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Abstract 

Consumers and policymakers are increasingly concerned with environmental sustainability 
in food production. Yet farm-level adoption of many conservation practices has stalled. 
Existing incentives for practice adoption increase farmers’ expected net benefits from 
sustainable practices but do not help producers manage associated risks, which may be 
critical to risk-averse farmers. Using unique data of cover cropping (CC) in the U.S. Midwest, 
we show that adopting CC affects both the mean and variance of corn yield. Specifically, we 
identify a nonlinear effect of CC on the yield of corn: mean yields decrease and variances 
increase in the first few years following adoption. After this initial period, mean yields 
converge to those under conventional production, while the variance of yields decreases 
significantly. Given this relationship, we build a conceptual model to characterize CC 
adoption decisions of risk-averse farmers under various incentives, including price 
premiums, lump-sum subsidies, and green insurance. We find rich scale and compositional 
effects that differ across incentives. We conduct simulations to compare the cost 
effectiveness of the three incentives and find that offering green insurance generates the 
greatest incentives for adoption.  
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1. Introduction 

The desire for economic growth, coupled with the desire for limiting the resulting negative 

environmental impact, bring growing attention to “sustainable development” (Zilberman, 

2014). As consumers and policymakers become increasingly concerned with environmental 

sustainability, there is pressure on firms in the agricultural supply chain to provide 

sustainably-produced food products that reduce soil erosion, nutrient runoff, and 

greenhouse gas emissions from food production (Grunert 2011; Cecchini, et al. 2019).  

The primary means of attaining sustainability in food production has been through 

agricultural best management practice (BMP) adoption among farmers. In the U.S., federal 

and state-level programs promote BMP adoption by offering incentives like cost-share 

subsidies and, in some recent cases, reductions in crop insurance premiums to adopting 

farmers. Yet progress on BMP adoption has largely stalled. For example, in Indiana—a major 

corn- and soybean-producing Midwestern state—adoption of cover cropping (CC) has 

stayed roughly constant at less than 10 percent of crop acreage since 2015.  

An extensive literature examines barriers to BMP adoption (see Prokopy et al. 2019 

for a review). This literature focuses largely on identifying the social, behavioral, 

environmental, and economic factors that drive farmers’ BMP adoption decisions. However , 

the specific form that economic incentives take is also important, but less studied. This is 

because adopting BMPs may have persistent and complex effects on both expected crop yield 

as well as higher moments of the yield distribution. For example, row crop farmers that 

adopt CC may experience both a reduction in mean yields and greater yield variance over an 

extended period of time (Gaudin et al. 2015; Plastina et al. 2018; Anderson, 2020; Thompson 

et al., 2020).  
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For risk-averse farmers, the decision of whether to adopt BMPs depends on how 

adoption affects the entire distribution of farm returns (e.g., Liu 2015; Oliva et al. 2020). 

Current incentives offered by state and federal conservation programs—like cost-shares for 

BMP adoption—may improve mean farm profits without influencing variance of the profit 

distribution, likely limiting adoption among risk-averse producers. Other features of these 

programs (e.g., limits on the duration of participation or the acreage the farmer is permitted 

to enroll) may also discourage adoption, although these barriers are not our focus here. 

Our study sheds new light on the effectiveness and efficiency of various incentives in 

promoting BMP adoption by constructing theoretical and numerical models of farmer 

decisions under yield uncertainty over a relatively long period of time. Our theoretical model 

is dynamic and accounts for heterogeneity in farmers’ risk preferences and time horizons. 

The latter is assumed to be correlated with land tenure status, which is thought to affect 

conservation adoption decisions (Bosch et al. 1995; Khanna 2001; Caswell et al. 2001; 

Lichtenberg 2004). Considering different decision horizons distinguishes our model from 

prior models of risk-averse farmers that are static (e.g., Yu et al. 2018) or assumes an infinite 

horizon common to all farmers (e.g., Carey and Zilberman 2002).  

We use the theoretical model to compare the economic performance of three 

incentives for promoting BMPs: (i) price premiums paid for crop outputs produced using a 

BMP; (ii) cost-share subsidies; and (iii) green insurance, which compensates conservationist 

farmers for losses following BMP adoption that would not occur in the absence of the 

practice (Mitchell 1999).  We focus on the example of CC, which is considered an important 

BMP for attaining water quality goals (e.g., ISDA 2018) and figure prominently in many 

recent government and private-sector agricultural sustainability initiatives. We calibrate our 



5 

model using a unique dataset of experimental corn and soybean plots growing CC that spans 

up to 15 years and six Midwestern U.S. states. 

Our numerical results suggest conservation indemnities and cost shares induce larger 

scale of adoption on the landscape than price premiums. This is because indemnities and 

cost shares increase mean farmer returns and either decrease or leave unchanged the 

variance of farmer returns. In contrast, price premiums increase both mean and variance of 

returns, limiting adoption among risk-averse farmers. We also find that distinct 

compositional effects arise under different instruments; relatively more risk-averse farmers 

are more likely to adopt CC under indemnities, whereas less risk-averse farmers are more 

likely to adopt under cost-shares and premiums. This is important as risk aversion is often 

correlated with other farmer economic and demographic characteristics that are important 

to policymakers. 

Our paper is organized as follows. In Sections 2 and 3, we introduce a novel and 

extensive dataset of experimental corn yields under different numbers of years growing 

CC—which we refer to as “CC years”—and estimate corn production functions with and 

without CC. This motivates our interest in using CC as a case study for our analysis and 

provides novel insight into the effect of CC adoption on yield distributions. The use of panel 

experimental yield data over a long span of time ensures a clear identification of treatment 

effects. It is also of particular descriptive value as existing work typically simulates the effects 

of CC adoption (e.g., Thompson et al. 2020) or estimates the effect of CC adoption using 

relatively short-term datasets. Inspired by the new empirical findings, we develop a two-

period model in Section 4 to characterize effects on BMP adoption under different incentives. 

In Section 5, we calibrate the theoretical model using our empirical estimates of corn 
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production functions with and without CC and government statistics. Simulation outcomes 

show substantial differences across the three incentives in the effectiveness and cost 

efficiency.  

2. Data 

We obtained a panel yield dataset as part of a meta-data set collected by a team of 

researchers at Purdue University. The data consists of 430 pairs of observations from 28 

experiment sites located in six states across the Mississippi River Basin in the U.S. Midwest 

over the period 2001–2018. The six states include Illinois, Indiana, Iowa, Minnesota, 

Missouri, and Wisconsin. Corn is grown on all the plots.  

Each pair of fields are identical in location, soil type, slope, weather conditions, and 

nutrient application, except that the treated field grows a cereal rye CC and the control field 

does not. Plots with no CC are referred to as “conventional” plots, and neighboring plots 

growing CC are, somewhat obviously, “CC” plots. CC plots have continuously grown CC over 

different numbers of years. Figure 1 shows the distribution of observations by CC years. 

[Figure 1 approximately here] 

The dataset records yield of each plot in a given year. Table 1 displays summary 

statistics of the yield. The unit of measurement is metric ton per hectare (MT/ha) and, for 

corn, one metric ton equals 39.37 bushels. We also collect information on factors that may 

affect the yield based on prior literature, including data on weather conditions and soil 

quality (e.g., Schlenker and Roberts 2009). Variables measuring weather conditions include 

total precipitation (in inches) over the period May through July of the corresponding year—

which corresponds to the typical corn growing season—along with monthly average 

temperature over the same period (in degrees F). Variables measuring soil quality are CC 
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biomass (in MT/ha), the amount of nitrogen applied (in kilograms/ha), and the field slope 

(in degrees of angle). Applied nitrogen could have been in the form of ammonium sulfate or 

liquid manure in addition to anhydrous ammonia. Nitrogen was added at a replacement rate 

to both the control and treatment plots. 

[Table 1 approximately here] 

3. Empirical Corn Production Functions Following Cover Crop Adoption 

Heterogeneity in CC years allows us to trace the trajectory of yield distributions over time 

and is critical to our econometric specification and modeling. We first use an ordinary least 

squares (OLS) model to demonstrate basic patterns in the yield distribution over time 

following CC adoption. We then use maximum likelihood estimation (MLE) to 

simultaneously estimate CC effects on the mean and variance of yield over time.  

3.1 Ordinary-Least-Squares Yield Estimates 

We first regress the yield of both conventional (indexed by c) and CC (indexed by s) plots on 

the weather and soil quality variables as well as CC years (where applicable) and state fixed 

effects. For simplicity, we assume that yields are independent across plots and time 

conditional on the control variables. We specify yield of plot-year 𝑖 as  

(1) 𝑦𝑖
𝑗
= 𝑓(𝐗𝑖

𝑗
; 𝛃𝑗) + 𝜖𝑖

𝑗
, 𝑗 ∈ {𝑐, 𝑠} 

where 𝐗𝑖
𝑗
 is a column vector of control variables (including a constant, CC years, other year-

specific controls, and state fixed effects) for plot-year i and 𝜖𝑖 is a random, homoscedastic 

error term. The vector 𝛃𝑗  contains parameters to be estimated.  

We assume 𝑓(⋅) is linear for simplicity. Table 2 summarizes our regression results. 

Columns (1) and (2) indicate that the soil quality variables play insignificant roles at the 95% 
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confidence level. High temperatures in July reduce crop yields for both conventional and CC 

plots. Additional precipitation reduces yields for conventional plots but not CC plots, 

whereas higher May temperatures increase CC yields but not conventional yields. Critically, 

CC years does not have any significant impact on CC yields. 

Because the soil variables do not help explain yield and contain missing observations, 

we remove them to be able to add 10 percent more observations to the estimation. Column 

(3) shows the results from re-estimating CC yields. Our parameter estimates are largely 

robust to this change, except that the average May temperature no longer significantly affects 

CC yields.  

Prior literature suggests that CC years may have a nonlinear effect on CC yields. We 

explore this by adding squared CC years to our regression model. Column (4) in Table 2 

shows that tenure has a significant nonlinear impact on CC yields, suggesting that the mean 

yield of CC plots increases with CC years at a decreasing rate. 

[Table 2 approximately here] 

3.2 Maximum Likelihood Yield Estimates 

The OLS results in Section 3.1 are silent on the effect of CC years on the variance of yields. 

We hence study the relationship between yield variance and CC years using MLE. Assume 

yields take the same form as in (1), but now assume the error terms 𝜖𝑖
𝑗
 are heteroskedastic. 

Formally, let 𝜖𝑖
𝑗
~𝑁(0,𝑔𝑖

𝑗
) where 𝑔𝑖

𝑗
= 𝑔(𝐙𝑖

𝑗
; 𝛂𝑗), with 𝐙𝑖

𝑗
 being a vector of control variables, 

including a constant, that influence yield variance. The likelihood contribution from plot-

year i is then  

(2) 𝐿𝑖
𝑗
= 𝜙([𝑦𝑖

𝑗
− 𝑓(𝐗𝑖

𝑗
; 𝛃𝑗)] √𝑔(𝐙𝑖

𝑗
; 𝛂𝑗)⁄ ),  
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where 𝜙(⋅) is the standard normal density. 

Because most of our observations are from plots with one or two years of CC, the 

functional form of 𝑓(·) and 𝑔(·) need to be relatively simple to identify heterogeneity due to 

CC years. Inspired by the nonlinear relationship between yield and CC years revealed by the 

OLS estimates in Table 2, we impose a kinked functional form on 𝑓(·) and 𝑔(⋅). Formally, we 

divide the range of CC years from our dataset into three segments, [0,… , 𝜏1, … , 𝜏2, … , 𝜏3] 

where 𝜏3  is 15. We specify two indicator variables, 𝑑𝑖𝑇
𝑗
, = 1(𝑋𝑖

𝑦𝑒𝑎𝑟𝑠,𝑗
∈ (𝜏𝑇 , 𝜏3]), 𝑇 = 1,2 , 

where 𝑋𝑖
𝑦𝑒𝑎𝑟𝑠,𝑗

 is the CC years for plot-year i. Note that 𝑋𝑖
𝑦𝑒𝑎𝑟𝑠,𝑐

= 0 ∀𝑖, and hence 𝑑𝑖𝑇
𝑐 = 0 ∀𝑇. 

Given that every pair of plots differ only in whether CC is grown, we specify 𝑓(⋅) and 𝑔(⋅) 

simply as  

(3) 𝑓(𝐗𝑖
𝑗
, 𝛃𝑗) = 𝛽0

𝑗
+ 𝛽1

𝑗
𝑑𝑖1
𝑗
+ 𝛽2

𝑗
𝑑𝑖2
𝑗

   and   𝑔(𝐙𝑖
𝑗
, 𝛂𝑗) = 𝛼0

𝑗
+ 𝛼1

𝑗
𝑑𝑖1
𝑗
+ 𝛼2

𝑗
𝑑𝑖2
𝑗

. 

We searched over all possible combinations of indicators, using Akaike's and Bayesian 

Information Criteria to determine which indicators fit our data the best. The information 

criteria reach the lowest levels with 𝜏1 = 3 and 𝜏2 = 7, cutting the range into three segments 

of years 1 to 3, 4 to 7, and 8 to 15. 

Columns (1) and (2) in Table 3 report the MLE parameters for the conventional plots, 

while columns (3) and (4) report MLE parameters for CC plots. Comparing columns (1) and 

(3), we see that CC reduces mean corn yields relative to conventional production in the first 

three years. From CC year 4 to 7, however, CC yields increase to ~116 percent of 

conventional yields. CC Yields further increase after year 7, though the increment is small. 

Recall also that there are very few observations after CC year 7, and hence this result should 

be viewed with caution. Comparing columns (2) and (4), we see that the yield variance 

follows the opposite trajectory over time. Indeed, variance is the same for both crops over 
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the first three years following CC adoption. From CC year 4 to 7, the variance CC yields is 

about 17% smaller than that for conventional yields. From CC year 8 to 15, the variance of 

CC yields continues to decrease and becomes 43% smaller than the variance of conventional 

yields. These findings are robust to alternative specifications of the model (see Appendix 2).  

As a robustness check, and to account for possible within-year correlations between 

conventional and CC yields, we also estimate a model in which we replace 𝑦𝑖
𝑗
 in equation (2) 

with Δ𝑦𝑖 = 𝑦𝑖
𝑐 − 𝑦𝑖

𝑠 , i.e., we estimate the mean and variance of the difference in paired 

conventional and CC plots. Our model estimates align with those reported in columns (1)–

(4). In column (5) of Table 3, the positive and significant constant term suggests that the 

yield of CC plots is significantly lower than the yield of conventional plots in the first three 

years. The coefficient estimated for 𝑑𝑖1
𝑐  is positive and significantly larger than the constant, 

meaning that the yield of CC plots becomes significantly higher than the yield of conventional 

plots after growing CC for more than three years. After the seventh year of CC, though, the 

increase in the mean yield becomes insignificant. Again, changes in CC years 8 to 15 need to 

be interpreted with caution due to a relatively small number of observations. After CC year 

3, the variance of the difference in yield also decreases significantly compared with the level 

in the first three years.  

Put together, cover cropping generates yield losses on average, along with no 

reduction in variance over the first three years of growing CC. In the medium term, there is 

a small yield gain on average and a small reduction in yield volatility. In the longer term, the 

mean yield gain may be insignificant, but the reduction in yield volatility is significant and 

large. Cover cropping improves the yield distribution of farmers only after a few years, 
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reflecting the fact that considerable time is need to restore organic matter and enhance soil 

quality.  

[Table 3 approximately here] 

4. A Theoretical Model of BMP Adoption 

Our econometric results suggest that adopting CC will change the mean and variance of 

farmer net returns over time. Effective incentives for adoption must account for these 

changes. We now explore the relative performance of different incentives on the scale and 

composition of CC adoption using theoretical and numerical models informed by the 

relationships uncovered in Section 3. 

We consider a two-period model. A population of risk-averse farmers grow crop 

outputs, which are sold to downstream retailers/processors (RP). There are two types of 

farmer that are distinguished by their land tenure status. A proportion ρ are “renter” farmer, 

indexed by superscript r, and face a positive probability of their lease not being renewed at 

the end of period 1. In general, this probability may depend on farm profit or other factors. 

If the lease is not renewed, we assume for simplicity that the farmer costlessly transitions to 

another lease. In contrast, a share (1 − 𝜌)  are “owner-operator” farmers, indexed by 

superscript o, and have secure land tenure. We assume farmers of each type are 

homogeneous except for their risk preferences, as described later. Each type of farmer 

independently maximizes the present value of their utility by choosing whether to produce 

“conventionally” or to produce “sustainably” by adopting CC. We assume sustainable 

production has a higher marginal cost than conventional production, but sustainable farmers 

do not have to invest in any supporting asset (e.g., new farm machinery).  
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It is common knowledge that gains from CC come mainly from soil enhancement, but 

these gains arise only over time following the relationships uncovered in Section 3. 

Specifically, we assume that the mean yield from sustainable production is lower than the 

mean yield under conventional production in the first period after adoption, and the variance 

of yield is weakly greater. In the second period of CC, the mean yield increases and the 

variance of yield falls relative to conventional production.  

Let the subscript t ∈ {1,2} indicate the period and the superscripts 𝑠 and 𝑐 refer to 

sustainable and conventional farming, respectively. We express the mean conventional yield 

in any period as 𝜇𝑐 = ∫ 𝑦ℎ𝑐(𝑦)𝑑𝑦
�̅�𝑐

𝑦𝑐
, where ℎ𝑐(𝑦) is the density of conventional yields with 

support [𝑦𝑐, �̅�𝑐] . The mean sustainable yield in period t is 𝜇𝑡
𝑠 = ∫ 𝑦ℎ𝑡

𝑠(𝑦)𝑑𝑦
�̅�𝑡
𝑠

𝑦𝑡
𝑠 , defined 

similarly. We assume 𝜇2
𝑠 ≥ 𝜇𝑐 > 𝜇1

𝑠 . Likewise, the variance of conventional yield is 𝜎𝑐 =

∫ (𝑦 − 𝜇𝑐)2ℎ𝑐(𝑦)𝑑𝑦
�̅�𝑐

𝑦𝑐
 and the variance of sustainable yield in period t is 𝜎𝑡

𝑠 = ∫ (𝑦 −
�̅�𝑡
𝑠

𝑦𝑡
𝑠

𝜇𝑡
𝑠)2ℎ𝑡

𝑠(𝑦)𝑑𝑦, with 𝜎1
𝑠 ≥ 𝜎𝑐 > 𝜎2

𝑠.  

Assume that the utility function of a farm depends on the mean and variance of farmer 

profits, 𝜋𝑚 , 𝑚 = {𝑟, 𝑜}, following Meyer (1987). Risk aversion is reflected by the disutility 

due to increasing variance of profits. We will define this utility function formally for each 

case below. The level of the farmer’s risk aversion is captured by a random parameter, 𝜅 ≥

0 , with a larger 𝜅  implying greater risk aversion. The risk parameter is different among 

farmers and follows distribution 𝐺(𝜅).  
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4.1 Adoption without Incentives 

Assume that the marginal cost of conventional production, 𝑤𝑐 , is constant. In the absence of 

any incentive for adopting CC, both conventional and sustainable crops receive the 

competitive price, 𝑝 . Profits for conventional production depend fully on the revenue 

received, because the costs are fixed at 𝑤𝑐  with the land size normalized to 1 for each farmer.  

We simplify matters by assuming the probability the renter farmer’s lease is not 

renewed is equal to unity such that the farmer is effectively myopic and hence maximizes the 

flow utility earned each period. Utility earned by a renter farm that does not adopt CC is 

𝑢𝑐,𝑟,∗ = 𝑝𝜇𝑐 −𝑤𝑐 − 𝜅𝑝2𝜎𝑐. For a renter farm to continue farming, 𝑢𝑐,𝑟,∗ ≥ �̅�, where �̅� is the 

farmer’s reservation utility level.  

An increment in the marginal costs of farming, 𝑤𝑠 , occurs when growing CC. Given 

this extra cost and our assumptions about the distribution of yields under CC and the renter’s 

land tenure status, no renter farmer will adopt CC because of a fall in mean yields and an 

increase in yield variance in period 1.  

 For an owner farm, the present value of utility without CC is 𝑢𝑐,𝑜,∗ = ∑ 𝛿𝑡−1𝑢𝑐,𝑟,∗2
𝑡=1 . If 

adopting CC, the present value of utility becomes: 

(8) 𝑢𝑠,𝑜,∗ = ∑ 𝛿𝑡−1[𝑝𝜇𝑡
𝑠 − (𝑤𝑐 + 𝑤𝑠) − 𝜅𝑝2𝜎𝑡

𝑠]2
𝑡=1 . 

where 𝛿 ∈ (0,1) is the time discount factor. The owner farm adopts CC if 𝑢𝑠,𝑜,∗ ≥ 𝑢𝑐,𝑜,∗. We 

refer to the “critical value” of κ as the value that makes the farmer indifferent between 

adopting CC or not. The critical value of κ for owners is  

(9) �̂�𝑜,∗ =
∑ 𝛿𝑡−1[𝑝𝑡(𝜇𝑡

𝑠−𝜇𝑐)−𝑤𝑠]𝑡

∑ 𝛿𝑡−1𝑡 𝑝2(𝜎𝑡
𝑠−𝜎𝑐)

=
Δ𝐸(𝜋𝑜,∗)

Δ𝑉(𝜋𝑜,∗)
, 

where Δ𝐸(𝜋𝑜,∗) and Δ𝑉(𝜋𝑜,∗) are the change in the mean and variance of the present value 

of profits, respectively, following adoption. The share of owners that adopt is Ω𝑜,∗, equal to 
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{

1 if Δ𝐸(𝜋𝑜,∗) ≥ 0,  Δ𝑉(𝜋𝑜,∗) ≤ 0
𝐺(�̂�𝑜,∗) if Δ𝐸(𝜋𝑜,∗) > 0,  Δ𝑉(𝜋𝑜,∗) > 0
[1 − 𝐺(�̂�𝑜,∗)] if Δ𝐸(𝜋𝑜,∗) < 0,  Δ𝑉(𝜋𝑜,∗) < 0
0 otherwise.

  

Intuitively, if adopting increases the present value of mean profits and decreases the 

present value of variance (the first condition above), then all owners will adopt. If adopting 

increases the present value of the mean and variance of profits (the second condition above), 

then only those farmers with sufficiently low risk aversion (i.e., where 𝜅 < �̂�𝑜,∗) will adopt, 

even without extra incentives offered by the downstream RP. If adopting decreases both the 

present value of the mean and variance of profits (the third condition), then only farmers 

with sufficiently high risk aversion will adopt; the gain in utility from reduced variance will 

outweigh the losses in utility from lower mean returns. Finally, if the present value of mean 

profits decrease and the present value of profit variance increases, then no owners will 

adopt.  

With a total of 𝑛 farms in the sector, the total area of CC adopted in each period is  

(10) 𝑎∗ = (1 − 𝜌)Ω𝑜,∗𝑛, 

which is constant across periods because (i) none of those who choose conventional 

production in period 1 will have incentives to switch to sustainable production in period 2 

(since the expected utility from doing so is initially less than that for conventional 

production) and (ii) none of those who chose sustainable production in period 1 will switch 

back to conventional production in period 2 (since the mean of yields is greater under 

continued sustainable production, and the variance is less). 
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4.2 Price Premium 

Next, consider the farmers’ decisions in the presence of a price premium, ν, paid to 

sustainable farmers. We assume this premium is the same for renters and owners, although 

our insights would not change qualitatively if this were not the case. Given the effect of CC 

on famers’ profit distributions, a premium would only be needed during the first period after 

adoption. This premium increases the effective price of sustainable output to 𝑝 + 𝜈. 

Our assumptions about land tenure mean that the renter will continue to act 

myopically (and will do so for the rest of the scenarios we consider below). However, there 

may be renter farmers who adopt sustainable production given the higher effective price. 

The utility for a renter farm who adopts CC under the price premium in any period is  

𝑢𝑠,𝑟,𝑝𝑟𝑒𝑚 = (𝑝 + 𝜈)𝜇1
𝑠 −𝑤𝑐 − 𝑤𝑠 − 𝜅(𝑝 + 𝜈)2𝜎1

𝑠. 

The premium increases the mean yield, while also increasing its variance. Utility for a renter 

farmer who does not adopt is 𝑢𝑐,𝑟,∗ from above. The farm adopts CC if 𝑢𝑠,𝑟,𝑝𝑟𝑒𝑚 ≥ 𝑢𝑐,𝑟,∗. The 

critical value of 𝜅 for renters is  

(11) �̂�𝑟,𝑝𝑟𝑒𝑚 =
(𝑝+𝜈)𝜇1

𝑠−𝑝𝜇𝑐−𝑤𝑠

(𝑝+𝜈)2𝜎1
𝑠−𝑝2𝜎𝑐

=
Δ𝐸(𝜋𝑟,𝑝𝑟𝑒𝑚)

Δ𝑉(𝜋𝑟,𝑝𝑟𝑒𝑚)
, 

where Δ𝐸(⋅) and Δ𝑉(⋅) are defined similarly as before and the share of renters that adopt is 

Ω𝑟,𝑝𝑟𝑒𝑚 = 𝐺(�̂�𝑟,𝑝𝑟𝑒𝑚). Increasing 𝜈 has an ambiguous effect on Ω𝑟,𝑝𝑟𝑒𝑚 . For small values of 𝜈, 

the share of renters who adopt sustainable practices will likely increase. However, for large 

values of the premium, the share of renters who adopt sustainable practices may actually 

decline as the utility loss from increased variance of profits swamps the utility gain from 

increased mean profits. If the numerator is negative, no renter farm adopts CC regardless of 

𝜈. In other words, the price premium is effective for renter farms only if the revenue gains 
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from the price premium outweigh the opportunity costs from foregone yields plus the 

increment to production costs.  

For an owner farmer, the present value of expected utility from adopting CC given the 

price premium is  

𝑢𝑠,𝑜,𝑝𝑟𝑒𝑚 = (𝑝 + 𝜈)𝜇1
𝑠 − (𝑤𝑐 + 𝑤𝑠) − 𝜅(𝑝 + 𝜈)2𝜎1

𝑠 + 𝛿[𝑝𝜇2
𝑠 − (𝑤𝑐 + 𝑤𝑠) − 𝜅𝑝2𝜎2

𝑠]. 

The farm adopts CC if 𝑢𝑠,𝑜,𝑝𝑟𝑒𝑚 ≥ 𝑢𝑐,𝑜,∗. The critical value of κ is  

(12) �̂�𝑜,𝑝𝑟𝑒𝑚 =
(𝑝+𝜈)𝜇1

𝑠−𝑝𝜇𝑐−𝑤𝑠+𝛿[𝑝(𝜇2
𝑠−𝜇𝑐)−𝑤𝑠]

(𝑝+𝜈)2𝜎1
𝑠−𝑝2𝜎𝑐+𝛿𝑝2(𝜎1

𝑠−𝜎𝑐)
=

Δ𝐸(𝜋𝑜,𝑝𝑟𝑒𝑚)

Δ𝑉(𝜋𝑜,𝑝𝑟𝑒𝑚)
, 

 and the share of owners that adopt is Ω𝑜,𝑝𝑟𝑒𝑚 , equal to 

(13) {

1 if Δ𝐸(𝜋𝑜,𝑝𝑟𝑒𝑚) ≥ 0,  Δ𝑉(𝜋𝑜,𝑝𝑟𝑒𝑚) ≤ 0
𝐺(�̂�𝑜,𝑝𝑟𝑒𝑚) if Δ𝐸(𝜋𝑜,𝑝𝑟𝑒𝑚) > 0,  Δ𝑉(𝜋𝑜,𝑝𝑟𝑒𝑚) > 0
[1 − 𝐺(�̂�𝑜,𝑝𝑟𝑒𝑚)] if Δ𝐸(𝜋𝑜,𝑝𝑟𝑒𝑚) < 0,  Δ𝑉(𝜋𝑜,𝑝𝑟𝑒𝑚) < 0
0 otherwise.

  

As with the renters, comparing (12) with (9) reveals that the price premium has an 

ambiguous effect on the share of owners who adopt CC; adding a premium increases the 

mean profits but also the variance of profits. For small premiums, the net effect may be to 

increase �̂�𝑜,𝑝𝑟𝑒𝑚  and, hence, the share of owners who adopt the sustainable practice. 

However, as the premium gets larger, the utility losses from increased variance may swamp 

the utility gains from greater mean profits. Note also that the second condition in (13) is 

more likely to hold as ν increases. This implies that the premium is more likely to attract 

relatively less risk-averse farmers. We explore this in our simulation later. 

 The total area of CC adopted in each period under the premium is  

(14) 𝑎𝑝𝑟𝑒𝑚 = [(1 − 𝜌)Ω𝑜,𝑝𝑟𝑒𝑚 + 𝜌Ω𝑟,𝑝𝑟𝑒𝑚]𝑛. 
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4.3 Lump-Sum Subsidies 

Next, consider the effect of a lump-sum subsidy per unit of land area, denoted η, paid to 

sustainable farmers to encourage CC adoption. Again, the subsidies are needed only for the 

first period of adoption and are the same for renters and owners. The renter farm’s utility 

from conventional production is still 𝑢𝑐,𝑟,∗, defined as before. If the farmer adopts CC, utility 

is  

𝑢𝑠,𝑟,𝑠𝑢𝑏 = 𝑝𝜇1
𝑠 + 𝜂 − (𝑤𝑐 +𝑤𝑠) − 𝜅𝑝2𝜎1

𝑠 

As before, renter farmers that adopt CC in period 1 will maintain sustainable production in 

period 2. Recall that we allow for 𝜎1
𝑠 ≥ 𝜎𝑐 . This implies the share of renters who adopt CC 

will be case-specific. When 𝜎1
𝑠 > 𝜎𝑐 , the proportion of renters who adopt is Φ𝑟,𝑠𝑢𝑏 =

𝐺(�̂�𝑟,𝑠𝑢𝑏), where 

(15) �̂�𝑟,𝑠𝑢𝑏 =
𝑝(𝜇1

𝑠−𝜇𝑐)+𝜂−𝑤𝑠

𝑝2(𝜎1
𝑠−𝜎𝑐)

=
Δ𝐸(𝜋𝑟,𝑠𝑢𝑏)

Δ𝑉(𝜋𝑟,𝑠𝑢𝑏)
. 

When 𝜎1
𝑠 = 𝜎𝑐, the proportion is 

 {0 if Δ𝐸(𝜋𝑟,𝑠𝑢𝑏) < 0
1 otherwise.

 

Intuitively, all renters will adopt as long as mean profits increase since there is no additional 

yield risk from adopting CC in this case. 

For an owner farmer, the present value of expected utility from adopting CC given the 

price premium is  

𝑢𝑠,𝑜,𝑠𝑢𝑏 = 𝑝𝜇1
𝑠 + 𝜂 − (𝑤𝑐 +𝑤𝑠) − 𝜅𝑝2𝜎1

𝑠 + 𝛿[𝑝𝜇2
𝑠 − (𝑤𝑐 + 𝑤𝑠) − 𝜅𝑝2𝜎2

𝑠]. 

The farm adopts CC if 𝑢𝑠,𝑜,𝑠𝑢𝑏 ≥ 𝑢𝑐,𝑜,∗. The critical value of κ is  

(16) �̂�𝑜,𝑠𝑢𝑏 =
𝜂+∑ 𝛿𝑡−1[𝑝(𝜇𝑡

𝑠−𝜇𝑐)−𝑤𝑠]𝑡

∑ 𝛿𝑡−1𝑝2[𝜎𝑡
𝑠−𝜎𝑐]𝑡

=
Δ𝐸(𝜋𝑜,𝑠𝑢𝑏)

Δ𝑉(𝜋𝑜,𝑠𝑢𝑏)
, 

and the share of owners that adopt is Ω𝑜,𝑠𝑢𝑏  and equal to 
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(17) {

1 if Δ𝐸(𝜋𝑜,𝑠𝑢𝑏) ≥ 0,  Δ𝑉(𝜋𝑜,𝑠𝑢𝑏) ≤ 0

𝐺(�̂�𝑜,𝑠𝑢𝑏) if Δ𝐸(𝜋𝑜,𝑠𝑢𝑏) > 0,  Δ𝑉(𝜋𝑜,𝑠𝑢𝑏) > 0

[1 − 𝐺(�̂�𝑜,𝑠𝑢𝑏)] if Δ𝐸(𝜋𝑜,𝑠𝑢𝑏) < 0,  Δ𝑉(𝜋𝑜,𝑠𝑢𝑏) < 0
0 otherwise.

  

Comparing (15) and (16) with the corresponding conditions under a premium (expressions 

(11) and (12), respectively) reveals that the lump sum subsidy will induce greater adoption 

than the premium if 𝜎1
𝑠 > 𝜎𝑐  and 𝑝𝜇1

𝑠 + 𝜂 = (𝑝 + 𝑣)𝜇1
𝑠 ; that is, assuming the increase in 

mean profits is the same across both instruments, the lump sum subsidy will induce greater 

adoption since the subsidy does not increase the variance of farmer profits like the premium 

does. The effect of the subsidy is ambiguous if 𝜎1
𝑠 = 𝜎𝑐  given the bang-bang nature of the 

adoption decision in this case.  

Furthermore, note that the change in the present value of profit variance is 

independent of η. Assume this change is negative (which is the case in our numerical 

example). Given our assumptions about the distribution of 𝑦𝑡
𝑠  and the incremental 

production costs, the change in the mean of profits for small values of η is likely to be 

negative, too. This implies that the third condition in (17) will hold, and hence the lump sum 

subsidy will attract relatively risk-averse farmers—i.e., farmers with 𝜅 ≥ �̂�𝑜,𝑠𝑢𝑏 . This is 

intuitive; since subsidies increase the mean of profits without changing the variance, farmers 

who receive the greatest disutility from risk will adopt CC first under this instrument. These 

compositional effects contrast with those of the premium, which initially attracts the least 

risk-averse farmers. 

 The total area of CC adopted in each period under the subsidies is  

(18) 𝑎𝑠𝑢𝑏 = [(1 − 𝜌)Ω𝑜,𝑠𝑢𝑏 + 𝜌Ω𝑟,𝑠𝑢𝑏]𝑛. 
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4.4 Green Insurance  

The final type of incentive we consider is green insurance, through which the RP or another 

agent may offer to share the risk in the farmers’ yield in the first period following CC 

adoption. For simplicity, we consider a basic form of yield insurance which fully covers the 

loss in yield under a trigger level, 𝛾 ∈ (𝑦1
𝑠, �̅�1

𝑠] common to both types of farmers. If a farm 

experiences a yield 𝑦1
𝑠 < 𝛾, it receives compensation from the RP equal to 𝑝(𝛾 − 𝑦1

𝑠). The 

means and variances of conventional and period-2 sustainable yields stay the same as before. 

However, the indemnity changes the mean and variance of yield for the sustainable farm in 

the first period after adopting CC to 

�̌�1
𝑠(𝛾) = 𝛾 + ∫ (𝑦 − 𝛾)ℎ1

𝑠(𝑦)𝑑𝑦
�̅�1
𝑠

𝛾

 

and 

�̌�1
𝑠(𝛾) = ∫ (𝑦 − �̌�1

𝑠)2ℎ1
𝑠(𝑦)𝑑𝑦

�̅�1
𝑠

𝛾

+ ∫ (𝛾 − �̌�1
𝑠)2ℎ1

𝑠(𝑦)𝑑𝑦
𝛾

𝑦1
𝑠

, 

respectively. Note that for any γ, �̌�1
𝑠(𝛾) > 𝜇1

𝑠  and �̌�1
𝑠(𝛾) < 𝜎1

𝑠. 

A sustainable renter farmer’s utility under the indemnity is 𝑢𝑠,𝑟,𝑖𝑛𝑠 = 𝑝�̌�1
𝑠(𝛾) − 𝑤𝑐 −

𝑤𝑠 − 𝜅𝑝2�̌�1
𝑠(𝛾). A conventional renter farmer has utility 𝑢𝑐,𝑟,∗, defined as before. The critical 

value of the risk aversion parameter in this case is  

(19) �̂�𝑟,𝑖𝑛𝑠 =
𝑝[�̌�1

𝑠(𝛾)−𝜇𝑐]−𝑤𝑠

𝑝2[�̌�1
𝑠(𝛾)−𝜎𝑐]

=
Δ𝐸(𝜋𝑟,𝑖𝑛𝑠)

Δ𝑉(𝜋𝑟,𝑖𝑛𝑠)
. 

The share of renters who adopts is  

(20) 

{
 
 

 
 1 if Δ𝐸(𝜋𝑟,𝑖𝑛𝑠) > 0,  Δ𝑉(𝜋𝑟,𝑖𝑛𝑠) < 0

𝐺(�̂�𝑟,𝑖𝑛𝑠) if Δ𝐸(𝜋𝑟,𝑖𝑛𝑠) > 0,  Δ𝑉(𝜋𝑟,𝑖𝑛𝑠) > 0

1 − 𝐺(�̂�𝑟,𝑖𝑛𝑠) if Δ𝐸(𝜋𝑟,𝑖𝑛𝑠) < 0,  Δ𝑉(𝜋𝑟,𝑖𝑛𝑠) < 0

0 otherwise.
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The critical value of κ for an owner farmer is �̂�𝑜,𝑖𝑛𝑠, given by (9) after substituting �̌�1
𝑠(𝛾) and 

�̌�1
𝑠(𝛾) for 𝜇1

𝑠  and 𝜎1
𝑠, respectively.  

Comparing (19) with the analogous conditions for the other two incentives, and 

holding the change mean profits the same, the green insurance would generate the greatest 

level of adoption since it reduces profit variance, conditional on adoption. Furthermore, if 

the change in profit variance from adoption is negative (consistent with our numerical 

example), then for small values of γ, the third condition in (20) is likely to hold. This implies 

the green insurance will have similar compositional effects as the lump-sum subsidy. 

 The total area of CC adopted in each period under green insurance is  

(18) 𝑎𝑖𝑛𝑠 = [(1 − 𝜌)Ω𝑜,𝑖𝑛𝑠 + 𝜌Ω𝑟,𝑖𝑛𝑠]𝑛. 

5. Numerical Model 

Our analytical results do not reveal the magnitude of the effect of these different adoption 

incentives. We hence turn to a numerical example to study these effects. Based on plausible 

parameter values, we simulate the scale and compositional effects of adoption under each 

incentive using a numerical model of CC adoption calibrated for corn producers in Indiana. 

Table 4 shows the parameter values and their sources.  

[Table 4 approximately here] 

We start by simulating the share of owners and renters that adopt CC under various 

levels of each incentive. The left panel of Figure 2 shows the effect of a price premium that 

ranges from $25 to $100/MT, or 14-57 percent of the assumed output price. Adoption among 

both farmer types initially increases rapidly. Among owners, adoption increases from about 

20% at a premium of $25/MT to 60% at $50/MT. Among renters, adoption increases from 
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about 10% to 45% for over the same range of premiums. Note that adoption among owners 

is everywhere greater than for renters, reflecting owners’ longer time horizon and, hence, 

their ability to internalize the future gains from adopting CC. 

 Beyond ~$50/MT, however, the premium has no additional impact on either type of 

farmers’ adoption incentives; adoption plateaus at ~60% among owners and ~50% for 

renters. This reflects the increased variance from larger premiums, which begin to swamp 

the gains to the producer from greater mean profits, as we point out in Section 4.2.  

[Figure 2 approximately here] 

Figure 3 shows the compositional effects of each incentive. We summarize these 

compositional effects by plotting the mean of κ among adopting renter and owner farmers 

at each premium, subsidy, and green insurance coverage level. For a given policy instrument 

i ∈ {prem, sub, ins}, we write the conditional expectation for a type-m farmer as  

𝐸(𝜅|𝑎𝑑𝑜𝑝𝑡,𝑚, 𝑖) =

{
 
 

 
 ∫ 𝜅

𝑔(𝜅)

Ω𝑚,𝑖
𝑑𝜅

∞

�̂�𝑚,𝑖
if Δ𝐸(𝜋𝑚,𝑖), Δ𝑉(𝜋𝑚,𝑖) < 0

∫ 𝜅
𝑔(𝜅)

Ω𝑚,𝑖
𝑑𝜅

�̂�𝑚,𝑖

0

otherwise.

 

Under the premium, the mean value of κ increases with ν for both renter and owner 

farmers (left panel, Figure 3). This is consistent with our prediction above that the premium 

attracts the least risk-averse farmers. 

Similarly, the middle panels of Figures 2 and 3 show the scale and compositional 

effects of the lump sum subsidy. In contrast to the premium, a sufficiently large subsidy 

induces full adoption once the mean profit becomes positive under sustainable production 

(i.e., at about $200/ha for each type of farmer). Prior to this point, renters do not adopt; note 

that the share of renters jumps from 0 to effectively 1 at ~$200/ha.  
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The composition of adopting farmers is different under the subsidy, too; the mean 

value of κ among adopting owners decreases with η, in contrast with the premium (see 

middle panel of Figure 3). This implies the subsidy attracts the most risk-averse owners. 

Among renters, the mean value of κ jumps from 0 to about 0.006 at η = $200/ha, which is 

simply the mean value of κ in the population of farmers. This jump occurs as all renters adopt 

at this value of the subsidy.  

Finally, the right panels of Figures 2 and 3 show the scale and compositional effects 

of the insurance indemnity. Notably, the indemnity initially attracts the most risk-averse 

owners and renters. As the indemnity increases, more and more farmers adopt CC. Once 

again, adoption rate of owners always stays above the rate of renters.  

[Figure 3 approximately here] 

We can assess the cost-effectiveness of each incentive by comparing the scale of 

adoption holding total expenditures on each incentive fixed. Specifically, we calculate the 

total expenditure given a premium of roughly 15% of the base output price. We then solve 

for the subsidies and indemnity levels that result in the same total expenditure. Figure 4 

shows the scale of adoption under each incentive given this expenditure, relative to that 

under no incentive. The indemnity generates nearly double the total adoption under the 

subsidy and triple the total adoption of the premium given the same expenditure, making it 

the most cost-effective policy. The indemnity also generates proportionally greater 

incentives for renters to adopt; CC area is roughly split between renters and owners under 

an indemnity. This contrasts with the other two instruments, which generate proportionally 

greater effects for owners.  

[Figure 4 approximately here] 
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6. Discussion and Conclusion 

Promoting BMPs, including growing CC, is a major way of enhancing the sustainability of 

agricultural production. Adopting BMPs can have long-run effects on the distribution of crop 

yields. We show that the way in which adoption incentives interact with these effects can 

influence the success of conservation programs, both in terms of the scale of adoption (i.e., 

how many farmers adopt) and the composition of adopting farmers (i.e., the characteristics 

of the farmers who adopt). In particular, different incentives may attract relatively risk-

averse or risk-neutral farmers to adopt, depending on how the incentive affects the variance 

in addition to the mean of farmer returns.  

Our findings are important because prior work shows that farmer risk preferences 

may be correlated with other characteristics important to policymakers. For instance, Roe 

(2015) finds that crop farmers and farmers who are older, female, have lower incomes or 

live in remote areas are relatively less risk-tolerant. Many of these farmers may also be less 

likely to adopt conservation practices (Prokopy et al., 2019). Hence, understanding the 

relationship between incentive type and adoption decisions among heterogeneous farmers 

is important for optimally designing conservation incentives.  

Our results contrast with prior work in some key ways. In one of the only other 

studies we are aware of that compares the cost-effectiveness of various BMPs, Palm-Forster 

et al. (2017) use economic experiments with farmers to show that green insurance is less 

cost-effective than other incentives, including cost-shares, tax credits, and price premiums 

for sustainable outputs. However, this is due to farmers’ perceptions of relatively higher 

transactions costs under this incentive, which we do not account for. They also find that 
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premiums are not cost-effective, but this is due to the inability to spatially target premium 

revenues to ecologically-sensitive areas rather than the risk effects we study here. 

Our results are timely in that agribusinesses including Truterra, Nutrien, and others 

are increasingly involved in supporting the adoption of best management practices through 

the development “vertical coordination” programs. Under these programs, downstream 

firms provide incentives such as technical assistance and direct payments to upstream firms, 

especially agricultural producers, to support BMP adoption. In return, the downstream firms 

track BMP adoption data at the farm level and use it to quantify progress in attaining 

sustainability goals and capture consumer willingness to pay for sustainably-produced food 

(Apostolidis and McLeay 2019). So far, existing vertical coordination programs only offer 

cost-shares or other lump-sum payments along with technical assistance for adoption. To 

our knowledge, none of these existing programs offer incentives that share risks to farmers 

that are caused by deviating from the conventional farming practices (à la green insurance). 

Still, the novelty of these vertical coordination programs suggest there is considerable 

leeway in how downstream firms managing vertical coordination programs can design 

conservation incentives, and our results here may inform their decisions in that regard.  
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Appendix 1. Plots of Mean Yields 

Following column (4) of Table 2, we plot the estimated yield of CC plots and the mean yield 

of control plots at the mean values of variables in the OLS model. To be specific, we compute 

the average value of each variable in 𝑋 , including the precipitation and temperature 

variables, in equation (3) by state and denote the mean values by 𝑋𝑆̅̅ ̅ for state 𝑆. Then we rely 

on the coefficients estimated to find the predicted yield of CC plots for a particular state: 

𝑦𝑆,𝑡
�̂� = �̂� + 𝛽1̂𝑡 + 𝛽2̂𝑡

2 + �̂�𝑋𝑋𝑆̅̅ ̅ + �̂�𝑆𝑆, 

where 𝑡 is the number of years growing CC.  

By varying 𝑡 from 1 to 7 years, we are able to plot the estimated 𝑦𝑠 based on OLS 

outcomes. We limit 𝑡 in 1 to 7, because we have only a few observations for 𝑡 > 7 in the 

sample for OLS estimation. We focus on the three states with relatively large numbers of 

observations: Missouri (158), Indiana (83), and Iowa (32). In Figure A1, we plot a horizontal 

line indicating the mean yield of control plots in each state (𝑦𝑆
𝑐̅̅ ̅) and a corresponding curve 

showing the estimated mean yield of CC plots (𝑦𝑆,𝑡
�̂� ).  

Though the mean yields of control plots differ quite considerably across states, the 

relative magnitudes of mean CC yields demonstrate similar patterns over the years of CC. 

Specifically, compared with the mean yield of control plots in a given state (𝑦𝑆
𝑐̅̅ ̅), 𝑦𝑆,𝑡

�̂�  in the 

state always starts at the lower level when 𝑡 = 1. As the number of CC years increases, the 

yield of CC plots gradually catches up and finally surpasses 𝑦𝑆
𝑐̅̅ ̅ at the third or the fifth year. 

[Figure A1 approximately here] 
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Appendix 2. Alternative Production Function Estimation 

In Section 3.2, we cut the range of CC years into three segments to incorporate the bell-

shaped trajectory of yield as captured by the OLS estimates. Alternatively, we estimate the 

MLE model by searching for one optimal cut in the length of CC years to separate the 15 years 

into two segments. It turns out that the optimal cut falls at the fourth year (i.e., presented by 

the indicator 𝑑1), creating two segments of 1-3 year and 4-15 years.  

The estimation results are reported in Table A1. Patterns shown in Table 3 stay 

robust. For example, column (1) suggests that the mean yield of CC plots is lower than the 

mean of conventional plots in the first three years, but becomes weakly larger in the second 

segment. Columns (4) and (6) suggest that the variance in yield of CC plots is indifferent from 

that of conventional plots in the first segment and falls significantly lower in the second 

segment.  

[Table A1 approximately here] 
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Table 1. Summary Statistics of Variables for Estimation 

 Mean SD Min Max No. obs. 

Yield, conventional 9.67 4.47 0.78 18.72 430 

Yield, with cover crop 9.10 4.44 0.59 18.85 430 

      

Weather variables      

Precipitation  16.03 5.33 3.92 25.12 316 

Average temperature in May 64.02 4.29 52.14 71.44 316 

Average temperature in June 72.43 2.59 63.99 74.54 316 

Average temperature in July 74.21 2.15 65.96 78.77 316 

      

Soil quality variables      

CC biomass 1.01 0.71 0 4.89 430 

Field slope 2.52 1.24 0.5 3.5 292 

Nitrogen applied 104.08 97.15 0 295 430 

      

CC tenure 2.92 2.78 1 15 430 

Source: Our yield dataset, Web Soil Survey, and Prism Climate Group. 
Note: CC stands for cover crop.  
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Table 2. Estimation Outcomes using the OLS Model 

 (1) (2) (3) (4) 

Independent variable 𝑦𝑐 𝑦𝑠 𝑦𝑠 𝑦𝑠 

     

Weather variables     

Precipitation -0.10*** -0.02 -0.05 -0.06* 

 (0.04) (0.04) (0.03) (0.03) 

Avg. temp. May 0.17 0.29*** 0.07 0.08* 

 (0.10) (0.10) (0.05) (0.05) 

Avg. temp. June 0.03 0.01 -0.03 0.12 

 (0.18) (0.18) (0.13) (0.14) 

Avg. temp. July -0.29*** -0.35*** -0.35*** -0.45*** 

 (0.10) (0.10) (0.09) (0.10) 

     

Soil quality variables     

CC biomass 0.15 0.30   

 (0.27) (0.26)   

Field slope 0.15 0.70*   

 (0.39) (0.39)   

Nitrogen applied 0.002 -1.03*   

 (0.63) (0.61)   

     

CC years  -0.09 -0.03 0.52** 

  (0.09) (0.08) (0.22) 

CC years, squared    -0.04*** 

    (0.02) 

Constant 21.96 19.89 35.75*** 30.75*** 

 (13.40) (13.38) (8.95) (9.06) 

     

State FE Yes Yes Yes Yes 

𝑅2  0.74 0.78 0.79 0.79 

No. observations 292 292 316 316 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard error in the parentheses. Nitrogen is scaled by dividing 100.   
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Table 3. Estimation Outcomes using the ML Model 

  (1) (2) (3) (4) (5) (6) 

Dependent variable 𝐸(𝑦𝑐) 𝑉𝑎𝑟(𝑦𝑐) 𝐸(𝑦𝑠) 𝑉𝑎𝑟(𝑦𝑠) 𝐸(Δ𝑦) 𝑉𝑎𝑟(Δ𝑦) 

𝑑1  
 

  2.86*** -0.50* -1.14*** -2.20*** 

   (0.55) (0.21) (0.18) (0.21) 

𝑑2  
 

  1.34* -0.79** 0.67*** 0.35 

   (0.62) (0.30) (0.20) (0.30) 

Constant 9.67*** 2.99*** 8.39*** 2.99*** 0.75*** 1.87*** 

 (0.22) (0.07) (0.24) (0.08) (0.14) (0.08) 

       

 
  
 

- 96.92 40.27 

No. obs. 430 

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard error in the parentheses. 
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Table 4. Numerical Model Parameters and Functions 

Parameter/Function Value Description Source 

n 2,186,235 Corn area planted, Indiana 2020 (ha) USDA NASS (2021) 

𝜇𝑐  9.67 Mean conventional yield Own estimate 

𝜇1
𝑠  8.92 Mean sustainable yield—period 1 Own estimate 

𝜇2
𝑠  10.06 Mean sustainable yield—period 2 Own estimate 

𝜎𝑐 3 Variance of conventional yields Own estimate 

𝜎1
𝑠 3.03 Variance of sustainable yield—period 1 Own estimate 

𝜎2
𝑠 2.5 Variance of sustainable yield—period 1 Own estimate 

δ  0.975 Rate of time preference Assumption 

ρ  0.45 Share of rented farmland Bigelow et al. (2016) 

𝑤𝑐  1,390.61 Conventional corn production costs ($/ha) Swanson et al. (2018) 

𝑤𝑠  69.16 Incremental costs of sustainable production 

($/ha) 

Swanson et al. (2018) 

𝑝1, 𝑝2 175.19 Corn price, Indiana 2020 ($/MT) USDA NASS (2021) 

𝐺(𝜅) = 1 − 𝑒−𝜃𝜅 —— Distribution of risk aversion parameter, κ  Assumption 

θ  154.49 Risk aversion distribution parameter Own calculation 
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Table A1. Estimation Outcomes using the ML Model with Two Segments 

  (1) (2) (3) (4) (5) (6) 

Dependent variable 𝐸(𝑦𝑐) 𝑉𝑎𝑟(𝑦𝑐) 𝐸(𝑦𝑠) 𝑉𝑎𝑟(𝑦𝑠) 𝐸(Δ𝑦) 𝑉𝑎𝑟(Δ𝑦) 

𝑑1  
 

  3.44*** -0.72*** -0.85*** -1.91*** 

   (0.41) (0.17) (0.17) (0.17) 

Constant 9.67*** 2.99*** 8.39*** 2.99*** 0.75*** 1.87*** 

 (0.22) (0.07) (0.24) (0.08) (0.14) (0.08) 

       

 
  
 

- 70.48 24.42 

No. obs. 430 

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard error in the parentheses. 
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Figure 1. Distribution of Cover Cropping Years in the Sample  
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Figure 2. Share of owners (solid line) and renters (dotted line) adopting under different levels of the price premium (in $/MT; 
left panel), subsidy (in $/ha; middle panel), and yield insurance coverage (trigger level as a percentage of mean conventional 
yield; right panel). 
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Figure 3. Mean Level of Risk Aversion (κ) among adopting owners (solid line) and renters (dotted line) under different levels 
of the price premium (in $/MT; left panel), subsidy (in $/ha; middle panel), and yield insurance coverage (trigger level as a 
percentage of mean conventional yield; right panel). 
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Figure 4. Cover crop area adopted under each instrument as a proportion of the area 
adopted in the absence of any policy, holding total policy expenditures constant.  
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Figure A1. Estimated Yield with Cover Crops and Mean 
Yield without Cover Crops 
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