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Abstract

Consumers and policymakers are increasingly concerned with environmental sustainability
in food production. Yet farm-level adoption of many conservation practices has stalled.
Existing incentives for practice adoption increase farmers’ expected net benefits from
sustainable practices but do not help producers manage associated risks, which may be
critical to risk-averse farmers. Using unique data of cover cropping (CC) in the U.S. Midwest,
we show that adopting CC affects both the mean and variance of corn yield. Specifically, we
identify a nonlinear effect of CC on the yield of corn: mean yields decrease and variances
increase in the first few years following adoption. After this initial period, mean yields
converge to those under conventional production, while the variance of yields decreases
significantly. Given this relationship, we build a conceptual model to characterize CC
adoption decisions of risk-averse farmers under various incentives, including price
premiums, lump-sum subsidies, and green insurance. We find rich scale and compositional
effects that differ across incentives. We conduct simulations to compare the cost
effectiveness of the three incentives and find that offering green insurance generates the
greatest incentives for adoption.

Keywords: Corn-soybean production, cover crops, risks, sustainability, vertical coordination.

JEL Codes: D81, Q18, Q56.

* Corresponding e-mail: mameilin@purdue.edu. Authors thank Shalamar Armstrong for providing the yield
data for this study. Authors are responsible for all errors.

2



1. Introduction

The desire for economic growth, coupled with the desire for limiting the resulting negative
environmental impact, bring growing attention to “sustainable development” (Zilberman,
2014). As consumers and policymakers become increasingly concerned with environmental
sustainability, there is pressure on firms in the agricultural supply chain to provide
sustainably-produced food products that reduce soil erosion, nutrient runoff, and

greenhouse gas emissions from food production (Grunert 2011; Cecchini, et al. 2019).

The primary means of attaining sustainability in food production has been through
agricultural best management practice (BMP) adoption among farmers. In the U.S,, federal
and state-level programs promote BMP adoption by offering incentives like cost-share
subsidies and, in some recent cases, reductions in crop insurance premiums to adopting
farmers. Yet progress on BMP adoption has largely stalled. For example, in Indiana—a major
corn- and soybean-producing Midwestern state—adoption of cover cropping (CC) has

stayed roughly constant at less than 10 percent of crop acreage since 2015.

An extensive literature examines barriers to BMP adoption (see Prokopy et al. 2019
for a review). This literature focuses largely on identifying the social, behavioral,
environmental, and economic factors that drive farmers’ BMP adoption decisions. However,
the specific form that economic incentives take is also important, but less studied. This is
because adopting BMPs may have persistent and complex effects on both expected crop yield
as well as higher moments of the yield distribution. For example, row crop farmers that
adopt CC may experience both a reduction in mean yields and greater yield variance over an
extended period of time (Gaudin et al. 2015; Plastina et al. 2018; Anderson, 2020; Thompson

etal, 2020).



For risk-averse farmers, the decision of whether to adopt BMPs depends on how
adoption affects the entire distribution of farm returns (e.g., Liu 2015; Oliva et al. 2020).
Current incentives offered by state and federal conservation programs—like cost-shares for
BMP adoption—may improve mean farm profits without influencing variance of the profit
distribution, likely limiting adoption among risk-averse producers. Other features of these
programs (e.g., limits on the duration of participation or the acreage the farmer is permitted
to enroll) may also discourage adoption, although these barriers are not our focus here.

Our study sheds new light on the effectiveness and efficiency of various incentives in
promoting BMP adoption by constructing theoretical and numerical models of farmer
decisions under yield uncertainty over a relatively long period of time. Our theoretical model
is dynamic and accounts for heterogeneity in farmers’ risk preferences and time horizons.
The latter is assumed to be correlated with land tenure status, which is thought to affect
conservation adoption decisions (Bosch et al. 1995; Khanna 2001; Caswell et al. 2001;
Lichtenberg 2004). Considering different decision horizons distinguishes our model from
prior models of risk-averse farmers that are static (e.g., Yu et al. 2018) or assumes an infinite
horizon common to all farmers (e.g., Carey and Zilberman 2002).

We use the theoretical model to compare the economic performance of three
incentives for promoting BMPs: (i) price premiums paid for crop outputs produced using a
BMP; (ii) cost-share subsidies; and (iii) green insurance, which compensates conservationist
farmers for losses following BMP adoption that would not occur in the absence of the
practice (Mitchell 1999). We focus on the example of CC, which is considered an important
BMP for attaining water quality goals (e.g., ISDA 2018) and figure prominently in many

recent government and private-sector agricultural sustainability initiatives. We calibrate our



model using a unique dataset of experimental corn and soybean plots growing CC that spans
up to 15 years and six Midwestern U.S. states.

Our numerical results suggest conservation indemnities and cost shares induce larger
scale of adoption on the landscape than price premiums. This is because indemnities and
cost shares increase mean farmer returns and either decrease or leave unchanged the
variance of farmer returns. In contrast, price premiums increase both mean and variance of
returns, limiting adoption among risk-averse farmers. We also find that distinct
compositional effects arise under different instruments; relatively more risk-averse farmers
are more likely to adopt CC under indemnities, whereas less risk-averse farmers are more
likely to adopt under cost-shares and premiums. This is important as risk aversion is often
correlated with other farmer economic and demographic characteristics that are important
to policymakers.

Our paper is organized as follows. In Sections 2 and 3, we introduce a novel and
extensive dataset of experimental corn yields under different numbers of years growing
CC—which we refer to as “CC years”—and estimate corn production functions with and
without CC. This motivates our interest in using CC as a case study for our analysis and
provides novel insight into the effect of CC adoption on yield distributions. The use of panel
experimental yield data over a long span of time ensures a clear identification of treatment
effects. Itis also of particular descriptive value as existing work typically simulates the effects
of CC adoption (e.g.,, Thompson et al. 2020) or estimates the effect of CC adoption using
relatively short-term datasets. Inspired by the new empirical findings, we develop a two-
period model in Section 4 to characterize effects on BMP adoption under different incentives.

In Section 5, we calibrate the theoretical model using our empirical estimates of corn



production functions with and without CC and government statistics. Simulation outcomes
show substantial differences across the three incentives in the effectiveness and cost

efficiency.

2. Data

We obtained a panel yield dataset as part of a meta-data set collected by a team of
researchers at Purdue University. The data consists of 430 pairs of observations from 28
experiment sites located in six states across the Mississippi River Basin in the U.S. Midwest
over the period 2001-2018. The six states include Illinois, Indiana, lowa, Minnesota,
Missouri, and Wisconsin. Corn is grown on all the plots.

Each pair of fields are identical in location, soil type, slope, weather conditions, and
nutrient application, except that the treated field grows a cereal rye CC and the control field
does not. Plots with no CC are referred to as “conventional” plots, and neighboring plots
growing CC are, somewhat obviously, “CC” plots. CC plots have continuously grown CC over
different numbers of years. Figure 1 shows the distribution of observations by CC years.

[Figure 1 approximately here]

The dataset records yield of each plot in a given year. Table 1 displays summary
statistics of the yield. The unit of measurement is metric ton per hectare (MT/ha) and, for
corn, one metric ton equals 39.37 bushels. We also collect information on factors that may
affect the yield based on prior literature, including data on weather conditions and soil
quality (e.g., Schlenker and Roberts 2009). Variables measuring weather conditions include
total precipitation (in inches) over the period May through July of the corresponding year—
which corresponds to the typical corn growing season—along with monthly average

temperature over the same period (in degrees F). Variables measuring soil quality are CC
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biomass (in MT/ha), the amount of nitrogen applied (in kilograms/ha), and the field slope
(in degrees of angle). Applied nitrogen could have been in the form of ammonium sulfate or
liquid manure in addition to anhydrous ammonia. Nitrogen was added at a replacement rate
to both the control and treatment plots.

[Table 1 approximately here]

3. Empirical Corn Production Functions Following Cover Crop Adoption

Heterogeneity in CC years allows us to trace the trajectory of yield distributions over time
and is critical to our econometric specification and modeling. We first use an ordinary least
squares (OLS) model to demonstrate basic patterns in the yield distribution over time
following CC adoption. We then use maximum likelihood estimation (MLE) to

simultaneously estimate CC effects on the mean and variance of yield over time.

3.1 Ordinary-Least-Squares Yield Estimates
We first regress the yield of both conventional (indexed by ¢) and CC (indexed by s) plots on
the weather and soil quality variables as well as CC years (where applicable) and state fixed
effects. For simplicity, we assume that yields are independent across plots and time
conditional on the control variables. We specify yield of plot-year i as
W ¥/ =fx5B)+¢€j eles)
where X{ is a column vector of control variables (including a constant, CC years, other year-
specific controls, and state fixed effects) for plot-year i and ¢; is a random, homoscedastic
error term. The vector B/ contains parameters to be estimated.

We assume f(+) is linear for simplicity. Table 2 summarizes our regression results.
Columns (1) and (2) indicate that the soil quality variables play insignificant roles at the 95%
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confidence level. High temperatures in July reduce crop yields for both conventional and CC
plots. Additional precipitation reduces yields for conventional plots but not CC plots,
whereas higher May temperatures increase CC yields but not conventional yields. Critically,
CC years does not have any significant impact on CC yields.

Because the soil variables do not help explain yield and contain missing observations,
we remove them to be able to add 10 percent more observations to the estimation. Column
(3) shows the results from re-estimating CC yields. Our parameter estimates are largely
robust to this change, except that the average May temperature no longer significantly affects
CCyields.

Prior literature suggests that CC years may have a nonlinear effect on CC yields. We
explore this by adding squared CC years to our regression model. Column (4) in Table 2
shows that tenure has a significant nonlinear impact on CC yields, suggesting that the mean
yield of CC plots increases with CC years at a decreasing rate.

[Table 2 approximately here]

3.2 Maximum Likelihood Yield Estimates
The OLS results in Section 3.1 are silent on the effect of CC years on the variance of yields.

We hence study the relationship between yield variance and CC years using MLE. Assume
yields take the same form as in (1), but now assume the error terms eij are heteroskedastic.
Formally, let eij~N(0, gl]) where gij = g(Zij; aj), with Zij being a vector of control variables,
including a constant, that influence yield variance. The likelihood contribution from plot-

year i is then

@ i =0 (bl -0 )/ Jo(z) o))
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where ¢(-) is the standard normal density.

Because most of our observations are from plots with one or two years of CC, the
functional form of f(-) and g(-) need to be relatively simple to identify heterogeneity due to
CCyears. Inspired by the nonlinear relationship between yield and CC years revealed by the
OLS estimates in Table 2, we impose a kinked functional form on f(:) and g(-). Formally, we

divide the range of CC years from our dataset into three segments, [0, ..., Ty, ..., T, ..., T3]

where 75 is 15. We specify two indicator variables, dl.jT,z 1(Xiyears‘j S (TT,T3]),T =1,2,
where X?°*"*/ is the CC years for plot-year i. Note that X**"*° = 0 Vi, and hence d§. = 0 VT.
Given that every pair of plots differ only in whether CC is grown, we specify f(-) and g(-)
simply as

3 f(X[.B) =B +pld, +pjd), and g(z].0)) = af+a]d}, +ajd),

We searched over all possible combinations of indicators, using Akaike's and Bayesian
Information Criteria to determine which indicators fit our data the best. The information
criteria reach the lowest levels with 7; = 3 and 7, = 7, cutting the range into three segments
ofyears 1to 3,4 to 7, and 8 to 15.

Columns (1) and (2) in Table 3 report the MLE parameters for the conventional plots,
while columns (3) and (4) report MLE parameters for CC plots. Comparing columns (1) and
(3), we see that CC reduces mean corn yields relative to conventional production in the first
three years. From CC year 4 to 7, however, CC yields increase to ~116 percent of
conventional yields. CC Yields further increase after year 7, though the increment is small.
Recall also that there are very few observations after CC year 7, and hence this result should

be viewed with caution. Comparing columns (2) and (4), we see that the yield variance

follows the opposite trajectory over time. Indeed, variance is the same for both crops over
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the first three years following CC adoption. From CC year 4 to 7, the variance CC yields is
about 17% smaller than that for conventional yields. From CC year 8 to 15, the variance of
CCyields continues to decrease and becomes 43% smaller than the variance of conventional
yields. These findings are robust to alternative specifications of the model (see Appendix 2).

As a robustness check, and to account for possible within-year correlations between
conventional and CC yields, we also estimate a model in which we replace yl.j in equation (2)
with Ay; = yf —y/, i.e, we estimate the mean and variance of the difference in paired
conventional and CC plots. Our model estimates align with those reported in columns (1)-
(4). In column (5) of Table 3, the positive and significant constant term suggests that the
yield of CC plots is significantly lower than the yield of conventional plots in the first three
years. The coefficient estimated for df; is positive and significantly larger than the constant,
meaning that the yield of CC plots becomes significantly higher than the yield of conventional
plots after growing CC for more than three years. After the seventh year of CC, though, the
increase in the mean yield becomes insignificant. Again, changes in CC years 8 to 15 need to
be interpreted with caution due to a relatively small number of observations. After CC year
3, the variance of the difference in yield also decreases significantly compared with the level
in the first three years.

Put together, cover cropping generates yield losses on average, along with no
reduction in variance over the first three years of growing CC. In the medium term, there is
a small yield gain on average and a small reduction in yield volatility. In the longer term, the
mean yield gain may be insignificant, but the reduction in yield volatility is significant and

large. Cover cropping improves the yield distribution of farmers only after a few years,
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reflecting the fact that considerable time is need to restore organic matter and enhance soil
quality.

[Table 3 approximately here]

4. A Theoretical Model of BMP Adoption

Our econometric results suggest that adopting CC will change the mean and variance of
farmer net returns over time. Effective incentives for adoption must account for these
changes. We now explore the relative performance of different incentives on the scale and
composition of CC adoption using theoretical and numerical models informed by the
relationships uncovered in Section 3.

We consider a two-period model. A population of risk-averse farmers grow crop
outputs, which are sold to downstream retailers/processors (RP). There are two types of
farmer that are distinguished by their land tenure status. A proportion p are “renter” farmer,
indexed by superscript r, and face a positive probability of their lease not being renewed at
the end of period 1. In general, this probability may depend on farm profit or other factors.
If the lease is not renewed, we assume for simplicity that the farmer costlessly transitions to
another lease. In contrast, a share (1 — p) are “owner-operator” farmers, indexed by
superscript o, and have secure land tenure. We assume farmers of each type are
homogeneous except for their risk preferences, as described later. Each type of farmer
independently maximizes the present value of their utility by choosing whether to produce
“conventionally” or to produce “sustainably” by adopting CC. We assume sustainable
production has a higher marginal cost than conventional production, but sustainable farmers

do not have to invest in any supporting asset (e.g., new farm machinery).
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[t is common knowledge that gains from CC come mainly from soil enhancement, but
these gains arise only over time following the relationships uncovered in Section 3.
Specifically, we assume that the mean yield from sustainable production is lower than the
mean yield under conventional production in the first period after adoption, and the variance
of yield is weakly greater. In the second period of CC, the mean yield increases and the
variance of yield falls relative to conventional production.

Let the subscript t € {1,2} indicate the period and the superscripts s and ¢ refer to

sustainable and conventional farming, respectively. We express the mean conventional yield

in any period as u¢ = f;cc yh¢(y)dy, where h(y) is the density of conventional yields with

support [yc,}_lc]. The mean sustainable yield in period t is u; = ff; yhi(y)dy, defined
— Jt

similarly. We assume p5 > u¢ > uj. Likewise, the variance of conventional yield is 6¢ =

f;_];(y — u°)?h¢(y)dy and the variance of sustainable yield in period ¢ is o7 = fjf (v —

S Jt

ui)?hi(y)dy, with o > o€ > a5.

Assume that the utility function of a farm depends on the mean and variance of farmer
profits, ™, m = {r, 0}, following Meyer (1987). Risk aversion is reflected by the disutility
due to increasing variance of profits. We will define this utility function formally for each
case below. The level of the farmer’s risk aversion is captured by a random parameter, k¥ >
0, with a larger k implying greater risk aversion. The risk parameter is different among

farmers and follows distribution G (k).
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4.1 Adoption without Incentives

Assume that the marginal cost of conventional production, w¢, is constant. In the absence of
any incentive for adopting CC, both conventional and sustainable crops receive the
competitive price, p. Profits for conventional production depend fully on the revenue
received, because the costs are fixed at w¢ with the land size normalized to 1 for each farmer.

We simplify matters by assuming the probability the renter farmer’s lease is not
renewed is equal to unity such that the farmer is effectively myopic and hence maximizes the
flow utility earned each period. Utility earned by a renter farm that does not adopt CC is
us"* = pu® — w — kp?0°. For a renter farm to continue farming, u™* > %, where i is the
farmer’s reservation utility level.

An increment in the marginal costs of farming, w®, occurs when growing CC. Given
this extra cost and our assumptions about the distribution of yields under CC and the renter’s
land tenure status, no renter farmer will adopt CC because of a fall in mean yields and an
increase in yield variance in period 1.

For an owner farm, the present value of utility without CC is u®°* = Y2_, §*"1uc"* If
adopting CC, the present value of utility becomes:

(8) usor = ¥t 85 pui — (W + w?) — kp®ofl.
where § € (0,1) is the time discount factor. The owner farm adopts CC if u$%* > u%%*. We
refer to the “critical value” of k as the value that makes the farmer indifferent between

adopting CC or not. The critical value of k for owners is

9) sox _ 2t8 T pe(ui-u9)-ws] _ AE(®OY)
Y8t 1p2(0f-0°) AV (o)

where AE (%) and AV (r%") are the change in the mean and variance of the present value

of profits, respectively, following adoption. The share of owners that adopt is %", equal to
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1 if AE(°*) > 0, AV(1®*) <0

G(KRO) if AE(®*) > 0, AV(m®*) >0
[1-G(K)] fAE(@°*) <0, AV(r®*) <0
0 otherwise.

Intuitively, if adopting increases the present value of mean profits and decreases the
present value of variance (the first condition above), then all owners will adopt. If adopting
increases the present value of the mean and variance of profits (the second condition above),
then only those farmers with sufficiently low risk aversion (i.e., where k < k%) will adopt,
even without extra incentives offered by the downstream RP. If adopting decreases both the
present value of the mean and variance of profits (the third condition), then only farmers
with sufficiently high risk aversion will adopt; the gain in utility from reduced variance will
outweigh the losses in utility from lower mean returns. Finally, if the present value of mean
profits decrease and the present value of profit variance increases, then no owners will
adopt.

With a total of n farms in the sector, the total area of CC adopted in each period is
(10) a"=(1-p)Q”n,
which is constant across periods because (i) none of those who choose conventional
production in period 1 will have incentives to switch to sustainable production in period 2
(since the expected utility from doing so is initially less than that for conventional
production) and (ii) none of those who chose sustainable production in period 1 will switch
back to conventional production in period 2 (since the mean of yields is greater under

continued sustainable production, and the variance is less).
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4.2 Price Premium

Next, consider the farmers’ decisions in the presence of a price premium, v, paid to
sustainable farmers. We assume this premium is the same for renters and owners, although
our insights would not change qualitatively if this were not the case. Given the effect of CC
on famers’ profit distributions, a premium would only be needed during the first period after
adoption. This premium increases the effective price of sustainable outputto p + v.

Our assumptions about land tenure mean that the renter will continue to act
myopically (and will do so for the rest of the scenarios we consider below). However, there
may be renter farmers who adopt sustainable production given the higher effective price.
The utility for a renter farm who adopts CC under the price premium in any period is

s,r,prem

u =@ +v)uf —w —w®—k(p +v)?a;.
The premium increases the mean yield, while also increasing its variance. Utility for a renter

farmer who does not adopt is u®™* from above. The farm adopts CC if uS"P"™ > y™*, The

critical value of k for renters is

(p+V)ui-pu-ws _ AE(n"PTe™)
(p+v)2a5—p2a¢ ~ AV(mTPrEm)’

(11) grprem _

where AE(-) and AV (+) are defined similarly as before and the share of renters that adopt is
QrPTEM = G (KTPT€™), Increasing v has an ambiguous effect on Q"P"¢™, For small values of v,
the share of renters who adopt sustainable practices will likely increase. However, for large
values of the premium, the share of renters who adopt sustainable practices may actually
decline as the utility loss from increased variance of profits swamps the utility gain from
increased mean profits. If the numerator is negative, no renter farm adopts CC regardless of

v. In other words, the price premium is effective for renter farms only if the revenue gains
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from the price premium outweigh the opportunity costs from foregone yields plus the
increment to production costs.
For an owner farmer, the present value of expected utility from adopting CC given the
price premium is
usoPTm = (p +vV)ui — W+ we) —k(p +v)?0f + 8lpus — (W + w®) —kp?a3].
The farm adopts CC if u®°P"*™ > y%*, The critical value of k is

(12) poprem — (P+V)US —puC—wS+8[p(US— ) -wS] _ AE(ropTem)
(p+v)2af—p20c+5p2 (Uf_ac) AV (o.premy

and the share of owners that adopt is Q2P"¢™, equal to

1 if AE(m2P7¢™) > 0, AV(r®P™™) < 0

(13) G (goPTem) if AE(m®P"™™) > 0, AV(r®P™™) > 0
[1—G(KrOPTe™)] if AE(m?P"*™) < 0, AV (m?PT™) < 0
0 otherwise.

As with the renters, comparing (12) with (9) reveals that the price premium has an
ambiguous effect on the share of owners who adopt CC; adding a premium increases the
mean profits but also the variance of profits. For small premiums, the net effect may be to

increase go-Prem

and, hence, the share of owners who adopt the sustainable practice.
However, as the premium gets larger, the utility losses from increased variance may swamp
the utility gains from greater mean profits. Note also that the second condition in (13) is
more likely to hold as v increases. This implies that the premium is more likely to attract
relatively less risk-averse farmers. We explore this in our simulation later.

The total area of CC adopted in each period under the premium is

(14) aPrem = [(1 — p)QOPTem 4 pQrPTEM|p,
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4.3 Lump-Sum Subsidies

Next, consider the effect of a lump-sum subsidy per unit of land area, denoted 7, paid to
sustainable farmers to encourage CC adoption. Again, the subsidies are needed only for the
first period of adoption and are the same for renters and owners. The renter farm'’s utility
from conventional production is still u®™*, defined as before. If the farmer adopts CC, utility
is

usE = pui +n — W +w*) - kp?oy

As before, renter farmers that adopt CC in period 1 will maintain sustainable production in
period 2. Recall that we allow for o7 = ¢¢. This implies the share of renters who adopt CC

will be case-specific. When of > ¢¢, the proportion of renters who adopt is ®™*’ =

G (R™UP), where

arsub _ PUI-p)+n-ws _ AE(m7sub)
(15) 2 _ i _ ")
p?(o;—0°) AV(T[T‘SH )

When o = ¢°¢, the proportion is

{o if AE(n™¥P) < 0
1 otherwise.

Intuitively, all renters will adopt as long as mean profits increase since there is no additional
yield risk from adopting CC in this case.

For an owner farmer, the present value of expected utility from adopting CC given the
price premium is
uos = pui +n— W +w?®) —kp®af + 8lpus — We + w®) — kp®oi].

The farm adopts CC if u$°S%? > 4%%* The critical value of k is

20,sub __ U+Zt5t_1[p(uf—ﬂc)—w5] _ AE(T[o,sub)
(16) posub — _
Y8t 1p2[of—o€] AV (mosubY

and the share of owners that adopt is Q%5*? and equal to
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1 if AE(m%S*P) > 0, AV(7®%P) < 0

(17) G (ROSUP) if AE(m®%P) > 0, AV(m®*P) > 0
[1—G(kROS¥P)] if AE(mo%P) < 0, AV(r?5%P) < 0
0 otherwise.

Comparing (15) and (16) with the corresponding conditions under a premium (expressions
(11) and (12), respectively) reveals that the lump sum subsidy will induce greater adoption
than the premium if o > o€ and puj +n = (p + v)u3; that is, assuming the increase in
mean profits is the same across both instruments, the lump sum subsidy will induce greater
adoption since the subsidy does not increase the variance of farmer profits like the premium
does. The effect of the subsidy is ambiguous if 67 = o€ given the bang-bang nature of the
adoption decision in this case.

Furthermore, note that the change in the present value of profit variance is
independent of 1. Assume this change is negative (which is the case in our numerical
example). Given our assumptions about the distribution of y; and the incremental
production costs, the change in the mean of profits for small values of n is likely to be
negative, too. This implies that the third condition in (17) will hold, and hence the lump sum
subsidy will attract relatively risk-averse farmers—i.e., farmers with x > g%’ | This is
intuitive; since subsidies increase the mean of profits without changing the variance, farmers
who receive the greatest disutility from risk will adopt CC first under this instrument. These
compositional effects contrast with those of the premium, which initially attracts the least
risk-averse farmers.

The total area of CC adopted in each period under the subsidies is

18 as4b = [(1 — )Qo,sub + Qr,sub]n_
p p
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4.4 Green Insurance
The final type of incentive we consider is green insurance, through which the RP or another
agent may offer to share the risk in the farmers’ yield in the first period following CC

adoption. For simplicity, we consider a basic form of yield insurance which fully covers the
loss in yield under a trigger level, y € (yf,yf] common to both types of farmers. If a farm

experiences a yield y; <y, it receives compensation from the RP equal to p(y — y;). The
means and variances of conventional and period-2 sustainable yields stay the same as before.
However, the indemnity changes the mean and variance of yield for the sustainable farm in

the first period after adopting CC to

5S

yi
Bmy)=y+ f vy —v)hi(y)dy
Y

and

yi 1

() = f 0 — 2Ry + [ — 2Ry,
yi

14
respectively. Note that for any y, (i (y) > u3 and 7 (y) < 7.

s,r,ins

A sustainable renter farmer’s utility under the indemnity is u = pii(y) —w€ —
w® — kp?F$(y). A conventional renter farmer has utility u“"*, defined as before. The critical

value of the risk aversion parameter in this case is

arins _ PLES(Y)—ufl-ws _ AE(m7ins)
(19) K - p2[55(y) -] - Av(nr.ins)'

The share of renters who adopts is

1 if AE(T[T,inS) >0, Av(nr,ins) <0
(20) 4 G (R™ns) | if AE(n”:"S) >0, AV(n“:"S) >0
|1—G(rR™™) if AE(rn™™) < 0, AV(n"™™) <0

0 otherwise.
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The critical value of k for an owner farmer is €%, given by (9) after substituting /i§(y) and
d: (y) for ui and a7, respectively.

Comparing (19) with the analogous conditions for the other two incentives, and
holding the change mean profits the same, the green insurance would generate the greatest
level of adoption since it reduces profit variance, conditional on adoption. Furthermore, if
the change in profit variance from adoption is negative (consistent with our numerical
example), then for small values of y, the third condition in (20) is likely to hold. This implies
the green insurance will have similar compositional effects as the lump-sum subsidy.

The total area of CC adopted in each period under green insurance is

(18) ains — [(1 _ p)ﬂo,ins + pﬂr,ins]n.

5. Numerical Model
Our analytical results do not reveal the magnitude of the effect of these different adoption
incentives. We hence turn to a numerical example to study these effects. Based on plausible
parameter values, we simulate the scale and compositional effects of adoption under each
incentive using a numerical model of CC adoption calibrated for corn producers in Indiana.
Table 4 shows the parameter values and their sources.

[Table 4 approximately here]

We start by simulating the share of owners and renters that adopt CC under various
levels of each incentive. The left panel of Figure 2 shows the effect of a price premium that
ranges from $25 to $100/MT, or 14-57 percent of the assumed output price. Adoption among
both farmer types initially increases rapidly. Among owners, adoption increases from about

20% at a premium of $25/MT to 60% at $50/MT. Among renters, adoption increases from
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about 10% to 45% for over the same range of premiums. Note that adoption among owners
is everywhere greater than for renters, reflecting owners’ longer time horizon and, hence,
their ability to internalize the future gains from adopting CC.

Beyond ~$50/MT, however, the premium has no additional impact on either type of
farmers’ adoption incentives; adoption plateaus at ~60% among owners and ~50% for
renters. This reflects the increased variance from larger premiums, which begin to swamp
the gains to the producer from greater mean profits, as we point out in Section 4.2.

[Figure 2 approximately here]

Figure 3 shows the compositional effects of each incentive. We summarize these
compositional effects by plotting the mean of x among adopting renter and owner farmers
at each premium, subsidy, and green insurance coverage level. For a given policy instrument
i € {prem, sub, ins}, we write the conditional expectation for a type-m farmer as

([ 99 e i AB(rm), AV () < 0
em,i

_Qm,i

E(k|adopt,m,i) = { i
o glk)
0 K Qm,i

drx  otherwise.

Under the premium, the mean value of k increases with v for both renter and owner
farmers (left panel, Figure 3). This is consistent with our prediction above that the premium
attracts the least risk-averse farmers.

Similarly, the middle panels of Figures 2 and 3 show the scale and compositional
effects of the lump sum subsidy. In contrast to the premium, a sufficiently large subsidy
induces full adoption once the mean profit becomes positive under sustainable production
(i.e.,, at about $200/ha for each type of farmer). Prior to this point, renters do not adopt; note

that the share of renters jumps from 0 to effectively 1 at ~$200/ha.
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The composition of adopting farmers is different under the subsidy, too; the mean
value of k among adopting owners decreases with 1, in contrast with the premium (see
middle panel of Figure 3). This implies the subsidy attracts the most risk-averse owners.
Among renters, the mean value of k jumps from 0 to about 0.006 at n = $200/ha, which is
simply the mean value of k in the population of farmers. This jump occurs as all renters adopt
at this value of the subsidy.

Finally, the right panels of Figures 2 and 3 show the scale and compositional effects
of the insurance indemnity. Notably, the indemnity initially attracts the most risk-averse
owners and renters. As the indemnity increases, more and more farmers adopt CC. Once
again, adoption rate of owners always stays above the rate of renters.

[Figure 3 approximately here]

We can assess the cost-effectiveness of each incentive by comparing the scale of
adoption holding total expenditures on each incentive fixed. Specifically, we calculate the
total expenditure given a premium of roughly 15% of the base output price. We then solve
for the subsidies and indemnity levels that result in the same total expenditure. Figure 4
shows the scale of adoption under each incentive given this expenditure, relative to that
under no incentive. The indemnity generates nearly double the total adoption under the
subsidy and triple the total adoption of the premium given the same expenditure, making it
the most cost-effective policy. The indemnity also generates proportionally greater
incentives for renters to adopt; CC area is roughly split between renters and owners under
an indemnity. This contrasts with the other two instruments, which generate proportionally
greater effects for owners.

[Figure 4 approximately here]

22



6. Discussion and Conclusion

Promoting BMPs, including growing CC, is a major way of enhancing the sustainability of
agricultural production. Adopting BMPs can have long-run effects on the distribution of crop
yields. We show that the way in which adoption incentives interact with these effects can
influence the success of conservation programs, both in terms of the scale of adoption (i.e.,
how many farmers adopt) and the composition of adopting farmers (i.e., the characteristics
of the farmers who adopt). In particular, different incentives may attract relatively risk-
averse or risk-neutral farmers to adopt, depending on how the incentive affects the variance
in addition to the mean of farmer returns.

Our findings are important because prior work shows that farmer risk preferences
may be correlated with other characteristics important to policymakers. For instance, Roe
(2015) finds that crop farmers and farmers who are older, female, have lower incomes or
live in remote areas are relatively less risk-tolerant. Many of these farmers may also be less
likely to adopt conservation practices (Prokopy et al.,, 2019). Hence, understanding the
relationship between incentive type and adoption decisions among heterogeneous farmers
is important for optimally designing conservation incentives.

Our results contrast with prior work in some key ways. In one of the only other
studies we are aware of that compares the cost-effectiveness of various BMPs, Palm-Forster
et al. (2017) use economic experiments with farmers to show that green insurance is less
cost-effective than other incentives, including cost-shares, tax credits, and price premiums
for sustainable outputs. However, this is due to farmers’ perceptions of relatively higher

transactions costs under this incentive, which we do not account for. They also find that
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premiums are not cost-effective, but this is due to the inability to spatially target premium
revenues to ecologically-sensitive areas rather than the risk effects we study here.

Our results are timely in that agribusinesses including Truterra, Nutrien, and others
are increasingly involved in supporting the adoption of best management practices through
the development “vertical coordination” programs. Under these programs, downstream
firms provide incentives such as technical assistance and direct payments to upstream firms,
especially agricultural producers, to support BMP adoption. In return, the downstream firms
track BMP adoption data at the farm level and use it to quantify progress in attaining
sustainability goals and capture consumer willingness to pay for sustainably-produced food
(Apostolidis and McLeay 2019). So far, existing vertical coordination programs only offer
cost-shares or other lump-sum payments along with technical assistance for adoption. To
our knowledge, none of these existing programs offer incentives that share risks to farmers
that are caused by deviating from the conventional farming practices (a la green insurance).
Still, the novelty of these vertical coordination programs suggest there is considerable
leeway in how downstream firms managing vertical coordination programs can design

conservation incentives, and our results here may inform their decisions in that regard.
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Appendix 1. Plots of Mean Yields

Following column (4) of Table 2, we plot the estimated yield of CC plots and the mean yield
of control plots at the mean values of variables in the OLS model. To be specific, we compute
the average value of each variable in X, including the precipitation and temperature
variables, in equation (3) by state and denote the mean values by X, for state S. Then we rely
on the coefficients estimated to find the predicted yield of CC plots for a particular state:

VSe =@+ Bit + Byt? + @xXs + asS,

where t is the number of years growing CC.

By varying t from 1 to 7 years, we are able to plot the estimated y* based on OLS
outcomes. We limit ¢t in 1 to 7, because we have only a few observations for t > 7 in the
sample for OLS estimation. We focus on the three states with relatively large numbers of
observations: Missouri (158), Indiana (83), and lowa (32). In Figure A1, we plot a horizontal
line indicating the mean yield of control plots in each state (y_sc) and a corresponding curve
showing the estimated mean yield of CC plots ()7;5;).

Though the mean yields of control plots differ quite considerably across states, the
relative magnitudes of mean CC yields demonstrate similar patterns over the years of CC.
Specifically, compared with the mean yield of control plots in a given state (y_sf), 3755} in the
state always starts at the lower level when t = 1. As the number of CC years increases, the
yield of CC plots gradually catches up and finally surpasses y_§ at the third or the fifth year.

[Figure A1 approximately here]
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Appendix 2. Alternative Production Function Estimation

In Section 3.2, we cut the range of CC years into three segments to incorporate the bell-
shaped trajectory of yield as captured by the OLS estimates. Alternatively, we estimate the
MLE model by searching for one optimal cut in the length of CC years to separate the 15 years
into two segments. It turns out that the optimal cut falls at the fourth year (i.e., presented by
the indicator d,), creating two segments of 1-3 year and 4-15 years.

The estimation results are reported in Table Al. Patterns shown in Table 3 stay
robust. For example, column (1) suggests that the mean yield of CC plots is lower than the
mean of conventional plots in the first three years, but becomes weakly larger in the second
segment. Columns (4) and (6) suggest that the variance in yield of CC plots is indifferent from
that of conventional plots in the first segment and falls significantly lower in the second
segment.

[Table A1 approximately here]
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Table 1. Summary Statistics of Variables for Estimation

Mean SD Min Max No. obs.

Yield, conventional 9.67 4.47 0.78 18.72 430
Yield, with cover crop 9.10 4.44 0.59 18.85 430
Weather variables

Precipitation 16.03 5.33 3.92 25.12 316
Average temperature in May  64.02 4.29 52.14 71.44 316
Average temperature in June = 72.43 2.59 63.99 74.54 316
Average temperature in July 74.21 2.15 65.96 78.77 316
Soil quality variables

CC biomass 1.01 0.71 0 4.89 430
Field slope 2.52 1.24 0.5 3.5 292
Nitrogen applied 104.08 97.15 0 295 430
CC tenure 2.92 2.78 1 15 430

Source: Our yield dataset, Web Soil Survey, and Prism Climate Group.

Note: CC stands for cover crop.
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Table 2. Estimation Outcomes using the OLS Model

(1) (2) (3) (4)
Independent variable y¢ y* y* y*
Weather variables
Precipitation -0.10%** -0.02 -0.05 -0.06*
(0.04) (0.04) (0.03) (0.03)
Avg. temp. May 0.17 0.29%*x* 0.07 0.08*
(0.10) (0.10) (0.05) (0.05)
Avg. temp. June 0.03 0.01 -0.03 0.12
(0.18) (0.18) (0.13) (0.14)
Avg. temp. July -0.29%** -0.35%** -0.35%** -0.45%**
(0.10) (0.10) (0.09) (0.10)
Soil quality variables
CC biomass 0.15 0.30
(0.27) (0.26)
Field slope 0.15 0.70*
(0.39) (0.39)
Nitrogen applied 0.002 -1.03*
(0.63) (0.61)
CCyears -0.09 -0.03 0.52%**
(0.09) (0.08) (0.22)
CCyears, squared -0.04***
(0.02)
Constant 21.96 19.89 35.75%** 30.75%**
(13.40) (13.38) (8.95) (9.06)
State FE Yes Yes Yes Yes
R? 0.74 0.78 0.79 0.79
No. observations 292 292 316 316

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard error in the parentheses. Nitrogen is scaled by dividing 100.
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Table 3. Estimation Outcomes using the ML Model

(1) (2) (3) (4) (5) (6)
Dependent variable  E(y°) Var(y©) E(y?®) Var(y?®) E(Ay) Var(Ay)
d, 2.86%** -0.50* -1.14% J2.20%%*
(0.55) (0.21) (0.18) (0.21)
d, 1.34* -0.79** 0.67*** 0.35
(0.62) (0.30) (0.20) (0.30)
Constant 9.67*** 2,99k 8.39%*x* 2.99%*x* 0.7 5% 1.87***
(0.22)  (0.07) (0.24) (0.08) (0.14) (0.08)
X : 96.92 40.27
No. obs. 430

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard error in the parentheses.
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Table 4. Numerical Model Parameters and Functions

Parameter/Function Value Description Source
n 2,186,235 Corn area planted, Indiana 2020 (ha) USDA NASS (2021)
uc 9.67 Mean conventional yield Own estimate
Ui 8.92 Mean sustainable yield—period 1 Own estimate
w 10.06 Mean sustainable yield—period 2 Own estimate
o€ 3 Variance of conventional yields Own estimate
o7 3.03 Variance of sustainable yield—period 1 Own estimate
o5 2.5 Variance of sustainable yield—period 1 Own estimate
) 0.975 Rate of time preference Assumption
p 0.45 Share of rented farmland Bigelow et al. (2016)
w¢ 1,390.61 Conventional corn production costs ($/ha) Swanson et al. (2018)
w? 69.16 Incremental costs of sustainable production Swanson et al. (2018)
P1, D2 175.19 Corn price, Indiana 2020 ($/MT) USDA NASS (2021)
G(k)=1—e —_— Distribution of risk aversion parameter, k Assumption
0 154.49 Risk aversion distribution parameter Own calculation
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Table Al. Estimation Outcomes using the ML Model with Two Segments

(1) (2) (3) (4) (5) (6)
Dependent variable  E(y¢)  Var(y°) E(y®) Var(y®) E(Ay) Var(Ay)
d, 3.44%** -0.72%*% -0.85%F*  -1.91%**
(0.41) (0.17) (0.17) (0.17)

Constant 9.67%%F  299%F 839wk 29Qkkk () 7hwkr ] g7k

(022)  (0.07)  (0.24)  (0.08)  (0.14)  (0.08)
X . 70.48 24.42
No. obs. 430

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard error in the parentheses.

35



%observations
20 30
1 1

10

T T T
1 12 13 14 15

T
6 7 8 9 10 1
#years of cover cropping

Figure 1. Distribution of Cover Cropping Years in the Sample
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Figure 2. Share of owners (solid line) and renters (dotted line) adopting under different levels of the price premium (in $/MT;
left panel), subsidy (in $/ha; middle panel), and yield insurance coverage (trigger level as a percentage of mean conventional
yield; right panel).
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Figure 3. Mean Level of Risk Aversion (k) among adopting owners (solid line) and renters (dotted line) under different levels

of the price premium (in $/MT; left panel), subsidy (in $/ha; middle panel), and yield insurance coverage (trigger level as a
percentage of mean conventional yield; right panel).
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Figure 4. Cover crop area adopted under each instrument as a proportion of the area
adopted in the absence of any policy, holding total policy expenditures constant.
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