272t +  2C3T ^  g ^
3c c 3

Equations (5.6.14) and (5.6.17) thus yield reduced form expressions for the optimal carryover 

between the two periods. The comparative statics of the three period model are derived 

from these two reduced form equations. The results are summarized in Table 5.3.

Intuitively, these results are due to shifts in the marginal benefit and cost functions 

as they were in the two period case. Now, though, the marginal cost and benefit functions 

depend on parameters in all three periods. For example, we can look at the effects of 

price changes on optimal carryover using Figures 5.6 and 5.7. As in the case of only two 

periods, price and stock parameters enter into the intercept terms. Storage and adjustment 

cost parameters are in both the intercepts and the slopes of the marginal cost and benefit 

schedules. We show the effect of an increase in the price in the second period in Figure 

5.6. When the price in the second period rises, the marginal benefits of carryover rise in
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dCM(T) sign dC‘ (2r) sign

Po 2r
3c -

T
3c -

Pi T
3c + T

3c -

P2
r
3c + 2r

3c +

Iq +  Co 2
3 + 1

3 +

Ir 1
3 - 1

3 +

h r 1
3 - 2

3 -

c 3t 1
3 + 2

3 +

h _ r l r2
c c

Table 5.3: Comparative Dynamics Results for Carryover with Three Marketing Periods
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Figure 5.6: Carryover with a Price Increase in the Final Period

both marketing periods 1 and 2. Intuitively, the marginal benefit of carryin to period 1 

rises because the marginal benefit of carryout from period 1 rises. A higher carryin level 

to period 2 is induced because of the direct effect of higher prices. Since the marginal costs 

of carryover do not change, both carryovers increase and inventories are shifted out of both 

periods 0 and 1 into period 2. One half of the new stock in period 2 comes from period 1 

and one half comes from period 0, as the carryover from period 0 to 1 the amount from 1 

to 2.

We show, in contrast, the case where the price in period 1 rises in Figure 5.7. Then, 

the marginal benefit of carryin to period 1 rises as does the marginal cost of carrying out 

of period 1. As a  consequence, there is more carryover from period 0 to 1 and a reduction 

in carryover from period 1 to 2 than before the change. In this case, inventories are shifted 

into the middle period from the two adjacent periods. Thus, we can see that a change
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MC(1)
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C(x) C(x) C(2x) C(2x)

Carryover at time x: 
from period 0 to 1

Carryover at time 2x: 
from period 1 to 2

Figure 5.7: Carryover with a Price Increase in the Middle Period

in a parameter in one period affects sales decisions in distant periods, both forward and 

backward in time. The effects are also muted with time. It is easy to see this characteristic 

with Figure 5.6, where carryout from period 0 changes, but not by as much as carryout 

from period 1. The pervasive but diminishing effects of param eter changes are a general 

feature of this multiple period model with carryover, which we can demonstrate by moving 

to an N  period model.

The general N  period model can be constructed in a matrix representation by 

reproducing the above results for carryover stocks in terms of conditions in adjacent periods. 

In general and in any marketing period v, carryover is a function of the carryin to  the period 

before and the carryout from the period after:

We construct a matrix from a series of N  carryover decisions. Ultimately, the carryover
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decision must be conditioned on some given initial stock, St and a given terminal stock in 

period N  +  1, C(n+ i ) t - Here again, we assume that interior solutions are optimal. The 

carryover decisions in matrix form are:

C( t )

C(2t )

C ( ( N -  l)r)  

C ( N t )

C : N x l

( t - * )  ( r - t )
2 T—t  2 T  — t

0  - 1 /2

0

1/2

- 1 /2  1 /2  0

0 - 1 /2  1 /2

Po

Pi

PjV-1

P at

P:(iV+l)xl
A :N x [N + l )

(r-t)
2r- t

I(N-l)r

B :N x l IN:(AT+l)xl
F:ATx(iV+l)

u 2 r - t
C (t )

1

t|T
%

C (2r) 0
• +

C ( N  -  l ) r 0

C ( N t ) Q n+Dt
2

C:JVxl E:NX1
D:JVxN

or, more compactly:

C =  - A  • P  -  — B +  F  • IN  +  D • C +  E.
c c

(5.6.18)

(5.6.19)
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The solutions for the carryover stocks are found by premultiplying this equation by (I — D) 1, 

where I  is the identity matrix:

C =  - ( I  -  D )-1A • P  -  — (I -  D )-1B +  (I -  D )-1F  • IN  +  (I -  D )_1E. (5.6.20)
c c

The elements of the m atrix (I — D )-1 are all nonzero, so this system is fully integrated. 

Each carryover stock in the future depends upon all the exogenous variables in the system.

The above matrix representation of the solution to the N  period carryover prob

lem closes the model of optimal inventory dissipation by endogenizing carryover. The full 

solution to the problem thus consists of a sequence of dynamically optimal plans for all mar

keting periods, coupled with optimal carryovers between and into each period. It should 

be apparent th a t the optimal sales level at any given date in any given marketing period 

is truly part of a complex dynamic plan, since it not only embodies conditions within the 

particular marketing period, but also all of those expected to unfold in future marketing 

periods. Any change in parameters will have ripple effects throughout the entire system. 

For example, a change in the wholesale price or expected harvest level at some future mar

keting period v will change the whole solution of carryovers via the matrix equation 5.6.20 

which in turn will induce tilts in each of the sale profiles in all adjacent marketing periods. 

The more distant the expected change, the less will be the impact on current optimal plans; 

impacts are felt most acutely in marketing periods closest to  those expected to experience 

any change in parameters.

5.7  A n Industry  M odel of Carryover

As we did in the single period case, we can also construct an industry supply model 

with multiple marketing intervals. The solution procedure for the firm’s decision parallels 

the fixed price carryover model, and the computation of the market equilibrium price follows

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ith out p erm issio n .



140

the market model. We solve for the marginal cost of carryout and the marginal benefit of 

carryin at time r , solve for the optimal carryover level, embed the carryover level into the 

firm’s sales decision, and aggregate over firms to arrive at an industry supply function. We 

can then hypothesize an expectations formulation process to complete the specification of 

supply.

Consider a two period case first. For a  single firm expecting some wholesale price 

path P(s),  the marginal cost of carryout of the first marketing period is:

AoW =  £ M  +  f c i )  +  f I _ p (s)& ,

and the marginal benefit of carryin to the next period is:

A i ( r ) = _  £ + 1  r  P(s)ds.
T  2 T  J  7*

The intersection of marginal cost and marginal benefit yields the optimal carryover level, 

C (r):

C( t I =  TSt + (~T ~  t ^ C2r ~  / t  ̂ kT^T ~  1
11 } 2 T - t  2c c(2r — t )

( r  — t) P(s)ds — t  J  P(s)ds

We substitute the optimal carryover level into the terminal shadow value, Ao(r), and this 

shadow value into the sales equation to obtain optimal sales:

c2rS t + I t ~  O n  , h(2r - 1) 1
g( t )= 2 T - t  + - 2 T ~ + ;

r 1 r T

The market supply function is the sum of individual sales decisions:

Q(t) =  nq(t) =_  n(St + IT -  C2t )  nh(2r — t )  n
2 T  — t

+ 2c • + . (5.7.1)

The assumption about the expectations formation mechanism completes the spec

ification. W ith myopic expectations, the price term  vanishes. Alternatively, if firms have 

perfect foresight or rational expectations, the integral of future prices can be converted into
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a function of stock variables:

/•2r/ i T  r l T  r 2 T

P{s)ds =  j  A(s)ds — B  J Q(s)ds 

A(s)ds -  B (C 2r ~  Ir -  S t ),

so that the market supply function is:

n h ( 2 r - t ) nP(t)
0 ( , ) 5 ™!« ) =  - 4 r ^ + - i i  c(2r_ ()nP(t) n t 2r .

H----------------- 7Z------ rr /  A (s)d s +
c c(2r — t )J t

'n B  +  c

(5.7.2)

n(St + IT -  C2t) 
2 r - t

The market equilibrium level of sales is therefore:

Q(t) =
n

n B  + c A(t) —
1

2 T  — t

f  2r
J | j4(s)ds , n(S t + IT -  C2t) , nh(2r -  t )

+ -------2— --------+  2(nB +  c ) ' (5'7'3)

This is the fully optimal sales profile for the two period case when firms have rational 

expectations and carryover is determined optimally. The analog under parametric carryover 

is given in equation (5.5.8).

The m atrix representation of the market equilibrium solution with N  periods is a 

straightforward modification of the m atrix representation with fixed prices, or equation(5.6.19). 

The vector of prices multiplied by the length of the marketing period, P  • r , is replaced by 

a vector of integrals of the demand shifters. Also, the constant c, the adjustment cost 

parameter, is replaced by n / (n B  +  c). Defining

Q . = f ^ ) rA(a)dayi^Q, 

a 0 =  It A(s)ds
(5.7.4)

the vector a  is written:

a i

<*n
"V

a :Nx l

(5.7.5)
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and the new expression for carryover is:

72 T l f l T
C = —  A - a -  —— ----- -B +  F - I N  +  D - C  +  E. (5.7.6)

nB  + c 2 (nB  +  c) K 1

This equation can also be pre-multiplied by (I — D )-1 as was done to derive equa

tion 5.6.20. The resulting equation thus generalizes the N  period model of optimal decisions 

by the firm to a similar formulation for the competitive rational expectations industry. This, 

in combination with the reduced form expressions derived earlier for the optimal industry 

level within marketing period paths of prices and sales completes the solution to the gen

eral problem. Again, within period sales are forward looking, not only to expected demand 

shifters within the current marketing period, but also to expected parameters and shifters 

that will unfold within and between future marketing periods. This is what we would 

anticipate for a properly specified dynamically optimal plan; decisions made at any point 

incorporate all information about any future events and conditioning factors expected to 

arise.

In summary, this chapter has outlined a modeling structure suitable for analyz

ing inventory behavior for the storage of a semiperishable product. As discussed in the 

introduction, virtually all of the attention that has been devoted to inventories in either 

industrial or agricultural setting has been framed in annual, infinite horizon models under 

the assumption that the commodity is infinitely durable. The principle focus has been on 

the carryover decision, with little attention to the decisions that must be made within the 

marketing period, or the manner in which those are connected to the carryover decisions.

The model developed here is thus new in its focus and in its analytical structure. 

This chapter develops a fully integrated model of both the within-marketing period sales 

decisions and the between marketing period carryover decisions. Individual decision makers 

are assumed to make plans that are dynamically optimal, and this leads to several mod

els of the competitive inventory holding firm. The adjustment cost framework, although
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widely used in the investment literature, has not been applied to dissipation problems. The 

advantages of the linear/quadratic framework are apparent in this application; the ability 

to develop closed form analytical solutions allows exploration of a number of comparative 

statics and comparative dynamics properties of complicated scenarios.

The conceptual models of the competitive inventory holding firm lead to some in

teresting and plausible structural specifications for dynamically optimal supply plans. Most 

of these are presented in closed loop form, which is a robust specification suitable for em

pirical modeling. In the simplest examples, current sales are simply a linear function of 

the current stock less planned carryover, divided by the time remaining in the marketing 

period, plus a term  involving the ratio of costs and time remaining. Adding discounting 

makes the structure nonlinear in parameters and adds a term involving the (assumed con

stant) wholesale price. Generalizing to allow time varying prices complicates the structure 

by making current sales a  function of expected future prices.

Since not all price paths are admissible equilibrium paths, we also discuss the na

ture of an industry equilibrium with individually optimizing competitive inventory holders. 

This leads to reduced form expressions for the equilibrium paths of both wholesale prices 

and industry sales, under the assumption of an arbitrary demand curve. A critical deter

minant of the sales path is the expectations mechanism used by industry participants. We 

compare two: the naive myopic expectations process and the rational expectations process.

The second half of this chapter generalizes further by endogenizing the carryover 

decision that was assumed parametric in the first part. We move from specific to general by 

developing models of the firm and industry in models with increasing numbers of carryover 

decisions to make. The final model developed is a  multiperiod industry model with an 

arbitrary time varying wholesale demand curve, under rational expectations. This model 

lays out an analytical structure which simultaneously solves both the within marketing
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period decision of the industry with the between period carryover decisions over N  periods. 

Some illustrative comparative dynamics are presented, showing how parametric changes in 

either current or distant markets would ripple throughout the full system, affecting both 

within and between period optimal decisions. This model is, in principle, suitable for 

empirical modeling of the structure and expectations formulation process of any industry 

that is dissipating a semiperishable product over time. Its uses are potentially several, 

including recovering structural and expectations process parameters, forecasting, identifying 

whether seasonality is demand or supply induced, and so on.

In the next chapter we discuss some of the empirical issues raised by the theoretical 

model developed here. Then we draw from the conceptual model to specify an exvessel 

demand equation that is consistent with the structure here and which can be used to close 

the model of regulatory/industry interaction. This then completes the task of generalizing 

the basic Gordon model by adding both a regulatory and marketing sector and endogenizing 

season length, capacity, and exvessel price.
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Chapter 6

Empirical Estim ation o f Exvessel 

Prices

6.1 Introduction

In the previous chapter a theoretical deterministic model was developed of the 

inventory dissipation process. The model structures the factors that we would expect to 

influence inventory dissipation plans, both within and between marketing periods. The 

model is fully dynamic, incorporating variables such as future prices (or demand shifters) 

future infusions from harvesting, and planned optimal future carryovers into the current 

marketing period supply plan. Some simple closed form solutions are derived, suggestive of 

functional forms that might be used to estimate parameters of such a system.

In this chapter we discuss some of the econometric issues associated with estimating 

some of the parameters of the dynamic model developed in Chapter Five. There is an 

extensive literature already developed dealing with estimating dynamic decision models 

and we will not review this in great depth. Instead, we will briefly review some issues
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that might be confronted in estimating the complete model and suggest ways to deal with 

them. These issues would arise, for example, if we were primarily interested in estimating 

structural (cost and demand) parameters and expectations process parameters embedded 

in revealed decisions by the inventory industry about supply paths and equilibrium prices.

As it turns out, for the purposes set out in the introduction of this thesis, we are 

less interested in explicitly modeling actual inventory sales and carryover decisions than 

we are in modeling the d u a l of these plans, namely the exvessel demand price paid to the 

fishermen for additions to inventory at the beginning of the marketing period. As discussed 

earlier, in order to close the expanded version of the Gordon model, we need to incorporate 

both the impact of regulations and industry behavior on exvessel prices and also the impact 

of exvessel prices on regulatory and industry behavior.

To be conceptually consistent, we need an exvessel demand curve which is a derived 

demand and which reflects all of the factors determining equilibria in the wholesale market. 

This is complicated because, as we showed in the previous chapter, the wholesale market 

operates ideally as a completely dynamic and integrated system of within and between 

marketing period markets. As we also showed, however, it is possible to derive conceptual 

reduced forms for industry wholesale price and sales paths that predict how these integrated 

within and between period decisions would play out in observed data.

The models developed in Chapter Five are grounded in an optimal control formula

tion of the inventory dissipation process. As briefly discussed, application of the Pontryagin 

conditions to the inventory problem yields a set of two differential equations (in the inven

tory stock S(t)  and in the dynamic shadow price (A(t)) and a single static equilibrium 

condition in the control variable q(t) (or sales), the stock variable, and the shadow price. 

These can be combined in either of two ways. Chapter Five utilizes a  combination which 

generally eliminates the shadow price and reduces the system down to one describing the
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optimal time paths of the inventory stock and sales, or (S(t) ,q ( t )). Alternatively, one could 

combine the three equations in a manner that eliminates the sales variable and describes 

the solution in terms of the shadow price and the optimal inventory path, or 

As it turns out, this is a more useful conceptualization for thinking about how to derive 

an exvessel demand curve consistent with a wholesale sector th a t is dynamically optimizing 

inventory dissipation. This is because the shadow price is, a t any time, the marginal value 

of an exta unit of inventory. Along the optimal paths, A thus measures what the wholesale 

sector would be willing to pay for another unit of harvest that could be added to inventories. 

Thus, rather than focusing on the paths of the inventory stock and sales falling out of the 

wholesale sector’s dynamically optimal plans, it is more convenient to focus on the dual of 

those quantity decisions, namely the shadow price.

In the next section, we discuss some general issues tha t would be confronted when 

estimating parameters of a dynamic supply system incorporating expectations. We illus

trate using our model of the wholesale system of optimal sales, inventory, and equilibrium 

price paths. Then we focus on developing an exvessel demand curve from information 

contained in the shadow price equations for the wholesale model. Finally we discuss pa

rameter estimates derived from an econometric model of exvessel prices consistent with the 

theoretical specification.

6.2 E stim ation  Issues in M odels o f  D ynam ic D ecisions

There is a substantial literature on estimating models that are derived from the 

behavior of individuals who make dynamically optimal plans. Many of these empirical 

models consider the investment decision, where the purchase of a capital good involves 

intertemporal tradeoffs. The literature in this field has treated expectations in several ways, 

and we draw from this literature in discussing empirical implementation of the inventory
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models developed in Chapter Five.

The basic decision rule for a stochastic empirical model is a simple adaptation of 

the continuous time rule developed in the previous chapter. Instead of solving a determinis

tic continuous time present value maximization problem, we solve for the set of contingency 

plans that maximizes the expected present value of profits in discrete time. We can write 

the individual inventory holders problem as:

T

maximize £t ^  Psq(s) — -q{s)2 — h,S(s)
S(s)  s=t 2

subject to S ( s ) — S(s  — 1) =  — q(s)

S ( t - 1) =  S t- i

S(r)  = S r .

Note that we are considering a within market period model here, with the planned carryout 

ST a parameter. The sole piece of additional notation is due to the uncertain environment: 

the expectation of the future given information available at time t  is denoted St. The first 

order conditions are the derivatives with respect to the stock at every time period. We 

solve the series of first order conditions for the path of stocks that maximizes the expected 

stream of profits.

First, we substitute the equation of motion into the objective function to get the 

objective function in terms of stocks. The objective function becomes

maximize St 
S(s)

22 a[s(» - 1) -  s(«)] -  fists - 1) -  s(S)]! -  asm
L s = t  z

( 6 .2 . 1)

A representative first order condition is:

8 J /d S { v ) =  Sv{ - P v +  Pv+1 +  c[5„_i -  2S(v)  +  S(v  +  1)] - h }  = 0.

The firm chooses the stock in the current period, knowing the parameters in the current 

period, and the choice of stock implicitly determines sales. Since this is linear, we can pass
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the expectations operator through, where the expectation of any realized random variable 

is its realization, and the representative first order condition becomes

— Py +  £vPv+i +  c[£„_i — 25(u) +  £vS(v  +  1)] — h =  0. (6.2.2)

The solution for the stock at any date v is therefore

cf  ̂ £vPv+i ~  Pv Sv~i +  £vS(v  +  1) h
sw  =  Tc + --------2 Tc (6'2'3)

We solve for the current stock in terms of the exogenous variables using all of the first order 

conditions:
_  5 t  +  ( t  -  t )S t -1 Pi , St EI=i P(s) h(r  - t )

b W  -  7— ^ 1  7  +  c ( t - <  +  i )

We can also express the solution in terms of sales instead of stock levels by using the

equation of motion, q(s) =  S(s  — 1) — S(s)  evaluated at s =  t, to get an expression that is

similar to the continuous time version of the sales decision:

g(i) =  St~l  ^  +  M Z L JI +  I
y w  T - t  + 1 2c c

P StZUtP,  
Pt (6.2.5)

T  — t  +  1 .

As in the deterministic setting, sales are a function of the amount of stock left, cost terms, 

and prices. In the deterministic case, firms respond to a known path of future prices. Here, 

firms base their decisions on the path of expected future prices.

6.2.1 E xp ecta tion s

Since the sum of expected future prices in the current cycle is an important deter

minant of sales, the manner in which firms form expectations is clearly a critical element 

of the specification. The type of expectations formation process that is assumed on the 

part of the firms (e.g., myopic or rational) will alter the form of the sales decision. We 

will discuss the implications of several different expectations assumptions including myopic, 

extrapolative, and rational.
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Myopic

If firms have myopic expectations, they assume temporarily that current prices 

will remain the same throughout the marketing cycle. Then, during the next priod, it 

is assumed that firms update their expectations, solve a new optimization problem, and 

make the first decision of th a t new solution. This is a common assumption, both in the 

theoretical literature on dynamic factor demands and in many empirical applications. For 

example, Berndt, Fuss, and Waverman [8] employed a myopic expectations assumption in 

their paper, which was the first empirical piece on investment that was based on the behavior 

of individual dynamic optimizing firms. Also, Epstein [29] uses static expectations in his 

development of the dynamic dual approach to modeling investment. Though somewhat 

unrealistic (in the sense that firms probably know that prices will change) it may be a 

reasonable approximation of the truth since firms are assumed to observe new prices as 

they unfold and update their decision.

As in our earlier discussion of the deterministic (undiscounted) case, if prices are 

assumed to remain constant, the price level does not m atter to the firm since the average 

of future expected prices will be the same as the current price. Firms simply sell a fraction 

of their remaining stock, modified by storage and adjustment costs, using the decision rule:

s t - i  ~  S t h(r  - 1)
« W -  r - i + l  + — £ ~ -  (6'2'6)

Under these assumptions, supply is perfectly inelastic with respect to price. The appropriate 

estimation procedure in this case would be ordinary least squares, though one would not be 

able to identify h from c separately. There would not be a  simultaneous equation problem 

in estimating the supply decision, since the system is recursive, where the remaining stock 

determines the amount of sales in the supply equation, and sales determine price in the 

demand equation. Demand can take on any form and a  single additive error term  can 

be appended to the supply equation, justified by random optimization errors and random
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errors in the data  (see Epstein and Yatchew [30], e.g.).

For estimation with aggregate data, the market supply function would be assumed 

to be the sum of individual supply functions. The econometric model would then be:

( S )  n , ( ( )  =  % £ * !  + 2 ^  +  0 ,,
( 6 .2 . i )

(D ) P{t)  =  g(nq(t), demand variables) +  et.

Thus, if firms are believed to employ myopic expectations, the estimation of the composite 

parameter h/c  is a simple m atter and the econometrician has considerable flexibility in 

specifying demand.

Extrapolative

As an alternative expectations process, firms may expect prices to increase at a 

particular rate from the current price so that the expected future price is a linear function 

of the current price (e.g., £tPt+1 =  &Pt). This is reasonable with a discount rate and a 

razor’s edge model in which prices rise according to the discount factor and storage costs.1

If inventory holders expect prices to rise at a constant rate, it is simple to calculate 

the sum of expected future prices. The form of expectation is:

£tPt+\ =  oiPt ,

so that the expectation of a price in the future is

£tPt+s = cx’Pu

and the sum of future expected prices is therefore

s= t s= t 1 “

’ See, for example, the model in Rosen [71].
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The decision rule with this expectations mechanism is then

V +1 -,( t)  =  a ‘~ 1 - S r  h ( T - t )  h
^  '  r - t  + l  2 c c a ( 6 .2 .8 )

In this case, sales are a function of the stock left, the current price, cost parameters, and 

the expectational parameter a.

The appropriate estimation procedure depends upon what we assume about the 

demand side. If demand is perfectly elastic, we have a triangular system where the location 

of demand determines the price, and price determines the quantity supplied. Supply in this 

case can be estimated as a single equation.

If demand is responsive to price, there is a simultaneous equation problem since 

both quantity and price are endogenous in both equations. One could then employ either 

a single equation method (e.g., instrumental variables, limited information maximum like

lihood) or a systems method (e.g., three stage least squares, full information maximum 

likelihood) to estimate the parameters of the supply (and demand) equations. The econo

metric error terms are simply appended onto each equation for estimation. Again, the 

justification is an appeal to  random optimization errors and random errors in the data.

In summary, if extrapolative expectations are assumed, the econometric model 

with perfectly elastic demand is:

(S) «?(<) =  [ ^ ] + w .

(D ) P ( t ) =  ^(demand variables) +  et .

The econometric model with price responsive demand is:

( S )  n 9 ( i )  =  = % j ^  +  ^  +  = ? ! ^ ] + u . ,

(D) P(t)  =  g(nq(t), demand variables) +  et .

(6.2.9)

( 6 .2 .10)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



153

Rational Expectations

We may also assume that firms have rational expectations, the stochastic analog 

of perfect foresight. Under this assumption, firms use all of the information available to 

them to predict the future; in particular, they are assumed to know (or behave as if they 

know) the econometric model, including the parameters of the relevant stochastic processes 

and the parameters tha t guide the decisions of agents in the model. If firms form rational 

expectations, they do not make forecast errors that are correlated with any information 

available to them. This follows because if forecast errors were correlated with known infor

mation, firms could use that information to improve their forecasts. These underpinnings 

of rational expectations have been used to develop econometric models that can get at the 

“deep structural parameters” that guide economic decisions in a  dynamic context.2

Rational expectations models have been have been widely studied following M uth’s[62] 

original paper introducing the idea. There are essentially three strategies to choose from 

when estimating a  dynamic rational expectations model: the solution method, the Euler 

equation method, and the forecasting model method. In the solution method, the param

eters of the relevant stochastic processes are used to solve for the path of future expected 

variables in terms of past values. The parameters of the stochastic processes are thus em

bedded into the decision rule, and the decision rule is estimated along with the stochastic 

process.3 In the Euler equation method, only the first order condition is estimated. The 

future (unknown) variables in the Euler equation are replaced with their actual values and 

the ensuing econometric difficulties are treated with an instrumental variables technique.

2Lucas[57] made the case that estimating reduced form equations (e.g., demand curves) was not as useful 
as estimating the parameters of the root choice functions (e.g., utility functions). Since policy changes affect 
choices at the structural level, reduced form parameters, which are composites of structural parameters 
(including expectations] parameters), are are not appropriate to use in policy analysis. The “deep structural 
parameters” are then the parameters of root choice functions such as expected utility and present value of 
profit functions as well as parameters of expectational processes.

3 Much of the theory was developed by Hansen and Sargent (See [45,44,75]). An application of this method 
is found in Sargent[74].
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In the forecasting model method, a forecasting structure is estimated outside of the struc- 

tral equation estimation and then forecasts of future variables are substituted in. We will 

explore these methods in the next sections.

S o lu tion  M eth o d s Methods which ultimately derive explicit functions for decision vari

ables depend on a linear/quadratic problem specification and also on whether demand is 

downward sloping or perfectly elastic. If demand is perfectly elastic, the price can be mod

eled as following a stochastic process where the firms know the parameters of tha t process. 

If the quantity demanded depends on price, though, there is a simultaneous equation prob

lem with estimating current supply and demand because firms have to predict the path of 

prices that comes from the intersection of supply and demand in the future. We can develop 

a general model tha t includes both possibilities. First, we model an inventory dissipation 

system where demand is responsive to price and then show the restriction that leads to the 

simpler form where demand is perfectly elastic.

If demand is downward sloping (e.g., P ( t ) =  A  — Bnq(t ) +  7 Y( t)  where Y  is a 

new shifter variable), the concept of rational price expectations must be based on market 

clearing assumptions. In particular, firms’ supply decisions are based on an expected path 

of future prices, and their optimized supply decisions must act in concert with demand to 

match those expectations. In this case, the solution is like the perfect foresight solution 

of the previous chapter: future market clearing is assumed by using the expected market 

demand function in the sum of expected future prices. The sum of future expected prices 

is:

EJ=t p s = £t £ I= t A  -  Bnq(s)  + 7 Ys + es

( r  — t + 1)A -  BnSt  q(s) +  £t £ I _ t[7*i +  e j.

Since the sum of current and future sales is expected to exhaust the current stock (minus
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carryover), (ft ]£I=t q(s) =  St - 1  — ST) the sales decision is reduced to: 

'n B  + c S t - i  — S-q(t) = , h ( r - t )  , Pt A  f t E J = t m  
+ — “  + 7 ~ 7 ~  c ( r - i  + l) ' (6'2'n )c r  — f +  1 

Current individual supply, in inverse form is then:

P « )  -  c ( f ) - (nB + c)(St- \  -  5r) -  + A + e ‘ a -  ^  (6.2.12)
w w  r - < + 1 2 r - t + 1  v '

It remains to specify the stochastic process of the demand shifter(s), Y(s), and 

the stochastic shock to demand, es . For example if we assume that the demand shifter (say 

income) follows a first order autoregressive process and the demand shock is white noise, 

then the stochastic assumptions are:

Ys =  pYs_i +  ut, u ~  JV(0, cru) 

e~JV(0,<7£)

and the supply equation (6.2.12) can be written:

P(t) = cq(t) -  f rg + ffiff -S r?  -  M z^i +  A+

t+1 +  . <=t_,r-H -1 * 1-p

(6.2.13)

The appropriate econometric procedure is then to estimate this equation along with the 

stochastic process for the exogenous demand shifter(s) using maximum likelihood and im

posing the cross equation restrictions that the ps in each equation axe equal:

P(<) =  C,(t) -  - V  -  M y a  +  A  +  ^  2

Yt = pYt-i  + ut .

Alternative stochastic assumptions would not change the fundamental nature of the esti

mation.

If demand is perfectly elastic, firms’ supply decisions do not affect price and the 

path of future prices is determined by an independent stochastic process. For example, 

if prices follow a first order autoregressive process, the firm’s forecast of the future would
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depend only on the current price (as it did in the previous section where firms are assumed to 

make extrapolative predictions). In this case, the parameter that determines expectations 

is assumed to be the same as the one that guides the true stochastic process. We gain 

efficiency (and precision of identification) by estimating the decision rule along with the 

stochastic process. The system to estimate would then be:

(S) n4(() = M £ ^  +  ! ^ + ^ [ ^ ] + „ ,

(.D ) Pt =  a P t-i  +  ct

In sum, the above discussion outlines the solution method for rational expectations 

econometric models of supply and demand under two hypotheses about demand: either 

perfectly elastic or linear. The perfectly elastic case is nested within the linear model, since 

the param eter B  is the slope of the inverse demand function. Simple analytic solutions are 

easily computable if the stochastic process guiding the price (for the perfectly elastic case) 

or the exogenous demand shifters (for the linear demand case) are first order autoregressive.

If prices (or other shifters) follow a second order or higher autoregressive process, 

the formula becomes complicated. Sargent[75] derives expressions for forecasts of the future 

when the forecast horizon is infinite with more general processes. He calculates the infinite 

sum of future expectations expressed in terms of a parameters of the polynomial lag function 

associated with past exogenous variables. This method does not seem as easy to use in our 

case since we have a finite sum for each market period. It is straightforward though tedious 

to calculate in d iv id u a l future period predictions using the Weiner-Kolmogorov formula of 

least squares projections, however. For example, in the second order case, we have:

(1 -  A il) ( l  -  A2L)x t =  e*

(1 — ( A i  +  X2)L +  A i A 2 T 2 )a:t =  e t  (6.2.16)

x t  = a iit-i + &2Xt-2 + e<, 

where a i  =  (Ai -f A2 )and <*2 =  —A1A2 .

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



157

The polynomial in the lag operator is (1 -  ct\L — a 2L 2) or a{L).  The Weiner 

Kolmogorov prediction formula is that the prediction k steps ahead of the current date is:

PtXt+k =
1

(1 -  Ax£ ) ( l  -  X2L)x t
V { l - X 1L ) { l - \ 2L)Lk.

where the subscripted +  means “ignore negative powers of L” , and Ptxt+k means the pre

diction at date t of x  at date t  +  k. For a one step ahead prediction, we have:

1
PtXt+i — (1 -  A iL)(l — X2L)x t

L ( 1 - A i T ) ( 1 - A 2L ) I J

Now, we re-express the denominator and multiply through by L to see which are the negative 

powers of L to ignore.

=  +  +  • • • ) ( !  +  A 2L +  X\L2 +  A \ L 3 +  . . . )  =

(L 1 +  Aj +  A\L  +  A\ L 2 -(-.. .)(1 +  A2L +  X\L2 +  A +  . . .)  =

Ai(l +  AXL +  X\L + .. .)(1 +  AiL  +  A ^i2 +  . . .)  +  L~l { 1 +  A2L +  A^T2 +  A fl3 +  . . . )  =

(l-AiZjli-Aai) +  +

Now, ignore the negative power of L, and rewrite the prediction formula as

A i  , A 2
PtXt+i = +, ( 1 -  A ^ H l -  A2L) 1 - A 2£ 

and hence the expression for the one step ahead forecast of x  is:

PtXt+i =  (Ai +  A2 -  AiA2L)xt,

(1 -  XxL){l  -  X2L)x t

or

P tX t+ i — c t i x t  +  a 2X t~  i 

which accords with our intuition. The two and three step ahead forecasts are:

PtXt+2 =  ( A 2 +  A 2 -f A i A 2 ) x t  — (AiA2)(A2 +  A ^ x t - i  

PtXt+3 = (Af +  A| +  AiA2 4- A 2 A 2 ) x t  — (AiA2)(A2 +  A| +  AxA2)®t_i.
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In principle, these could be computed for each of the remaining periods and summed up in 

a complicated expression. Estimation using higher order processes in the solution method 

over a finite horizon is obviously difficult, though.

Another and much simpler option is to assume rational expectations, but produce 

the forecasts of the exogenous variables (prices, income, substitutes) outside of the decision 

rule and substitute those predictions into the sum of expected future variables.4 This 

method would permit the use of more sophisticated forecasting techniques (e.g., state space, 

VAR, etc.). The forecast error would have to be acknowledged and incorporated into the 

variance/covariance matrix of parameter estimates. This method would require, at every 

period, using just the information up to that period (though with parameters estimated 

from the whole series).

E u ler E q u a tio n  M e th o d s  Another estimation option, developed by Hansen and Sin

gleton [45] and first implemented by Pindyck and Rotemberg[68], is to estimate the first 

order condition.5 This method has emerged because it has been recognized that, although 

linear/quadratic problems can be solved explicitly, more general and flexible specifications 

of the objective function do not lend themselves to an explicit solution. Since many of the 

important parameters are contained in the first order conditions, an estimation of the first 

order conditions should yield valuable information. The critical insight of the econometric 

Euler equation method is that, if the firms have rational expectations, the errors made in 

implementing the first order conditions are, in fact, forecasting errors which will be un

correlated with information known at the time. Thus under rational expectations, we can 

expect that firms will not persistently make the same mistake.

The problem with estimating the first order condition is that it contains unob

4This method was used by Goodwin and Sheffrin[38] in an application to the chicken broiler industry.
5These articles spawned a substantial literature, both in investment and finance. See, for example, 

Shapiro[77],
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servable variables, namely the firm’s expectation of the stock in the subsequent period and 

the expectation of the future price (see equation (6.2.2) for example). Furthermore, the 

firm’s expectation of the subsequent stock should be highly correlated with the choice of 

the current stock and thus the problems of a missing variable and simultaneous equations 

bias must be overcome before consistent estimators can be found. The solution proposed 

by Hansen and Singleton is to substitute the realization of the future stock in place of its 

expectation and to use an instrumental variables technique to eliminate the simultaneity 

problem. In order for the consistency of the estimator to be proven, the econometric error 

must be orthogonal to the instruments used. Since expectations are assumed to be rational, 

any information known to the firm will be uncorrelated with the forecast error. Therefore, 

any information available to the firm in the current period can be used as instruments in 

estimation.

The econometric procedure used to obtain the estimates is now fairly standard.6 

The objective to be minimized is a weighted sum of squared errors, where the error is the 

forecast error associated with the first order condition. The weighting m atrix is made up 

of the chosen instruments. If e is the error term (independent and identically distributed), 

and W  is a nonstochastic m atrix of instruments (with at least as many instruments as pa

rameters), the objective to be minimized is e 'W {W 'W )~ 1W'e.  Consistency and asymptotic 

normality of this nonlinear instrumental variables estimator has been proven by Amemiya[3]. 

Some of the assumptions regarding the error term and instruments have been relaxed by 

Amemiya[3] and Hansen[42j. Amemiya allows for a system of equations, with errors corre

lated with each other within the same time period. He terms this estimator nonlinear three 

stage least squares, since it could be used in a system of equations with a  non-diagonal 

covariance matrix. Hansen generalizes the estimator further, to permit conditional auto

correlation and heteroscedasticity and correlated regressors, and terms his procedure the

6This section borrows substantially from Cameron [12].
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Generalized Method of Moments. Pindyck and Rotemberg note that nonlinear three stage 

least squares is a special case of the Generalized Method of Moments, and choose to use 

nonlinear three stage least squares in their estimation.7

As an illustration of the mechanics of the Euler equation model, consider the 

decision to be made in period t for our inventory model. The first order condition for this 

period is:

£tPt+i - P t - h  + c[5(i -  1) -  25(<) +  £tS(t  +  1)] =  0, (6.2.17)

so that the optimal choice of the current stock, S(t),  is

£tPt+1- P t h S ( t - l )  + £tS(t  + 2)
5 (0   -------- ------ +  -  + -------------- -------------- . (6.2.18)

The firm knows the current price and the inherited stock, 5 t_ i, but does not know the 

future value of the stock, S(t  +  1) or the future price, Pt+1 and hence it must forecast their 

values. The Euler equation is assumed to hold exactly, but the econometrician uses a  proxy 

for the expected value of the future stock, £tS(t  +  1) as well as the expected future price in 

the estimated equation. The difference between the expected value (used by the firm) and 

the actual value (observed by the econometrician) thus plays the role of the econometric 

error and the error is therefore:

-[S (f +  1) — £tS(t  +  1)] +  [Pt+1 — (6.2.19)

The future stock, S(t  + 1 ), is a choice variable. It will be chosen optimally in the subsequent 

period as a function of S(t),  as well as the subsequent stock, S(t  +  2). We have already 

solved the Euler equation, so we can see explicitly what it means to substitute the actual 

S(t +  1) for the expected S(t  +  1). The realized value of the chosen stock in the future 

depends on the conditions in the future. Expectations will be newly formed, given the

7 Hansen and Singleton also provide a test of overidentifying restrictions. In order to estimate the models, 
one only needs as many instruments as parameters. Additional instruments should also be uncorrelated with 
the error term, and should not substantially change the parameter estimates.
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realizations of what occurs in the future period, t +  1, so that 

'ST -  (r  - t  -  1 )St
S { t  +  1) =

T — t
Pt+1 +  £t-r i  E I= < + 1 P { s )  h { r  — t  — 1)

c(r — t) 2c

The ex p e c te d  value  of the future stock, however, depends on current conditions: 

'ST -  (r  - t -  1 )St£tS(t  +  1) =
T — t

S tP t+1 1 £ t Z Ts=t +i P ( s )  h ( r - t - l )
c c ( r  — t )  2c

If price follows a first order autoregressive process, the difference between the expected and 

actual values can be calculated:

Pt+1 = a Pt + Ct+i 

£tPt+i = ocPt 

Pt+i — StPt+i = cj+i.

The diflference between the actual future stock and the expected future stock is:

Pt+i _ / £tPt+\ \ £t+i m=<+i P(s) £t P(8) 
c c c ( t  — t ) c (r — t )

Simplifying,

S(t + l ) - £ tS( t  + l) = - €- ^ -  +
c Pt+1

1 — a T — t

1 — a
a — a , T ~ t + 1

1 — a

or

+  ei+i
1 — a .T — t

1 — a

Finally, the econometric error is

f*+i 1 — a T  — t

1 — a + q+ i

or

e < + i  c

~ T  +  2
1 — a T  — t

1 — a

In the estimation procedure proposed by Hansen and Singleton, the exact form of the 

econometric error remains unknown. The econometric error is written as the Euler equation,
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with the realized future stock and price substituted for the expected future stock and price. 

The expectational error is made to be uncorrelated with information known by the firm. We 

know from this example that the source of the econometric error is the stochastic process of 

the exogenous variable. Here, the error is heteroscedastic, so that efficient estimation must 

take the heteroscedasticity into account.

The Euler equation techniques have seen increasing use because dynamic rational 

expectations models can be estimated with relative ease, and without the stringent func

tional form requirements of other methods. However, this technique has a few shortcomings. 

First, there may be a significant information loss from not using the transversality condi

tions that come in to the solution when the first order conditions are solved. It is assumed 

that the firm is still using the terminal conditions when it solves for its optimal decision, 

but the econometrician does not incorporate those terminal conditions into estimation.8 

Second, there may be randomness which is not attributable to forecast error. For instance, 

there may be shocks to technology or preferences that are correlated with the instruments. 

This misspecification can lead to serious misinterpretation of the parameter estimates.9 

Third, Rotemberg [72] notes that even though the consistency of the estimators does not 

depend upon the choice of instruments, different choices yield widely different estimates. 

This feature does not engender confidence in the estimates. Rotemberg suggests using a 

series of instruments to determine a band of point estimates.

To summarize, the solution method is both more complicated and more restric

tive (it requires a linear/quadratic objective function) than the Euler equation method, 

but permits the use of information from the transversality condition. The Euler equation 

method is easier to implement and allows for a more general functional form, but does not 

ultimately provide information about the expectational process and sacrifices potentially

8This weakness is explained by Pindyck and Rotemberg, who considered the efficiency loss to be 
acceptable.

9Analysis of this problem was carried out by Garber and King[35].
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valuable information from the transversality condition.

6.3 M odeling the E xvessel D em and Curve

As discussed at the beginning of this chapter, the dynamic shadow price from the 

fully optimized wholesale inventory dissipation model measures at every date the marginal 

value to the wholesale sector of an additional unit of stock or inventory. In a fishery where 

some fish are sold into a fresh market and some into a  processed market (and perhaps 

both) during the harvest period, a question arises as to w h en  one should be estimating the 

exvessel market clearing process. Should the market be modeled at the beginning of the 

harvest season, or at the end, or throughout the harvest period?10 These questions can be 

considered by examining Figure 6.1 which separates a calendar year into a fishing season 

of length T  days, and a marketing period of length r  days. In a  typical fishery, harvests 

during most of the early part of the harvest season would be sold into the fresh market. At 

some date, however, it is possible that inventory holders would begin buying fresh fish to 

process, hold, and allocate during the subsequent marketing period. The modeling question 

is thus how should we depict the market clearing mechanism that determines exvessel price 

in this setting?

In the simplest case that we might confront, the harvest period would be negligible 

(T would be small) and all of the product would be devoted to a single product form and 

wholesale market. In this case, the relevant demand curve could be determined simply by 

determining an equation for A at the initial date of the marketing period as a  function of 

its determinants and of the size of the expected total harvest (Ho). These conditions do,

10In many fisheries the question is moot because institutions have developed which determine a sin g le  
price fishermen receive over the whole season. This institutional peculiarity of fisheries has evolved to reduce 
the uncertainty for both fishermen and processors but the operational significance is that we can consider 
a market clearing mechanism as taking place at a particular date or in sta n t in time rather than over an 
interval.
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Harvest Period Marketing Period

0 T+x

Figure 6.1: A Calendar Year

in fact, describe circumstances during recent periods in the halibut fishery when the season 

length has been reduced to just a few days and when virtually all product is frozen.

To examine what the conceptual model tells us about the derived demand curve for 

these conditions, recall the simple model where planned carryover is taken as parametric, 

where the wholesale price is also taken as given over the marketing period, and where 

we ignore discounting. Then from equation (5.4.8) we can compute an expression for the 

marginal value of another unit of inventory, looked at from the beginning of the marketing 

period, namely:

A0 =  P0 -  ^[S0 +  70 -  CT] -  \ h r  (6.3.1)

Note that the marginal value is negatively related to the infusion Io, which we assume is the 

total harvest. This simply reflects a diminishing marginal value of additions to inventory 

and effectively generates a downward sloping demand curve for inventory additions. Note 

also that the demand curve is negatively related to carryin or holdings at the start of the 

marketing period So and to both adjustment and holding costs (c and h), and positively 

related to both the wholesale price Po and the targeted carryout CT. These can be considered 

determinants of the intercept of the exvessel demand curve. Figure 6.2 shows how this
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Pq - c[So-Cx] - hT

A.(0)=f(So,Io,CT,T;c,h,Po)P*EV

Io

Figure 6.2: Exvessel Demand

market would clear at an exvessel price (Pgv)  that reflects the willingness to pay of the 

wholesale sector for another unit of inventory.

The above structural equation is a representation of the exvessel demand curve 

under the simplest possible setting where planned carryover is taken to be parametric. This 

is unlikely in general, of course, but there are circumstances in which equation (6.3.1) can 

be estimated using OLS or 2SLS by regressing exvessel prices against wholesale prices, the 

inventory level on hand at the beginning of the marketing period, the harvest level, and 

the length of the marketing period. Another case where this simple equation might be used 

is if there is an independent source for the planned carryover variable, such as a survey of 

wholesalers and inventory holders. In this case, one could do as in the previous case, adding 

the planned carryover variable as an additional explanatory variable. A third case where
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(6.3.1) might be used directly is if it is believed that wholesalers are myopic in that they 

expect the carryout to be the same as this year’s carryin. In that case, since A is a function 

of the difference between these two variables, an estimating equation could be derived which 

regressed exvessel prices against wholesale prices, the harvest level, and the market period 

length. The error for this equation ought to be heteroscedastic in the marketing period 

length.

We examined two of these hypothesized cases by collecting data over the period 

1959-1978 on halibut wholesale prices, inventories at the beginning and end of the fishing 

season, harvest levels, and season and hence marketing period lengths.11 The data were 

used to estimate two simple structures based on (6.3.1), one embodying the assumption 

that wholesalers expect carryover to be zero, and the other th a t they expect carryover to 

be what it was this year. Two stage least squares was used to  estimate parameters and the 

results are presented in Table 6.1 below.

As can be seen, the results are consistent with the simple theory developed. Exves

sel prices are positively related to wholesale prices Pw  and negatively related to infusions or 

harvest (To) and to holding costs.12 The coefficient on the wholesale price can be taken to 

measure some handling and markup costs between the wholesale and exvessel markets. The 

implied adjustment coefficient is 1.27 cents per pound per million pounds13 and the implied 

holding costs are 2 cents per pound per month. Although the holding cost variable has low 

significance, it is in accord with what industry wholesalers estimate freezing and storage 

costs are in the halibut industry. Overall, these models do well in predicting exvessel price, 

with the dominant explanatory role played by wholesale price. As can be seen, the remain

der of the specification does not add too much explanatory power, and one cannot really

u The price data are New York wholesale price per pound for dressed frozen Pacific Halibut[32).
12We found that the fit was improved by dummying out 1975, which, for some unknown reason was an 

outlier.
13The mean monthly sales rate over the sample is about 5.4 million pounds. Hence the adjustment cost 

is about 6 cents per pound moved out of inventory, compared with a mean wholesale price of $1.67.
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Independent Variable
Carryover
CT =  0

Assumption 
Cr =  So

p w .7211
(15.808)

.7195
(15.16)

I o / r -.1 3 2 *  10"4 
(1.82)

(So +  I o) / t -.1 2 7 *  10-4 
(2.04)

t / 2 -.2 2 3 *  10"1 
(0.937)

- .2 3 2 *  1 0 '1 
(0.926)

D U M n -.312
(3.13)

-.308
(3.01)

R 2 .9633 .9611

D W 2.19 2.25

Asymptotic t statistics in parentheses

Table 6.1: Exvessel Demand Equations: Carryover Parametric
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distinguish between the two carryover assumptions on the basis of model performance.

While the above are reasonable estimates, it may not be sensible to assume that 

carryover is simply given or treated naively as a predetermined variable. In the previous 

chapter, we developed a fairly elaborate model that treats carryover as part of the optimiza-

structure of the exvessel demand equation? For expositional simplicity, suppose first that 

there are only two marketing periods (a present and future period), with expected prices 

Po and Pi respectively, and that an infusion of IT is expected between seasons. Then, from 

the two period model of optimal carryover summarized by equation (5.6.8), the optimal 

carryover will be:

In comparison with the derived demand curve computed without carryover determined en

dogenously, this derived demand curve is different in several respects. First, the impact of 

wholesale prices now incorporates both present and future marketing period prices (aver

aged). Second, the impact of infusions is similarly dependent on both present and future 

infusions, averaged. Finally, the impact of an increase in holding costs on the derived de

mand curve is doubled in this case, because these costs must be incurred over both periods. 

Hence, as would be expected with endogenized carryover, derived demand is more forward 

looking, since optimization must be accomplished over both periods. In this simple two 

period case, the demand for additions to inventory a t the beginning of the first period must 

account for factors extending into the second period. A more general model incorporating

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .

tion decision of inventory holders and hence part of the solution. The question thus arises, 

how does the more realistic assumption that carryover is endogenous alter the hypothesized

(6.3.2)

When this is inserted into equation (6.3.1) above, the resulting shadow price at the beginning 

of the first marketing period is:

Ao =  ^(Po +  P i ) - ;
c f *5o d- -I"o d- — C2r — hr. (6.3.3)

2
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N  periods would similarly result in a derived demand curve in which the current willingness 

to pay depended upon expected wholesale prices and infusions for all of the N  — 1 future 

periods.14

Several estimation issues are posed by these more realistic formulations, most of 

which were foreshadowed in the previous section. In contrast to the model where carryover 

is assumed exogenous, in this case the endogenous and unobserved level of planned carryover 

in equation (6.3.1) is basically substituted out using (6.3.2) and replaced by its determinants, 

which are themselves current and future variables. Thus the new problem introduced in 

equation (6.3.3) is how to deal with the future variables whose expectations appear as 

explanatory variables. In particular, how should one handle the anticipated wholesale prices 

and infusions (harvests) for the upcoming period or periods?

In fact, there are various ways to  handle expectations of future variables as dis

cussed in the previous section, none completely satisfactory. One possibility, if futures 

markets existed, would be to use futures prices as proxies for expected future wholesale 

prices. In some cases, one might even have an analogous proxy for expected infusions, 

where, for example, regulatory authorities publish upcoming target quota levels. Unfortu

nately, this is rarely the case with inventories fisheries products and hence were are generally 

left with more indirect and complicated econometric methods. As discussed in the previous 

section, one relatively straightforward method is to develop a  forecasting model outside of 

the derived demand curve equation and estimate the future variables from past variables. 

Then one can plug in the forecasts of future variables at each point, essentially assuming 

that industry participants have access to the same forecasting model. Another method,

14We have developed and illustrated most of the inventory models by ignoring discounting. This seems 
excusable for pedagogical purposes, particularly because the zero discount case results are so transparent, 
or when we are mainly dealing with within period marketing period choices. However, as the focus shifts to 
situations where carryover is a more significant factor in the decision process, it is important to reintroduce 
discounting, even at the expense of computational clarity. The impact on the structure turns out mainly to 
be one of messier expressions involving future wholesale price and infusion variables. This is demonstrated 
in the introduction to Chapter Five for the single period case.
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the so-called direct solution method developed by Hansen and Sargent, is to postulate a 

general stochastic process for the unknown future variables and then rewrite the exvessel 

demand curve in terms of the parameters of the stochastic process. In principle one could 

then estimate both the general derived demand equation and the stochastic process for 

relevant variables jointly. This procedure is elegant although restricted to linear/quadratic 

model formulations and computationally burdensome for all but the simplest stochastic 

structures. Another method is to use the generalized method of moments technique devel

oped by Hansen and Singleton. This allows from more general functional forms but is less 

useful for forecasting than for recovering structural parameter estimates.

We considered estimating more complicated structural equations of a monthly 

inventory model but abandoned the idea mainly because of data limitations. While excellent 

data are available from the IPHC on variables including catch, timing of seasons, and 

exvessel prices, the quality and quantity of data  from the wholesale sector is less reliable. 

In particular, there are reasonable data on inventories but spotty data on monthly wholesale 

prices. In the end, this is not of great consequence for our purposes since we are interested 

in modeling and simulating the industry on an a n n u a l basis anyway. Hence it is sufficient 

for our purposes to derive a yearly exvessel demand curve whose reduced form or structural 

properties are simply consistent with theory.

For comparison with the above reported estimates of the naive parametric carry

over models, we tried several alternatives which reflect the spirit of more forward looking 

models where carryover is endogenous. In the final analysis, most sophisticated treatments 

of expectations end up converting the sequence of expected future variables into estimates 

of these using past lagged variables. Hence some distributed lag formulation arises and the 

main distinction between alternative approaches involves the degree of complexity embed

ded regarding error structures and cross equation restrictions.
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In Table 6.2 below, we show results from a distributed lag formulation of the 

structural form for the exvessel demand equation using OLS. We also present results for 

several structural wholesale demand equations, regressing wholesale price against total dis

appearances (beginning holdings+harvest-ending holdings), lagged wholesale prices, and 

marketing period length, using 2SLS.

The forward looking exvessel demand curve, which is a representation of the will

ingness to pay of inventory holders who are anticipating certain future wholesale prices Pw 

and future infusions I, predicts exvessel prices closely and consistently with the inventory 

model with endogenous carryover developed in Chapter Five. The basic structure is as pre

sented above, with the exception of the addition of lagged wholesale prices and infusions. 

The coefficients on these two variables and their lags represent composite effects of current 

and lagged prices and infusions on the expectations of future levels of those variables. We 

would expect the sum of the effects to be consistent with the inventory model, which they 

are (wholesale prices affect exvessel prices positively, infusions affect them negatively, in 

total). The holding cost variable is significant, correctly signed and of the same magnitude 

as in the naive model estimated above.

Wholesale prices are also predicted relatively well with a very simple model. We 

present several formulations, including one that simply regresses wholesale price against 

current harvest, one which also allows for partial demand adjustment with the inclusion 

of a lagged wholesale price variable, and a third which includes the lagged variable and 

the marketing period length. Interestingly, longer marketing period lengths seem to have 

a positive effect on wholesale prices. Since longer marketing period lengths imply shorter 

harvesting periods, one’s first inclination would be to anticipate poorer quality raw product 

translating into a reduced retail and hence wholesale demand. That longer marketing 

periods increase wholesale prices is therefore somewhat surprising. Assuming the result is 

not simply spurious, other explanations may be habit formation effects within the marketing
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Exvessel Price {PtEV) 
OLS

Wholesale Price (P}v ) 
2SLS

Ind Var

p W .5883
(7.4677)

So + Io — Ct -.306*10-4
(8.5872)

-.2204*10-4
(3.3897)

-.1832*10“ 4 
(3.2006)

p W  r t- 1 .1737
(2.4311)

p W  
r t-1 .3147

(1.8297)
.3494

(2.3708)

I t / r .6664*10-4
(3.0445)

T .1008
(2.639)

I t - i / r -.7688*10-4
(3.6613)

CONST 3.3374
(16.394)

2.3383
(4.0427)

1.2968
(2.0519)

r /2 -.3 0 9 M 0 "1
(1.4339)

.3412
(4.0301)

.9800 .8016 .8257 .8730

D.W. 2.0229 1.2200 1.6163 2.1112

Asymptotic t statistics in parentheses

Table 6.2: Exvessel/Wholesale Demand Curves: Structural form with Endogenous Carry

over
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period, better ability to plan marketing and product rotation, impacts of marketing periods 

with substitute or complementary products whose prices are not included, etc.

For comparison, we also estimated some simple reduced form exvessel price equa

tions which collapse all impacts into those from two key endogenous variables in our system, 

namely the catch (infusion) and marketing length variables. Results are presented in Table 

6.3. For these estimations, we again used OLS to estimate exvessel prices with contempora

neous and lagged values of harvests and marketing period lengths but without the explicit 

form and wholesale prices embedded in the structural equations. These equations cap

ture the effects of harvest levels as they impact wholesale prices directly (and negatively). 

They also capture the impact of harvest levels as they affect exvessel prices directly (and 

negatively through diminishing marginal value of added inventory) and as they affect ex

pectations of future harvest levels (positively and negatively). We would expect the overall 

impact of harvest level increases to be negative, which it is as can be seen by the sum of 

lags impacts. Similarly, marketing period length has a complicated impact, by affecting 

wholesale prices positively, and by affecting exvessel prices in an ambiguous way depending 

upon the relative roles of holding and adjustment costs. This ambiguity results because 

longer marketing periods increase the holding costs that must be paid, but simultaneously 

allow adjustment costs to be reduced by spreading out sales. As it turns out, for the pa

rameters in this case, the adjustment cost effect outweighs holding cost impacts so that 

exvessel prices are positively affected by longer marketing periods. This is amplified by the 

above discussed finding of a similar positive effect in the wholesale market.

In sum, then, we have several alternative formulations of an exvessel demand 

equation which are consistent with different specifications of the inventory dissipation model 

developed in Chapter Five. The structural system estimated here contains both a  wholesale 

market demand curve and an exvessel demand curve. It is assumed th a t wholesale prices 

are simply markdowns of retail prices and hence a price dependent wholesale demand curve
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Ind Var

It
CO 

H
*

■— 
o

 1 -.1679*10-4
(4.8492)

-.1303*10-5
(.1565)

.1458*10“ 5 
(.1689)

.1393*10“ 5
(.1970)

It- i -.1811*10-4
(2.0056)

-.1790*10“ 4
(1.9102)

-,4500*10-5
(.4666)

It- 2 .1461*10“ 4
(1.8984)

n .1023
(2.6606)

.1179
(2.6299)

.9994*10-1
(12.4809)

.9670*10-1
(3.3018)

.1282
(3.3926)

T t - l .684*10-1
(.3965)

.1094*10“ 1 
(.2799)

.2355
(.6652)

n -2 -.1263
(.3693)

CONST 1.1563
(2.9599)

.8420
(1.6416)

1.2954
(3.0169)

1.2245
(2.3954)

.9695
(1.619)

R U .7382 .7303 .7882 .7732 .8473

D W 1.5701 1.5976 1.3325 1.300 1.335

sum of 
lags (I)

-.1941*10-4
(5.8328)

-.1936*10-4
(5.6141)

-.1771*10“ 4
(5.2367)

sum of 
lags (r)

.1347
(2.4638)

.1086
(2.0902)

.1391
(2.2234)

Dependent V ariab le:.?^

Asymptotic t statistics in parentheses

Table 6.3: Exvessel Demand Curves: Reduced Form with Endogenous Carryover
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can be estimated as a function of quantity. We also assume that the inventory sector 

takes prices generated in the wholesale marketing sector as given and then makes within 

period dissipation decisions according to an optimal plan. Embedded in this optimal plan 

are decisions about flow over the marketing period that balance holding and adjustment 

costs and that look forward to future harvest and marketing periods in planning optimal 

carryover. The results of all of these optimal plans can be summarized in a marginal value of 

additions to inventory curve, which we take to be the exvessel demand curve at the beginning 

of the marketing period. These same relationships can be summarized and estimated in a 

reduced form equation which makes exvessel prices a function of lagged values of harvests 

and marketing period lengths.

6.4 D iscussion

For purposes of illustration, consider two of the demand equations whose parameter 

estimates were discussed above. Consider in particular the structural equation estimates for 

the exvessel demand curve in Table 6.2, together with the structural equation for wholesale 

demand which includes both lagged price and season length:

PtEV =  .588PF  +  . 174PJT, +.666 * H T4^ - - .7 6 9  * 1(T4% ± - .0 3 0 9 £

P f  -  1.297 -  .183 * 10~4Ht +  .101r< +  .3 4 9 / ^ .

Both of these are short run equations whose dynamics will be complicated by the lagged 

variables for wholesale price lagged infusions (harvests) and marketing period length in the 

exvessel equation. For simplicity it is convenient to convert these into long run equations 

by assuming the equilibrium values for prices, quantities, and marketing period length. The 

long run equations can then be written as:

P w =  1.992 -  .281 * 10~AH  +  .55f
(6.4.2)

P EV =  .762PW — .103 * 10- 4 y  — .0 3 l |.
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The long run elasticity of wholesale demand, calculated at the sample means for 

harvests (51.57 million pounds) and marketing period length (7.9 months) can be computed 

as:

Thus at the sample means, wholesale demand is elastic. There is a  wide range of har

vest levels and marketing periods over the estimation period, however, and the data spans 

elasticity estimates that are in both the elastic and inelastic ranges.

W ith regard to the derived demand elasticity for the exvessel demand curve, sev

eral points are worth mentioning. First, the derived demand curve can be considered a 

markdown equation, since exvessel price is proportional to wholesale price, modified by 

terms tha t account for both adjustment and holding costs. For example if both of these 

costs were zero, the inverse exvessel demand curve would be a  simple markdown relation

ship. The effect of adjustment costs is basically to make the exvessel demand curve more 

inelastic since the slope of the curve is related to the adjustment cost parameters. Similarly, 

the intercept of the inverse exvessel demand curve is affected by the holding cost parame

ter. Higher holding costs shift the inverse exvessel demand curve downward by the average 

holding cost over the whole marketing period.

The price flexibility of exvessel demand with respect to quantity thus has two 

components. One is a  direct component associated with adjustment costs, and another is 

an indirect component associated with the fact that increases in quantities reduce wholesale 

price, which in turn reduce exvessel demand. We can compute the direct component as the 

price flexibility of the exvessel demand curve, holding wholesale price as given and evaluated 

at the sample means:

Thus the own price flexibility of the derived demand is small and dependent on the marketing
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period length. Correspondingly, the own direct price elasticity of exvessel demand (due to 

the presence of adjustment costs), is relatively large since it is the inverse of the flexibility.

The full or total exvessel demand elasticity accounts for both the direct effect due 

to adjustment costs and the indirect effect due to the wholesale price effect. Thus we can 

write the full price flexibility as:

dPEV H  
dH  P EV

d P w  1

•7 6 2 ^ - - 1 0 3 * 1 0 " 4 f

H
~ p E V ' (6.4.5)

This depends upon the marketing period length and we can compute the full long run exves

sel demand elasticities evaluated at the sample mean harvest level and various marketing 

period lengths as:

T full elasticity
1 -.6258
5 -.8457
8 -.8744
10 -.8850

Thus evaluated at the sample means, the exvessel demand curve is more inelastic 

than the wholesale demand curve. This is what we expect from intuition since the full 

derived demand elasticity transmits the wholesale price effects through to the exvessel 

demand curve by shifting the intercept. Figure 6.3 show how an increase in harvest levels 

from Ho to Hi would first reduce wholesale prices. These reduced wholesale prices would 

shift the exvessel demand curve downward and the full effect would be that depicted by the 

intersection of the price/quantity combinations on the two exvessel demand curves. Thus 

increases in harvests to be marketed have two effects. First, for a given marketing period, 

more product must flow into the market each month, and hence there is an increase in 

adjustment cost which is reflected in a movement along the ceteris paribus exvessel demand 

curve. Second, since more product enters the wholesale market, wholesale prices must fall, 

reducing exvessel prices by shifting the inverse demand curve.
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How does a change in the marketing period affect exvessel demand? In a similar 

fashion, exvessel demand is affected both through own effects and through effects originating 

in the wholesale market. As discussed above, we found that longer marketing periods 

resulted in higher wholesale prices. In the exvessel market, the own impact is ambiguous, 

because longer marketing periods reduce adjustment costs but increase holding costs. The 

own impact of a change in marketing period length on (long run) exvessel prices can be 

computed as:

dpEV  _  -103 * 1 0 -0,309 >  0 ((3 4 6)
d r  pw  f 2 2 <

and this can be positive, negative, or zero, depending upon the relative sizes of  the har

vest level and marketing period length. For the parameters of the exvessel demand curve 

discussed here, it can be seen that the sign of the direct effect o f  an increase in marketing 

period length on exvessel price is positive or negative depending upon whether:

.66* 10_3 f f - r 2 |  0. (6.4.7)

Figure 6.4 plots the equation separating these two cases. As can be seen, for a 

given harvest level, an increase in marketing period length will increase exvessel prices, 

ceteris paribus,  when the marketing period is short and decrease them when r  is large. 

The intuition is as discussed above: with short marketing periods adjustment costs are 

large relative to holding costs because a large amount of  product must be sold over a short 

period. In these cases, we would expect the marginal value of extra marketing period length 

to be positive, which it is. and vice versa.
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Figure 6.4: Exvessel Price Dependence on Marketing Period Length

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



181

C hapter 7

R ents, R egulations, and Revenues: 

M odeling R egulated Open A ccess 

R esource Use

7.1 In troduction  and O verview

In this chapter we bring together all of the theoretical and empirical components 

from previous chapters and use them to model regulated open access resource use in our 

case study. As set out in the introduction, the objective of this thesis is to develop and test 

a  new conceptual model which takes the Gordon model of rent dissipation as a foundation 

and adds some dimensions which make it more applicable to modern renewable resource 

exploitation settings. The two components which have been added are depictions of the 

respective roles of the regulatory sector and the market in the rent dissipation process. 

Particularly im portant in the conceptualization of the new model is the role of dynam ics, in 

governing the nature of interaction between the regulators and the industry, in determining
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exvessel prices through the mechanisms of inventory dissipation and carryover decisions, 

and in connecting up harvests with subsequent biomass levels.

To put the whole picture in perspective, we return to a schematic of our system 

(reproduced and reconfigured slightly as Figure 7.1 below). As we discussed in the intro

duction, the basic Gordon model depicts open access resource use as a process governed 

by the pull of rents which draw inputs in until the value of average product is equal to 

opportunity costs. In his model, several factors were abstracted from purposefully in order 

to focus on rent dissipation. One of these was the output market, which he simply took as 

exogenous and implicitly unaffected by the rent dissipation process itself. Another factor 

Gordon abstracted from was the connection with the biological system and in particular the 

role of effort determining catch which in turn should govern ecological dynamics. Finally, 

since most fisheries a t the time Gordon wrote were not regulated, Gordon ignored the role 

the regulations might have in the rent dissipation process.

We have added biomass dynamics, the regulatory sector, and the market sector 

to our analysis. Chapter Three develops a new theoretical model of regulator /industry in

teraction which depicts each as goal seeking, and which derives testable hypotheses about 

joint behavior. Chapter Four empirically tests the models of Chapter Three, estimating pa

rameters of the technology (cost and production function parameters) as well as speeds of 

adjustment, holding market effects constant. Chapter Five develops a new model of inven

tory dissipation which depicts the wholesale industry as maximizing the profits from within 

and between market period sales and carryover decisions. This model casts the forward 

looking nature of the optimization problem in a structure (an adjustment cost framework) 

which is particularly illuminating since it allows derivation of closed form representations 

of optimal decisions. In Chapter Six, we estimate parameters of the inventory decisions. 

These are then used to construct stock demand curves which determine exvessel prices as 

a function of outputs from the model of regulator/industry interaction. The full model
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Figure 7.1: Thesis Recap
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thus determines capacity, season length, harvest, biomass, and prices endogenously in a 

simultaneous system.

The organization of this chapter is as follows. First, in the next section, we close 

the biological part of the model by linking up the target harvest or quota (assumed given 

in Chapters Three and Four) with biomass via a quota rule. Then in the third section we 

present simulation results from the full model. These are run in a manner which allows us 

to compare results of our model with various depictions of the Gordon model which ignore 

facets of the problem that we have included.

7.2 The Q u ota /B iom ass Link

Chapters 3 and 4 developed and estimated models based on the simplifying as

sumption that the harvest quota can be taken as exogenous. Additionally, we did not 

consider the evolution of the biomass which would naturally occur under any circumstance 

except the fortuitous one where the quota is correctly chosen at the steady state harvest 

level. In this section we close the model by postulating and estimating a simple relationship 

between observed quota levels and biomass.

The basis for this simple extension is the depiction of regulatory behavior already 

discussed in Chapter 3, namely as a two stage process where, first, a quota level is deter

mined, and then the season length is set to approach that quota, given the capacity choice 

by the industry. The question this raises is, how is the quota level chosen in the first place? 

We postulate that the regulatory structure has some notion of a “safe” level of biomass 

for the species. For example, regulators may wish to keep the biomass close to the level 

yielding maximum sustainable yield X m s y ■ When biomass is below that level, some rule 

must be used to decide how much may be taken. For example, a simple rule which would 

get the biomass to X m s y  from any arbitrary stock fastest would be: set Q(t) =  0 if X(t )
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is less than X m s y  and harvest some maximum level Q m a x  if X ( t )  is greater than X'm s y  ■ 

When the stock equals X m s y , harvest the total yield H m s y  for that level. Alternatively, 

a simple rule which sets the quota equal to a fraction of H m s y  would achieve the result of 

getting to X m s y  although more gradually.

Needless to say, one could also choose any other biomass level to key on as the safe 

level. Another possibility is the so-called Fo.i strategy (see Hilborn and Walters[52]), which 

proscribes a constant exploitation rate designed to leave exploitation at a level slightly less 

than the one that maximizes yield per recruit. This is actually used in many fisheries, 

including some in eastern Canada and elsewhere (see Doubleday et. al.[26], Andrew and 

Butterworth[5]) and its ultimate effect is to leave the biomass a t a level larger than the one 

yielding the largest sustained yield. These and others have been compared under stochastic 

settings to examine both mean yields and variability by Deriso[24] in 1985.

W ith this background in mind, we propose to estimate the quota rule that has been 

implicitly in use as reflected in actual decisions by the IPHC over the 1935-1978 period. 

That is, we postulate that regulators set a quota according to some function of biomass:

Q(t) = k(X(t ) )  (7.2.1)

Once functional forms for k are proposed, one can use data  on Q(t)  and biomass X( t )  to 

test alternatives.

Using data  already described, we first estimated linear and quadratic functional 

forms for k by regressing published quota targets against biomass estimates for Areas 2 and 

3. As we discovered in our estimates of regulatory behavior, the biomass crash that began 

to occur in both regions in the 1960s also apparently affected the implicit rules used to 

set quotas. Recursive residual tests and Chow tests for structural stability were suggestive 

of a break in behavior which we took to occur here in 1965 also. Hence a second set of 

regressions were run, using dummy variables as slope and intercept shifters with dummy
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values of one during the post-1965 period. Quadratic formulations did not prove to fit 

better than linear specifications and so Table 7.1 reports using linear results, corrected for 

first order autocorrelation using the Cochrane-Orcutt procedure. As can be seen, quota 

policies in Area 2 can be described by a simple rule, the structure of which breaks in 1965. 

After 1965, a more conservative rule is operative, with a lower intercept and a steeper slope. 

Similarly in Area 3, prior to 1965 the quota rule can essentially be described as a constant 

set a t 28 million pounds. After 1965, the rule again becomes more conservative, with a 

lower intercept and steeper slope. These are shown diagrammatically below, superimposed 

on biological yield curves.

To complete the task of closing the model with a biological system, we also es

timated a yield curve, which depicts the growth in halibut biomass as a function of the 

biomass level and harvest. As Chapter 1 discussed, a popular biological dynamic model 

is one due to Lotka and Volterra which postulates that stock dependent mortality factors 

will cause a population to approach its carrying capacity level X m a x  in a fashion that is 

S-shaped as a function of time. This in turn implies that the yield curve can be written as:

X  =  F(X( t ) )  =  a * X{t )  -  b * X ( t f  -  H{t)  (7.2.2)

where a and 6 are parameters and H  is he harvest level. W ith this specification, the carrying 

capacity Xmax is a/6, the stock that yields the maximum sustainable yield Xjyjgy is a/26, 

and the yield H -^jgy is a2/4b. We also estimated these parameters using yield and harvest 

data for Areas 2 and 3. Biomass less lagged harvest was regressed on lagged biomass and 

lagged biomass squared, correcting for first order autocorrelation. The results are presented 

in Table 7.2. These are in accord with results from other studies (see Criddle[19], Criddle 

and Havenner[20], Deriso[24], and Capalbo[14]).

The quota rules revealed by actual decisions and their properties when combined 

with yield curve estimates are shown in Figure 7.2. As can be seen, the maximum sustainable
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Area 2 Area 3

w/o break with break w/o break with break

CONST 12.329
(2.990)

18.295
(6.255)

16.417
(2.807)

27.993
(3.137)

CONST*D65 -12.840
((2.9431)

-18.659
(1.551)

slope .8974*10_1
(2.943)

.5972*10-1
(2.291)

.5752*10-1
(1.703)

.3538*10-4
(.754*10-3 )

slope*D65 .10345
(2.477)

.8746*10-1
(1.307)

P .968
(25.27)

.8199
(9.105)

.925
(15.860)

.928
(15.95)

R 2 .9405 .9418 .8318 .8360

D.W. 1.326 1.482 2.008 1.942

Asymptotic t statistics in parentheses

Table 7.1: Estimated Implicit Quota Rules
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Area 2 Area 3

1+a 1.4171
(15.043)

1.3227
(21.066)

b -.1602*10'2
(1.966)

-.8782*10-3
(2.623)

P .895
(13.026)

.865
(11.184)

R? .9914 .9934

D.W. 1.894 1.257

Asymptotic t statistics in parentheses

Table 7.2: Estimated Yield Curve Parameters
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yield in Area 2 can be harvested with a harvest level of 27 million pounds. The post-65 

quota rule implied by actual behavior on the part of regulators has some slope and intersects 

the yield curve virtually at X m s y • The relevant part of the quota rule function is that below 

the yield curve; when the stock is below the targeted safe rule, the target is some fraction of 

the level associated with the sustainable safe level and hence the stock will rise over time.1 

If the stock is greater than the safe level, a  catch larger than the yield is allowed, bringing 

the stock down to a safe yield over time. Over the period actual biomass has ranged between 

about 60 and 180 million pounds while the quota has ranged between 11 and 28 million 

pounds. For Area 3, the estimated quota rule implied by actual behavior intersects beyond 

X m s y  at 218 million pounds of biomass. Over the 1935-1978 period, biomass 

has ranged between 82 and 265 million pounds and quota has ranged between 

million pounds.

7.3 S im ulating R egulated  O pen A ccess U se

In this section we present simulation results, comparing successive contributions 

of our modeling exercise to those of the basic Gordon model. To place the results in a real 

world setting, we assume the perspective of a fisheries analyst in 1977, faced with the task 

of forecasting what might evolve in Area 2 under continuation of open access. Thus we ask, 

how would we expect the halibut fishery to unfold from this date (1977) forward, given the

1The safe stock level can be derived by using the quadratic formula to find the solution to the intersection 
of the two curves.

in Area 3 

11 and 38
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Figure 7.2: Quota Rules
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following parameters:

biomass 53.5 million pounds

fishing capacity 2.21 thousand skates

season length 73 days

wholesale price $2.89/lb

exvessel price SI.95/lb.

As a point of reference, we first develop a prediction that falls out of the basic 

Gordon model. T hat is, we answer the above question by applying the logic contained in 

Gordon’s 1954 paper, without embellishments. Then we make a first embellishment, that of 

adding an explicit biological sector, which links up Gordon’s instantaneous rent dissipation 

model with the corresponding harvest level and the results of that harvest on biological 

dynamics. This is similar to Vernon Sm ith’s model of bioeconomics dynamics, although it 

is a special case which retains the Gordon assumption of complete and instantaneous rent 

dissipation in each period. Then we follow with two more embellishments associated with 

the addition of a regulatory and a market sector.

7.3.1 T h e S ta tic  G ordon M odel

The basic Gordon model develops a powerful prediction based on a very simple 

behavioral hypothesis. The essential core of Gordon’s model is that entry will proceed until 

all rents are dissipated, or until average product of the last unit of capacity equals its op

portunity costs. Gordon took as given the price and the biomass level. Hence quantification 

of Gordon’s prediction is simply a m atter of using production and cost function parameters 

to solve for the rent dissipating level of Eq. Suppose tha t we take our estimated levels of q, 

/ ,  and v (q = .0015,/ =  .99, v = .0835) to be the correct values, and we combine them  with 

the above actual levels for the exvessel price Pe v  and the biomass level X .  Then Gordon
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would predict a rent dissipating equilibrium where the value of average product equals the 

opportunity cost or:
P X 0[ l - c- ^ ] = ;  +  vT

E

W hat should be assumed about the season length in this case? In the context of our 

conceptual model, it is sensible to simply assume that the season length will be Tmax or 

the level where fishermen would not choose to fish another day because variable costs are 

ju st equal to returns. Under these assumptions, the predictions from the basic Gordon 

model (7.3.1) would be th a t the season length and capacity would equilibrate at:

Eq = 13.83 thousand skates 

Tmax =  30.28 days 

H  =  24.95 million pounds.

Thus the static Gordon model of instantaneous and complete rent dissipation, estimated 

using representative cost and production function parameters and values for exvessel price 

and biomass at their 1977 levels, predicts an equilibrium level of capacity of about 14 

thousand skates fished over a season length of about a month. T hat these values were not 

observed in 1977 is due, of course, to  the fact th a t the halibut fishery was not a pure open 

access fishery but was in fact regulated. Thus these values can be considered a first estimate 

of what might happen under abandonment of the regulatory system.

7.3.2 T he G ordon M od el w ith  B io logica l D ynam ics

A problem that arises right away with these static predictions is that the level of 

capacity Eq =  13.83 fishing over a season length of Tmax =  30.28 will produce an aggregate 

harvest level which will not be sustainable except under fortuitous circumstances. For 

example, with the biomass level which was estimated at 53.5 million pounds in 1977, the 

above predicted values for E q and Tmax would result in a harvest level of about 25 million
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pounds. But if our yield curve parameters are correct, at a biomass level of 53.5, any harvest 

level greater than 17.73 will cause the biomass to fall. Hence Gordon’s model would miss, 

from the start, an important part of the dynamics of the real system, and would predict a 

rent dissipating equilibrium which is really not a sustainable equilibrium.

Consider then, a first extension in which we append to the Gordon model a dy

namic model of the biomass/harvest dynamics. Then, if we continue to assume instanta

neous rent dissipation, our dynamic Gordon model would be:

= f  + vTt

X t+i =  (1 +  a)Xt -  bX? -  X t (l  -  e - iE‘Tt) (7.3.2)

Tt = Tmax = - ^ - l n  [p ^ - ]  .

Note that this is no longer a simple static model that can be solved for a single level of

capacity and season length. Instead, this is a dynamic model which would evolve from the

initial period with a reduced biomass level, followed by another period with the harvest 

level determined by rent dissipation, and so on.

We simulated this dynamic extension to the Gordon model, using the same pa

rameters and starting values as above. As expected, since initial harvest is too high for a 

bioeconomic equilibrium using the static Gordon model, the simulation predicts a drop in 

the biomass from its initial 1977 value. After initial period increases, biomass, the season 

length, and effort all smoothly and asymptotically fall and end up at values lower than the 

1977 initial values with:

E  — 5.92 thousand skates

T  =  48 days

X  = 43.73 million pounds

H  = 15.176 million pounds.

In comparison with the simplest static Gordon model, then, adding biomass dynamics 

affects predictions by generating long run equilibrium values for the biomass which are
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lower than the level prevailing in 1977 and embedded in the predictions of the simple static 

Gordon model. The dynamic Gordon model also predicts an equilibrium effort level that is 

lower, and a season length which is longer than the static model predictions. These results 

with respect to season length and effort occur because total revenues are affected by the 

stock size. W ith biomass dynamics generating reduced stock sizes, the harvest production 

function shifts down over time, mitigating the open access effect somewhat by reducing 

rents. This in tu rn  results in a lower long run equilibrium level of effort, harvesting the 

reduced catch over a longer period than predicted with the static model.

7.3.3 A  M od el o f  a R egu lated  O pen A ccess F ishery

W ith the above two baseline Gordon model predictions, we turn now to the results 

predicted with the modified model developed in this thesis. The first of the major contribu

tions of this thesis is the modification of the basic Gordon model which involves introducing 

a regulatory sector. As we have discussed, we assume th a t the regulatory sector is moti

vated by goals and follows a two stage process by first setting quota targets according to a 

quota rule tied to  the biomass level, and second, by choosing the instrument level (season 

length) to achieve the target, conditional on fishing capacity and biomass.

In this section, we simulate the role of the regulatory sector and examine how this 

modification alters the predictions from the naive models above. To isolate this part of 

the model development, we hold the exvessel price constant at its 1977 level and ignore the 

feedback effects th a t the market generates. Thus these results add the regulatory sector, and 

simulate the interaction between the industry and regulators as they approach a regulated 

open access equilibrium from values for biomass and exvessel price in 1977. The model
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structure simulated is:

P EV Xt[l  — e~qEtTt] = £ 9 * U E t  + vTtE t ) - & * { f E t - i  + vTt- l E t- 1)

Tt = TTt-i +  i ^ l n  [ x ^ t ]

Qt = 5.355 +  .163Xt (7-3.3)

X t+1 = ( l + a ) X t - b X f - X t( l - e ~ qE‘T‘)

P EV =  1.95.

An important part of the predictions produced by the model of industry/regulator interac

tion concerns approach paths to equilibrium. As we discussed in Chapter 3, the qualitative 

nature of the combined dynamics depends importantly on the respective speeds of ad

justment to rents and to the quota-based targeted season lengths. We demonstrated in 

Chapter 4, for example, that (holding prices, quota, and biomass constant) with the adjust

ment speed coefficients estimated over the post-1965 period, the approach path is oscillatory 

rather than asymptotic. This is basically the result of the fact that both groups seem to be

reacting relatively quickly to both rents and to deviations from long run equilibrium. This

is a significant conclusion and one that would not be expected with the use of naive versions 

of the Gordon model. When biomass dynamics are added to the system, we essentially have 

a three dimensional phase plane system in (E , T , X ) space. Hence an im portant question is 

how the qualitative characteristics of the industry/regulator sector dynamics are affected 

by the additional biomass dynamics. In particular, do biomass and quota dynamics smooth 

or amplify the overshooting tendencies observed when X  and Q were held constant?

We ran these simulations, holding the marketing sector constant, and allowing 

the biomass and quota to recover from their low 1977 values. As will be seen below, 

the simulation results incorporating regulatory/industry interaction dynamics with biomass 

dynamics and the quota rule still produce some under and over-shooting in transition to the 

long run equilibrium. These are altered somewhat in comparison to the results presented 

in Chapter 4 because biomass dynamics shift both the industry and regulator isoclines.
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Figure 7.3: Phase Diagram with Biomass Increase

As biomass rises and approaches the safe level embodied in the quota rule, the harvest 

production function shifts up and revenues rise, ceteris paribus. This shifts the industry 

isocline upward. Simultaneously, the regulatory isocline shifts inward because the same 

catch can be taken with less aggregate effort. The combined effects, as discussed in the 

comparative statics section in Chapter 3, should be to increase the equilibrium capacity level 

and reduce season length as biomass rises over time. These anticipated effects are shown 

in Figure 7.3, which depicts a snapshot of the industry/regulatory system at two levels of 

biomass and quota. Note that the transition dynamics which are added to the system by 

biomass and quota growth may dampen the tendency for the industry/regulatory system 

to overshoot because the equilibrium is shifting northwestward. This dampening effect is 

partly due to the starting position of the system, however. Since the system starts at 

1977 values associated with the southeast quadrant, as the biomass grows and shifts the 

equilibrium northwestward, the initial overshooting tendency should diminish. On the other 

hand, if starting values for the capacity and season length placed the system initially in the
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Figure 7.4: Simulation of Biomass: Market Exogenous 

southwest quadrant of the phase diagram, the tendency to overshoot could be amplified.

These patterns foreshadowed by the theoretical model discussed in Chapter 3 

are, in fact, exactly what happens in the simulation runs. As Figure 7.4 shows, the initial 

biomass is high relative to its long term trajectory2, generating relatively large initial harvest 

levels which overshoot the quota during early periods (see Figure 7.5). These high harvest 

levels, in turn, generate positive and significant revenues and rent levels during the first few 

years as can be seen in Figure 7.6. The large rent levels result in accelerated entry of new 

capacity, exacerbating the already high harvest levels asssociated with high biomass levels. 

The ultimate impact on the biomass level is to cause a minor collapse as harvests exceed 

yields for a brief period.

During the next phase of the joint dynamics the system recovers, as a result of 

internal dynamics associated with rents and entry and as a  result of conscious regulatory

2The 1977 level exvessel price is also probably high relative to its long term equilibrium as will be shown 
in the next section.
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Figure 7.5: Simulation of Quota and Harvest: Market Exogenous
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Figure 7.6: Simulation of Rents and Revenues: Market Exogenous
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Figure 7.7: Simulation of Capacity and Season Length: Market Exogenous

system action. First, because of the high initial harvest levels which have exceeded biomass 

yield, the biomass begins to fall, shifting the industry production function and revenue 

function downward. This causes rents to actually turn negative, which slows the initial 

burst of capacity entry. At the same time, regulators severely cut the season length in 

response to the overshooting of the harvest target and the biomass reduction, amplifying 

the rent reversal (see Figure 7.7). Both of these forces cause actual harvests to  fall below 

yield, allowing the biomass to return to its long path of buildup towards the safe stock level.

During the long buildup period, the biomass grows, allowing the regulatory author

ities to relax the quota and allow harvests to rise. There are two impacts of this. First, the 

production function shifts up as the biomass grows, allowing, ceteris paribus lower amounts 

of aggregate effort to take any given level of quota. At the same time, the actual quota 

is relaxed, requiring ceteris paribus more effort. In this particular case, the biomass effect
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outweighs the increasing quota effect so that total effort (capacity times season length) is 

slowly reduced as the system moves towards the safe stock.

Although to tal effort falls slowly over time, its composition is dependent on rev

enues, rents, and regulations. In particular, because biomass growth is shifting up the 

industry production function, revenues rise over time. This positively impacts rents and 

results in entry of capacity. In order to contain the growing capacity, regulators match in

creases with reduced season lengths. Hence over the long run, a larger and larger industry 

is harvesting over a shorter and shorter season.

In the long run, the system arrives at the equilibrium level defined by:

E 0 =  40.69 thousand skates 

To =  3.74 days

Xo =  133.2 million pounds

Ho = 27.14 million pounds.

Besides the above discussed transition dynamics, there are important changes in the pre

dicted long run equilibrium when the regulatory sector is added. First, the regulatory 

sector guides the system to the safe stock level over the long run, by gradually raising the 

allowable catch as the biomass grows. This is in contrast to the dynamic open access and 

unregulated scenario, where biomass falls from its initial level, because there is no institu

tion governing harvest levels. Second, the very success of the rebuilding program causes 

biomass and allowable catch to  rise, increasing revenues and rents and drawing in fishing 

capacity as Gordon suggested. The main point of departure of our new model with the 

Gordon model, however, concerns the further role of the regulatory sector in mitigating the

potential effects of this larger capacity by shortening the season. Importantly, the increased

potential rents associated with the larger biomass and quota draw in an even larger level of 

potential capacity, which must be stifled by the regulatory sector so th a t overexploitation 

doesn’t occur. Thus the economic consequences of open access are amplified and waste is

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



201

more severe as the larger capacity operates over a very short season. This mirrors, of course, 

the current situation in the halibut fishery.

7.3 .4  R egu la ted  O pen A ccess w ith  a M arketing Sector

The second major contribution of this thesis is the development of a marketing 

sector model which reflects both the impacts of regulations (season length and harvest 

quota) on price, and also the feedback effects of prices on effort and other endogenous 

variables. One result that falls out of the above simulation is th a t biomass and quota 

growth increase revenues and hence attract an even larger amount of fishing capacity than 

would occur in pure open access. A question which arises, however, is could these added 

incentives that arise because of the shifting revenue function be dampened by the market? 

This might happen, for example, if larger harvests drove the elasticity of exvessel demand 

into the inelastic range, or if changes in season length shifted exvessel demand downward. 

In this section we utilize the same model as in section 7.3.3 above but with the addition 

of exvessel and wholesale price equations which close the model. The two equations added 

are:

P ? V 
p w

Before discussing the simulation results from the full model, it is worthwhile to 

review the model structure and the conceptual connections between the regulator/industry 

sector and the market. As the above two equations suggest, the manner in which the 

complete model is closed is to link up exvessel and wholesale prices to  two variables, the 

harvest level and the marketing period length. Since marketing period length is inversely 

related to the regulated season length, these two variables are endogenously determined in 

the regulator/industry section.
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We assume that the equilibrium in the marketing sector is determined by a process 

as follows. First, we (implicitly) assume a retail sector which generates wholesale prices in a 

markdown fashion from a periodic retail demand function. We aggregate to  an annual level 

by assuming, for example, that there is a single annual wholesale inverse demand function3 

which depends upon the amount marketed over the whole period (beginning inventories 

plus harvests less ending inventory), and marketing period length.

The total supply to the retail sector and its temporal pattern depends upon the 

inventory dissipation behavior of the wholesale sector. Inventory holders plan within mar

keting period supplies in a manner which reflects the annual wholesale price, adjustment and 

holding costs, and carryin and carryout plans. Carryin and carryout plans are determined 

by expectations of future period wholesale prices, harvests, marketing period lengths, as 

well as adjustment and holding cost parameters. These expectations, in turn, are generated 

by observations of past values of these variables. Hence the exvessel inverse demand curve 

is a function of contemporaneous values of wholesale prices, harvests, and marketing period 

lengths, as well as lagged values. We also assume that the process generating expectations 

that is embedded in the exvessel demand curve is unchanging over time. Finally, we assume 

that the difference between carryin and carryout is of a second order in magnitude, so that 

wholesale prices can be simulated as a function of the harvest level alone. This turns out 

to  be approximately true in the data used to estimate wholesale prices.

Figures 7.8 through 7.12 show some of the simulation plots from the full (regulator 

plus market sector) model simulations. These use the production and cost parameters for 

Area 2 discussed above, adjustment speed parameters estimated for the post 1965 period, 

and exvessel and wholesale price equations from Table 6.2. As can be seen from Figures 

7.8 and 7.9, the quota rule holds aggregate harvests below the yield for much of the period, 

allowing the biomass to grow over time towards the safe level as it does in the case discussed

3This could occur by a mechanism such as forward contracting.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



203

30
Q u o t a

H a r v e s t28

26

24

20

18

16

14

12

10
3530 4020 250 10 155

T i m e

Figure 7.8: Simulation of Quota and Harvest in the Full Model

above. The initial period values (relatively high X  and P EV) create startup period dynamics 

which overshoot the quota by about 30% in the first few years. This is primarily caused by 

rents attracting excessive capacity, which is not fully dampened by regulators as discussed 

above. However, unlike the above case, within a few periods this entry pressure induced 

by rents is mitigated partially by falling wholesale and exvessel prices (see Figure 7.10) 

which (with falling biomass and harvests) drop by enough to reduce revenues and rents. 

This dampens growth of capacity and generates falling harvest levels for a brief period. As 

the harvest levels fall temporarily, another dynamic reversal occurs as prices recover, and 

a turnaround follows with a long sustained period of rising harvests and biomass. During 

the recovery, rising harvest levels induce reductions in both wholesale and exvessel prices. 

These are caused by and cause changes in the regulatory sector. Price changes are caused  

by regulations in two ways. First, increased quotas and harvests directly reduce prices. 

Second, as the fishing season changes, the marketing period also changes, generating shifts
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Figure 7.9: Simulation of Biomass in the Full Model
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Figure 7.10: Simulation of Exvessel and Wholesale Prices in the Full Model
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in both the wholesale and exvessel demand curves. The effect of a  lengthening marketing 

period on the wholesale market is positive, but the effect on the exvessel market depends 

upon the interplay between adjustment costs, holding costs, and the levels of harvests and 

the season lengths as shown in Figure 6.4. On the one hand, total and marginal holding 

costs unambiguously increase with larger harvests and longer marketing periods, giving 

downward impetus to exvessel prices. On the other hand, during the tarnsition to long run 

equilibrium, the effects of these changes on total and marginal adjustment costs is ambiguous 

because a larger quantity is being spread over a longer marketing period. Hence seasonal 

regulation changes could either mitigate or amplify the inherent open access incentives to 

enter through their market effects.

In turn, these price changes and their market impacts also cause  changes in the 

regulatory sector. Falling prices should ceteris paribus, reduce the entry pressure and hence 

allow regulators to relax season lengths. Over the recovery period, however, conditions are 

not ceteris paribus because of increased biomass and quotas. It appears, in fact, that for 

the parameters we use to simulate in this case, the combined effects work to exacerbate 

the regulatory problem because over the approach to  equilibrium, capacity continues to 

rise gradually (see Figure 7.11). This is associated with the rising revenues and positive 

but small rents (see Figure 7.12). Thus on the whole for this system, the combined effect 

of rising biomass on production and increased marketing period lengths on price must be 

outweighing any possible revenue reducing effects associated with the essentially inelastic 

exvessel demand curve. The implication of this for the regulatory sector is tha t the in

creasing growth of capacity must be matched by continual reductions in season length. At 

the long run equilibrium, the level of capacity is lower than for the case modeled wiithout 

the marketing sector, indicating that the price dampening effect plays some positive role in 

easing the regulatory task, although not a significant one.

In summary, the addition of the marketing sector adds complexity to  both the
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Figure 7.11: Simulation of Capacity and Season Length in the Full Model
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Figure 7.12: Simulation of Rents and Revenues in the Full Model
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approach paths and to the determination of the characteristics of the equilibrium. During 

the approach to equilibrium, price changes smooth what would otherwise be more dramatic 

swings and depending upon initial values, may dampen or increase the possibility of oscilla

tions and over /undershooting. The impact on the equilibrium is complicated, however, and 

essentially depends upon the interplay between harvest levels, elasticities of demand, and 

elasticities with respect to marketing period (season length). Table 7.3 below summarizes 

the four cases considered, from the simple static Gordon model, to the dynamic Gordon 

model, to the two models we develop that add regulations and the market. As can be seen, 

moving from the naive versions of the pure open access Gordon model to more realistic 

depictions of a regulated open access system affects predictions profoundly. In particu

lar, the result of adding a goal driven regulatory institution is both a higher biomass and 

harvest level. Importantly, however, this ends up exacerbating the social waste associated 

with open access because there is ultimately more excess capacity operating over a shorter 

season length than would otherwise be the case. Adding the marketing sector identifies the 

impacts of these regulations on exvessel prices, and traces the respective roles of price levels 

on entry and regulations. In general these can be complicated and may mitigate or amplify 

the basic regulated open access incentives to overcapitalize. In the case modeled here, the 

combined effects work to reduce rent dissipation pressures, although the ultimate effect on 

season length is minimal.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithou t p erm issio n .



208

E T X H Pe v

Static Gordon 13.83 30.28 53.5 24.95 1.95

Dynamic Gordon 5.92 48 43.7 15.17 1.95

Regulated Open Access 40.69 3.74 133.2 27.14 1.95

Regulated Open Access 
with Marketing Sector

32.87 4.63 133.2 27.14 1.66

Table 7.3: Equilibrium Values for Alternative Models
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C hapter 8

Concluding Remarks

As pointed out in the introduction, the H.S. Gordon model of the rent dissipation process 

is one of the most influential papers in the field of natural resource economics. It has not 

only shaped the profession’s general view of how resource exploitation takes place but it 

has also become the principal paradigm underlying policy design aimed at tackling the 

problem of open access resource overexploitation. In this chapter we summarize fisheries 

policy developments since Gordon and discuss the role tha t his thinking has played in the 

process of policy evolution. This places the contributions of this thesis in a normative as 

well as predictive context.

The decade following Gordon’s paper witnessed stock collapses in many important 

fisheries, including salmon, halibut and herring on the West Coast, and cod and various 

groundfish species in the Atlantic. The response in some cases was for governments to 

initiate some form of fishing controls similar to those developed for halibut in the thirties. 

Most regulatory programs evolved with a structure much like that developed in the theory 

of regulatory behavior presented in Chapter 3, namely q u o ta s  (often implicit) establishing 

targeted harvest levels based on biomass or other criteria, and in s tru m e n ts  (including
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season lengths, closed areas, gear restrictions) set to  achieve the targets. Throughout most 

of the fifties and sixties, virtually all important fisheries remained open access, not only to 

domestic fishermen but often also to foreign fleets.

As happened in the halibut program of regulation, where these new regulatory pro

grams proved successful in controlling harvests, they often paradoxically suffered from their 

very successes, exactly as predicted by our full model. T hat is, as regulators gained control 

of harvests and as biomass recovered, rents were generated and new entry occurred, neces

sitating further tightening of regulations. As early as the sixties, biologists were looking 

for other regulatory means to harness the effects of the rent dissipation on fishing capac

ity growth. In the early sixties, fisheries managers in the Australian rock lobster fishery 

attem pted to cap total effort by freezing the number of lobster traps in the industry and 

allowing fishermen to fish only the numbers of gear they had permits for (Meany[59]). This 

was one of the first l im ite d  e n try  programs (gear based) and others soon followed, typi

cally restricting participation to those holding one of a limited number of entry permits.1 

These new programs of fisheries regulation were largely instigated by fisheries biologists 

(rather than economists) who saw threats to stock health (rather than rent dissipation) as 

the principal problem associated with open access fisheries (see Adasiak[l]).

Although few fisheries economists were directly involved with designing or imple

menting these programs, most were quick to embrace these emerging regulatory institutions 

(Crutchfield [21]). It seems in hindsight that one of the reasons that economists quickly 

became advocates of limited entry programs is because of the compelling influence of the

1 Perhaps the first limited entry program was that initiated in the British Columbia salmon fishery in 
1889. That program gave permits to fish to canneries. It was abandoned in 1892 under pressure from new 
entrants. In recent times, the next limited entry program was adopted in the South African pilchard and 
mackerel fishery (1953), the Western Australia Rock Lobster fishery in 1963, followed by another one in the 
Australian Prawn fishery in 1965. These were followed by the Canadian Maritime Lobster program (1967), 
the British Columbia salmon program (1968), Wisconsin and Michigan’s Great Lakes programs (1968), 
several in Eastern Canada including herring (1970), and the Bay of Fundy scallops, offshore scallops and 
lobester, and groundfish fisheries (all in 1973). Alaska and Washington instituted limited entry programs in 
their salmon fisheries in 1974.
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Gordon paradigm. Gordon supplied not only the rationale for regulations (waste of poten

tial resource rents) but also a possible design. In particular, since, as Gordon predicted, we 

should expect to see rents drawing in excess inputs into open access fisheries, one obvious 

answer to the problem might be to restrict access.

By the late 1970s, evidence was accumulating that the fisheries regulation prob

lem was not quite so simple (McConnell and Norton[58], Pearse[66]). In many fisheries 

where limited entry programs were established to control capacity growth, fishermen sim

ply circumvented the program by investing in unrestricted inputs (Anderson[4], Pearse and 

Wilen[67]). In the British Columbia salmon fishery, for example, regulations were first 

placed on vessels, restricting the total number in the fleet in 1968. Next, regulators ob

served fishermen replacing small vessels with bigger ones and hence controls were switched 

to restrict total tonnage. Then, regulators found fishermen building larger configured ves

sels of the same tonnage and so additional regulations were placed on dimensions. Finally, 

once basic vessel dimensions were tied up, regulators found fishermen concentrating in high 

efficiency gear types and hence subsequent regulations had to limit numbers by gear type 

(Fraser[33], Campbell[13]). W hat early regulatory designs failed to incorporate was that 

fishing technology is not, as Gordon chose to illustrate with his abstraction, a one dimen

sional metric called “effort.” In a resource exploitation setting where technology is flexible, 

the rent dissipation process will be pervasive and exerted across all dimensions over which 

fishermen have discretion.

A debate has persisted over many years over the practical significance of this 

point and over exactly how to interpret the evidence that has been revealed in limited entry 

programs (see Pearse[64], Townsend[83], and Wilen[88j). Some economists believe that 

restricting a few key dimensions (tonnage and dimensions and gear configurations) ought to 

be enough to lock up and sustain most of the potential rents in fisheries (Crutchfield[21]). 

Evidence supporting this view are the large and persistent transfer prices in many limited
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entry programs.2 Other economists take the Gordon paradigm to its logical conclusion by 

arguing that as long as there are any  rents in a fishery, there will be a tendency to dissipate 

them  with wasteful investments in redundant inputs, and other means of gaining temporary 

capacity advantages over their competitors (Wilen[87], Pearse[65], Pearse[66]).

Partly as a result of the inconclusive evidence over the long run ability of limited 

entry programs to sustain rents, economists began to advocate a radically different program 

beginning in the late seventies. The new idea was to create property rights by converting 

aggregate industry regulated quotas into individual transferable quotas or ITQs.3 The ad

vantage foreseen for ITQs was that they could attack the problem identified by Gordon 

directly rather than indirectly. That is, instead of fighting symptoms of forces of rent dissi

pation by controlling excess inputs, ITQs could attack the cause (lack of proper incentives) 

by creating rights which encourage efficient behavior. During the eighties and nineties, a 

debate nearly as rancorous as the preceding one on the ultim ate merits of limited entry 

has surfaced over the potential of ITQs to “solve” once and for all the open access problem 

identified by Gordon.4

Beginning in 1984, Iceland, New Zealand, Australia, and a few other countries 

began to experiment with ITQs (see Clark et. al.[16] and Wesney[86]). Programs were 

instituted in New Zealand’s offshore groundfish industry and Iceland’s offshore cod fishery, 

followed by others in New Zealand’s inshore fisheries and elsewhere. Although judgment 

has not been universally positive, most economists, managers, and fishermen view these 

new programs as successful. During the past few years a virtual explosion in new adoptions 

has taken place. Presently there are over 40 individual quota programs in place, with the 

most prominent ones in the New Zealand fisheries, Australia’s Bluefin tuna fisheries, British

2Alaskan salmon permits (area and gear specific) sell for up to $400,00. British Columbian roe herring 
permits lease for $100,000 per year.

3This idea originated with Christy[15] and was then developed in a fishery setting by Moloney and 
Pearse[61].

4See Copes[18] for a critical view.
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Columbia’s halibut fishery, and the New England surf clam fishery.

An interesting outcome has emerged in virtually all of the new ITQ programs, 

however, and one that was not expected or even noticed by any economists until recently 

(Homans and Wilen[52]). The unexpected outcome is that virtually all of the rent gains 

initially induced by ITQs have emerged not from input and cost reconfigurations but instead 

through changes on the marketing or rev en u e  side of the ledger. There are several examples, 

discussed below.

A u s tra lia n  S o u th e rn  B luefin  T u n a  In 1984, the bluefin tuna fishery was converted into 

an ITQ system by allocating quotas to  fishermen based on historical catches. During the 

regulated open access fishery, the fleet intercepted tuna in their counterclockwise migration 

in the southwestern seas before they had a chance to reach significant size and maturity. 

After ITQs were adopted, fishermen fishing off the southeastern seas purchased quota from 

their southwestern located counterparts and began to fish for larger tuna. These larger (and 

better handled) tuna earned much higher prices in the Japanese sashimi market and revenues 

grew substantially. Geen and Nayar[37] report th a t after ju st three years of operation, the 

number of large fish (greater than 15 kg.) increase from 15 to 35% of the catch. As a result, 

revenues rose from 988 to 2000 dollars per ton in constant dollars between 1984 and 1987. 

During this same period, there was some vessel consolidation but Geen and Nayar estimate 

this to have reduced costs by only 25-30%. While this is significant, it is dwarfed by the 

over 100% increase in revenues induced by market side effects.

B r itis h  C o lum bia  H a lib u t In 1991, Canadian fishermen adopted an ITQ fishery reg

ulation program side by side with the continued use of a “fishing derby” by U.S. halibut 

fishermen off Alaska. In 1991, there were reports th a t over fifty percent of the U.S. catch 

was landed without ever being iced and about a third of the fish were not even gutted
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during the biggest one day opening in the first week in May. The British Columbia fleet, in 

contrast, chose to  hold most of their quotas over to use after the May opening in the U.S. 

and before the final closing date in November. As a result, significantly higher prices were 

received by Canadians. Fishermen’s News (June 1991) reported that the exvessel prices 

received during the latter part of May by B.C. fishermen averaged S i.10 per pound higher 

than those received by U.S. counterparts (who received about $1.70). This suggests a rev

enue rent loss due to regulated open access of about forty percent of potential. A recent 

study of the structure of the fleet in B.C. after ITQs by EB Associates[27] concludes that 

there have been few significant changes in costs and that most of the changes have occurred 

in the marketing sector. Virtually all of the B.C. halibut is now sold in the much more high 

valued fresh market almost year round.

N ew  Z ealand  In sh o re  G round fish  The pre-ITQ inshore groundfish fishery off New 

Zealand was primarily a trawl fishery, with catch comprised of many species of various 

sizes and relatively low quality. Early reports after ITQs were introduced indicated that 

revenues in some case tr ip le d . This occurred because of major shifts in products marketed, 

primarily away from mixed batches of small, net marked fish caught in compressed seasons, 

towards better handled fish targeted with long line gear and selected for size and market 

characteristics over the whole year. The red snapper fishery is interesting in this regard, 

switching from a frozen trawl caught product to a long line caught product tha t is marketed 

as live fish shipped to Japan. This is particularly interesting because long line fishing 

is a co s tlie r  technology whose introduction was made possible only by the substantially 

larger revenues earned in the new market. Hence this case is an extreme version of how 

dramatic the errors might be in adopting a naive Gordon model to anticipate the gains from 

rationalization. In this case, not only would there be no cost savings from input reduction, 

but costs would go up and all rent gains would emerge from the revenue side of the picture.
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These three examples are not isolated cases but in fact appear to be representative 

of a general phenomenon emerging out of experience in most recent rationalizations of 

fisheries via the use of ITQs. What these point to quite clearly is how important a proper 

paradigm is to accurate anticipation of policy changes. We would argue that the reason 

fisheries economists have essentially failed to anticipate these important sources of rent 

gains in modern fisheries is that the dominant paradigm, base on pure open access, static 

assumptions, and exogenous market conditions, is basically incomplete as a description of 

most modern fisheries. As we have demonstrated, it is particularly important to account 

of the fact that modern fisheries are not pure open access but rather regulated open (or 

restricted) access. W hat seems to be emerging in all of these cases is that the initial and 

dominant impact of switching from regulated open access to schemes that encourage rent 

maximization is that the first and perhaps easiest sources of rent gains come from freeing 

up the system from the constraints of the old regulatory system. In particular, for fisheries 

that have been regulated with season and other restrictions whose impacts have distorted 

the output market, when these are lifted there are almost immediate gains to be made 

from marketing changes which raise exvessel prices. For example, simple switching from 

compressed seasons with frozen product to year long seasons with fresh product should 

almost always results in higher revenues. Or, switching fishing methods to target larger 

or otherwise better quality fish ought to raise exvessel values. That these changes might 

be the first to  emerge after ITQs has been missed because economists have been bound 

up in a paradigm which basically ignores the source of these rents (the regulatory sector) 

and the m o d e  o f  tra n sm iss io n  (the market), focusing instead on anticipated cost savings 

from reduced inputs. It is likely that cost savings will follow after these schemes mature, of 

course, but these may turn out to be incidental to the rent gains made on the revenue side.

W hat does this say about how economists should be thinking about modeling 

policy impacts under regulated open access conditions? First, as argued throughout this
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thesis, it is im portant to capture the fundamental nature of both the regulatory sector 

and the marketing sector. As this thesis has demonstrated, this requires some modeling 

judgm ent and care. One cannot, for example, simply take regulations as given because they 

are generally endogenous in the system. This means th a t the modeler must delve into the 

specifics of actual policy making and attem pt to synthesize the procedures that are being 

exhibited in decisions. In addition, although there are broad similarities that run across 

many fisheries, the specific form that regulations take in any one fishery and the impact of 

those on the market and industry may depend on a process of institutional evolution. The 

case we have examined has been simple to  model because technology has been relatively 

constant and the primary instrument used has been a single one, season length. Still, even 

in this case, when the biomass collapsed in the early sixties, regulators changed the nature 

of their decision making procedures by adopting new quota rules and tighter adherence to 

targets. Hence modeling may require not only capturing the basic nature of the system, 

but also looking for and possibly anticipating structural change in regulatory procedures.

In addition, we have demonstrated that the interplay between the industry, the 

regulatory sector, and the market can be complicated and capable of exhibiting patterns 

that a t first appear counterintuitive. For example, we have shown that the degree of over 

and under shooting to  the long run equilibrium depends upon relative speeds of adjustment. 

Hence if the industry began to react more sluggishly to rents, we would expect wider swings 

in capacity and season length, more divergence between actual harvests and targeted quota, 

and a slower approach to the safe stock level. We have also shown that the market effects of 

regulations are potentially complicated, particularly because short seasons induce storage 

which is inherently difficult to model. In our estimations, we have uncovered relationships 

between harvest levels, inventory costs, and the wholesale market which are consistent with 

sophisticated dynamic decision making. Still, since revenues depend in complicated ways on 

price and marketing period elasticities, the implications of policies that simultaneously affect
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harvest quantities and quality and season lengths in combination are hard to anticipate even 

qualitatively without some idea of the values of critical parameters.

In sum, the model developed here is both illuminating pedagogically and poten

tially useful for policy analysis of a complicated system. We have illustrated its usefulness 

in an application to regulatory Area 2, and similar results follow for Area 3. Our results 

show that a considerable amount of potential rent is a t stake in this fishery. A quick cal

culation using estimated cost and production parameters suggests that, even at c u rre n t 

prices associated with the predominantly open access fishery off Alaska, the potential rent 

gains from cost sav ing  alone may be on the order of 30 million dollars per year for Area 

2.5 It is difficult to forecast how much rents are lost on the rev en u e  side due to regulations 

which have compressed the season and resulted in most harvest being frozen, because there 

is only limited experience with new market conditions where halibut is available fresh over 

the whole year. However, another quick calculation suggests tha t inventory holding and 

adjustment costs of 7-8 cents per pound would be saved and in addition, wholesale prices 

would be higher because of the premium for fresh fish. If the first few year’s experience in 

British Columbia is indicative, exvessel revenues may rise by 60-70%, generating another 

30 million dollars per year. These, of course, would emerge almost immediately while the 

cost savings from reduced and consolidated gear may take several years.

5This is determined by assuming X  =  133.2, Q =  27.14, q =  .0015, /  =  .99, and P EV =  1.66. These are 
estimated parameters and simulated equilibrium values for the full regulated open access model including the 
marketing sector. By contrast, suppose that the season were stretched to a maximum of 270 days, allowing a 
closure period to protect the biomass during spawning. Then only 562 skates of capacity would be needed to 
harvest the quota, operating over the longer season. This compares with the predicted regulated open access 
level of 32,870 skates of capacity. Since the estimated outfitting and opportunity costs are approximately 
S100 per season per skate, the savings would be about $32 million.
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