%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Spatial aggregation of weather variables and its implication in climate
change analysis: The case of U.S. Gorn and Soyhean

Pran
CARD Ji, Yongjie Ph.D. Center for Agricultural & Rural Development B AUBURN Miao, Ruiging Ph.D. Department of Agricultural Economics & Rural Sociology

Center for Agricultural
and Rural Development

I Background I I similar Future Yield Projection cross Schemes

- Weather variables are key bridge variables in climate change studies to
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«  Study the impacts of three spatial weather variable aggregation schemes on |
» constructed weather variables

» US corn and soybean yields

» projected future yields under various climate scenarios.

*  Empirical Models
» [Rll:y =a+ ,3 Y (prltm + pritm + GD D¢ + HDDjpmy + VPDip ) + €5
> [R2]:y; = a+ B (pry + pris + GDDy + HDDyy + VPDyy) + €44,
dy;s: county i’s detrended yield in year t
pritm. daily average precipitation of county i in month m, year t
priz,: daily average precipitation square of county i in month m, year t
GDD;:,,: daily average growing degree days of county i in month m, year t
HDD;;,,: daily average extreme heat degree days of county i in month m, year t
VPD;:,: daily average vapor pressure deficiency of county i in month m, year t
-i¢. daily average weather variables of county i in year t
State trend dummies are included in the controls. Observation « Between R1 and R2, R2 based on annual weather statistics produces roughly 10%

more negative climate impacts.
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Observation:

« Within R1 and R2, similar climate impacts on corn and soybean yields with slightly
larger impacts on soybean yields.

Estimated empirical models are then used to project yields in more than 20 - Small changes in annual precipitation, larger differences in monthly statistics

GCM future climate scenarios. . « Between GCM models, the impacts are different since each GCM is describing quite

a different climate future (HadGEM2-ES365 vs Ensemble Average)

Similar patterns are found on other variables (not shown).
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B Log(corn yield) is the dependent variable * Findings may be confined to specific empirical settings we used, however,
S1: simple average of weather variables within the 100 mile circle | the dramatic difference between monthly (R1) and yearly (R2) models
from county center on pseudo weather stations (center of raster cells) Observation deserves more attention.

» Negligible difference between models with S2 and S3 spatial aggregated data.
» Slightly larger difference from spatial aggregation methods (S1).
» Estimation results for soybean yields show a similar pattern (not shown here).

S2: simple average of weather variables within in the county boundary
on pseudo weather stations (center of raster cells)

S3: area weighted average of weather variables overlapped with the
county on raster cells.
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