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An Adaptive Model of Perishable
Inventory Dissipation in a
Nonstationary Price Environment

Tomislav Vukina and James L. Anderson

The paper develops an adaptive model of perishable commodity dissipation based on the
individual’s price expectations and risk perception. A two-step, state-space procedure for
modeling nonstationary time series is presented. The method combines an impulse response
model for estimating deterministic components with an innovations model for the remaining
stationary stochastic noise. Combined parameters are used to generate forecasts and to derive
a measure of risk in a nonstationary price environment. Defined as the variance (covariance)
of out-of-sample forecast error, the measure of risk is the difference between the historical
estimate of the stationary noise auto-covariance and the variance (covariance) of out-of-sample
forecasts. The optimal marketing strategy for a hypothetical salmon processor who sells to
Japanese wholesalers is developed to illustrate the model. The solution is obtained using

quadratic programming algorithm.

Agricultural production is often characterized by a
short and concentrated harvest period, followed by
a longer marketing period during which the stored
product is sold from inventories. The same situa-
tion is frequently observable in many fisheries
where there exists a biologically determined period
when fish are available in high concentrations (e.g.
salmon runs) or in fisheries where harvesting sea-
son has been shortened to avoid exceeding target
harvest levels [Wessells and Wilen (1993)]. In
these types of economic activities, agents must de-
cide whether to rush the commodity to the market
immediately after harvesting/processing or store it
and speculate on the price increase over the storage
period.

Many Alaskan salmon processors export the
bulk of their inventory within few months after
harvest. In this paper we design an alternative mar-
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keting strategy where inventory depletion is based
on the processor’s price expectations and risk per-
ception. The commodity under consideration is
frozen sockeye salmon and the economic agent is a
hypothetical processor who buys fish from fisher-
men during harvesting season and, after processing
and freezing, stores it for future sales. Because 96
percent (average 1986-1990) of the US fresh/
frozen sockeye salmon is exported to Japan (aver-
age 1986-1990) of the US fresh/frozen sockeye
salmon is exported to Japan [Knapp (1992)], the
processor’s marketing strategy is oriented towards
the Japanese wholesale market.

Based on the adaptive hedging model of Vukina
and Anderson (1993), the task is to develop an
adaptive dynamic model of perishable inventory
dissipation. The model assumes the agent deplet-
ing his/her inventory over time with no carryover
of perishable fish into the next season in a way that
will maximize expected utility of terminal profit.
The subjective expectations about future prices and
the individual perception of risk are approximated
by the price forecasts and the variance-covariance
of forecast errors. Forecasts and mean squared
forecast errors are generated by the state-space
method for modeling nonstationary time series
with nonstationarities assumed deterministic in na-
ture [see: Vukina and Anderson (1994)]. The
model is adaptive in the sense that the marketing
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strategy can be adjusted each time period when
new information becomes available.

Inventory Dissipation Model

The model simulates the decision process of a hy-
pothetical processor who buys an exogenously de-
termined quantity of raw fish. In a given isolated
region of Alaska, even a small processor would
experience exogenous supply conditions deter-
mined by the regional fishery management con-
straints and stochastic salmon run size. After pro-
cessing and freezing, the purchased quantity of
raw fish yields the processed quantity QF that
commands the known market price p,. Price p, can
be interpreted as the opportunity cost of tied-up
working capital, i.e. the price that would have
been obtained had the product been ready for sale
in period 0. The model assumes unlimited cold
storage capacity at the nonstochastic rental price
(unit cost of storage). The problem becomes how
to optimally allocate the given quantity Qg
throughout the remaining periods of the marketing
season, with no stock carryover into the next sea-
son, so that the expected utility of terminal profit is
maximized. Future prices p, . . . , py at which
the commodity (risky asset) will be sold are un-
known stochastic variables. A hypothetical proces-
sor is a price taker, because his strategy cannot
influence the Japanese wholesale market price. As-
suming an increasing, strictly concave, twice dif-
ferentiable Von Neumann-Morgenstern utility
function U with terminal profit I, as the sole ar-
gument and the information set Z, (i.e. the history
of prices up to the data point py), the period O
decision problem is:

Mqax Jo = E[U(II7)|Zo]
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S.t.
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where g, . . . , qrare decision variables denoting
monthly quantities of perishable commodity to be
sold, c is the unit cost of storage that increases with
time k, and r is the one-period risk-free interest
rate.

Assuming a constant absolute risk aversion
(CARA) utility function, a normally distributed
terminal profit, and jointly normally distributed [1
and p,, maximizing E[U(I1,)] then is equivalent to
maximizing the mean-variance objective function J
= E(Il) — (M2) Var(Illy), where A = —U"(I1y
U'(ly) = —EU'{AL,)VE[U'(11)] represents the
Pratt- Arrow measure of absolute risk aversion. In
matrix notation the problem can be specified as
follows:

A
Max Jo = E(m)'q — 54" 1 q

s.t.

) iq = Qf

q=0

where €} is a (T X T) symmetric matrix of the
intertemporal variance-covariance structure of the
decision maker’s subjective probability distribu-
tion of net returns from sales:
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E(m) is a (T X 1) vector of expected prices net of
storage costs:

RT7I(py — ¢
R™2(p, - 2c)

4 Em) = R7p:—30)

ﬁT"— Tc

qis a (T X 1) nonnegative vector of monthly sales,
R = (1 + r) is a compound factor, and i is an (1
X T) vector of ones. Expectations about the future
wholesale prices are approximated with price fore-
casts p, = E(p,Z,), and the subjective perception
of risk is measured by variances ((rf,lZo) and co-
variances (0,,/Z,) of forecast errors, all based on
information set Zj.

The solution to the problem in (2) can be ob-
tained by quadratic programming. The vector of
optimal quantities q|Z, determines the marketing
strategy for the entire planning horizon based on
information available in period 0. However, the
model allows for the adjustment of the original
marketing policy each time period, after new in-
formation becomes available. Therefore, based on
the initial estimates, only the first period optimal
quantity g¥|Z, is actually sold. The remaining pe-
riods quantities (q,, . . . , ¢p)|Z serve as auxil-
iary decision variables enabling derivation of the
optima) inter-temporal solution g¥|Z,.

In the next period, the processor has new data
and the existing marketing strategy can be revised.
Expectations and risk perceptions are now based
on information Z,, which has been updated with
new data point p,. To determine optimal inventory
depletion for remaining inventory (0§ — g¢¥Z,),
the decision problem can be formulated as:

ngq J1 = E [U(llp)|Zy]

492
s.t.

Iy = (1 + NT(~peQ¥)
+ A+ P - o g

T
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k=2
T
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The remaining stochastic variables are p,, . . .,
pr. With the one-period time advancement, p, has
become a known constant and all expectations are
based on information Z,. The solution to the opti-
mal marketing policy (¢,, . . . , ¢p)|Z; can be ob-
tained by solving the quadratic programming prob-
lem like the one in (2), with the first row and first
column in matrix Q in (3) and the first row in
vector E(47) in (4) deleted. The (T — 1) vector of
optimal quantities q|Z, determines the marketing
strategy for the rest of the planning horizon based
on information available in period 1, but only the
nearest period sales of ¢,*|Z, are actually exe-
cuted.

To adjust the marketing strategy to new market
signals (prices), the same routine is repeated (T —
1) times. The final decision the processor has to
make is g7 _,*|Z,_,, because the last period sales
gr* are automatically determined by satisfying the
no-carryover constraint.

Price Forecasting With State-Space Models of
Nonstationary Time Series

To simulate how inventory dissipation decisions
are formulated, the measures of subjective price
expectations and uncertainty surrounding these ex-
pectations are needed. We use the successively up-
dated out-of-sample price forecasts to approximate
price expectations and the variance (covariance)
matrices of forecast errors to measure risk. Out-
of-sample forecasts are obtained by the state-space
method for modeling nonstationary time series.
The individual processor’s perceived risk is mea-
sured by the variance (covariance) of the out-of-
sample forecast error (mmean squared out-of-sample
forecast error).

Based on the insights of linear systems theory, a
state-space method for modeling vector-valued
time series has been proposed by Aoki (1987) and
Aoki (1990). As is typical of most time series pro-
cedures, the method assumes that series are sta-
tionary stochastic processes. In particular, the
weak stationarity assumption requires that mean,
variance, and covariances of the series are invari-
ant with respect to displacement in time. Many
time series in business and economics are not gen-
erated by stationary processes. In this case, accu-
rate modeling of time series requires various trans-
formations to achieve stationarity before the stan-
dard methods can be implemented [see: Havenner
and Aoki (1988)].

Nonstationarities are categorized as either sto-
chastic or deterministic. Integrated stochastic pro-
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cesses, such as random walks or random walks
with drift, exhibit stochastic nonstationarities. De-
terministic trends or cycles, dummy variables, or
any other nonstationary exogenous (known and ob-
servable) variables are the examples of determin-
istic nonstationarities. The characteristics of the
world salmon market suggest the possible presence
of deterministic cycles in salmon prices. Cycles
may result from the complex interplay of various
factors, such as fish population dynamics, seasonal
variations in demand, and cyclical nature of over-
all business activity.

Sockeye salmon (Oncorhynchus nerka) are
anadromous. The great majority of sockeye are
four years old when they return to spawn. Fisheries
managers tend to rely on the pattern of these re-
turns for managing the resource. The cycles of
return runs have received particular attention be-
cause they create severe harvest and marketing
problems [Groot and Margolis (1991:95)]. Other
factors contributing to the cyclical price behavior
include the Japanese traditional holiday demand
for sockeye and the availability of various substi-
tute species/products.

The standard approach to incorporate determin-
istic effects into state-space time-series models re-
quires the stochastic (innovations) model be aug-
mented with regression equation [Dorfman and
Havenner (1991)]. The procedure will remove
time varying deterministic mean, thus rendering
the resulting series stationary. In the alternative
approach presented in this paper, deterministic
components of the original time series (scalar or
vector-valued) are modeled as an impulse response
first, and then the resulting residuals are modeled
with an innovations model. Out-of-sample fore-
casts are obtained by summing the forecasts from
the impulse response and the innovations models:

(6) Prvr = hop + dyiy
=GF b + CA* 'x,,,, k=L

where 7 represents the forecast of the original non-
stationary time series, & denotes the deterministic
nonstationarity, and # is the forecast of the station-
ary stochastic component. If ¥ = 1, (6) reduces to
a one-step-ahead forecast; ¥k = 2 genecrates ¥, ,,
and so forth.

In state-space description, the impulse response
model (i.e. the response of the linear time-
invariant discrete system to the discrete time Kro-
necker delta function) is specified as:

Xet 1 = Fxge—1 + bd,

@ b = Gxq—1

where F, b, and G are parameters to be estimated,
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8, is Kronecker’s delta function defined as 8, = 1
fort = 0, and §, = O otherwise, and ¥, is a vector
of minimal variables needed to summarize the ef-
fect of previous inputs on all future outputs. Ob-
servations on m time series {y,} are assumed to be
given by the impulse response sequence observed
innoise:y, = h, + u, t =1, ..., T, where {u}
is a zero mean, mutually independent, Gaussian
random variable. The theoretical underpinning of
the impulse response model, and the methodology
for estimating parameters F, b, and G, are ex-
plained in details in Vukina and Anderson (1994).

Using the estimates of F, b, and G, the forecasts
of the original time series are generated as the se-
quence of Markov parameters h, = GF*~'b, and
forecasting errors (residuals) are calculated. The
obtained errors from the first step are modeled with
the innovations model in the second step. The
problem requires fitting an appropriate model to T
observations on m series of a zero-mean, weakly
stationary, vector-valued Gaussian stochastic pro-
cess with covariance sequence ['; = Efu, ., ;u,]. In
the state-space format the innovations model con-
sists of state and observation equations:

Xerre = Axg-1 + Be,
u, = Cxt\t—l + g

(®)

where matrices A, B, and C are the coefficients to
be estimated, input {e,} is a white Gaussian process
with E(e,e,’) = ¥, and x, is a vector of unobserv-
able states that are minimal sufficient statistics for
history of the process {«,}. Subscripts on x refer to
the conditional expectation of x in the period of the
first subscript given the information set at the time
of the second subscript.

The procedure for estimating Markovian model
for a stochastic process (i.e. a state-space model
driven by white noise) requires obtaining a para-
metric model for auto-covariance sequence of the
process from raw data first, and then obtaining a
model for the stochastic process itself. The param-
eters of the autocovariance model A and C are
estimated with the procedure similar to the one
used to estimate the Markov sequence parameters
from the impulse response model [see: Vukina and
Anderson (1994)], and the procedure to obtain an
innovations model, i.e. the estimation of the Kal-
man filter matrix B, is based on Vaccaro and
Vukina (1992). Out-of-sample forecasts are gener-
ated by §,,, = ca*! X+ 1)

Measuring Risk

The individual processor’s perceived risk is mea-
sured by the variance (covariance) of the out-of-
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sample forecast error (mean squared out-of-sample
forecast error). For example, variance of the one-
step-ahead forecast error is defined as:

9 211 = El(V;e1 — 9o D041 — Fea )]

Recall that the observation equation for the actual
process is:

(10) Pvr + ti

Bivy + Cxpiy + €0y

Ye+1

and the one-step-ahead forecast is generated by:
(11) 3

Beypy + Gy
hipr + Cxppy

The observed (actual) process consists of deter-
ministic part 4, ,, and the weakly stationary sto-
chastic error u,, ;, whose forecasts #,, , are gen-
erated as a linear combination of unobservable
states (Cx,.,.,). Substituting (10) and (11) into (9)
and expanding the product gives:

(12) 2"ll = E[(h,_,,] + u1+1) (ht+l + ut+1),]
— 2E[(hyy + Cx,py + €44 1)
(hr + Cx,10)']
+ E[(hyy + Cx,\ )
(heiq + Cx )]

An important feature of weakly stationary stochas-
tic processes is the fact that variances (covari-
ances) of all equidistant lags are identical [e.g. [,
= E(u,u,’) = E(u, ., u,,,")]. After replacing u, . ,
in the remaining cross-products with (Cx,,, +
¢, 1), multiple cancellation of terms in (12) yields:

(13) S =T = 2E(Cx, X', 1,C")
+ E(e, X', 11C")
+ E(Cx,Hx',HC').

Observing the definition of the symmetric state co-
variance matrix P = E(x,, y, X, 4}, ), and invoking
the orthogonality of states with current and future
innovations gives:

(14) 211 = FO - CPC,

where CPC’ is the variance of the one-step-ahead
forecast defined as:

(15) = E[(J,41 — E()A’H-l))

t+1 E(.91+1))']
E{[h, . + Cx, o,
— E(h, 1 + Cxppy)]
[Aeey + Cxppy
— E(h,y + Cx, . )]'}
E[Cx,, x',.1C'] = CPC’,

since E(x,,,) = 0, and E(,, ;) = h,,,.
Similarly, the covariance of the two-step-ahead
and the one-step-ahead forecast errors is:

var(yA:+1)
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(16) %31 = E[(r11 = Jes )0rs2 — Fi42)']
=T, ~ CAPC'.

where I', = E(u,, ,u,”) = E(u,, ,u,, ') represents
the sample estimate of the one-lag stationary noise
auto-covariance matrix, and CAPC’ is the covari-
ance of the two-step-ahead and the one-step-ahead
forecasts. In case of vector-valued time-series,
variances and covariances are (m X m) nonsym-
metric (except I'y) matrices, and the covariance of
the one-step-ahead and the two-step-ahead forecast
errors is the transpose of the covariance of the
two-step-ahead and the one-step-ahead forecast er-
rors:

amn S = Gy

I, — CPA'C'.

However, since in this case m 1, variance-

covariance terms are scalars and 0,; = 0,.
Consider now the general case of variance (co-

variance) between the k-step-ahead and the j-step-

ahead forecast errors:

(18) 2kj = El(rk = $140) (yt+j - j)\t+j)’]'

The observation equation for the actual process
(10) can be combined with the state equation from
(8) to yield the equation for the process output at
time ¢+ k expressed in terms of its deterministic
component at time r+k, the state vector at time
t+1, and innovations ¢, 4, . . .

» €kt
k-1
Yerk = hpp + CA* x,y + 2 CAF"1Be,, ;
i=1
19)

Substituting (19) and (6) into (18) yields the gen-
eral formula for the variance (covariance) of out-
of-sample forecast errors:

20) |
3y = ey = CASTOPAIDC, kj = 1.

In the vector-valued time series case 2, = X/,
whereas in the scalar case 2, = X;.

The results show that the measure of uncertainty
defined as the covariance (variance, if k = j) of the
out-of-sample forecast errors (mean square fore-
cast error) is in fact a difference between the his-
torical (sample) estimate of the lag k — j stationary
noise auto-covariance I'y_;, and the covariance of
the k-step-ahead and the j-step-ahead (variance,
if &k = j) out-of-sample forecasts E{[§,,. —
E[$,Jl$;+; — E(@,+,))'}. Because the eigenval-
ues of the transition matrix A lie inside the unit
circle (the property of stationarity), increasing the
exponent of A in (6) gradually brings 4,,, =

+ e
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CA*"!x,,, to zero. The speed of decay depends
on the magnitude of these eigenvalues. Fast eigen-
values (those close to zero) cause the out-of-
sample forecasted residuals to degenerate quickly,
while slow eigenvalues (those close to unity) en-
able forecasts to stretch further out into the future
before collapsing to zero.

As a result, the combined forecasts of the actual
process revert to the deterministic time series com-
ponent k,,, = GF* b, and its variance (covari-
ance) approaches zero. When such a point is
reached, the mean square out-of-sample forecast
error collapes to the historical stationary noise
auto-covariance [',_;. The further away the out-
of-sample forecasts are from the present, the larger
is the mean square forecast error and the lower is
the forecast reliability. Maximum risk associated
with forecasting is the historical variance of the
stationary random noise process. For sufficiently
large &, the combined out-of-sample forecast is not
better than the deterministic component of the pro-
cess.

The Toeplitz matrix of stationary noise auto-
covariance sample estimates and the Hankel matrix
of out-of-sample forecast variances (covariances)
can be used to rewrite (20) as:
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the U.S. had nearly 89 percent of total Japanese
frozen salmon imports, by 1991 the US share
dropped to only 63 percent [Kusakabe (1992)].

The wholesale markets are the core of the dis-
tribution system of seafood in Japan. There are 340
producer wholesale markets, and 505 consumer
wholesale markets located throughout Japan. The
Tokyo Wholesale Central Market (Tsukiji) is the
largest fish market in Japan. Marketing channels
that bypass wholesale markets are emerging due to
improvements in processing technology and trans-
portation, as well as increasing imports. Large su-
permarket chains that deal directly with importers
also reduce the flow through wholesale markets. In
general, there are four different outlets for salmon
products in Japan: retail market, gift market, res-
taurants, and industrial use. The majority of im-
ported frozen sockeye is usually processed as
salted and sold through the retail market [for de-
tails see: Kusakabe (1992)].

In such a highly competitive environment, a hy-
pothetical Alaskan processor perceives the Japa-
nese wholesale prices as exogenous. The prices
used in this study are the monthly average frozen
sockeye salmon wholesale prices from the three
wholesale markets in Tokyo area as reported in the

2y 2y o 2y ) 1 i1
s = 2o 2y vt 2y _ Iy T -2

S 2 ot By | Y Ty
20

CPAI-V'C
CAPAI™V'C

CcpPC’
CAPC’

CPA'C’
CAPA'C’

CAK'PC' CA*PA'C' -+ CA¥'PAVC

which will be used to produce the out-of-sample
forecast error variance (covariance) matrix {2 from
(3) by multiplying each element of the 3, matrix by
the corresponding compound factor.

Empirical Results

Japan’s total supply of salmon increased by over
200 percent between 1976 and 1991. In the same
period, imports increased by over 4100 percent,
accounting for 40 percent of Japan’s supply. Al-
though, Japan, is the primary country of destina-
tion for the U.S. fresh/frozen salmon exports, the
position of the U.S. on the Japanese market is
diminishing as aquaculture’s share in Japan’s
salmon imports increases, and as Japan further di-
versifies its pool of suppliers. At its peak in 1985,

Tokyo Central Wholesale Market Yearbook. Prices
are expressed in Yen/Kg, and the data set covers
the period from January 1978 to July 1992, for the
total of 175 observations. The mean of the series is
1295, the standard deviation 234, the minimum
value 804, and the maximum value 1883.

Forecasting Results

To implement the presented theoretical model, se-
quentially updated price forecasts and variance-
covariance matrices of forecast errors are required.
The results of the initial and final estimation
round, together with forecasting statistics for all
rounds are presented in Table 1.

Parameters are initially estimated using the first
164 observation, and 11 out-of-sample forecasts
are generated by (6), together with the (11 X 11)
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Table 1.
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Impulse Response/Innovations Model Parameter Estimates and Forecasting Statistics

Impulse Response Model (7 = 4)

Parameter
Estimates Initial Round: 164 obs. Final Round: 173 obs.
F 0.9985 0.0222 —0.0005 —0.0025 0.9986 0.0136 —0.0022 —-0.0040
—0.0004 0.9915 —0.1575 —0.0223 0.0008 0.9877 —0.1508 —0.0371
—0.0038 0.1406 0.9904 0.0139 ~0.0037 0.1397 0.9935 0.0371
0.0011 -0.0025 —0.0040 0.9907 0.0014 0.0037 -0.0181 1.0047
b’ 56481 -6199 — 7975 60656 12170 —918 1067 -1700
G 0.1059 —0.1006 -0.0472 —0.0890 0.1029 —0.0878 -0.0444 —0.1695
Innovation Model (j = 3,7 = 2)
A 0.7784 —7.0758 0.8240 -6.5370
0.0008 0.3301 0.0009 0.2488
B’ 0.0074 -0.0000 0.0082 —0.0000
C 81.8351 838.500 74.1744 816.743
Forecase In Sample Out of Sample
Statistics Obs. Var (p,) MSE MAPE No. of Forecasts MAPE
164 53290.1 10434.2 5.90% 11 40.41%
165 54057.8 10157.0 5.79% 10 37.75%
166 54551.5 10158.6 5.78% 9 36.03%
167 55110.2 10221.2 5.83% 8 31.19%
168 55525.3 10178.0 5.82% 7 27.31%
169 55333.1 10211.5 5.84% 6 32.47%
170 55014.1 10231.3 5.87% 5 38.83%
171 54898.2 10275.8 5.92% 4 32.12%
172 54581.8 10346.9 5.95% 3 43.28%
173 54380.9 10378.4 5.99% 2 38.60%

out-of-sample forecast error variance-covariance
matrix % (21). Next, an additional observation (the
165™) is added to the existing data pool to update
system matrices and 10 new out-of-sample fore-
casts with the new (10 X 10) 3, matrix are gener-
ated. The same procedure is repeated 10 times. In
the final round estimates are obtained with 173
observations, and only 2 months ahead forecasts
are generated. To secure the positive definiteness
of 3, the sample estimates of the stationary noise
auto-covariances of different lags are obtained us-
ing a biased estimator I', = (/)37 u, . ,u,’ [for
details see: Kay, (1988)].

Using the first 164 observations, the estimated
order of the impulse response model in (7) is i =
4. The order of the model equals the dimension of
the transition matrix F. The eigenvalues of F cor-
respond to the poles of the transfer function. The
location of poles allows for the characterization of
the response properties of linear systems. For ex-
ample, when the transfer function has a pair of
complex-conjugate poles, given by 1, = a + ib
and 1, = a — ib, they will give rise to the re-
sponse term Bd"cos[kﬁ + ajfork =0,1,2, .. .;
where d = V (@ + b?) is the magnitude of the
pole, 8 = tan~! (b/a) is its angle, and B and o are

constants. If V' (a®> + b?) > 1, poles are located
outside the unit circle (an unstable system) which
results in a sinusoidal-like oscillation increasing in
magnitude. If poles are located on the unit circle,
the response would be a constant sinusoidal oscil-
lation. Finally, if poles are located inside the unit
circle (stable system), the response would be sinu-
soidal oscillation decreasing in amplitude [Cadzow
(1973: 260)].

The eigenvalue decomposition of matrix F gives
one complex-conjugate pair of eigenvalues model-
ing the cycle, and two real eigenvalues very close
to unity modeling the linear trend (intercept and
slope). The complex-conjugate pair, 0.9902 +
0.1488i and 0.9902 — 0.1488i, has the modulus
of d = 1.0013 (indicating a slightly unstable sys-
tem) and the angle of 6 = +0.1492. The frequen-
cy estimate calculated as 6/21 yields 0.0237 cycles
per month (0.2849 cycles per year) or equivalently
the period of 3.5096 years for one full cycle.

The final round’s cycle estimates with 173
points are only slightly different, with the com-
plex-conjugate pair modulus of d = 1.0001 and
slightly smaller angle of 8 = +0.1484. The esti-
mated impulse response model parameters are used
to forecast and subtract out the deterministic com-
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Figure 1. Forecasting with Nonstationary Data: Tokyo Wholesale Frozen Sockeye Salmon Prices

(11 periods out-of-sample)

ponent of the original series, rendering the remain-
ing noise stationary.'

To estimate innovations model parameters in (8)
up to 3™ lag auto-covariances (j = 3) of the sta-
tionary noise are used and the estimated number of
states (the order of the innovations model 7) is
found to be 2 in all sequences. The innovations
model parameters (A, B and C) are used together
with the impulse response model parameters (F, b,
and G) to forecast original price series. The com-
bined procedure with 164 sample observations and
11 out-of-sample forecasts is illustrated in Fig-
ure 1.

A comparison of the in-sample mean squared
forecast error (MSE) with the corresponding zero-
lag unconditional data auto-covariance [Var(p,)]
indicates that combined models reduce the total
sum of squares by a factor of 5. As one would
expect, in out-of-sample forecasting, smaller fore-
cast errors result when the forecast distance de-
creases. Mean absolute percentage error (MAPE)
decreases from 40.41% for 11-step-ahead forecasts

! To avoid possibility of high frequency cycles being swamped by
long swings of the trend, prior detrending of the original data may
sometimes be warranted. With detrended data, the order of the model is
typically 2, with one conjugate-complex pair of the matrix F eigenvalues
modeling the remaining cycle.

to 27.31% for the 7-step-ahead. For out-of-sample
forecasts closer to the origin (6 and less), the ob-
served tendency seemingly disappears due to large
sampling error (small number of forecasts).

Simulation Results

This section illustrates how Alaskan salmon pro-
cessors could potentially improve the profitability
of their operations by gradually depleting invento-
ries over the marketing period. Harvesting and
processing occur each summer and inventory ac-
cumulation is completed in August. The problem
becomes one of optimally allocating the given
quantity throughout the remaining 11 months (Sep-
tember—July) of the marketing season. The incen-
tive to liquidate inventory within one year is de-
rived from the fact that frozen salmon will suffer
quality deterioration if held for more than one
year. For the purposes of this example, initial in-
ventory Qo* is set at 100 MT of frozen fish and
monthly interest rate is assumed to be 0.75% or
approximately 9% per year.

Using the obtained sequentially updated out-of-
sample forecasts and corresponding variance-
covariance matrices of out-of-sample forecast er-
rors, the optimal frozen salmon inventory manage-
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ment is calculated for the September 1991-July
1992 period. The process takes 10 iterations to
complete and involves repeatedly solving the prob-
lem (2) by successively deleting first row and first
column of the matrix  in (3) and the first element
of vector E(m) in (4). The solution is obtained by
a quadratic programming algorithm available in
the MATLAB Optimization Toolbox.

Some insight into the nature of the solution can
be provided by analyzing a two-period case ignor-
ing the nonnegativity constraints. The final deci-
sion the processor has to make is a two-period
problem whose interior solution has the following
form:
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the result, in the short run, their decisions and
actions are likely to be different. Because the pre-
sented model is an adaptive one, which means that
false expectations (poor forecasts) are quickly re-
alized (proven wrong), the entire strategy for the
remaining (T-k) periods is promptly adjusted to
comply with the new market signals.

Marketing decision also depends on the subjec-
tive risk parameter A. For a risk averse individual,
A can be any positive number. However, for suf-
ficiently strong risk aversion, the first term in (22)
may become inconsequential and expected returns
become unimportant. In this case, the optimal
sales volume is determined as a proportion of the

-2
Qg - E qz‘ [(1 + r)OPT—uDT - 012’1]
5 1z _ A+ nNpr-y - T~ Vel = br—To) _ k=1
T2 = N+ Nl =21+ e, , +0al]l (1+ % =21+, , + o)
(22)

T-1

gf = 0 - E g% |1 Zi-1.

k=1

where the last period sales g;* are automatically
determined by satisfying the no-carryover con-
straint. Given a predetermined inventory size, the
optimal marketing plan is a function of the future
price expectations (forecasts) adjusted for the stor-
age costs and the variances and covariances sur-
rounding price expectations. The subjective expec-
tations (forecasts) of an individual processor may
differ from those of other market participants. As

existing inventory, and the proportionality factor is
determined only by the forecast error variance {(co-
variance) structure. Indeed, optimal inventory dis-
sipation schemes are found to be very similar for
all values of A\ greater than 0.01.

Table 2 summarizes the results of different sim-
ulation scenarios with varying risk aversion param-
eter. Diminishing risk aversion causes the inven-
tory depletion to slow down, as the inventory

Table 2. Optimal Inventory Dissipation Strategy in Septetﬁber 1991-July 1992 period

Storage Cost: Yen/Kg c=10 c =130

Risk Aversion Parameter A= .01 A = .001 A = .0001 A= 01 A = .001 A = .0001
Month Percent

August 100.00 100.00 100.00 100.00 100.00 100.00
September 39.09 33.51 0.00 39.55 38.17 15.29
October 26.63 24.08 0.00 26.85 26.31 18.70
November 15.22 15.21 4.00 15.34 16.48 21.18
December 8.68 8.72 3.09 8.69 8.77 10.79
January 4.75 5.06 4.85 4.72 4.47 6.95
February 2.81 5.58 31.60 2.72 4,13 20.95
March 1.58 4,62 33.67 1.48 1.68 6.14
April 0.58 0.65 1.34 0.48 0.00 0.00
May 0.42 1.70 14.30 0.15 0.00 0.00
June 0.13 0.23 1.33 0.00 0.00 0.00
July 0.13 0.64 5.82 0.00 0.00 0.00
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holder expects the prices to go up during the course
of the marketing season. If forecasts (expectations)
are correct, postponing the sales until later part of
the season should increase profits. This result oc-
curs because the relative weight placed on the ex-
pected returns increases with decreasing risk aver-
sion.

The sensitivity of the optimal marketing strategy
was also tested by varying the unit cost of storage.
As expected, the increase in the unit cost of storage
would induce faster inventory depletion in the ear-
lier months of the marketing period. As a result of
linear storage cost function specification (TC, =
keqy; k = 1,2, ... 11), this tendency is more
pronounced with less risk averse individuals.

Conclusions

The prevailing practice of many Alaskan salmon
processor is to sell the bulk of their inventory to
Japanese buyers within a few months after harvest.
This paper designs a marketing strategy based on
the processor’s individual expectations about fu-
ture prices and his/her individual perception of
risk. To adjust the marketing strategy to new mar-
ket signals (prices), the model is repeatedly solved
with updated price forecasts and variances (co-
variances) of forecast errors. The solution was ob-
tained using quadratic programming algorithm.

There is ample evidence that salmon prices, as
well as many other economic time series, are not
generated by stationary stochastic processes. Un-
der assumption that nonstationarities are determin-
istic in nature, a two-step procedure for estimating
state-space model parameters of nonstationary
time series is used. The method combines an im-
pulse response model that estimates deterministic
components of the time series with an innovations
model that models the remaining stationary noise.

The estimated parameters of the combined
model are used to derive a measure of risk in a
nonstationary price environment. Defined as the
mean square out-of-sample forecast error, the mea-
sure of uncertainty is in fact a difference between
the historical (sample) estimate of the stationary
noise auto-covariance and the covariance (vari-
ance) of out-of-sample forecasts. The presented
optimal frozen sockeye salmon inventory manage-
ment using scalar time series forecasting illustrates
the method. Modeling multiple time series may
yield even better forecasting results.

The simulation results illustrate how an Alaskan
salmon processor could potentially improve his/her
marketing strategy by gradually depleting invento-
ries during the period between two harvesting sea-
sons. The model is general enough to be applicable
to other commodities characterized by a short and
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concentrated harvesting season, followed by a
longer marketing period. We treated as exogenous
the initial quantity of raw fish purchased by the
processor. However, there are examples where this
assumption may be overly restrictive, as one can
argue that the economic agent simultaneously de-
termines the initial inventory to be acquired and
the timing of its release. The presented analytical
framework can accommodate this additional com-
plexity by augmenting the existing model with the
new decision variable Qy, and then solve the linear
system of T + 1 equations with 7 + 1 decision
variables (q;, ¢,, - - . , qr, and Q) initially, re-
ducing the dimension of the system and adjusting
the strategy as time progresses.
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