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Climate Risk and Planting Patterns: An Examination of the Direct and Indirect Effects of 
Changing Precipitation on the Behavior of Bangladeshi Farmers 

 
Abstract 

 
Weather variability, risks, and mitigation strategies figure prominently in agriculture; however, climate 
change creates additional challenges that require adaptation.  Bangladeshi farmers face regionally 
variable risks associated with salinity, submergence, and drought.  Farmers can adopt newer stress 
tolerant varieties or adjust their cropping patterns.  This paper examines the factors that contribute to 
the adoption and adoption shares of stress-tolerant rice varieties, with a particular emphasis on the role 
of weather and preferences. This paper uses Rice Monitoring Survey data collected by the International 
Rice Research Institute with funds from the Bill and Melinda Gates Foundation (RMS, 2019) as well as 
data collected from 2007 through 2017 from the Climate Hazards Group Precipitation with Stations at 
the 0.05 arc degree level (Funk et al., 2014).  The paper takes a three-step approach to estimate the 
determinants of planting behavior, with a particular emphasis on the direct and indirect effects of 
changing precipitation patterns.  First, with the approach suggested by Nguyen (2011) and Liebenehm 
and Waibel (2015), household risk and time preferences are estimated using data from the 2013 survey 
along with measures of precipitation patterns in the five years preceding the 2013 survey.  The research 
uses that model to construct estimates of risk and time preferences at the beginning of the 2016 crop 
year using the precipitation data in the five years preceding 2015 along with the other household 
demographic and economic data from the 2016 survey period.  We then estimate planting shares 
through the use of a hurdle as follows.  Using Roodman’s (2011) conditional mixed processes procedure, 
the hurdle model jointly estimates a Probit of whether a farmer plants anything in a given season and a 
set of two-limit Tobit models on planting shares.  We find that direct effects of changing precipitation on 
planting shares for the Aus and Boro seasons.  Negative deviations in mean daily precipitation from 
recent trends in the Boro season yield modest increases in planting shares of stress-tolerant modern 
varieties and hybrid varieties with corresponding declines in planting of traditional varieties.  Results 
also suggest that large and positive deviations in precipitation in the Aus season would imply substantial 
declines in planting shares of stress-tolerant modern varieties, hybrids, and other crops with 
corresponding growth in traditional varieties.  In considering the indirect impacts of changing weather 
conditions on planting shares, a positive precipitation deviations would yield changes in risk and time 
preferences that would cause, on average, a 4.34% decline in planting of stress-tolerant modern 
varieties and a 27.08% decline in hybrid variety planting shares across all seasons.  This indirect effect is 
the only effect for the Aman season precipitation deviation, but it would be a compounding effect for 
the Aus season and an offsetting effect in the Boro season.  Given these findings and ongoing efforts at 
encouraging climate adaptation, it would be clear that incentives would need to reflect both the recent 
conditions as well as the potential longer-term effects of recent conditions on farmer risk and time 
preferences. 
 

 
JEL: O33, Q12, Q15, Q54 
keywords: climate change, risk preference, time preference, planting behavior 
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Introduction 
 

Weather variability, risks, and mitigation strategies have long figured prominently in 

agriculture; however, climate change creates additional challenges, including extreme heat 

events, prolonged droughts, and higher than normal precipitation can be attributed to climate 

change (National Academy of Sciences, 2016).  In addition, rising oceans will certainly cause 

increasing salinity in coastal areas and estuaries.  Howden et al. (2007) suggest that climate 

change presents a wide range of adaptive challenges for the agricultural sector and suggest a 

variety of practices that farmers may adopt, including altering inputs such as plant varieties, 

changing irrigation patterns, changing other water management practices, altering timing and 

location of cropping, improving effectiveness of practices related to pest and weed 

management, as well as considering alternative income sources in order to mitigate climate 

risk.  In Bangladesh, Shaw, Mallick, and Islam (2013) provide evidence that the risks faced by 

Bangladesh are not uniform but vary regionally, with salinity and flooding relevant in some 

areas, drought more significant in others, and temperature variability affecting all.  For 

example, Dasgupta et al. (2015) note that the coastal divisions of Chittagong, Dhaka, and 

Khulna could lose up to 30% of cultivable land, and Mottaleb et al. (2015) find that drought and 

submergence substantially reduce yields in Bangladesh during the Aman and Aus seasons.  In 

that context, this paper examines two dimensions of farmers responses to changing weather 

patterns: adoption of stress tolerant varieties and changing shares of rice and non-rice crops in 

general.   

An important starting premise in this paper is a recognition, as suggested by Arslan 

(2017) and noted above, that adaptation to climate change is not simply a question of adopting 

a specific technology but involves a menu of activities, and as explained by Holden and Quiggen 

(2017), adoption of new stress tolerant varieties represents but one possible varietal choice, 

suggesting that some local varieties represents an alternative risk mitigation strategy.  

Consequently, we will consider adoption of technology as not necessarily adoption of a specific 

technology but to consider stress tolerant varieties and crop diversity as alternative, and 

perhaps competing technologies to mitigate the risks of climate change for farmers in 

Bangladesh.  This paper considers the following key questions: (1) What factors contribute to 
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the adoption and adoption shares of stress-tolerant rice varieties? and (2) In the broader 

context, what explains the overall planting shares of different crops in general?  While we will 

include multiple correlates with farmer behavior, our central question is to measure the extent 

to which changing precipitation patterns affect behavior (1) as a direct measure in our 

estimation and (2) indirectly through the impact of changing precipitation on farmer risk and 

time preferences. 

In order to inform the adoption process, this paper is outlined as follows.  We review 

the technology adoption literature as a mechanism to inform both our understanding of the 

various factors contributing to different behaviors among farmers.  We next consider the 

specific technological environment within which Bangladeshi farmers operate.  That is, we 

consider the menu of stress tolerant varieties made available to Bangladeshi farmers, the other 

modern varieties, the various local varieties, and the other crops which are commonly planted 

(with specific reference to the ways in which such crops help to mitigate such risks).  In 

addition, we summarize the key varietal usage across regions within our sample, thus laying the 

groundwork for our subsequent analysis.  In the subsequent section, we provide a conceptual 

framework that will motivate our empirical specification that allows us to make reasonable 

predictions about the impacts of socioeconomic, market/infrastructural, and weather-related 

patterns in the adaptation of farmers.   

We then explain in greater detail our empirical approach.  In short, we employ methods 

of estimating risk and time preferences from Liebenehm and Waibel (2014)  and Nguyen (2011) 

to estimate the effects of changing precipitation patterns in the five years preceding the 

2016/17 planting year on individual risk and time preferences.  The next step of our approach 

draws on triple hurdle models suggested in other areas of the literature (i.e., Burke et al. (2015) 

and Fan and Garcia (2018)) but with appropriate modifications given our data and question.  

Using Roodman’s (2011) conditional mixed progress package for Stata, we estimate hurdle 

model: (1) First, we estimate a probit of whether a farmer plants anything in a given season to 

control for selection, and (2) We then estimate a two-limit Tobit model on planting shares.   

 Subsequently, we provide a summary of the data, with some preliminary bivariate 

relationships highlighted, and we then present our baseline econometric analysis along with a 
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further examination of the implications of these findings on understanding these patterns of 

adoption.  The contributions of this research would be its control for the multi-seasonal nature 

of agriculture in many environments and permits exploration of how changing weather 

patterns will directly affect planting choices perhaps through a change in expectations and 

affect behavior and choice through the impact of such changes on preferences themselves.  

Specifically, by determining first how risk and time preferences are affected by changing 

weather patterns, we can measure how changing weather patterns affect behavior both 

through changing preferences and directly through the weather changes themselves. 

Understanding the Nature and Process of Technology Adoption in Agriculture 

The technology adoption literature in agriculture has identified several factors that 

affect farmer adoption of new technologies, including (1) experience and extent of exposure to 

risk, including especially weather-related risk; (2) risk preferences and perceptions; (3) human 

capital, social networks, and learning; (4) accessibility and availability of new technologies and 

complementary inputs; (5) cognitive abilities and psychological attributes of farmers, (6) crop 

attributes such as marketability or household consumption property, and (7) farm scale, 

wealth, and credit; and more recently.   While not considered in detail, time preferences also 

figure into technology adoption because it involves a process of intertemporal optimization.  To 

a lesser extent, scholars have also considered the role of gender in adoption processes, and in 

the specific context of choice of seed varieties, a number of papers also consider the role of the 

varied attributes of different seed varieties (e.g., market value, production attributes, and/or 

consumption attributes).   

Weather, Climate, and Climate-Related Stress 

Weather variability and other abiotic stresses have long been considered an important 

determinant in the technology adoption process (Hiebert (1974), Roumasset (1976), Feder, 

Just, and Zilberman (1985)).  There are three ways in which researchers have considered the 

role of climate related events in adoption decisions: (1) general variability and changing trends 

in weather patterns, (2) perceptions of climate change and risk, and (3) experience of climate-

related shocks.   
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In the first area of research, Pitt and Sumodinigrat (1991) found that Indonesian rice 

farmers were more likely to adopt modern varieties in drought prone areas where irrigation 

was possible.  Many more recent papers have attempted to directly measure weather patterns, 

weather variability, and agroecological conditions in an effort to understand their roles in 

adoption processes, including DiFalco, Chavas, and Smale (2006); Mottaleb, Mohanty, and 

Nelson (2015); Arslan, Belotti, and Lipper (2017); and Asfaw, DiBatista, and Lipper (2018).  

Mottaleb, Mohanty, and Nelson (2015) remark on the importance of considering local weather 

and agro-ecological conditions, and they note that higher rainfall and higher temperatures on 

average led to lower likelihoods of adopting either modern or hybrid varieties in favor of 

traditional varieties, and farmers facing such stresses increased the share of land allocated to 

traditional varieties.  DiFalco, Chavas, and Smale (2006) also find evidence that individuals in 

marginal farming and drought prone areas would tend to have a higher species diversity, thus 

suggesting the signal importance of controlling for such factors.  In addition, Arslan, Belotti, and 

Lipper (2017) and Asfaw, DiBattista (2018) find that higher rainfall variability and lower 

maximum temperature can increase use of modern varieties while at the same time finding 

that greater variability may reduce use of organic fertilizers and some modern input use could 

fall.  This literature thus suggests that farmers will tend to move, where possible, toward risk 

reducing technologies.   

In considering farmer perception of climate risk or experience of climate shocks, Mishra, 

Pede, and Barboza (2018), in the context of land allocation in the Vietnamese Delta Region, 

found that greater recognition of climate change affected planting of paddy on own versus 

rented land, and in the context of aquaculturists, Ahsan and Brandt (2015) find that farmer 

perception of climate risk is affected by recent experiences of climate related events, thus 

suggesting that the extent to which a farmer will perceive a risk or possible future risk is shaped 

by recent experiences of risk.   

In considering shock exposures more specifically, research has focused on drought 

alone, flooding alone, or climate change impacts in general.  Cavatassi, Lipper, and Narloch 

(2011) note that experiences of crop losses due to drought appear to cause farmers to be more 

likely to maintain usage of sorghum landraces over modern varieties, but with the advent of 
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stress tolerant varieties, Holden and Quiggen (2017) find that previous year shock exposure 

increased adoption of drought tolerant maize, reduced use of other modern varieties, and 

increased use of local varieties.  In considering more specific events, Katengeza, Holden, and 

Lunduka (2019) find that adoption and adoption intensity of drought tolerant maize varieties 

increase when individuals experienced early season dry spells and that the share of area 

planted increases for individuals exposed to late season droughts.  In the context of floods, 

Yamano et al. (2018) find that farmers in northern Bangladesh who experienced significant 

submergence problems in an earlier season were more likely to adopt recently released 

submergent tolerant varieties (BR11-Sub1 and Swarna-Sub1 rice), with Tran et al. (2019) finding 

in Vietnam a greater willingness to adopt a whole package of technologies denoted as climate-

smart agriculture.   In a more limited finding due to the binary structure of the dependent 

variable, Ullah et al. (2015) suggest that farmers will reduce their level of diversification when 

confronting abiotic stresses such as floods and droughts.   

Role of Risk and Risk Preferences 

Farmers experience changing weather conditions, precipitation, and possibly, changing 

soil conditions, and they face not only the decision to adopt a new technology but an array of 

possible technological choices, and they do this within an environment already fraught with 

market and biotic risks.  Modern techniques, inputs, and new varieties will tend to have a wide 

range of impacts on possible outcomes, bringing further to the fore both uncertainty and risk 

faced by farmers.  As farmers consider the adoption process and their adaptive reactions to 

climate change, they will have a sequence of possible choices: (1) whether to adopt or change 

behavior at all, (2) if adoption or new planting patterns on part of a property is possible, on 

what share of land will the farmer change their behavior, and (3) if intensity of adoption can be 

measured (perhaps extent of fertilizer use), how much to use the actual technology or by how 

much to change their planting varieties or shares.  In the context of Bangladesh, pre-planting 

and pre-harvest technologies would include seed varieties, fertilizers, herbicides, pesticides, 

irrigation and water systems, planting methods (direct seeding versus transplanting), and 

various types of machinery or planting/cultivating equipment.   The early literature provides a 

theoretical foundation for understanding such risk, and more recent literature has expanded 
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upon this early work and connected risk aversion to new seed and technology adoption as well 

as crop diversification strategies. 

The early technology adoption literature suggested that more risk averse farmers would 

use less fertilizer and plant fewer crops in modern varieties (Just and Pope, 1979, Hiebert, 1974, 

and Moscardi and De Janvry, 1977).  Feder (1980) asserts that higher risk aversion and greater 

output variability will slow adoption of modern varieties which require complementary inputs 

and thus can increase risk; however, Lindner and Fischer (1981) more risk averse could be more 

rapid adopters of risk-reducing technologies.  While in the U.S. context, Chavas and Holt (1996) 

find that risk preferences and greater yield variances of one crop can cause re-allocations 

across crops.   

Concerns about significant downside risks also likely affect farmer practices and 

technology adoption.  This safety first has been explained by Roumasset (1976) and empirically 

validated (Moscardi and DeJanvry (1977), Smale, Just, and Leathers (1995), and Smale, Heisey, 

and Leathers (1995).  As suggested in the latter two papers, this aversion to downside risk or 

‘safety first’ approach can explain reduced shares of modern varieties and certainly suggests 

something about how farmers may consider new stress-tolerant varieties or other risk 

mitigation strategies, and Dercon and Christiaensen (2009) explain how differences in ability to 

self-insure against downside risk (i.e., differences in wealth, assets, and the like) can explain 

differential practices in the case of fertilizer.   

More recent literature which specifically focuses on seed technology adoption considers 

risk aversion, ambiguity aversion, as well as subjective probability assessments as motivating 

factors in adoption.  For example, Liu (2013) finds that the lower the degree of risk aversion will 

speed adoption of a new technology, with Brick and Visser (2015) similarly finding in a 

hypothetical context that the more risk averse a farmer is the more likely they will choose 

traditional seed varieties.  In the developed country context, Barham et al. (2014) consider how 

risk and ambiguity aversion affect GM corn and soy adoption in the United States, and they find 

that risk aversion had a modest effect on GM soy adoption while ambiguity aversion strongly 

affected GM corn adoption. 
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Literature which considers broader production choices beyond just seed technology 

includes Warnick, Escobal, and Laszlo (2011), Mukasa (2018), and Asravor (2019).  Specifically, 

Warnick, Escobal, and Laszlo (2011) find evidence to suggest that ambiguity aversion and not 

risk aversion causes farmers to be less likely to plant more than one variety of their main crop, 

and Asravor (2019) notes that risk aversion will increase crop diversification and market risk will 

increase the use of improved seed varieties.  In addition, Ullah et al. (2015) find that growing 

risk aversion will increase the likelihood of adopting diversification strategies to cope with 

increased risk.  Mukasa (2018) also finds that both risk aversion and aversion to the kurtosis of 

the production distribution would reduce the likelihood of using chemical fertilizers, improved 

seeds, and pesticides.  While focused on learning effects, Islam et al. (2018) also find that risk 

aversion appears to lower the likelihood of adopting a rice intensification technology.   

In considering a non-seed risk mitigation strategy, Schimamoto, Yamada, and Wakono 

(2018) find that risk averse farmers are more likely to adopt a moisture meters to shield against 

post-harvest storage loss while their degree of loss aversion and probability weighting had little 

effect on such choices.  While many papers have considered the role of risk aversion in affecting 

the adoption of a particular technology, Kaleab , Nillesen, and Tirivayi (2020) examine how the 

adoption of a risk-mitigating strategy (weather index-based crop insurance) can both reflect 

lower levels of risk aversion and can actually lower an agents risk aversion in other domains of 

work.  This last component points to the interconnected nature of the adoption of risk-

mitigating strategies and the evolution of preferences themselves. 

Many papers consider how climate related issues interact with farmer risk preferences.  

Holden and Quiggen (2017) find that relative risk aversion increases the intensity of use of 

drought tolerant and local maize varieties as they tend to perform better under drought 

conditions while they tend to lower the usage of other modern varieties.  They also find that 

greater loss aversion increases the probability of adopting drought varieties.  In general, they 

only appear to show that risk aversion plays a statistically important role in behavior.  Lybbert 

and Bell (2010) found that risk aversion increased the likelihood of choosing a drought tolerant 

variety over status quo and that more loss averse individuals are more likely to choose drought 

tolerant varieties as well.  Ward and Singh (2015) find that increasing risk aversion and 



10 
 

increasing loss aversion increase the likelihood of adopting drought tolerant seeds, with 

ambiguity aversion having limited effect.   

Learning and Social Networks 

As explained in their extensive early review Feder, Just, and Zilberman (1985), learning 

processes, farmer ability, and extension efforts in understanding adoption process will figure 

prominently in adoption.  As early as Rogers (1962), it was noted that the process of adoption 

must first begin with an awareness of a technology, and of course then farmers must learn 

about the technology, experiment with it, assess it, and determine its appropriateness.  In 

outlining this process, Lindner, Pardey, and Jarrett (1982) make clear that the three important 

questions in the technology adoption process include: (1) How and when to individuals gain an 

awareness of a technology? (2) What is the individual’s capacity to understand and attitude 

toward adoption, and (3) How does an individual learn about the use of the technology as well 

as the potential value of use of such a technology?   

As to the first question, individuals may learn of the technology from extension agents 

or be directly exposed to the technology by neighbors and friends.  Doss (2006) cites several 

studies that measure extension visits as (1) whether or not a farmer received extension visits in 

a particular period and (2) whether the farmer attended a demonstration and acknowledges 

their role in affecting farmer decisions.  Information coming from off the farm will come 

through various routes: (1) Extension agents and private sector actors (dealers), (2) Media and 

publications, and (3) Social networks and observation.  As noted by both Feder and Slade (1984) 

and Lindner, Pardey, and Jarrett (1982) convenient access to information will figure 

prominently in adoption and changing management processes, and the role of extension is well 

noted in the literature, with Nkonya, Schroeder, and Norman (1997) noting its importance in 

fertilizer use, with a wide range of scholars finding evidence of the importance of extension 

agents in adoption, including Diagne and Demont (2007), Simtowe, Asfaw, and Abate (2016), 

Dibba et al. (2015), and Fisher et al. (2015), with the last paper specifically focused on their role 

in the adoption of stress tolerant varieties. 

Upon exposure, however, education will influence information processing on the one 

hand in considering a technology or practice and reduce the potential for allocative error once 
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adoption occurs.  Both Feder and Slade (1984) and Linder, Pardey, and Jarret’s (1982) examine 

the importance of human capital or education as acting as a possible substitute for easier 

access to information and positively influencing adoption where appropriate.  Pitt and 

Sumodiningrant (1991) suggest that education may augment the skills needed in the allocation 

of resources, especially if a technology is complex. (Pitt and Sumodiningrat, 1991)  Further 

supporting this observation, Feder, Just, and Zilberman (1985) cite that the literature had 

discovered that more educated farmers were earlier adopters perhaps because they could use 

the technique more efficiently, and this was further validated in the context of seed adoption 

(Lin, 1991).   

Conditional on education, once farmers have become aware of a technology, they 

engage in a learning-by-doing or in learning-from-others about a process, variety, or 

technology.  Foster and Rosenzweig (2010) remark on the broad findings of the importance of 

learning in the adoption of new technologies.  In early work, Hiebert (1974) explains that as 

farmers gain more information about a technology, they gain the necessary information in 

order to choose adoption in a manner that minimizes possible allocative errors, but the flow of 

information becomes an important mechanism for this reduction in allocative error.  Linder, 

Pardey, and Jarrett (1982) note that in the various stages of the adoption process, farmers will 

depend on both off-farm information and on-farm experimentation, and as Feder and Slade 

(1984) explain, this information gathering can occur either via a (1) costly and active process or 

(2) a low cost and passive process.  Bandiera and Rasul (2006) then argue that farmers will then 

maximize expected profits from adoption or non-adoption as a result of individual and social 

learning, and the farmer adopts the new crop (or practice as the case may be) if the expected 

intertemporal profits of adoption exceed those from non-adoption. 

Farmers must learn from others and by experience, and the speed of adoption depends 

on the capacity for on-farm learning as well as the ability to learn from others.  In the context of 

either seed varieties or technology packages, Smale, Just, and Leathers (1994) and Smale, 

Heisey, and Leathers (1995) validate the role of learning processes in general.  In terms of 

modeling the process, Foster and Rosenzweig (1995) develop models of learning-by-doing in 

the adoption of high yield varieties, and they show that quality of information, learning-by-
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doing, and learning from others all affect the rate of adoption of this technology.  On farm-

learning can expedite adoption especially for larger farmers who have more room for 

experimentation (Lindner, 1981), and forward learning behavior by some farmers can lead to 

learning externalities that either increase or reduce the rate of adoption by neighbors (Besley 

and Case, 1994).  Similarly, Conley and Udry (2010) note that observation of neighbor behaviors 

affected use depending on farmer previous experience as well as the extent to which the 

observed individual share similar circumstances as the observer.  In addition, Bandiera and 

Rasul (2006) note that information acquired by learning by doing and learning from others can 

serve as substitutes for one another such that farmers with better information are less sensitive 

to the choices of others.  The role of neighborhood effects is well-documented whereby having 

neighbors who adopt a technology (Holloway et al. (2002)), being proximate to better trained 

and better informed neighbors (Islam et al. (2018), or being neighbors of individuals who 

received stress-tolerant seed kits (a new technology) (Yamano et al. (2018)) all appeared to be 

positively related to the adoption of a technology.  Of some note, however, is that while many 

papers construct Bayesian learning models are posited as theoretical motivations for adoption 

processes, Barham et al. (2015) find significant heterogeneity in learning behaviors and that no 

one learning process better predicts the rate of adoption of GM seeds. 

Cognitive Traits, Non-Cognitive Traits, and Abilities 

 A smaller literature explores the roles of specifically measured cognitive traits and 

abilities.  Barham et al. (2018) explored how differing cognitive abilities and willingness to 

accept advice related to adoption of GM corn seeds, and they found that cognitively able 

individuals that were not receptive to advice were, in fact, more likely to adopt.  Yamano, 

Rajendran, and Malabayabas (2015) note that a higher rating of self-perception increased usage 

of stress tolerant varieties; however, it would be difficult to disentangle the self-perception 

from the fact that such ratings were correlated with education, scheduled cast status, and 

landholding/wealth of farmers.  Finally, Ayalew, Bowen, and Deininger (2019) explore how a 

variety of non-cognitive skills relate to the production decisions of Ghanaian rice farmers and 

found that work centrality appears to lower adoption likelihood, polychronicity increases 

adoption, and education increases likelihood (the last point echoing earlier findings in the 
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literature).  Abay, Blalock, and Behane (2017) examine the role of a person’s locus of control in 

their technology adoption decisions, and they find that strong locus of control is predictive of 

farmer fertilizer, seed use, and irrigation choices.  While this literature does not figure 

prominently, it points into another direction for future research; however, of some relevance 

would be considering the extent to which such factors as learning style, willingness to take 

advice, and other cognitive traits are correlated with other metrics such as farm size, education, 

age, et cetera.   

Accessibility 

Echoing Feder, Just, and Zilbermann (1985) on the cost of technology, Katengeza, 

Holden, and Lunduka (2019) and Holden and Quiggin (2017) find that access to subsidies can 

affect input adoption.  Duflo, Kremer, and Robinson (2011) find that specialized time-limited 

subsidies can increase use of fertilizer in a manner consistent with the idea that farmers are 

present biased in their decision-making.  Alene and Manyong (2006) and Shiferaw et al. (2008) 

find that capacity to adopt new Pigeon pea varieties is constrained by poor seed delivery 

systems and other access constraints.  In further considering the accessibility of technologies, 

market channels also appear to play important roles as Bold et al. (2017) note that “lemons” 

problems in input markets limit the ability of farmers to learn about the true value of a 

technology.   

Further reflecting both the capacity to obtain inputs and reach output markets, 

Mottaleb, Mohanty, and Nelson (2015) test the importance of sub-district level agricultural 

infrastructure as important factors affecting adoption of modern rice varieties in Bangladesh as 

do Smale et al. (2001) in considering maize varietal selection in Mexico.  Finally, Suri (2011) 

eschews some of the earlier concerns with learning in the context of adoption and focuses on 

other reasons for heterogeneity, including infrastructure and finds that a substantial portion of 

differences in adoption can arise from differential distances from input markets.   

Attributes 

More specific to the adoption of a portfolio of seed varieties, an increasing literature 

addresses the wide variety of attributes that farmers might consider in using particular seed 

varieties.  Lunduka, Fisher, and Snapp (2012) find that, in addition to concerns about yield and 
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drought tolerance, Malawian farmers often consider factors such as storability, poundability, 

flour-to-grain ratio, and taste.  Similarly, Smale et al. (2001) and Nazli and Smale (2016) find 

that traits associated with other factors such as consumability affect the choices of smaller 

farmers.  Moreover, Mehar, Yamano, and Panda (2017) find that gender differences arise in 

varietal selection where female farmers choose rice varieties based on factors such as good 

taste, high cooking quality, and good straw quality in addition to traits such as stress tolerance 

and are much less likely to adopt based on market-oriented concerns.  Finally, Xu, Yanrui, and 

Jingdong (2016) find that, aside from other values, farmers ex ante willingness to adopt insect-

resistant rice may be affected by the health benefits associated with planting a crop that 

requires less pesticide use.   

Assets, Land Size, Wealth, Credit, and Institutions 

Farm size, wealth, and credit appears play multiple roles in the adoption process, with 

some aspects intrinsically linked with earlier discussions of risk.  Ruttan’s (1977) early survey of 

the adoption of Green Revolution technologies suggests that long-term differences in adoption 

will be muted but that adoption rates could vary by farm size of the medium term, depending 

on the technology.  In the theoretical literature, Feder (1980) links credit-worthiness, land 

holdings, and risk preferences and suggests that if credit availability increases more than 

proportionately with land size that adoption could be more rapid among larger farmers, and 

both Feder and O’Mara (1981) and Just, Zilberman, and Rauser (1980) suggest that fixed costs 

of adoption place a greater barrier to adoption for smaller farmers.  Similarly, Feder (1982) 

finds that the lumpiness of some technologies can hinder their adoption by smaller farmers.  

Just and Zilberman (1983) show that if the correlation of outputs under old and new 

technologies is low or negative and if the modern technology is sufficiently more risky than the 

traditional technology, then larger farms will devote more land in absolute terms but less in 

proportionate terms to new technology than will smaller firms if relative risk aversion is 

increasing and absolute risk aversion is decreasing in farmer’s wealth.   

In the empirical literature, Smale, Just, and Leathers (1994) as well as Smale, Heisey, and 

Leathers (1995) find evidence that input fixity is one of four key factors affecting adoption, 

including portfolio selection, safety-first behavior, and learning as noted above.  In the U.S., 
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Barham and Foltz (2004) find that technological complementarity plays a relevant role in this 

process in the dairy sector such that scale matters.  In the adoption of stress-tolerant varieties 

context, Fisher et al. (2015) find that adoption shares are higher for farmers with larger land 

holdings, perhaps reflecting Lindner’s (1981) reflection on greater learning and credit 

opportunities. 

Emphasizing the concern about credit availability, Doss (2006) argues that access to 

credit plays an important role in technology adoption and suggests metrics for such access, 

including whether a farmer had received credit in the past, the size of owned land, and the 

value of previous year crop stocks on hand.  Earlier work by Pitt and Sumodiningrant (1991) 

finds that credit availability increases adoption of modern varieties.  Gine and Yang (2009) 

investigate the uptake of loans to purchase seeds and found that willingness to take such loans 

was reduced as a person became more risk averse, thus providing some evidence that 

overcoming credit availability alone would not alone overcome barriers to adoption and 

hearkening back to the previous points on the important role of risk preferences in the 

adoption process. 

Adaptive Environment of Bangladesh 

Bangladeshi agriculture has evolved relatively rapidly over the last several decades with 

the spread of modern varieties through the early and later phases of the Green Revolution.  As 

one considers scientific and agricultural literature, some important factors are worth 

mentioning.  First, with three traditional farming seasons (Aman, Boro, and Aus), agriculture in 

Bangladesh is characterized by heterogeneity across regions and agroecological zones, thus 

suggesting different stressors and potential solutions.  Second, irrigation has grown 

dramatically throughout Bangladesh and largely gave rise to dramatic increases in Boro rice.  

Moreover, there is evidence of increased irrigation in order to shore up possible water 

resources during what is normally the rainy season, particularly in high salinity areas.  Third, 

while a variety of new stress tolerant varieties have been developed, there are several other 

alternative crops appropriate for more stressed environments, and several traditional varieties 

have been known to withstand some degree of stress.  To that end, we briefly review the 

heterogeneity of planting practices, explain the role of irrigation as a potential risk reducer (and 
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enhancer as water resources decline in some areas), summarize and discuss the wide variety of 

seeds available and used both local varieties and modern varieties.  Finally, we discuss the 

alternative choices that farmers have after experiencing stresses.   

Heterogeneity of Regions 

The risks faced by Bangladeshi farmers are as diverse as the geography of the country.  

As explained by Nasim et al. (2017), in the high and medium uplands, water scarcity is common, 

and the vast lowland areas are more prone to flood.  In addition, the nutrient rich haor in 

northwestern Bangladesh are especially subject to flooding in the monsoon season but are 

important productive areas in dry seasons.  Nasim et al. (2017) describe three major types of 

agricultural ecosystems: irrigated ecosystems (subject to flooding and drought), deep water 

ecosystems (only cultivable during the dry season and even then subject to flooding), and 

freshwater and saltwater tidal regions (subject to flooding, drought, and in the latter case, 

salinity, either through salinity build up in soils in off-season floods or through saltwater 

infiltration into wells).  Within each system, agricultural experience will be highly dependent on 

precipitation patterns, and each farmer’s experience depending on the exact nature of their 

landholding.  

Given these varied conditions, farmers have adapted their planting patterns.  In the dry 

Boro season, rice is regularly planted in irrigated areas, while transplanted Aman rice is grown 

in the rainfed lowlands and tidal wetlands during the monsoon period.  Traditionally, Aus rice 

had been planted in the period between the wet and dry seasons in the rainfed uplands, but 

such planting has fallen as dry season Boro rice has increased in use and fallow or other 

alternative crops are planted in the traditional Aus season. Finally, a small share of rice is grown 

in the deep-water rice ecosystem via broadcast methods known as B. Aman rice.  (Nassim et al., 

2017).   

Irrigation Growth 

While discussed in more detail in the context of the data, the Bangladesh Rice Research 

Institute and the Bangladesh Institute of Nuclear Agriculture have introduced stress-tolerant 

varieties including various submergent tolerant varieties (BRRI dhan 51, BRRI dhan 52, Bina 

dhan 11, Bina dhan 12), drought tolerant varieties (BRRI dhan 56), and salt tolerant varieties 
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(Bina dhan 8 and Bina dhan 10).  BRRI (2012, 2018) reports the extent to which these varieties 

can withstand such stressors and thus could reduce the extent of the risk faced by farmers.  

However, in terms of adoption behavior, some evidence suggests that some local landraces in 

Bangladesh (BRRI, 2012, Rahman et al. (2016), Ali et al. (2016), Rahman et al. (2019), Yesmin et 

al. (2014)) already have some tolerances to abiotic stress such as flooding/submergence, 

drought, and soil salinity, thus perhaps attenuating the demand for newly released stress 

tolerant varieties in the short run.   

In terms of changing behaviors, technology, and adoption due to climate-related 

changes more generally, Kabir, Alauddin, and Crimp (2017) examined the changing dynamics of 

farm management and cropping practices as a result of changing climate conditions in western 

Bangladesh.  Notwithstanding Gupta et al’s (2015) evidence on the increasing salinity of coastal 

regions of Bangladesh, few, if any papers, have considered in depth the adoption of saline 

tolerant seed varieties.  As salinity is likely to be an increasing and significant stressor to crops 

over the coming decades, such factors will matter in farm behavior, and researchers have 

considered adaptive strategies.  Specifically, Kabir et. al. (2018), while not exploring the 

adoption process, do address the general technological and farm management practices that 

will need to occur with increasing soil salinity.  Relative to other crop stressors, understanding 

adoption of salinity-tolerant crops and rice seeds represents an important area of further 

inquiry.   

Conceptual Framework 

In the context of this literature and specific environment of Bangladesh, small rice 

farmers in Bangladesh face a unique set of challenges.  As noted above, the degree to which 

farmers will adopt new methods, change planting patterns, or adopt new technologies will 

depend on (1) real and perceived changes in weather, (2) experiences of changes in weather, 

(3) nature and degree of risk and time preferences, (4) education and availability of information 

and ability to learn from others, (5) access to technologies and markets, and (6) farm size and 

credit availability.  Important factors meriting consideration include the following: (1) historical 

patterns of weather and proneness toward crop stressors, (2) recent experience to crop 

stressors, (3) farmer perception of the extent of the possible weather or climate-related risk, 
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and (4) how different technologies, or in this case varieties, react to stress.  As a result, 

appropriate measures for weather patterns, recency of stress, and farmer perception could be 

considered as correlates with farmer adoption and adoption shares of particular technologies.  

Each of these would, according to the literature, then be expected to exert some influence on 

the adoption behaviors.  Consequently, as suggested by the findings of Holden and Quiggen 

(2017), Katengeza, Holden, and Lunduka (2019), and Yamano et al. (2018), the adoption of 

stress-tolerant varieties should be positively affected by recent experiences of such stresses.  At 

the same time, depending on the traits of modern varieties that were not bred for stress 

tolerance, one might expect based on Cavatassi, Lipper, and Narloch (2011) findings a declining 

relative share of such varieties over either landraces/local varieties or stress-tolerant varieties 

as stressors increase, with the caveat that in some drought prone areas, irrigation systems 

would largely mitigate possible risks associated with limited rainfall as suggested by the findings 

of Pitt and Sumodiningrat (1991). 

As one considers the adoption and seed variety usage, while risk averse farmers may be 

less likely to adopt or use less modern varieties (Just and Pope, 1979, Hiebert, 1974, Feder, 

1980), if particular seed varieties are risk-reducing, more risk averse farmers may be more likely 

to adopt the technology (Lindner and Fischer (1981)).  Moreover, depending on whether the 

seed variety has greater downside risk (non stress-tolerant modern varieties) or less downside 

risk than the status quo would be important determinants of their adoption and adoption 

shares (Roumasset, 1976, Moscardi and De Janvry, 1977, Smale, Just, and Leathers, 1994).  In 

the more recent empirical literature, the question of risk aversion and ambiguity aversion have 

figured prominently in understanding both crop diversification or seed adoption (Liu (2013), 

Asravor (2019), Ward and Singh (2015), and Warnick, Escobal, and Laszlo (2011)).  In 

considering the models of adoption of stress tolerant varieties as well as overall crop diversity, 

therefore, the previous empirical findings and research suggest that increased risk aversion 

should increase the degree of diversification of seed varieties (and potentially whole crops) by 

farmers, and the adoption/use of seed varieties will depend on the degree of risk aversion and 

whether the crop is risk-enhancing or risk-reducing.  At the same time, some literature suggests 

that integrating other crops or practices may also represent either complementary of 
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substitutable risk mitigation strategies relative to adoption of new seed varieties.  Of course, 

the degree of risk aversion and the nature of weather-related risks are not the sole limiting or 

accelerating factors in the adoption process, but the literature suggests it should play an 

important role in influencing farmers.   

Given this literature, as one considers other key determinants of adoption, basic 

awareness becomes a sine qua non of adoption, but then the roles of education, extension, 

learning-from-others, and learning-by-doing become the key factors in adoption.  By and large, 

education in general and access to extension would play positive roles in the adoption of all 

modern varieties (either stress tolerant or other), and then there would be questions of the 

sources of information and proximity to other adopters.  Note, in the current version of this 

paper, we do not incorporate this but expect to in subsequent versions.  Finally, in considering 

adoption shares, the level of previous experience, perhaps based on years of previous use 

would then figure in the decision of farmers.  As with awareness, access to seed varieties will 

play a role; therefore, distances from input supply market, pricing of inputs (seed varieties), 

and the local infrastructure all could play relevant roles in the adoption of new seed varieties.  

While we do have some data on pricing in given locations, this element is not considered in the 

current model.  Given the above discussion, seed adoption and other adaptive strategies, like 

all technologies, may depend on farm size, farmer wealth, and access to credit.  For data 

reasons, this paper will not consider non-cognitive traits as well as other non-market reasons 

such as desire for particular attributes directly in the paper, but these, to be sure would also 

play a role, depending on where practices reside. 

 In order to synthesize these findings conceptually, let us consider the planting choice of 

a single farmer in a given season.  In the developing country context, one might consider the 

profit maximizing aspect of farming firm as inseparable from the consumption utility 

maximization of the household in large part because many farmers consume a substantial 

proportion of their farm output.  As the farmer considers their planting choices each season, 

they consider their total plots available, current seed stocks (if any), their knowledge and/or 

experience of other seed stocks and crops, the accessibility of alternative crop or rice crop 

seeds, their previous experiences with weather and or other conditions (salinity) as well as their 
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expectations of the future.  Within this context, they must assess their uncertainty about new 

alternative relative to old alternatives against the known and or anticipate risks.  Moreover, 

they will consider the potential future value of experimentation with newer varieties.  That is, 

not only might they be concerned about a given season’s outcome, but they could consider the 

potential value of gaining experience with a newer variety that might yield less risk not just in a 

given season but over multiple seasons/years, thus suggesting some role for time preferences 

in explaining farmer behavior.   

Empirical Approach 

In order to explore how changing weather patterns and consequently changing 

preferences affect planting behavior, we take a three-step approach to estimating the 

determinants of planting behavior, with an emphasis on the indirect effects of changing 

precipitation patterns.  First, following Nguyen (2011) and Liebenehm and Waibel (2015), we 

estimate a model of household risk and time preferences using data from the 2013 survey 

along with measures of precipitation patterns in the five years preceding the 2013 survey.2  We 

then use that model to construct estimates of risk and time preferences at the beginning of the 

2016 crop year using the precipitation data in the five years preceding 2016 along with the 

other demographic and economic data.  These predicted risk and time preferences become a 

measure of household risk and time preferences in the next step of our procedure.  

Conceptually, the decision to plant a particular share of fields using a particular type of 

seed or crop in a given season proceeds in three stages.  While all farmers in this sample are 

rice farmers, they do not all farm rice in each season, or they might not farm at all in a given 

season.  Some of these differences arise from the fact that some areas cannot be planted or can 

only be planted with greater effort during certain seasons.  For example, in the saline estuaries, 

farmers might be less able to farm during the Boro (dry) season because of the increased 

salinity of the estuaries, high soil salinity, and ground water salinity.  Alternatively, some 

farmers may simply rely on rainfed-only agricultural practices.  So, the first stage of each season 

involves a decision of whether to plant anything.  At the next stage, farmers have a choice 

 
2 Specific details on the estimation procedures used here are relegated to Appendix 1 as this estimation is not a 
central focus of the research and is dealt with in greater detail in a companion paper. 
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between the different rice varieties to use or whether to plant some non-rice crop as well.  In 

the final stage, for all crops for which a positive share of land will be planted, the farmer must 

decide what share of their acreage they will allocate to that crop.   

In the first stage, the choice is strictly binary.  Specifically, farmer’s must assess their 

conditions in a given year (or perhaps over time in a region) and discern whether planting 

anything at all is appropriate in a given season.  As discussed earlier, the wide variety of 

geographies and water sources can help to explain some of this in any given season.  Given that 

a farmer is a producer in a given season, they then must decide whether to plant traditional 

varieties (either non-stress tolerant or stress tolerant), hybrids, modern varieties (either non-

stress tolerant or stress tolerant), or plant some other crop altogether.  In other recent studies, 

the double hurdle for understanding adoption dates attributable to Cragg (1971) has been used 

to explore seed technology adoption literature (Amare, Asfaw, and Shiferaw, 2012; Ricker-

Gilbert, Jayne, and Chirwa, 2011; and Holden and Quiggen, 2017).  However, our approach 

draws on triple hurdle models used by Burke et al. (2015) and Fan and Garcia (2018); however, 

instead of using either the log normal hurdle model of Burke et al. or the truncated normal 

model, the most appropriate model here as explained by Wooldridge (2010, 703-705) would be 

a two-limit Tobit model to account for the fact that acreage shares have high concentrations at 

0 percent and 100 percent for some seed variety or crop types. Consequently, each choice of k 

variety represents a two-limit Tobit Model and thus represents a double hurdle model where 

farmers will plant 0 percent, 100 percent, or some share between 0 and 100 of their acreage in 

crop k.  The following explains conceptually the construction of the log likelihood functions to 

support the estimation process.   

Stage 1.  I1ij = I1ij(X1ij) where I1 is an indicator that takes a value of 1 if farmer i plants 

anything in a given season j, and where X1ij are appropriate observed characteristics of farmer i 

in season j. 

Stage 2.  The second relates to whether farmer i plants crop k in season j.  Because 

many farmers will plant 0 percent of their acreage in crop k, and a reasonable proportion will 

plant 100 percent of their acreage in crop k, we confront a two-corner solution problem.  If we 
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speak of crop shares as skij, then, consistent with Wooldridge (2010, 704), our second stage 

model is specified as follows: 

 𝑠∗ = 𝑿𝟐𝒊𝒋𝜶 + 𝑢 , 𝑢 |𝑿𝟐𝒊𝒋~𝑁(0, 𝜎 ) 

𝑠 = 0 𝑖𝑓 𝑠∗  ≤ 0  

  𝑠 = 𝑠∗  𝑖𝑓 0 <  𝑠∗ < 1  

𝑠 = 1 𝑖𝑓 𝑠∗   ≥ 1  

 

As discussed in Fan and Garcia (2017), we describe the formulation of the probabilities 

and likelihood function.  For the second stage, we explain in terms of the two-limit model 

discussed in Wooldridge (2010, 704).  In Stage 1, the respective seasonal participation 

probabilities can be stated as follows: 

(1)       Pr 𝐼 = 1 𝑿𝟏𝒊𝒋 = 𝛷 𝑿𝟏𝒊𝒋𝜷  𝑎𝑛𝑑 𝑃𝑟 𝐼 = 0 𝑿𝟏𝒊𝒋 = 1 − 𝛷 𝑿𝟏𝒊𝒋𝜷  

In Stage 2, the probabilities on the limits can be stated as follows: 

(2.lower) Pr 𝑠 = 0, 𝐼 = 1 𝑿𝟐𝒊𝒋, 𝑿𝟏𝒊𝒋 = 𝛷 𝑿𝟏𝒊𝒋𝜷 𝛷 −𝑿𝟐𝒊𝒋𝜶/𝜎  

(2.upper)  𝑃𝑟 𝑠 = 1, 𝐼 = 1 𝑿𝟏𝒊𝒋, 𝑿𝟐𝒊𝒋 = 𝛷 𝑿𝟏𝒊𝒋𝜷 (𝛷 −(1 − 𝑿𝟐𝒊𝒋𝜶)/𝜎  

In Stage 2, the interior conditional density can be written as follows: 

(2.interior) 𝑓 𝑠 = 𝑠∗ , 𝐼 = 1|𝑿𝟐𝒊𝒋, 𝑿𝟏𝒊𝒋, 0 < 𝑠∗ < 1 = 𝛷 𝑿𝟏𝒊𝒋𝜷

𝑿𝟐𝒊𝜶

 

Based on this understanding, then the unconditional density associated with planting of 

crop k in season j by farmer i should be written as follows: 

𝑓 𝑠 |𝑿𝟐𝒊𝒋, 𝑿𝟏𝒊𝒋 = 1 − 𝛷 𝑿𝟏𝒊𝒋𝜷 ∗ 

𝛷 𝑿𝟏𝒊𝒋𝜷
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We can specify for any observation that the triple-hurdle model for crop shares would 

have the following likelihood function over all observations ij: 

𝐿 = 𝑓 𝑰𝟏𝒊𝒋, 𝒔 𝜶, 𝜷 = 1 − 𝛷 𝑿𝟏𝒊𝒋𝜷 ∗ 

𝛷 𝑿𝟏𝒊𝒋𝜷

⎣
⎢
⎢
⎢
⎡

𝛷 −𝑿𝟐𝒊𝒋𝜶/𝜎 (𝛷 −(1 − 𝑿𝟐𝒊𝒋𝜶)/𝜎
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In order to estimate the parameters of this likelihood function, Fan and Garcia (2018) 

use the Roodman (2011) conditional mixed process procedure in order to achieve the triple 

hurdle approach.  The approach allows for the model used to be conditioned on the data and 

allows for the suppression of equations that do not apply for specific data.  

 

Data Sources and Construction 

This paper uses the Rice Monitoring Survey (RMS) data collected by the International 

Rice Research Institute with funds from the Bill and Melinda Gates Foundation (RMS, 2019). 

The panel data includes an initial 1,485 households collected in the 2013 and 2016 planting 

years from 16 districts in six divisions of Bangladesh. The data set includes demographic and 

economic measures for each household.  To control for wealth and changes in economic 

condition, we imputed total and non-land wealth using values for land, physical assets, and 

animal assets from our survey, with prices or expected values coming from the International 

Food Policy Research Institute’s (IFPRI) Bangladesh Integrated Household Survey (Ahmed, 2013 

and IFPRI, 2016).  

This survey incorporated a risk and time preference elicitation element.  Specifically, in 

order to elicit risk preferences a gamble choice game based on Binswanger (1980) and related 

to those used in other studies (Barr & Genicot, 2008; Cardenas & Carpenter 2013; Cameron & 

Shah, 2015; Eckel & Grossman, 2008) was developed. A multiple price list survey consistent 

with Coller and Williams (1999) was used to elicit time preferences.  
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In addition to this information, data associated with climate/weather risk was also 

match to this household data.  Data from Dasgupta et al. (2015) were used to match individuals 

to expected proneness to salinity stress, and survey information on the proportion of land 

which households farm that is characterized as high land and low land measures the proneness 

of fields to dryness or submergence, respectively. In addition, daily precipitation data was 

gathered from the Climate Hazards Group Precipitation with Stations at the 0.05 arc degree 

level (Funk et al., 2014). This data was matched to each household based on GPS data collected 

at the time of the household surveys. Seasonal mean and standard deviations of this data were 

calculated for each year from 2007 through the first two months of 2017 to capture the end of 

the final planting season for the survey period. Note, the start and end of the planting season 

varies somewhat widely by area in Bangladesh; therefore, we adopted the widest bounds on 

our seasonal calculations, with Aman being measured as between July and December, Boro 

being measured from November through May, and Aus consisting of the months of March to 

August. Other approaches to measuring precipitation variability are considered in Bangladesh 

(Rahman et al. (2017)) and in general (Arslan et al. (2017) and Asfaw et al. (2016)).  Specific 

metrics of changing climate calculated to permit estimation of risk and time preferences are 

following: (1) the deviation seasonal daily mean precipitation in the immediately preceding 

season from the average of the previous five years and (2) the variability of the seasonal daily 

coefficient of variation across the previous five years.  The former permits a measure of the 

extent to which deviations from expected values affect preferences, and the latter captures the 

extent to which higher or lower variability in risk affects preferences.   

Summary of Key Elements of Data 

 Table 1 provides the general traits of the samples. The data summarized here is only 

that data which is ultimately included in the final empirical specifications.  The original panel of 

data contained 1485 households, but because the first stage required a risk and time 

preference elicitation, we only include households where the respondent was constant over 

time which leads us to have 865 households as a complete panel.  Because of some omitted 

responses to questions on wealth or landholdings across the two sample periods, the sample 

was further reduced to 833 to ensure observations were matched across periods.  With that 
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preliminary information, we note that the average age rose three years, and the level of 

education was, for somewhat obvious reasons was unchanged at approximately six years over 

the period.   Similarly, family size remained nearly constant at approximately 6 individuals.  In 

addition, two areas which might signal a household’s capacity to mitigate risk included 

irrigation and distance from output markets.  Families in this survey did not re-locate between 

the two surveys, so the distance from output markets remained fairly constant, and irrigation 

use fell modestly from 77 percent to 70 percent.  Given that constant prices were used, the 

data suggest significant increases in wealth within this sample set from approximately 630,000 

Taka to 730,000 Taka. In addition, we note a wide variability in household wealth in terms of 

Taka3.  

 We find that the mean salinity in the data is slight but that the communities within the 

data set range from very high salinity to no salinity. In terms of land shares in high land versus 

low land, it appears that despite the fact that farmers did not re-locate between the two 

periods, a few things might have occurred to explain the changes here.  That is, both the shares 

in high land and the shares in low land changed, with shares in high land growing from 7% to 

15% on average and shares in low land growing from approximately 30% to 50% in the same 

period.  As these level of land assessments are self-reports, they could reflect the farmer 

perception during a given season.  That is, given that precipitation was higher than average 

during the Aman and Aus season in the year previous to this survey, farmer’s might have 

experienced more submergence and then would be more likely to assess their land as low land.  

At the same time, during the Boro season, conditions were modestly dryer, suggesting that 

farmers might perceive more of their land as high land as well.   

 As noted, we calculated the standard deviation of the coefficient of variation across the 

five years preceding the previous year.  Since risk and time preferences are calculated based on 

experiences preceding the current planting season, no current precipitation measures are used 

in this estimation.  In any case, this calculation should pick up how the variability of 

precipitation changed across the five years, controlling for mean levels of precipitation.  Higher 

variability of this metric in some areas versus others would imply greater perceived risk of 

 
3 Taka denoted ৳ is the national currency of Bangladesh. 
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precipitation experience.  Notably, the level of variability of this metric did not change 

substantially between the two survey periods, but it does appear to be higher in the Boro 

season (likely reflecting the lower mean precipitation).  On the other hand, as we observe the 

preceding season’s deviation of mean daily precipitation from the five-year average, this 

measure changed substantially over the two periods under consideration.  In the first period, 

the mean daily precipitation fell across all seasons relative to five-year averages.  At the same 

time, in the latter period, mean daily precipitation rose for the Aman and Aus seasons relative 

to previous years, but it fell modestly for the Boro season.  While age, education, irrigation, and 

salinity condition will also be used in the crop shares regressions, other variables will also be 

used in those regressions.  Specifically, measures of awareness of stress tolerant crop varieties, 

distance from input markets, frequency of meeting extension agents, and owned acreage are 

also considered as appropriate predictors.   
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Table 1. Summary Statistics of Variables Used in Estimation of Risk and Time Preferences 

Household and Farm Characteristics  #obs Mean Std. Dev.  #obs Mean Std. Dev. 

  2013/14 2016/17 

Age 833 46.62 12.03 833 49.03 12.04 
Education 833 6.17 3.96 833 5.99 4.31 
Family Size 833 5.61 2.10 833 5.63 2.47 
Distance from Output Market 833 2.08 1.89 833 2.08 1.89 
Irrigation 833 0.77 0.42 833 0.70 0.46 
Ln(Total Wealth (Taka)) 833 13.35 1.12 833 13.50 1.30 
Salinity Index (0 None to 7 Very High) 833 0.98 1.68 833 0.98 1.68 
% of Land on High Ground 833 0.07 0.19 833 0.15 0.26 
% of Land on Low Ground 833 0.30 0.39 833 0.46 0.42 

Stress Measures             

5-Year Seasonal Standard Deviation of Seasonal Coefficient of Variation  

  2007-2011 2010-2014 

     Aman Season 833 0.19 0.09 833 0.17 0.09 
     Boro Season 833 0.41 0.22 833 0.46 0.24 
     Aus Season 833 0.11 0.06 833 0.11 0.05 
Deviation of Mean Daily Precipitation in Season from 5-Year Mean Daily Precipitation 

  2012 from 2007-2011 2015 from 2010-2014 

     Aman Season 833 -2.98 11.17 833 30.25 16.24 
     Boro Season 833 -13.45 11.00 833 -2.63 33.65 
     Aus Season 833 -13.45 11.00 833 25.99 6.81 
Additional Variables Used in the Crop Shares Estimations (2016/2017 seasons) 
     #obs Mean Std. Dev. 
Aware of Stress Tolerant Varieties    833 0.43 0.50 
Distance from Input Markets    833 1.80 1.68 
LN(Frequency of Meeting Extension 
Agents + 1)    833 1.69 1.42 
LN(Acreage Owned + 1)    833 0.84 0.58 

 

In Table 2, the average planting shares of the five different rice variety types4 as well 

other crops and fallow land are shown for each of the three planting seasons.  Of note in terms 

of changing average shares, we observe that the share of land planted in modern stress 

 
4 Note, farmers planted a wide variety (approximately 200) of modern varieties, traditional varieties, and other 
varieties.  In consultation with experts, we categorized rice varieties among four basic categories: Stress-Tolerant 
Modern Varieties, regular Modern Varieties, Traditional Varieties, and Hybrids.  We also had broader categories that 
separated stress tolerance types (flood, salinity, and submergence), but as these are relatively small proportions, we 
did not perform estimations with those category levels at this point. 
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tolerant varieties grew from 5.28% to 7.37% across the two periods, and the share in modern 

non-stress tolerant varieties also grew from 24.12% to 29.78%.  At the same time the share 

planted in traditional varieties fell from 61.66% to 51.22%.  In the Aus season, for those who 

planted anything during that season, rice planting fell with a large decline in planting in 

traditional varieties from 36.11% to 21.59%; while planting of Other Crops grew by 14.52 

percentage points from 52.61% to 69.79%.  In the Boro season, rice planting overall saw large 

declines in planting shares by 6.26, 5.60, and 7.31 percentage points for modern stress tolerant 

varieties, modern non-stress tolerant varieties, and traditional varieties, respectively.  At the 

same time, the average planting share of other crops grew 20.46 percentage points.   

 
Table 2. Cropping Patterns Between Survey Periods 

  2013/2014 2016/2017  

 Variable Obs Mean 
Std. 
Dev. Obs Mean 

Std. 
Dev. 

Change 
in Mean 

Aman 

Modern Variety - Stress Tolerant 784 5.28% 0.17 829 7.37% 0.22 2.08% 
Modern Variety - Non- Stress Tol. 784 24.12% 0.36 829 29.78% 0.40 5.67% 
Traditional Variety 784 61.66% 0.40 829 51.22% 0.43 -10.44% 
Hybrid 784 0.26% 0.04 829 1.66% 0.11 1.40% 
Other Crop 784 8.68% 0.21 829 8.85% 0.21 0.17% 
Fallow 784 0.00% 0.00 829 1.12% 0.08 1.12% 

Aus 

Modern Variety - Stress Tolerant 214 2.87% 0.14 329 1.58% 0.12 -1.29% 
Modern Variety - Non- Stress 
Tolerant 214 4.00% 0.16 329 5.18% 0.21 1.18% 
Traditional Variety 214 36.11% 0.44 329 21.59% 0.39 -14.52% 
Hybrid 214 1.36% 0.09 329 0.30% 0.06 -1.06% 
Other Crop 214 52.61% 0.47 329 68.79% 0.45 16.18% 
Fallow 214 3.05% 0.15 329 2.56% 0.11 -0.49% 

Boro 

Modern Variety - Stress Tolerant 604 32.10% 0.38 765 25.84% 0.38 -6.26% 
Modern Variety - Non- Stress 
Tolerant 604 16.59% 0.30 765 10.99% 0.26 -5.60% 
Traditional Variety 604 17.76% 0.33 765 10.45% 0.28 -7.31% 
Hybrid 604 6.47% 0.21 765 4.67% 0.18 -1.80% 
Other Crop 604 24.58% 0.35 765 45.04% 0.44 20.46% 
Fallow 604 2.50% 0.13 765 3.01% 0.14 0.51% 

 
As explained in the method section and in Appendix 1, we estimated both risk and time 

preferences a function of the regressors explained.  We then used those to calculate the 

estimated risk and time preferences using the within-sample data (i.e., the data from the 2013 
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survey as well as the weather data from the time periods before that), and we then used the 

estimated parameters from that regression to create an out-of-sample estimate of the risk and 

time preferences using the information from the 2016 survey as well as the weather data 

immediately preceding that period as discussed.  As shown in Table 3, estimated risk 

preferences were 0.13 (highly risk averse) in 2013 on average, with the risk aversion parameter 

rising to 0.21 in the 2016/2017 period, suggesting a declining level of risk averse, albeit still 

highly risk average on average.  At the same time, the average discount rate in 2013/14 was 

0.75 (or 75%) with a wide range from 0.42 to 1.21, a relatively high discount rate but within 

reason for such methods.  The average discount rate rose in 2016 to 1.16 (or 116%) again with a 

similarly wide range from 0.64 to 1.77.  These findings would suggest that both risk aversion 

and time preference changed for this sample of the population.   

 Table 3.  Estimates of Risk and Time Preferences 

 Observations Mean Std. Dev. Min Max 
σ (2013/14) 833 0.1289 0.0290 0.0632 0.2107 
δ (2013/14) 833 0.7488 0.1428 0.4154 1.1638 
σ (2016/17) 833 0.2140 0.0324 0.1152 0.3382 
δ (2016/17) 833 1.1567 0.1605 0.6438 1.7655 

 

Statement of Key Hypotheses 

While we include a large number of co-variates in this particular study, and general 

predictions on direction have been discussed earlier.  As our focus will be heavily on the effects 

of weather and preferences on the planting patterns of farmers, we re-iterate predictions here.  

This estimation process will consider the allocation of land to modern stress tolerant varieties, 

modern non-stress tolerant varieties, traditional varieties, hybrids (as distinct from other 

varieties), other crops, and share of land placed in fallow.  Aside from having some land in 

fallow, the five cropping options represent both competing and complementary options in any 

given season.  Modern varieties and hybrids are more resource intensive than traditional 

varieties as they will often require more modern inputs or irrigation relative to traditional 

varieties, and some seasons are better suited or more traditionally used for planting other 

crops.  This shows up on the planting data discussed above.  Given the above, modern varieties 

and hybrids, on average, tend to be more productive, but they also tend to be more costly in 
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terms of inputs or in accessing seed (if the current season is the first season to use in the case 

of modern varieties).  So, these products could be risk enhancing in some cases in an 

environment where climate/weather risks exist.  Comparatively, however, stress-tolerant 

modern varieties would tend to add less risk than other modern varieties.  Other crops enter as 

another alternative, and while farmers often planted other crops, crops like mustard as an oil 

seed crop has been found useful in areas subject to flash flooding (Sumon and Islam, 2013, 

202), and a number of alternative crops are discussed as viable alternatives and lower risk crops 

in Shaw, Mallick, and Islam (2013).   

In that context, and given our earlier discussion of the literature, there are two key 

hypotheses we will examine.   

(1) Deviations in precipitation in the previous planting season would signal two possible 

factors of importance in decision-making: (i) a change in the expected planting environment 

and (ii) increased risk overall.  We will not be able to identify differences between these two 

effects, but if increased risk corresponds with higher concern about wasted input costs, then 

farmers may become more likely to plant traditional varieties because while they represent 

higher output risk, the input risk is substantially lower.  Conversely, farmers would be less 

prone to plant modern varieties of all kinds as well as hybrids.  We remain somewhat neutral on 

the planting of other crops because the granularity of the exact other crops planted is not 

available in the data. 

(2) Second, greater levels of risk aversion should correspond with a declining willingness 

to plant input risky crops such as all modern varieties (both stress-tolerant and not) as well as 

hybrids.   

(3) Higher levels of patience should correspond with greater willingness to adopt 

modern varieties and hybrids.   

Econometric Results 

 The methods and variables discussed above were used to estimate both the probability 

of planting in a given season and the planting shares.  Note, because of the simultaneous 

estimation process using Roodman’s (2011) conditional mixed process, we first present the 

overall regression statistics.  Note, the method of estimation considered the planting of each 
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farmer for each season in the 2016 planting year; therefore, each farmer’s characteristics are 

matched with their planting shares in each season, yielding 2,547 observations.  The Wald Chi2 

with 95 degrees of freedom was 4416.56, the Log likelihood was 1,598.06, thus providing 

evidence for the overall statistical significance of the regression. 

Note, in the first stage Probit regression, the specification was kept quite simple to 

reflect the fact that the decision to plant at all in a given season in Bangladesh is largely driven 

by the region, the season, and the basic land type of the farmer.  Otherwise, farmer’s have 

strong incentives to plant in as many seasons as appropriate.  Dummy variables for Chittagong, 

Dhaka, Khulna, Rajshahi, and Rangpur with Barisal being the baseline region, and dummy 

variables for the Boro and Aus season are included.  Unsurprisingly, the probability of planting 

in Aus and Boro is lower than that for Aman as that season is the primary planting season 

throughout much of Bangladesh.  In addition, as low ground is less likely to be planted during 

the wettest seasons and periods, we note that the share of land on low ground figures 

prominently in determining the probability of planting.  More detailed use of the marginal 

effects will appear in the analysis of the complete results. 

Table 4.  First Stage Probit Regression – Probability of Planting in Season 

 Coefficient z P>z Lower Bound Upper Bound 
Aus -2.35 -11.49 0.00 -2.76 -1.95 
Boro -0.61 -2.70 0.01 -1.04 -0.17 
Chittagong 0.05 0.29 0.77 -0.28 0.38 
Dhaka -0.25 -1.60 0.11 -0.57 0.06 
Khulna 0.26 1.37 0.17 -0.11 0.62 
Rajshahi -0.10 -0.60 0.55 -0.44 0.23 
Ranjpur -0.18 -1.06 0.29 -0.51 0.15 
% of Land on Low Ground -0.45 -3.22 0.00 -0.72 -0.17 
Constant 2.15 8.96 0.00 1.68 2.62 

 

 Table 5 provides the key results from the estimations associated with the determinants 

of planting shares.  One relevant methodological point is that the sum of the coefficients 

associated with any variable, with the exception of previous planting share, would be zero to 

ensure that the joint effect of the change in any one variable would ensure that total 

allocations summed to one.  As a reminder, the key demographic data that were considered as 

key factors in determining planting choices were age and education.  Factors picking up the 
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capacity to adopt certain crop varieties or capturing the potential flexibility of planting include 

Irrigation and the natural log of land owned.  Access to and knowledge of different planting 

possibilities are captured by the distance from input markets, the awareness of stress tolerant 

varieties, and the natural log for the frequency with which a household met extension workers.  

Factors capturing typical rates of exposure to crop stresses include the percent of land classified 

as lowland and the index of salinity.  Recent exposure to excess precipitation in the Aman, Boro, 

and Aus season is captured by the deviation of mean daily precipitation in 2015 from the 

previous 5-year mean daily precipitation.  Perhaps most importantly, we incorporate the 

measures of risk preferences (σ) and time preferences (δ).  Given that some seasons are more 

amenable to planting certain types of crops, dummy variables associated with the Aus and Boro 

season are included in this context as well.   

Table 5.  Determinants of Land Use by Bangladeshi Farmers in 2016/2017 

  MVST MVNST TV Hybrid Other Crop Fallow 

  Coef. P>z Coef. P>z Coef. P>z Coef. P>z Coef. P>z Coef. P>z 

Age -0.0001 0.92 0.0003 0.71 0.0044 0.00 -0.0014 0.00 -0.0026 0.01 -0.0006 0.08 
Education 0.0050 0.01 -0.0026 0.29 -0.0140 0.00 0.0068 0.00 -0.0074 0.01 0.0099 0.00 
ln(Own Acreage) -0.0179 0.01 -0.0035 0.70 0.0130 0.16 -0.0099 0.02 0.0174 0.10 0.0009 0.79 
Irrigation 0.2277 0.00 -0.0975 0.00 0.3052 0.00 -0.0408 0.00 -0.3854 0.00 0.0262 0.01 
Distance Input Mkt. 0.0010 0.81 -0.0006 0.91 0.0139 0.01 0.0006 0.80 -0.0161 0.01 0.0012 0.55 
Aware ST Varieties 0.0119 0.35 0.0462 0.01 -0.0190 0.25 -0.0145 0.05 -0.0283 0.14 0.0038 0.55 
ln(Extension) 0.0043 0.35 0.0013 0.83 0.0250 0.00 0.0016 0.54 -0.0340 0.00 0.0019 0.39 
Salinity Index -0.0092 0.05 0.0052 0.38 0.0284 0.00 -0.0187 0.00 -0.0057 0.41 0.0000 0.98 
% of Land Classified as Low -0.0070 0.71 -0.1234 0.00 0.1588 0.00 -0.0453 0.00 -0.0093 0.74 -0.0092 0.41 
Deviation of Mean Daily Precipitation in Season from 5-Year Mean Daily Precipitation 
    Aman -0.0002 0.90 0.0012 0.49 0.0028 0.11 -0.0004 0.65 -0.0034 0.09 -0.0001 0.86 
    Boro -0.0025 0.00 0.0004 0.69 0.0069 0.00 -0.0027 0.00 -0.0022 0.07 0.0000 0.93 
    Aus -0.0060 0.00 0.0008 0.73 0.0188 0.00 -0.0069 0.00 -0.0053 0.03 -0.0013 0.11 
σ  20.9661 0.00 -10.7359 0.19 -12.4662 0.13 10.9685 0.00 -10.7331 0.26 2.0006 0.53 
δ  -4.1072 0.00 2.2682 0.18 0.6792 0.69 -1.4636 0.05 3.1161 0.11 -0.4928 0.45 
Past Planting Share 0.3690 0.00 0.1880 0.00 0.2113 0.00 0.4392 0.00 0.3877 0.00   
Aus Season -0.0553 0.00 -0.5330 0.00 -0.0712 0.00 0.0376 0.00 0.6091 0.00 0.0129 0.13 
Boro Season 0.1092 0.00 -0.1910 0.00 -0.3341 0.00 0.0133 0.08 0.3803 0.00 -0.0010 0.88 
Constant 2.4217 0.00 -1.2521 0.23 1.2434 0.24 0.2673 0.57 -2.3350 0.05 0.4346 0.28 
 

 For completeness, Appendix 2 discusses the other relevant coefficients, but as the direct 

and indirect effects of precipitation the following will highlight only the findings related to 

changing weather patterns and in the risk and time preferences of farmers.  One important 
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caveat in interpreting the findings on risk and time preferences is that these two variables are 

quite highly correlated; therefore, the net effect of the two would ultimately be of greatest 

interest.  In any case, we observe that greater than normal precipitation had no statistically 

significant bearing on the planting shares during the Aman season.  The Aman season is the 

wettest season; therefore, high levels are generally predicted; therefore, greater than normal 

levels (as occurred on average in that period) would not necessarily have a major impact.  On 

the other hand, it is of some interest that deviations from normal precipitation in the previous 

Boro season had a negative and statistically significant effect on planting shares of stress-

tolerant and hybrid varieties in that season, while the relationship with traditional varieties was 

positive.  These effects are relatively modest; however.  Given the mean deviation for the Boro 

season of -2.63, this would imply an average planting share increase of 0.66 percent and 0.72 

percent for stress-tolerant modern varieties and hybrid varieties, respectively, and the 

reduction in traditional varieties of 1.83 percent.  In the Aus season and given the smaller 

number of individuals farming during that season, we observe similar relationships for stress-

tolerant modern varieties, hybrids, and traditional varieties in terms of signs and significance.  

Notably, in this particular case, the impact on other crops is negative and statistically 

significant.  Given the large deviation in mean precipitation in 2015 from the mean of the 

previous years and leaving all other factors changed, these results imply that planting shares 

would have fallen by 15.6%, 17.9%, and 13.8% respectively for stress-tolerant modern varieties, 

hybrids, and other crops while planting shares for traditional varieties would have grown by 

49%.  These capture the direct effects of weather on planting shares. 

 The effects of risk preferences and time preferences are large and statistically significant 

for stress-tolerant modern varieties and hybrids but appear to have no statistical effect in other 

cases.  These results are similar for time preferences.  As noted above, the predicted values for 

risk and time preferences are strongly positively correlated with a Pearson correlation 

coefficient of 0.9986, thus while we show both results in this version of the paper, it seems 

likely that the estimated values are picking up the same aspects of an individuals preferences.  

Nonetheless, if we note that δ is a linear function of σ, we can more accurately capture the 

economic impact of differences in preferences on planting shares.   Performing a simple OLS, 
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we find that the estimated value of δ is 0.615 + 4.96*σ.  Using this formulation, we can infer 

how changing risk preferences and time preferences would affect the planting shares where 

they are significant in a statistical sense (i.e., for stress-tolerant modern varieties and hybrids).  

Specifically, as risk preferences increase in 0.05 increments from 0.10 to 0.15 to 0.2, the 

corresponding time preferences are 1.11, 1.36, 1.61.  For each incremental change, the increase 

in share planted in stress tolerant modern varieties would be 2.97% and the increase in share 

planted in hybrid varieties would be 18.55%.  That is, as individuals become more risk preferring 

and more patient, their willingness to increase planting shares in stress-tolerant varieties and 

hybrids is positive and relevant. 

 At the same time, these risk and time preferences are determined, in part, by the 

changing weather patterns; therefore, in order to demonstrate the indirect effects of changing 

weather on planting shares, we note that the statistically significant coefficients in the 

estimation of risk preferences show that for the Aman and Aus seasons, a one mm increase in 

seasonal mean precipitation above the mean precipitation in the previous five seasons would 

cause the risk coefficient to decline by 0.005 or rise by 0.003, respectively.  Considering the 

2014/2015 season where the daily precipitation was 30.25 mm higher for the Aman season and 

approximately 26 mm higher in the Aus season, we observe that the net effect on risk 

preferences would be to cause σ to fall by 0.073 units.  That is, individuals would become more 

risk averse.  This would imply that δ would fall by 0.363 units and thus individuals would 

become more patient.   Holding all other factors constant, the indirect effects of weather on 

preferences and then on planting shares would be for shares of stress tolerant modern varieties 

to fall by 4.34% and for hybrid planting to fall by 27.08% on average and not conditional on 

season.  Of some note here is that the deviation in precipitation alone has no direct effect on 

planting in the Aman season, but we do observe that such changes affect planting shares in that 

season through the mechanism of changing risk and time preferences.  At the same time, we 

observe that the effect of increased precipitation in the preceding Aus season had a direct and 

depressing effect on stress-tolerant modern varieties and hybrids which would have been 

compounded by the indirect effect of such precipitation on risk and time preferences.  The 

indirect effects are smaller but nonetheless of reasonable magnitudes. 
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Conclusions 

This paper has attempted to address direct and indirect effects if precipitation patterns on 

farmer planting shares in Bangladesh.  Specifically, the paper employs a two-stage estimation 

process to arrive at these results.  In the first stage, the paper estimates farmer risk and time 

preferences as a function of relevant covariates, with specific emphasis on weather covariates 

across the three key planting seasons in Bangladesh.  Using these results, farmer risk and time 

preferences were estimated to be used in the second stage where farmer planting patterns 

were estimated.  In this second stage process, Roodman’s (2011) conditional mixed process is 

used to estimate a double hurdle model where the first hurdle is a Probit model of whether a 

farmer plants anything in a season and the second stage is a two-limit Tobit model where the 

planting shares of modern varieties (both stress tolerant and non-stress tolerant), traditional 

varieties, hybrids, other crops, and fallow choices are estimated with appropriate coefficient 

constraints.   

 The key findings are that deviations from seasonal averages increase risk aversion 

among farmers and that increased risk aversion among farmers reduces planting shares of 

stress-tolerant modern varieties as well as hybrids.  This indirect effect holds across all seasons.  

The direct effects of precipitation deviations compound the indirect effects for the Aus season 

but offset the effects of the Boro season.  Precipitation deviations have no direct impact on 

planting shares of stress-tolerant modern varieties during the Aman season.  The contribution 

of this paper to the conversation on the role of changing weather and climate on farmer 

behavior and adaptation is its focus on identifying the direct and indirect mechanisms that may 

affect farmer adaptations.  The significance of the contribution is that it shows that not only do 

risk and time preferences shape planting and adaptation patterns but that the interplay 

between changing environmental experiences and preferences implies that as weather 

patterns continue to evolve and change, the reactions to such changes in farmer’s behavior will 

not be static.  That is, because the preferences themselves change in response to changing 

weather patterns, then the reaction to changing weather in terms of planting behavior itself 

will be different between two periods even if the marginal change in weather is the same at 
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each point in time.  These may complicate the dynamics of adaptations and require adjusting 

incentives and inducements to adapt. 
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Appendix 1. Empirical Methods for Risk Estimation 
In order to estimate the relationship between observable traits, wealth, and reported or 

measured stressors and the households risk and time preferences, this paper will employ the 

approach articulated by Liebenehm and Waibel (2014) and Nguyen (2011) to estimate the 

effects of changes on climactic stress on risk and time preferences. This method recognizes 

Andersen et al’s (2008) argument that estimating time preferences separately from risk 

preferences may affect the estimates of individuals measured time preference. Let x be some 

immediate payment and y be some payment to be received in the future and where D 

represents some function of the vector of discount parameters Γ and the delay in time is t. 

When one finds the discount function by solving the following equation: x = D(Γ, t)*y, one 

assumes that individuals are not considering potential risk of receiving some reward by some 

future date. Both Nguyen (2011) and Liebenehm and Waibel (2014) propose that it may be 

appropriate to derive the estimates such that U(x) = D(Γ, t)*U(y) so that, if a person’s risk 

preferences are embedded in their utility function, then one can gain a more appropriate 

measure of individual discounts on money.  

The following discussion adheres to the explanations provided by Liebenehm and 

Waibel (2014) and Nguyen (2011). Before explaining this model in greater detail, we make a 

brief aside on the empirical approach taken here. In our experimental elicitation procedure, 

there were two activities where individuals were asked their preferences of risk opportunities 

and about their level of willingness to delay risks. In the risk preference elicitation, individuals 

were asked which prospect they preferred among five possible prospects. These options were 

ordered in terms of riskiness, ranging from a certain reward to increasingly risky opportunities. 

While Liebenehm and Waibel (2014) and Nguyen (2011) presented a larger number of purely 

binary options to respondents, they enforced monotonic switching in the decision process. For 

example, in their first risk elicitation activity these authors presented individuals with 14 pairs 

of options A and B where option A remained constant over the range of pairs and option B 

became increasingly risky. Individuals were permitted to choose all A, all B, or switch from A to 

B at a single time. This sequence of choices became a binary variable in their econometric 

method. As we apply this econometric method, we treat the five risk options as if they were a 

series of four comparisons between A and B so that if a person preferred the certain option to 
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the next less certain option, then transitivity would imply that they preferred that option to all 

others as well. For the time preference elicitation in this survey, individuals were given the 

opportunity of choosing between a delayed reward with a delay of one year or an immediate 

reward. While much less variability in delay and reward values occurred as a result of the 

original survey design, this elicitation process more closely aligns with those used in Liebenehm 

and Waibel (2014), thus no modifications are required in this element of the study. 

We now explain the empirical approach taken. If the individual chooses A, they receive 

an instantaneous utility of U(A), and if the person chooses to receive B, they receive an 

instantaneous utility of U(B) and the discounted utility of D(Γ, t)*U(B). For estimation purposes, 

as explained by Nguyen (2011), we must assume a utility function as part of the random utility 

function approach to estimation. Let V be the assumed utility function, and let D be the 

assumed discount function. In the final estimation, the extent of errors will be greater or lesser 

depending on the proximity of the assumed function to the individual’s true function. In this 

project, V is assumed to follow a simple utility function that aligns well with multiple models of 

utility (i.e., V(x) = xα). Let Zi be the economic and demographic characteristics of individual i. As 

will be explained further later, the exponential model with a fixed cost present bias is used for 

the D function. In addition, denote 𝑈  𝑎𝑛𝑑 𝑈  as the utilities that individual i receives when 

faced with choice j. In theory, for any given sequence of selections, it is assumed that error 

terms 𝜀  𝑎𝑛𝑑 𝜀 are identically and independently distributed across individuals such that 

{𝜀 , 𝜀 , 𝜀 , … , 𝜀 } are independently and identically distributed (i.i.d.) and follow a normal 

distribution, and {𝜀 , 𝜀 , 𝜀 , … , 𝜀 } are independently and identically (i.i.d.) and follow a 

normal distribution. 

For the risk experiments, we can summarize the relevant utilities as follows: 

𝑈 = 𝑉 (𝐴 , 𝑝); 𝑍 +  𝜀       (1) 

𝑈 = 𝑉 𝐵 , (1 − 𝑝); 𝑍 + 𝜀      (2) 

For the time experiments, we can summarize the relevant utilities as follows: 

𝑈 = 𝑉 𝐴 ; 𝑍 +  𝜀       (3) 

𝑈 = 𝐷 (Γ; 𝑡; 𝑍 )𝑉 (𝐵; 𝑡; 𝑍 ) +  𝜀      (4) 
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Given the distribution of error terms, let the joint density of the distribution of errors 

across individuals be written as follows f(ε). As explained in Nguyen (2011), we derive the 

likelihood function as follows for the case of intertemporal choice, but this approach applies 

with very slight notational modifications to the choices under uncertainty as well. Let the 

probability that the agent chooses option A be the following.  

Pr(𝐴) = Pr (𝑈 − 𝑈 ≥ 0) 

= 𝑃𝑟 𝑉 𝐴 ; 𝑍 +  𝜀 − 𝐷 (Γ; 𝑡; 𝑍 )𝑉 (𝐵; 𝑡; 𝑍 ) −  𝜀  ≥ 0   (5) 

This expression can be modified to be restated as follows: 

Pr(𝐴) = 𝑃𝑟 𝑉 𝐴 ; 𝑍 − 𝐷 (Γ; 𝑡; 𝑍 )𝑉 (𝐵; 𝑡; 𝑍 )  ≥ 𝜀 − 𝜀   (6) 

As a result, the probability that the person chooses A can be determined by the 

cumulative distribution of the error term 𝛷(𝑥) = ∫ 𝑓(𝜀)𝑑 𝜀 and can be stated as follows 

Pr(𝐴) = 𝑃𝑟 𝑉 𝐴 ; 𝑍 − 𝐷 (Γ; 𝑡; 𝑍 )𝑉 (𝐵; 𝑡; 𝑍 )    (7) 

Following on that, we can define the latent option for A and B in each scenario j as 

follows. 

𝐼 = 𝑉 𝐴 ; 𝑍 − 𝐷 (Γ; 𝑡; 𝑍 )𝑉 (𝐵; 𝑡; 𝑍 )      (8) 

𝐼 = 𝐷 (Γ; 𝑡; 𝑍 )𝑉 (𝐵; 𝑡; 𝑍 ) − 𝑉 𝐴 ; 𝑍       (9) 

From this, we can speak of Pr(𝐴) = 𝛷 𝐼  and Pr(𝐵) = 𝛷 𝐼 . To apply the 

maximum log-likelihood estimation technique, we note that the log-likelihood for each 

individual depends on the utility function parameters (α) under expected utility theory and (δ, 

κ) under the exponential time discounting function with a fixed cost present bias component. 

As explained by Liebenehm and Waibel (2014), the utility of each lottery pair in scenario j can 

be expressed as a latent index 𝐼 (𝛥𝑈) = 𝑈 − 𝑈 , and this latent index for individual i and 

choice j is linked to the observed binary choices (or in our case, the constructed binary choice 

for risk and observed for time) made by survey respondents in the experiments through the 

standard cumulative distribution function 𝛷(𝐼 ). In order to permit the statement of the 

likelihood, assume that Zj corresponds with the relevant choice-based information (i.e., time 

and payoffs for the time-based choices and probabilities and payoffs for the risk-based choices). 

If 𝑦 = 1 then individual i has chosen option A in scenario j and when 𝑦 = 0 then individual i 
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has chosen option B in scenario j. Given that statement, we express the log likelihood function 

as follows.  

𝑙𝑛𝐿 𝛼, 𝛿, 𝜅; 𝑦 , 𝑋 , 𝑍 = ∑ 𝑙𝑛𝜑 𝐼 |𝑦 = 1 + 𝑙𝑛𝜑 𝐼 |𝑦 = 0  (10) 

For a given agent i, likelihood is maximized over the 14 choices that individuals made 

during the experimental rounds (four in Activity 1 and ten in Activity 2). The procedure used 

was a modified version of code developed by Liebenehm and Waibel (2014).  

While estimation of the constant relative risk aversion parameter estimation is common 

in such settings, we assume, as with Nguyen (2011) and Liebenehm and Waibel (2014), that the 

value or utility function takes a much simpler form such that the utility of some value x can be 

written as V(x) = xσ, where σ represents the degree of risk aversion of the individual. Unlike 

other studies, our survey approach does not permit a nesting of this within the context of 

cumulative prospect theory. The estimation method also permits the consideration of multiple 

discounting models (exponential, quasi-hyperbolic, and a fixed-cost present bias model), but 

given the relative simplicity of our elicitation procedures relative to the above authors, we only 

consider the exponential discounting model. We first estimate without controls for observable 

characteristics of individuals is as follows where σ represents the risk preference parameter and 

δ represents the discount rate. The parameter estimates should all take a positive value in 

theory. 

𝑈 = 𝑒 ∗ 𝑥   (11) 

 After performing the baseline regression, we use the estimated parameters as the initial 

values when performing the maximum likelihood estimation of the parameters as a function of 

the individuals observed characteristics, reported experiences, and measured precipitation 

experiences. 

We implemented this estimation method with multiple alternative specifications, and 

we present four key models from this exercise. Note, wherever the model converged (even for 

those models not shown here), the key findings are largely robust. Table 3 summarizes the 

common variables used and the model specific variables. Model 1.1 includes respondent 

opinion of submergence, drought, and salinity as a problem. Self-reported stress measures may 

lead to a reverse causality problem (Liebenehm, 2018) in the estimation of risk and time 
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preferences because individuals who claim greater problems with such stressors might, in fact, 

be more risk averse and thus more attuned to risk, but as a comparison tool, we include it.  

Three measures in the regression control for, to some extent, farmer’s ability to mitigate 

risk or a measure of their most recent experience of a change in such ability to cope. 

Specifically, farmer’s total current wealth affects and provides some insurance against risk. 

Similarly, whether a farmer has an irrigation system can act as insurance against risk and allows 

longer cropping time horizon, but it is obviously the case that farmers with greater degrees of 

risk aversion and more patience might well be more likely to purchase the equipment necessary 

for irrigation if they are able. We include distance from the nearest output markets to reflect a 

farmer’s ability to mitigate the risk of lost crops due to stressors. That is, if a farmer is closer to 

an output market, they may have less risk because they have easier access to supplementary 

supplies, credit, and other resources should they have shortfalls in crops due to a crop stressor. 

It also likely reflects some possibility for access to alternative income sources. Other regressors 

such as age, education, and family size are common in such methods and act as proper controls 

on observable differences in individuals.  Measures of stress proneness include the local 

measure of salinity, the share of land on low ground, and the share of land on high ground.  The 

first captures proneness to damage from salinity, the second captures proneness toward 

submergence, and the third captures proneness toward excessive dryness.  Including such 

metrics allow for the fact that individuals experience of risk and need to exercise tolerance for 

risk and patience may well be conditioned by such factors.  Finally, the measures discussed 

earlier that capture farmer recent experience of changing conditions as measured by the 

standard deviation in the seasonal coefficient of variation as well as the preceding season 

deviation from the longer-term mean level of precipitation captures how larger deviations may 

affect preferences. 
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Appendix Table 1.  Stage 1 Parameter Estimates of Risk Preferences Using Attributes and Weather 
Experiences Preceding 2013/14 Survey 

   95% Confidence Interval 

 Coefficient p Lower Bound Upper Bound 
σ (Risk Preference)     
Constant 0.328 0.000 0.215 0.440 
Age 0.001 0.139 0.000 0.001 
Education 0.001 0.398 -0.001 0.003 
Family Size 0.001 0.615 -0.003 0.005 
Distance from Output Markets 0.001 0.768 -0.004 0.005 
Irrigation -0.004 0.752 -0.026 0.019 
Salinity Index -0.008 0.016 -0.014 -0.001 
% of Land Classified as High 0.049 0.006 0.014 0.083 
% of Land Classified as Low 0.019 0.101 -0.004 0.042 
Ln(Total Wealth + 1) -0.004 0.260 -0.010 0.003 
5-Year Seasonal Standard Deviation of Seasonal Coefficient of Variation  
    Aman -0.025 0.729 -0.164 0.115 
    Aus -0.121 0.154 -0.287 0.045 
    Boro -0.158 0.000 -0.224 -0.092 
Deviation of Mean Daily Precipitation in Season from 5-Year Mean Daily Precipitation 
    Aman -0.005 0.000 -0.006 -0.003 
    Aus 0.003 0.011 0.001 0.005 
    Boro 0.001 0.270 -0.001 0.002 
Wald chi2(15)      81.21    
Log pseudolikelihood  -5895.26    
Prob > chi2        0    
Standard Adjusted for Clusters at the 
Household ID Level     
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Appendix Table 2.  Stage 1 Parameter Estimates of Time Preferences Using Attributes and Weather 
Experiences Preceding 2013/14 Survey 

   95% Confidence Interval 

 Coefficient p Lower Bound Upper Bound 
δ (Time Preference)     
Constant 0.867 0.003 0.304 1.429 
Age 0.005 0.008 0.001 0.009 
Education -0.008 0.191 -0.019 0.004 
Family Size 0.001 0.931 -0.021 0.023 
Distance from Output Markets 0.006 0.643 -0.019 0.030 
Irrigation -0.056 0.416 -0.190 0.079 
Salinity Index -0.049 0.002 -0.080 -0.017 
% of Land Classifed as High 0.146 0.113 -0.035 0.328 
% of Land Classified as Low 0.061 0.331 -0.062 0.185 
Ln(Total Wealth + 1) 0.010 0.579 -0.026 0.046 
5-Year Seasonal Standard Deviation of Seasonal Coefficient of Variation  
    Aman 0.606 0.058 -0.020 1.232 
    Aus -2.042 0.000 -2.912 -1.171 
    Boro -0.815 0.000 -1.118 -0.512 
Deviation of Mean Daily Precipitation in Season from 5-Year Mean Daily Precipitation 
    Aman -0.019 0.000 -0.029 -0.010 
    Aus 0.005 0.327 -0.005 0.015 
    Boro 0.001 0.683 -0.005 0.008 
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Appendix 2.  Examining Additional Covariates in Planting Share Estimation 

 The literature suggests that education, experience, and information should play relevant 

roles in the adoption of new technologies or changes in practice.  The role of age is likely 

somewhat ambiguous because it could cause increased innovation at certain stages of 

experience but may correspond with less willingness to change practices at other stages of life.  

If the use of stress tolerant modern varieties, modern varieties of any kind, and hybrids are 

considered more innovative, then age could lead to declining usage the latter effect dominates.  

Similarly, given that Other Crops could be considered as additional coping technologies arising 

from greater risk in the environment, this could also be considered similarly innovative.  The 

shares of modern varieties are not statistically affected by age.  At the same time, however, age 

corresponds with increased usage of traditional varieties and decreased planting of hybrids and 

other crops.  Alternatively, education should be related to increased willingness to innovate and 

use modern varieties and hybrids, and at least in terms of sign, this holds true with the 

exception of non-stress tolerant modern varieties.  Nonetheless, greater education corresponds 

with lower use of traditional varieties.   

 Large land acreage should correspond with a greater willingness to experiment with 

newer crop varieties, but the results do not support that and suggest that planting of modern 

stress-tolerant varieties and hybrids would in fact be lower on such farms. 

 An awareness of stress tolerant varieties has a modestly positive but not statistically 

significant effect on the planting share of stress tolerant varieties.  At the same time, and to 

some extent, contrary to expectation, a higher salinity index corresponds with a lower planting 

share of stress tolerant varieties.  That being said, the effect is also negative for hybrids, but the 

effect is relatively large, positive, and statistically significant for traditional varieties.  Notably, 

because some landraces have some stress tolerance, this increase may reflect (1) that existing 

stress tolerance and (2) the fact that the inputs are cheaper and thus less input cost is at risk if 

the salinity is not sufficiently diluted by rains.  Shares of land considered to be lowland 

corresponds with a negative planting share for all crops except for traditional varieties, and this 

effect is statistically significant for non-stress tolerant and hybrid varieties.  The end result is 

that for individuals with large shares of land that are more submergent prone, they would plant 



51 
 

an economically significantly large share of land in traditional varieties.  The mean share of land 

measured as lowland was 0.46 (or 46%).  Given the coefficient size of 0.1588, that would imply 

a 7.3% larger share of land planted in traditional varieties than someone who had no lowland.   

 Because habit-formation and past planting behaviors, the share of land planted in a 

specific crop should be positively related to the share planted in the earlier survey period, and 

the results seem to support this.   


