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Abstract 

Each year one in six Americans experience foodborne illnesses which results in a significant 

financial burden, up to $51 billion. Also, these food-relevant disease outbreaks present significant 

risks to the private sector business involved in the provision of food and food-related products. In 

this paper, we utilize state-level data taken from the Centers for Disease Control and Prevention data 

to investigate the impact of host factors associated with the agricultural work environment on 

foodborne-relevant risks. To measure the level of agricultural work environment, the U.S. Bureau 

of Economic Analysis farm income and expense is employed. We find evidence that the poor 

agricultural work environment can increase risks associated with foodborne outbreaks: intensive 

livestock farming might weaken the immune system of farmers and residents who can be more 

likely to get severely ill from foodborne illnesses. Compared to the agriculture producer sector, its 

processor sector maintains relatively higher standards for hygiene which might lead to the strong 

immune system of residents who are less susceptible to foodborne illness. 
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Introduction 

The Centers for Disease Control and Prevention (CDC) estimates each year foodborne illnesses 

cause 48 million episodes of foodborne illness, 128,000 hospitalizations, and 3,000 death in the 

United States (Scallan et al., 2011). The incidence of foodborne illnesses leads to a significant 

financial burden: a couple of study estimates that the aggregated annual cost of foodborne illness 

in the United States is ranging from $14.1 billion to $51.0 billion1 (Scharff, 2011; Hoffmann et al., 

2012). Anyone can get food disease, but specific groups of people are more likely to get sick easily 

and experience severe symptoms. People at risk include children, older adults, pregnant women, 

and people with weakened immune systems (CDC, 2019; Lund & O’Brien, 2011; Simon et al., 

2015) because of their weak immune systems: their immune systems are still developing or 

weakened. In terms of occupational perspective, different work environments for farming can also 

influence immune system deficiency. Farmworkers are often exposed to hazardous chemicals such 

as pesticides, disinfectants, and air pollutants (CDC, 2018), and their exposure level varies 

depending on the work environment. For example, farmworkers in large animal confinement 

buildings are more likely to experience a higher level of those hazardous substances including 

chemicals and air pollutants than small-sized farmers are. Also, the work environment of 

employees in the processor sector is more likely to satisfy higher standards for hygiene than the 

work environment of employees in the producer sector. There is evidence that a poor work 

environment in the agriculture sector can lead to immune system deficiency (Rein, 1992; Schenker 

et al., 1998). 

 
1 The aggregated annual cost difference is originated from the different number of pathogens and 

valuation methods that two studies have applied. 
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This paper addresses the question of how the characteristics of the agriculture work 

environment affect risks associated with foodborne illnesses (regardless of where the infectious 

agriculture productions are produced and/or processed). For dependent variables to measure risks 

relevant to foodborne illness, we utilize state-level data taken from the CDC’s National Outbreak 

Reporting System (NORS) database. As independent variables to characterize the agriculture work 

environment, U.S. Bureau of Economic Analysis (BEA) Personal Income data, especially Farm 

Income and Expenses is employed. By capturing the characteristics of the input costs pattern (e.g. 

proportion of feed expense), we indirectly measure the intensity indicator of agriculture production 

(ratio of feed costs over livestock sales). The basic idea for the employed intensity indicator is that 

the ratio of feed costs over livestock sales is higher if the intensity of livestock farming is higher. 

For instance, confined livestock farming (intensive livestock farming) is more likely to require 

more feed than grazing livestock (extensive livestock farming). Also, processing sectors are more 

likely to require labor more compared to the producer sector in the agriculture industry. (Nolte & 

Ostermeier, 2017; Morris et al., 2009). Based on the distinction, labor expenses/total costs are 

employed to figure out the relative composition of each sector in the agricultural industry. Using 

our panel data across 51 states from 1998 through 2018, fixed-effects linear regression models and 

the double hurdle model introduced by Cragg (1971) are employed. 

Intensive Farming and Immune System 

Organic dust–an aggregate of air-suspended particles sourced from plants and animals–is 

a major air pollutant within intensive livestock farming workplaces (Basinas et al., 2015) and 

repetitive organic dust exposures can cause various respiratory chronic disease and reduction in 

lung function, especially in large animal farming environments (May et al., 2012; Poole & 

Romberger, 2012). Also, several studies found that the intensive livestock farm emissions such as 
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high level of organic dust may affect not only the respiratory health of farmers but also neighboring 

residents (Schulze et al. 2006; Borlee et al., 2017; van Dijk et al., 2017). The findings of those 

studies are consistent with the argument that continuous exposure to concentrated animal feeding 

operations can dampen innate immune responses (Sahlander et al., 2012).  

Also, more intensive animal husbandry leads farm employees to be exposed to many types 

of antibiotics as well as animal diseases transmittable to humans. Consequently, the prevalence of 

antibiotic resistance in animal farms and the surrounding environment has been extensively 

reported. (Alam & Zurek, 2004; Schmid et al., 2013; Hille et al., 2017; Markland et al., 2019) 

Although the occurrence of antibiotic exposure is possibly naturally happening in some cases, 

intensive animal farming is a primary contributor to the increased environmental burden of 

antibiotic-resistant genes (Hille et al., 2017; Li et al., 2019; Ma et al., 2019). Intensive livestock 

farming may increase the odds that agricultural workers and neighboring residents are exposed to 

germs exposed to antibiotics and/or animal diseases transmittable to humans from animals 

(Support how feed can increase the occurrence of a foodborne outbreak) which impact their 

immune system adversely.  

In general, a single species of livestock is raised in intensive livestock farming for 

productivity. The limited biodiversity can lead to the abundant occurrence of animal diseases 

which can be transmitted to humans. Morand (2020) found a positive relationship between the 

number of infectious and parasitic diseases recorded in humans and the total number of animal 

species. It concluded that outbreaks of human infectious diseases are linked to limited biodiversity.  

Different Work Environment by Agriculture-related Sector 
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As a diverse industry that includes multiple occupational and environmental exposures and 

widely varying work (Kirkhorn & Garry, 2000), the food industry consists of four sectors: the farm 

service sector; the producer sector; the processor sector; and the marketer sector. From an 

epidemiological and industrial hygiene perspective, the processor sector is more likely to maintain 

the hygiene level of their workplace strictly than the producer sector does. Therefore, poor hygiene 

conditions in the producer sector can contribute to a weakened immune system among farmers.  

Factors relevant to foodborne illnesses 

A robust body of literature has dealt with factors affecting the occurrence of foodborne 

illnesses. Many studies investigated various agents that contaminate food: germs (bacteria, viruses, 

and parasites), chemicals, and toxins (Scallan et al.,2011; Geissler et al., 2017; Marsh et al., 2018 

among others). Scallan et al. (2011) revealed the main etiology, cause of disease, is norovirus 

which accounts for 58% of foodborne illnesses while nontyphoidal salmonella spp. is the leading 

cause of foodborne-related severe outcomes (hospitalizations and deaths), 35% and 28% 

respectively.  

Transmission method and food vehicle is another focus on research of foodborne illnesses 

(Harvey et al., 2016; Barrett et al., 2017; Chai et al., 2017; Marus et al., 2019). For example, Marus 

et al. (2019) investigate how Salmonella can be transmitted to humans via animal contact as well 

as food and characterize two results of outbreaks related to food transmission and outbreaks related 

to animal contact transmission. Barrett et al. (2017) found that scombrotoxin and tuna are more 

responsible etiology-fish pairs for outbreaks and hospitalizations.  

The setting of exposure was also investigated by some studies (Gould et al., 2013; Angelo 

et al., 2017; Marlow et al., 2017). Marlow et al. (2017) investigated the epidemiology of foodborne 
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outbreaks in correctional institutions. They found that the annual median number of outbreak-

relevant illnesses per 100,000 population in correctional institutions is higher than the number in 

other places, which represent a disproportionate number of outbreak-associated foodborne 

illnesses. However, there is a limited number of studies that illustrate how host factors such as the 

immune system are related to risks associated with foodborne illnesses.  

This paper contributes to explain the impact of the host factors on the risks associated with 

foodborne illnesses. To our best knowledge, it is the first study to focus on the influence of host 

factors affecting the risks of foodborne illness, immune status, in an agricultural setting. Since the 

proportion of disease transmitted by food differs by host factor, especially the immune system 

(Scallan et al., 2011), it can help model risks associated with food-related illness more accurately. 

Another contribution is the use of extensive datasets that allows empirical analysis over wider 

geographical regions (51 states) and a longer period (21 years). In addition, a better understanding 

of the factors associated with widespread food-related illnesses is critical to the development of 

effective management and risk mitigation mechanisms. Considering the growing interest in food 

liability insurance, the findings of this study can provide a better understanding of factors 

associated with disease outbreaks with both insurer and the insured. Lastly, the result offers some 

insights into how to allocate public healthcare resources efficiently by estimating the frequency of 

foodborne outbreaks based on the characteristics of residents. 

 

Conceptual Framework 

This study’s conceptual framework focuses on the measurement method of different work 

environments by input cost patterns. A large body of immunology studies confirms that a poor 
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agricultural work environment (e.g., intensive livestock farming and producer sector with a low 

hygiene standard) can weaken an immune system that farmworkers and neighboring residents 

have. Therefore, the accurate indicator of the work environment using agricultural input patterns 

is key to estimate the immune system of residents and, as a result, the likelihood of foodborne 

illnesses. In this analysis, we integrate findings of immunology studies and insights into economic 

analysis so that we can properly measure the host factor (status of the immune system) which is 

closely related to the likelihood of foodborne illness incidence (Figure 1). 

Figure 1. Diagram of Conceptual Framework 

 Feed and Livestock Intensity 

According to the classification of World Census of Agriculture (WGA) 2020, there are 

three main types of livestock (farm) systems of the holding: the grazing system; the industrial 

system; the mixed system. The grazing system is characterized by livestock grazing mainly on 

grasses and other plants. In this system, more than 90% of the dry matter fed to animals comes 

from grazed grasses. On the other hand, the industrial system refers to intensive livestock farming 

in which the majority of the animal feed is off-farm produced. Note that in the industrial system a 

single species of animal is raised and fed in feedlot or other in-house feeding systems (Moss et al., 

2016). 

The most common indicators in terms of grassland are cattle grazing or grazing intensity 

(livestock units per day of grazing per ha and year) and the ratio of livestock heads, which also 

linked to concentrated food for cattle (Caviglia-Harris, 2005; Temme and Verburg, 2011; Egorov 

et al., 2014; Teillard et al., 2012; Allan et al., 2014). The indicators can also measure the intensity 

of livestock farming in the grazing system.  
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By borrowing the idea of the livestock intensity measurement in the grazing system, we 

can measure livestock intensity in the industrial system by feed consumption. The feed costs per 

livestock share are higher in area A if the proportion of intensive livestock farming is higher in 

area A. 

Labor-intensive Processor Sector 

In the agriculture industry, the producer sector and processor sector have a distinctive level 

of labor intensity. Nolte & Ostermeier (2017) found that the processor sector is labor-intensive 

compared to the producer sector using wage data. Also, Morris et al. (2009) confirmed that 

commercial agriculture can generate a large number of jobs in off-farm operations, such as 

processing and packaging jobs. Thus, the labor cost share (farm labor expenses/total costs) is 

higher in area A if the proportion of the processor sector in the agricultural industry is higher in 

area A. 

Along with conceptual predictions, our hypothesis is the following:  

Work environment condition measured by two proposed indicators influences the likelihood of 

foodborne illness incidence. 

 

Data Description 

Centers for Disease Control and Prevention (CDC) data 

In this article, Centers for Disease Control and Prevention (CDC) National Outbreak Reporting 

System dataset (NORS) is utilized to measure risks associated with food-related illnesses. Since 
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1971 CDC has collected various types of reported outbreaks. (e.g., Foodborne, Waterborne, 

Animal Contact, Environmental, Person to Person) According to CDC, a foodborne outbreak is 

defined as, “an incident in which two or more persons experience a similar illness resulting from 

the ingestion of a common food.” In the CDC outbreak data, we utilize the number of reported 

illnesses, hospitalizations, and deaths for each outbreak in addition to the primary mode of 

transmission and etiology (Table 1). In terms of the primary mode of transmission, this analysis 

focuses on foodborne outbreaks which have “Food” as a primary mode of transmission. And this 

analysis includes all types of etiology including unknown etiology. In our analysis, the CDCNORS 

dataset includes 21,307 reported foodborne outbreaks in 51 states from 1998 through 2018. We 

aggregate by year and geographic area (state). Outbreaks can geographically divide into two 

groups: single-state outbreaks and multistate outbreaks. In single-state outbreaks, exposures to the 

source of the outbreak (e.g., food, water, animal) occur in a single state. However, it occurs in 

multiple states in case of multistate outbreaks. We drop multistate outbreaks which account for 

2.26% (497 foodborne outbreaks). To make the data balanced, we add zeros if a foodborne 

outbreak in a state was not reported in a year. For example, if a foodborne outbreak in North 

Carolina was not reported in 2017, the number of illnesses, outbreaks, hospitalizations, deaths 

relevant to the foodborne outbreak are zeros. Rather than counts of incidences (e.g., the number of 

illnesses), their ratio (e.g., the number of illnesses per 1million population) is more relevant to the 

model because the ratio can adjust the scale effect. For example, one death in a state with high 

resident populations is a different meaning to one death in a state with low resident populations. 

Although the CDC NORS data is comprehensive and collective data, it has some limitations. First, 

it covers only a part of reported illnesses that are identified as relevant to outbreaks. Also, it is 

possible for outbreaks to be underreported because reporting to CDC is voluntary.  
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U.S. Bureau of Economic Analysis (BEA) Personal Income data, Farm Income and Expenses 

To investigate how farm expenses would affect risks associated with foodborne-related 

illness, the BEA personal income data is employed, especially the farm income and expenses. To 

be specific, the following input costs are used: labor, feed, and seed expenses (Table 1). In the 

appendix, an extensive list of independent variables can be found. Note that for the comparison 

purpose, seed cost per crop sales is included which is comparable to feed cost per livestock sales. 

Table 1. Summary of Dependent and Independent Variables Used in the Empirical Model 

(N=1,071) 

Models Empirical Specification and Estimation Strategy  

To empirically test the conceptual prediction (or equivalently estimate the impact of agricultural 

work environment on risks associated with food-related outbreaks), we first utilize a panel linear 

regression model (PLM) with fixed effects: 

𝐹𝑜𝑜𝑑𝑅𝑖𝑠𝑘𝑖𝑡 = 𝛽1𝑀𝑎𝑖𝑛𝑖𝑡 + 𝛽2𝑋𝑖𝑡 + 𝛼𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡 

where 𝐹𝑜𝑜𝑑𝑅𝑖𝑠𝑘𝑖𝑡  is the food-related risk in state 𝑖 in year 𝑡. In our data, the following four 

relative variables measure the food-related risk: Illness; Hospital; Outbreak; 𝑀𝑎𝑖𝑛𝑖𝑡 =

(𝐿𝑎𝑏𝑜𝑟𝑖𝑡, 𝐹𝑒𝑒𝑑𝑖𝑡) is a 1 × 2 vector of independent variables that includes two measurements of 

agriculture work environment: labor expenses per total sales (Labor); and feed expenses per 

livestock sales (Feed); 𝑋𝑖𝑡 = (𝑋𝑖𝑡
1 , … , 𝑋𝑖𝑡

𝑘 ) is a 1×k vector of time-varying covariates that include 

the proportion of age groups with the weak immune system(Age under five or over 65) 

𝑊𝑒𝑎𝑘𝐴𝑔𝑒𝑖𝑡; 𝛼𝑖 is the state fixed effect to capture the unobservable time-invariant state variations 

such as demographic characteristics or health conditions; 𝛾𝑡 is the year (or time) fixed effects to 
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capture annual characteristics that affect food-related disease occurrence; 𝛽1 is the parameter to be 

estimated (with  𝛽1 as our main coefficient of interest); and 𝜀𝑖𝑡 is the idiosyncratic error term. 

Since one of our dependent variables, death has a large number of zeros (87.4%.  For detail, 

see Table 1 and Figure 2), Cragg’s Double Hurdle model (DH) is employed which is initially 

proposed by Cragg(1971) to address the issues associated with excessive zeros. DH model 

combines two models (hurdles): 

1. Selection Model: binary model (e.g., probit) to predict zeros 

2. Outcome Model: Truncated (at zero) normal model to predict a nonzero dependent 

variable 

Figure 2. Histogram of Dependent Variables 

The selection model (probit model) determines the boundary points of the dependent 

variable. It judges whether the hurdle can be cleared (dependent variable>0) or not (dependent 

variable=0). The outcome model (linear/exponential regression model with (truncated) normal 

distribution) determines its nonbounded values (dependent variable>0). Therefore, the second 

model determines the value of the outcome conditional on having cleared the hurdle. For example, 

one of our dependent variables is the number of outbreaks in state i at year t. The hurdle model 

can be characterized by the relationship  

𝑦𝑖𝑡 = 𝑠𝑖𝑡ℎ𝑖𝑡
∗  

where 𝑦𝑖𝑡 is the observed number of outbreaks at state i at year t. 𝑠𝑖𝑡 is a selection variable and  ℎ𝑖𝑡
∗  

is a continuous latent variable. The selection variable (𝑠𝑖𝑡) is 1 if the dependent variable is not 

bounded and 0 otherwise. If the lower limit that binds the response variable 𝑦𝑖𝑡  is zero, the 

selection model is given by 
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𝑠𝑖𝑡 = {
1  𝑖𝑓 𝑧𝑖𝑡𝛾 + 𝜀𝑖𝑡 > 0
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑧𝑖𝑡  is a vector of explanatory variables with a vector of their coefficients γ and 𝜀𝑖𝑡  is a 

standard normal error term.  

Also, the continuous latent variable ℎ𝑖𝑡
∗  is observed only if 𝑠𝑖𝑡 = 1.  The outcome model 

can be either the linear model or exponential model: 

Linear model:  ℎ𝑖𝑡
∗ = 𝑥𝑖𝑡𝛽 + 𝑒𝑖𝑡 or Exponential model:  ℎ𝑖𝑡

∗ = 𝑒𝑥𝑝(𝑥𝑖𝑡𝛽 + 𝑒𝑖𝑡) 

where 𝑥𝑖𝑡 is a vector of explanatory variables to predict non-zero dependent variables with a vector 

of their coefficients 𝛽 and 𝑒𝑖𝑡 is an error term. For the linear model, 𝑒𝑖𝑡 has a truncated normal 

distribution with lower truncation point −𝑥𝑖𝑡𝛽. For the exponential model, the error term has a 

normal distribution. It does not necessary that explanatory variables for two models 𝑧𝑖𝑡 and  𝑥𝑖𝑡 

are the same. That is the key distinction between Cragg’s model and Tobit's (for corner-solution) 

model. The key limitation to the Tobit model is that the probability of a positive value and the 

actual value is determined by the same underlying process, the same parameters (Burke, 2009). 

In the double hurdle (DH) model, the identical covariates are used in both selection and outcome 

model: (𝐿𝑎𝑏𝑜𝑟𝑖𝑡, 𝐹𝑒𝑒𝑑𝑖𝑡, 𝑊𝑒𝑎𝑘𝐴𝑔𝑒𝑖𝑡) with time and state fixed effects. 

 

Results and Discussion 

Table 2 shows estimate results from two specifications for four dependent variables (Illness, 

Hospital, Death, Outbreak) using data that covers 51 states over 21 years. We begin by employing 

base model specification that includes Labor (Labor expenses/Total cost) and Feed (Feed costs 
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/Livestock sales) with two fixed effects. In all models except 4b, the signs of coefficients on Labor 

are negatives for all food-related risks which is for a priori expectation. If the share of labor cost 

(Labor) increases by 0.1 (10 %p), the number of illnesses per 1 million population is likely to be 

reduced by 51.5 using model (1a) estimates. However, the coefficients of Labor are only 

significant when illness and hospital are employed as dependent variables. Also, the signs of Feed 

coefficient are consistent with what we expected, positive. If the ratio of feed cost to livestock 

sales increases by 0.1 (10 %p), the number of illnesses per 1 million population is likely to increase 

by 11.9 using model (1a) estimates. The more intensive livestock farming in the region, the higher 

probability of getting foodborne illness its residents might experience. The significance of Feed 

coefficient varies depending on dependent variables. Relatively, four different dependent variables 

represent risks associated with foodborne illness at different severity level. Death shows the most 

severe cases followed by Hospital, Illness, and Outbreak. Considering the different severity levels 

of cases, Feed becomes significant when cases are involved in relatively mild symptoms while 

Labor in severe symptoms.  

When the demographic variable (Weak Age) is introduced, the signs, magnitudes, and 

significances of most regressor variables are restored. In general, Weak Age representing the 

proportion of age groups with weak immune system has a positive coefficient which shows how 

people with weak immune system increases the probability of foodborne illness. For the robustness 

check, double hurdle model specification is employed and results with DH model are consistent 

with results with PLM model.   

Table 2. Regression Results, Panel Regression with Fixed Effects 

Table 3. Regression Results, Double Hurdle Model with Fixed Effects 
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Conclusion 

In this article, we show the influence of agriculture work environment conditions on foodborne-

relevant risks using state-level CDCNORS and BEA data. The results demonstrate that poor 

agriculture work environment condition causes higher risks of foodborne illness at different levels: 

outbreak; illness; hospitalization; death. Notably, intensive livestock farming practice and relaxed 

standards for hygiene increase the probability of residents getting sick of foodborne illness. 

However, this paper has several limitations. First, our dependent variables measuring foodborne-

associated risks are in terms of the entire residents at state-level while our independent variables 

indicating the different agricultural work environment is related to farmers and neighboring 

residents. If our observations are agriculture producing counties, the relationship might be clearer. 

Our analysis can be developed with lower geography level data (e.g., county-level data). 

Also, CDCNORS data provide limited information in terms of foodborne illness incidence. Among 

estimated 48 million foodborne illnesses, only a small proportion of illnesses is reported and 

identified as associated with foodborne outbreaks. Also, the definition of foodborne outbreak that 

CDC applies makes it harder to distinguish between zero illness due to nonexistence of foodborne 

illness and due to nonexistence of reported and confirmed foodborne illness. Even if the foodborne 

illness happens in state A, it is possible for state A to have zero illness because either it is not 

reported or identified. 

This paper improves on previous analysis of how foodborne illness incidence is influenced by host 

factor (immune system) which is limitedly investigated as a factor of foodborne illness. An 

understanding of the factors associated with widespread food-related illnesses is critical to the 

development of effective management and risk mitigation mechanisms. The issue of insurance 
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protection from the economic losses that may be associated with outbreaks has become 

increasingly important.  The restaurant and prepared food sectors have an obvious risk of liability 

for alleged outbreak-related illnesses.  However, there are other less obvious but equally important 

businesses that face the risk of an outbreak that could be tied to their farm, farmers’ market, truck 

patch market, and similar such business.  Insurers have an essential need to understand factors 

associated with disease outbreaks. Our findings offer insight about food product liability insurance 

market, such as its potential and economic benefits. 
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Tables and Figures 

Table 1. Summary of Dependent and Independent Variables Used in the Empirical Model (N=1,071) 

Category Variable Variable Description Mean Std.dev Min Max N of Zeros 

Food  

Risk 

Illness Number of primary cases with 

illness/1million population 

72.38 103.49 0.00 1951.71 63 (5.9%) 

Hospital Number of primary cases 

hospitalized/1million population 

2.29 3.66 0.00 53.94 222 (20.7%) 

Death Number of primary cases 

died/1million population 

0.04 0.19 0.00 3.20 934 (87.2%) 

Outbreak Number of outbreaks/ 1million 

population 

3.56 4.22 0.00 51.24 63 

(5.9%) 

Farm  

Input 

Cost 

Labor Hired farm labor costs/total costs 0.13 0.09 0.00 0.44 21 (2.0%) 

Feed Feed purchased/livestock sales 0.27 0.11 0.00 0.93 21 (2.0%) 

Demo- 

graphic 

Weak 

Age 

Population over age 65 or under age 

5 /Total population 

0.20 0.02 0.13 0.26 0 

(0%) 

Table 2. Regression Results, Panel Regression with Fixed Effects 

Dependent 

Variable 
Illness Hospital  Death Outbreak 

Model (1a) (1b) (2a) (2b)  (3a) (3b) (4a) (4b) 

Labor -515.2*** -538.9*** -20.04*** -20.56***  -0.340 -0.459 -0.216 3.056 

(-2.71) (-2.80) (-2.83) (-2.86)  (-0.88) (-1.18) (-0.03) (0.48) 

Feed 119.4** 118.8** 0.720 0.684  0.125 0.103 7.637*** 8.377*** 

(2.18) (2.16) (0.35) (0.33)  (1.13) (0.93) (4.14) (4.56) 

Weak Age  383.0  8.280   3.003**  -84.44*** 

 (0.57)  (0.33)   (2.19)  (-3.75) 

Intercept 148.0*** 77.93 4.498*** 3.015  0.0320 -0.535** 2.328** 18.30*** 

(4.78) (0.59) (3.90) (0.62)  (0.51) (-2.01) (2.23) (4.18) 

N 1071 1067 1071 1067  1071 1067 1071 1067 

AIC 12753.7 12708.1 5706.6 5690.8  -528.0 -525.1 5491.3 5450.6 

BIC 12868.1 12827.5 5821.1 5810.2  -413.6 -405.8 5605.8 5569.9 

R2 0.222 0.223 0.135 0.134  0.0663 0.0707 0.470 0.480 

Adj R2 0.166 0.166 0.0722 0.0706  -0.00109 0.00238 0.431 0.442 

Notes: All columns include state and year fixed effects. T statistics are shown in parenthesis. * p<0.1, ** p<0.05,  *** p<0.01. 
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Table 3. Regression Results, Double Hurdle Model with Fixed Effects 

Dependent 

Variable 
Illness Hospital  Death Outbreak 

Model (1a) (1b) (2a) (2b)  (3a) (3b) (4a) (4b) 

Outcome Model (Truncated Normal Model), Average Marginal Effects 

Labor - -515.5*** -13.96*** -14.23***  -0.0654 -0.0710 -13.06*** -12.11** 

- (-3.74) (-2.90) (-2.91)  (-0.21) (-0.23) (-2.72) (-2.54) 

Feed - 80.38** 2.148 2.085  0.109 0.0946 4.161*** 4.599*** 

- (2.08) (1.57) (1.52)  (1.19) (1.03) (3.04) (3.38) 

Weak Age - -254.8  5.318   1.439  -37.97** 

- (-0.55)  (0.30)   (1.27)  (-2.34) 

Selection Model (Probit Model), Coefficients 

Labor -31.60*** -35.41*** -6.549* -6.544*  0.601 0.371 -31.60*** -35.41*** 

(-3.35) (-3.62) (-1.93) (-1.91)  (0.15) (0.09) (-3.35) (-3.62) 

Feed -3.599 -3.568 1.754* 1.815*  0.472 0.290 -3.599 -3.568 

(-1.54) (-1.52) (1.75) (1.79)  (0.41) (0.24) (-1.54) (-1.52) 

Weak Age  32.79*  -1.011   18.98  32.79* 

 (1.79)  (-0.09)   (1.28)  (1.79) 

N 1071 1067 1071 1067  1071 1067 1071 1067 

AIC 8828.3 8824.3 2486.6 2487.1  310.9 313.0 2295.4 2263.8 

BIC 9475.3 9565.2 3218.1 3228.0  987.7 999.2 3027.0 3004.7 

Notes: All columns include state and year fixed effects. T statistics are shown in parenthesis. In model 1a, the outcome model 

result is omitted because the variance matrix is nonsymmetric or highly singular. * p<0.1, ** p<0.05,  *** p<0.01. 
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Figure 1. Diagram of Conceptual Framework 

  

 

Figure 2. Histogram of Dependent Variables 

 

 


