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Site-Specific Nitrogen Recommendation: Using Bayesian Kriging 

Method with Different Correlation Matrices 

Abstract 

Estimating a production function and finding the optimal value of a fertilizer is of significant 

interest in any agricultural system. Precision fertilizer application essentially requires finding a 

production function for each piece of the field and then finding the optimal value based on this 

model. In finding the optimal nitrogen value, the spatial behavior of data is often assumed on the 

error term, and the covariates' coefficients are considered constant over space. However, this 

assumption might be questionable, especially in agricultural data. So, finding a fast and accurate 

model with spatially random coefficient is essential. In addition, solving the profit function for 

the mentioned model needs additional efforts of computation. An analytical approach to finding 

the optimal value of nitrogen could help the computational burden for non-linear mode. A 

comparison among models in the accuracy and computational burden shows that the restrictions 

only lose a little accuracy while significantly reducing the computational burden.  

Keywords: fertilizer, Gaussian spatial process, linear plateau, optimal nitrogen, spatial 

smoothing   

Abbreviations 
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Geographically weighted regression (GWR) 

Hamiltonian Monte Carlo (HMC) 
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Simultaneous autoregressive (SAR) 

1. Introduction 

Precision fertilizer application essentially requires finding a production function for each 

piece of the field. There are several interesting papers in this field of research (Anselin et al. 

2004, Evans et al. 2020, Griffin et al. 2008, Hurley et al. 2005, Park et al. 2018, Rodrigues et al. 

2013).  Several methods exist to handle the data's spatial behavior. There is a tradeoff between 

the accuracy and complexity of a model and the ability to estimate it. 

 In this paper, we address the problem of finding a specific optimal value with good 

precision for each part of the field and at the same time find an efficient computational way to 

make these models feasible for data with a large number of locations. An analytical solution for 

obtaining the optimal nitrogen value is provided. This method applies to the linear plateau 

model.  

There is rich literature in this field of study. Early approaches sought to estimate a 

production function with the parameters constant for clusters in the data set. A dummy variable 

is then added for each cluster (Lambert et al. 2004, Liu et al. 2006). The dummy variable 

approach has drawbacks. It requires knowledge about how to form the clusters. It assumes 

parameters vary discretely rather than smoothly across a field. Finally, this method could suffer 

from a lack of degrees of freedom or multicollinearity if the number of variables that should be 

considered dummies increases.  

The second approach, which is widely used, is Geographically weighted regression 

(GWR). GWR usually uses a contiguity matrix (with a different number of neighbors) to find the 

model's spatial weights (Evans et al. 2020, Trevisan et al. 2020). Although this model can fit the 
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data well, it suffers from the lack of statistical theory for optimality behavior (Dambon et al. 

2020).  

  The third approach, which is  employed here is Bayesian Kriging ( Park et al. 2016. 

Several papers have been published to compare the GWR and spatially random coefficient 

models. Wheeler and Calder (Wheeler and Calder 2007) showed that the spatially random 

coefficient model provides more accurate parameter estimates than GWR through a simulation 

study. Wheeler and Waller (Wheeler and Waller 2009) used a public health data set and showed 

that spatially random coefficient models provide more robust regression coefficients in the 

moderate to high multicollinearity situation. Finley (Finley 2011) compared these two models 

with several criteria. He concluded that although the GWR is faster and useful in fitting the data, 

the spatially random coefficient model has a significantly smaller prediction mean square error.  

Besides, in the GWR, the weight is fixed (a grid search across weights can be done), while in 

Bayesian Kriging, the optimal weight is estimated simultaneously. The methods from first to last 

become more complicated and time-consuming. The Bayesian Kriging method has mostly been 

used with a dense continuous correlation matrix. Park et al. (Park et al. 2018) used Bayesian 

Kriging to find optimal nitrogen recommendations. However, they only estimate the plateau 

spatially and restrict the number of locations to 160 to reduce computational time. When the 

number of random coefficients and sites increases, the model is very time-consuming. Hence, 

finding a method that is not only feasible for any data but also accurate is essential if Bayesian 

Kriging is to be competive with GWR. In this situation, sparsity in the precision matrices 

(covariance inverse) could make the code faster. Firstly, the code does not need to compute the 

inverse of a large covariance matrix. In addition, the sparsity could reduce the number of 

computations.  
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We use Bayesian Kriging to estimate a random coefficient linear plateau model and 

precisely estimate each location's optimal nitrogen level. In this model, intercept and plateau 

parameters vary across the field with a spatial correlation matrix. Calculations involving the 

spatial correlation matrix are a major reason for the slow computation. We estimate models with 

different spatial correlation functions and then compare computer time and estimation accuracy. 

Sacrificing a little precision to gain computation power might be needed to make such 

approaches commercially viable.   

We estimate a linear plateau model on the 486 out of 1738 locations, corn (Zea mays L.) 

nitrogen response data from Bongiovanni and Lowenberg-DeBoer (Bongiovanni and 

Lowenberg-DeBoer 2000). While there is only one observation for each location, the estimated 

parameters differ for each location. The Hamiltonian Monte Carlo (HMC) algorithm, provided 

by Rstan, estimates the posterior density function. The optimal N value at each site is obtained 

by maximizing the expected profile using the posterior density.  

 

2. Bayesian Linear Plateau model 

The end goal is to find the optimum amount of nitrogen at each location. A common and 

effective data generating process for this purpose is a linear plateau model (Llewelyn and 

Featherstone 1997, Tembo et al. 2008. The innovation is that we assume that the parameters in 

these models vary by location. The proposed model is  

 𝑦𝑦𝑖𝑖 = min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑁𝑁𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) + 𝜖𝜖𝑖𝑖 (1) 

where 𝑦𝑦𝑖𝑖 and 𝑁𝑁𝑖𝑖 are the yield and the amount of nitrogen input in location 𝑖𝑖; 𝑎𝑎𝑖𝑖is the intercept 

and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the plateau parameter. The effect of nitrogen (b) is fixed over space to reduce 
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the computational burden and 𝜖𝜖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜖𝜖2). Let 𝒂𝒂 = (𝑎𝑎1,𝑎𝑎2,⋯ , 𝑎𝑎𝑛𝑛)𝑇𝑇and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2,⋯ ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛)𝑇𝑇 are the 𝑛𝑛 × 1vector of parameters follow a Gaussian 

random process with spatial correlation matrices of 𝚺𝚺0 and 𝚺𝚺𝑝𝑝. Hence,  

 𝒂𝒂 ~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛼𝛼𝟏𝟏,𝚺𝚺0) 

𝑏𝑏 ~𝑁𝑁( 𝛽𝛽,𝜎𝜎𝑏𝑏2) 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 ~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑝𝑝𝟏𝟏,𝚺𝚺𝑝𝑝� 

(2) 

 

where 𝛼𝛼,𝛽𝛽,𝑝𝑝 are the mean parameters, 𝟏𝟏 is an 𝑛𝑛 × 1vector with all elements equal to one, 𝜎𝜎𝑏𝑏2is 

the variance component for the slope. Besides, we assume that the parameters 𝑎𝑎𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 

vary across locations, and parameters are spatially autocorrelated. Hence, 𝚺𝚺0, and 𝚺𝚺𝑝𝑝are the 𝑛𝑛 ×

𝑛𝑛  covariance matrices of the multivariate Gaussian process (MVGP) that depicts this behavior in 

the parameters. The covariance matrices in the MVGP could have varied structures.  

 

3. Optimal nitrogen level recommendation 

Assume that all other inputs are fixed, the optimal level of input nitrogen is selected to maximize 

expected profit:  

 max
𝑁𝑁𝑖𝑖

𝐸𝐸(𝜋𝜋𝑖𝑖|𝑁𝑁𝑖𝑖) = max
𝑁𝑁𝑖𝑖

�[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑁𝑁𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)) − 𝑟𝑟𝑁𝑁𝑖𝑖]𝑓𝑓(𝜳𝜳)𝒅𝒅𝒅𝒅 (3) 

where the 𝜳𝜳 contains all the parameters which should be estimated, and f is the posterior 

distribution function of parameters. Since the price and cost do not depend on the parameters, the 

integration is calculated only on the profit equation's production function.  
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Tembo et al. (Tembo et al. 2008) consider a plug-in method to find nitrogen's economic optimal 

value for a stochastic linear plateau. This method is not applicable in the current situation due to 

uncertainty in both the linear plateau model parts.  

Ouedraogo et al. (Ouedraogo et al. 2020) used a grid search and found the expectation using the 

Monte Carlo sample of the posterior distribution. This method could be used to find the optimal 

value for each location; however, the grid search method in large data sets would be time-

consuming.  

The posterior distribution of the parameters converges in limit to the multivariate normal 

distribution (Van der Vaart 2000). We find the optimal value's analytical solution based on the 

normality assumption of the posterior distribution.  

In the problem at hand, we want to calculate 

𝐸𝐸(min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)) 

Nadarajah and Kotz (Nadarajah and Kotz 2008) provide the distribution and moment generating 

function of the minimum and maximum of two jointly normal random variables.  

Let  

 
 (𝑋𝑋1,𝑋𝑋2)𝑇𝑇~𝑁𝑁2 �(𝜇𝜇1, 𝜇𝜇2)𝑇𝑇 , � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
�� (4) 

and  𝑌𝑌 = min(𝑋𝑋1,𝑋𝑋2) then 

𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑓𝑓1(𝑦𝑦) + 𝑓𝑓2(𝑦𝑦) 

where 

𝑓𝑓1(𝑦𝑦) =
1
𝜎𝜎1
𝜙𝜙 �

𝑦𝑦 − 𝜇𝜇1
𝜎𝜎1

�Φ(
𝜌𝜌(𝑦𝑦 − 𝜇𝜇1)
𝜎𝜎1√(1− 𝜌𝜌2)

−
(𝑦𝑦 − 𝜇𝜇2)

𝜎𝜎2√(1 − 𝜌𝜌2)
) 
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𝑓𝑓2(𝑦𝑦) =
1
𝜎𝜎2
𝜙𝜙 �

𝑦𝑦 − 𝜇𝜇2
𝜎𝜎2

�Φ(
𝜌𝜌(𝑦𝑦 − 𝜇𝜇2)
𝜎𝜎2√(1− 𝜌𝜌2

−
(𝑦𝑦 − 𝜇𝜇1)
𝜎𝜎1√(1− 𝜌𝜌2

) 

and the mean of Y is 

  𝐸𝐸(𝑌𝑌) = 𝜇𝜇1Φ�
𝜇𝜇2 − 𝜇𝜇1

𝜃𝜃
� + 𝜇𝜇2Φ(

𝜇𝜇1 − 𝜇𝜇2
𝜃𝜃

) − 𝜃𝜃𝜇𝜇1𝜙𝜙(
𝜇𝜇2 − 𝜇𝜇1

𝜃𝜃
) (5) 

where 𝜙𝜙, and Φ are the PDF and CDF of normal distribution respectively, and 𝜃𝜃 =

�𝜎𝜎12 + 𝜎𝜎22 − 2𝜌𝜌𝜎𝜎1𝜎𝜎2. 

If we assume that the  𝑎𝑎𝑖𝑖, 𝑏𝑏, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 are independent, and the posterior distribution of the 

parameters is  

𝑎𝑎𝑖𝑖~𝑁𝑁�𝑎𝑎𝚤𝚤� ,𝜎𝜎𝑎𝑎𝑖𝑖
2 � 

𝑏𝑏~𝑁𝑁�𝑏𝑏�,𝜎𝜎𝑏𝑏2� 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖~𝑁𝑁�𝑝𝑝𝚤𝚤� ,𝜎𝜎𝑝𝑝𝑖𝑖
2 � 

then 

𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏 ~𝑁𝑁�𝑎𝑎�𝑖𝑖 + 𝑏𝑏𝑏𝑏,𝜎𝜎𝑎𝑎𝑖𝑖
2 + 𝑁𝑁2𝜎𝜎𝑏𝑏2� 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 ~𝑁𝑁�𝑝𝑝𝚤𝚤� ,𝜎𝜎𝑝𝑝𝑖𝑖
2 � 

so, the expected value of 𝑌𝑌 = min(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑏𝑏, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖) is  

 
𝐸𝐸(𝑌𝑌) = (𝑎𝑎� + 𝑏𝑏�𝑁𝑁)Φ�

𝑝̅𝑝 − 𝑎𝑎� − 𝑏𝑏�𝑁𝑁
𝜃𝜃

� + 𝑝̅𝑝Φ(
𝑎𝑎� + 𝑏𝑏�𝑁𝑁 − 𝑝̅𝑝

𝜃𝜃
) − 𝜃𝜃(𝑎𝑎�

+ 𝑏𝑏�𝑁𝑁)𝜙𝜙(
𝑝̅𝑝 − 𝑎𝑎� − 𝑏𝑏�𝑁𝑁

𝜃𝜃
) 

(6) 

𝜃𝜃 = �𝜎𝜎𝑎𝑎2 + 𝑁𝑁2𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑝𝑝2 
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where the index i is dropped, for simplicity. We are looking for the N value to maximize 

equation (3).  The first-order condition for this profit function in every location is  

 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑏𝑏�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �1 −Φ�
𝑎𝑎� + 𝑏𝑏�𝑁𝑁 − 𝑝̅𝑝

𝜃𝜃
�� − 𝑟𝑟 − 𝜙𝜙 �

𝑎𝑎� + 𝑏𝑏�𝑁𝑁 − 𝑝̅𝑝
𝜃𝜃

� (7) 

The root of equation (7) cannot be obtained analytically. Hence we use the "optimize" function 

in R (Team 2013) to find the optimal value.  

Some might argue that the intercept, slope, and plateau part cannot be independent in a real 

situation. By increasing the intercept, the slope will decrease. The plateau part in equation (1) 

may depend on the linear model, and the independence is questionable. Equation (6) can be 

adjusted for the correlated circumstances. Suppose that the parameters are correlated and the  

𝑽𝑽 = �
𝑎𝑎
𝑏𝑏

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�~𝑀𝑀𝑀𝑀𝑀𝑀(�

𝑎𝑎�
𝑏𝑏�
𝑝̅𝑝
� ,�

𝜎𝜎11 𝜎𝜎12 𝜎𝜎13
𝜎𝜎12 𝜎𝜎22 𝜎𝜎23
𝜎𝜎13 𝜎𝜎23 𝜎𝜎33

�) 

then, the vector (𝑎𝑎 + 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is equal to  𝐴𝐴𝑇𝑇𝑉𝑉 where A is  

𝑨𝑨 = �
1 0
𝑁𝑁 0
0 1

� 

and  𝐴𝐴𝑇𝑇𝑉𝑉 follows a multivariate normal distribution with mean and variance equal to 

𝝁𝝁 = (𝑎𝑎� + 𝑏𝑏�𝑁𝑁, 𝑝̅𝑝) 

𝜮𝜮 = �𝜎𝜎11 + 𝑁𝑁2𝜎𝜎22 + 2𝑁𝑁𝜎𝜎12 𝜎𝜎13 + 𝑁𝑁𝜎𝜎23
𝜎𝜎13 + 𝑁𝑁𝜎𝜎23 𝜎𝜎33

� 

If we want to rewrite the covariance matrix as (4), we have 
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𝜮𝜮 = � 𝜎𝜎11∗ 𝜌𝜌𝜎𝜎1∗𝜎𝜎2∗
𝜌𝜌𝜎𝜎1∗𝜎𝜎2∗ 𝜎𝜎22∗

� 

where 𝜌𝜌 = 𝜌𝜌13𝜎𝜎1𝜎𝜎3+𝜌𝜌23𝑁𝑁𝜎𝜎2𝜎𝜎3
𝜎𝜎1𝜎𝜎3+𝑁𝑁𝜎𝜎2𝜎𝜎3

, 𝜎𝜎11∗ = (𝜎𝜎1 + 𝑁𝑁𝜎𝜎2)2, 𝜎𝜎22∗ = 𝜎𝜎33. Hence the expectation of the linear 

plateau model is equal to (6) with 

 
𝜃𝜃 = �(𝜎𝜎1 + 𝑁𝑁𝜎𝜎2)2 + 𝜎𝜎33 − 2

𝜌𝜌13𝜎𝜎1𝜎𝜎3 + 𝜌𝜌23𝑁𝑁𝜎𝜎2𝜎𝜎3
𝜎𝜎1𝜎𝜎3 + 𝑁𝑁𝜎𝜎2𝜎𝜎3

(𝜎𝜎1 + 𝑁𝑁𝜎𝜎2)𝜎𝜎3 (8) 

 

The first-order condition calculation is complicated and unnecessary because we maximize the 

equation (6) with the new 𝜃𝜃, given in equation (8), directly.  

For the switching regression model of Paris (1992), 𝑦𝑦𝑖𝑖𝑖𝑖 = min(a + 𝑏𝑏𝑏𝑏 + 𝜅𝜅𝑖𝑖𝑖𝑖, 𝜇𝜇𝑚𝑚 + 𝜔𝜔𝑖𝑖𝑖𝑖), the tow 

random variables, 𝜅𝜅𝑖𝑖𝑖𝑖 and  𝜔𝜔𝑖𝑖𝑖𝑖 have marginal normal distributions. They do not necessarily have 

a joint bivariate normal distribution (the copula for the joint distribution is unspecified). So to 

use this approach in the Paris stochastic linear plateau would require an additional assumption of 

joint normality that is not imposed in the estimation.  

4. Spatial correlation matrices and their behavior 

In section 2, we consider the linear plateau model as a data generation function. We assume that 

the coefficients have spatial behavior, and this behavior can be explained with a covariance 

function in the normal distribution. Two well-known autoregressive precision matrices 

(covariance inverse) are Simultaneous Auto-regressive (SAR) and Conditional Auto-regressive 

(CAR). The term conditional in the CAR structure shows conditional independence in the 

distribution of each element dependent on neighbors' values; however, the simultaneous form 

mostly emphasizes regressing the random part on themselves simultaneously (Hooten et al. 
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2014). Conditional independence between the element 𝑖𝑖 and 𝑗𝑗 can be easily seen in the precision 

matrix (𝑞𝑞𝑖𝑖𝑖𝑖 = 0).  

The CAR model is usually presented as a conditional distribution 

𝛽𝛽𝑖𝑖|𝜷𝜷−𝑖𝑖~𝑁𝑁(�𝑐𝑐𝑖𝑖,𝑗𝑗𝛽𝛽𝑗𝑗 ,𝑚𝑚𝑖𝑖,𝑖𝑖)
𝑛𝑛

𝑗𝑗=1

 

where  𝜷𝜷−𝑖𝑖 is the vector of all elements of vector 𝜷𝜷 except 𝛽𝛽𝑖𝑖, 𝑐𝑐𝑖𝑖,𝑗𝑗 are the ith and jth element of 

spatial weight matrix C and 𝑴𝑴 is a diagonal matrix with positive diagonal elements of 𝑚𝑚𝑖𝑖,𝑖𝑖. 

Following Besag (Besag 1974), if (𝑰𝑰 − 𝑪𝑪)−1𝑴𝑴 is a positive definite matrix then the CAR model 

can be written as   

 𝜷𝜷~𝑁𝑁(𝟎𝟎,𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶) (9) 

where 𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶 , the covariance matrix is (Ver Hoef et al. 2018a) 

𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑰𝑰 − 𝑪𝑪)−1𝑴𝑴. 

 In practice, usually 𝚺𝚺𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝜏𝜏2

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑾𝑾𝑾𝑾) − 𝜌𝜌𝑐𝑐𝑾𝑾)−1 is used where 𝑾𝑾 is contiguity matrix, 𝟏𝟏 is 

the vector of ones, and 𝜌𝜌𝑐𝑐 shows the amount of dependency between neighbors (Ver Hoef et al. 

2018b).  

In the SAR model, an  𝑛𝑛 × 𝑛𝑛 weight matrix, 𝐵𝐵, relates the vector of parameters to themselves. In 

contrast to the CAR model, the SAR model can directly define the vector complete distribution. 

If we define  

𝜷𝜷 = 𝑩𝑩𝑩𝑩 + 𝝑𝝑 

where the matrix B is a 𝑛𝑛 × 𝑛𝑛 spatial weight matrix and 𝝑𝝑~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝛀𝛀), then  
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 𝜷𝜷~𝑁𝑁(𝟎𝟎,𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆). (10) 

In the SAR model, the 𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑰𝑰 − 𝑩𝑩)−1𝛀𝛀(𝑰𝑰 − 𝑩𝑩𝑡𝑡)−1, where 𝑩𝑩 is not necessarily a symmetric 

matrix since 𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆 is symmetric even if 𝑩𝑩 is not symmetric. In the SAR model, it is enough for 

(𝑰𝑰 − 𝑩𝑩)  to be a non-singular matrix, 𝛀𝛀 be a diagonal matrix with positive values and 𝑏𝑏𝑖𝑖𝑖𝑖 = 0. In 

practice, usually consider 𝑩𝑩 as a row standardized non-symmetric contiguity matrix. So the 

covariance matrix is  𝚺𝚺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜏𝜏(𝑰𝑰 − 𝜌𝜌 𝑾𝑾∗)(𝑰𝑰 − 𝜌𝜌 𝑾𝑾∗′))−1 where 𝑾𝑾∗ is the row standardized 

contiguity matrix.  

Another common framework in geostatistics modeling is considering the correlation matrix as an 

elementwise decreasing function of distance among locations. Suppose that  

𝜷𝜷~𝑁𝑁(𝟎𝟎,𝚺𝚺)  

where 𝚺𝚺𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝛽𝛽𝑖𝑖, 𝛽𝛽𝑗𝑗� = 𝜎𝜎2𝑒𝑒−
𝑑𝑑𝑖𝑖𝑖𝑖
𝜌𝜌   is a positive definite covariance matrix, 𝑑𝑑𝑖𝑖𝑖𝑖 is the Euclidean 

distance between location i and j, 𝜌𝜌 is the effective range and 𝜎𝜎2 is the sill. The exponential 

covariance matrix implies that the observations near each other are highly correlated while the 

far observations are nearly independent. Although this model uses the correlation matrix directly 

and is straightforward to interpret, the researcher needs to specify a point to represent each unit, 

and for an extensive data set, fitting this model could be time-consuming.   

Although the precision matrices in the CAR and SAR models are sparse, which leads to faster 

computing, the related covariance matrix is dense. It shows that although a structure is assumed 

on the covariance matrices, no extra independence is considered between the locations. Besides, 

in both CAR and SAR covariance matrices, the correlation between them decreases by 

increasing the distance between two places.  
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5. Model fitting and layer specification in the Bayesian framework 

The spatial behavior parameters need to be estimated, and there is uncertainty about their actual 

value. A hierarchical Bayesian perspective implies that some uncertainty may exist in the mean 

and correlation structures of the prior in the data generating process. So the proposed model in 

the previous section contains three layers: likelihood, process (priors), and hyper prior level. We 

assume that the response variable follows a linear plateau model in the likelihood layer, a non-

linear model. Also, we assume that the parameters in this model follow a multivariate Gaussian 

process. The dependency between the parameters in this model handles the Gaussian process's 

correlation structures. The third layer contains the hyperparameters priors that can assure that the 

covariance matrix is positive definite. Based on the Bayesian framework, we can express the 

posterior distribution of the parameters as  

 𝑓𝑓( 𝚯𝚯1,𝚯𝚯2,𝚯𝚯3| 𝒀𝒀)  ∝  𝑓𝑓(𝒀𝒀| 𝚯𝚯1,𝚯𝚯2) × 𝑓𝑓(𝚯𝚯𝟐𝟐|𝚯𝚯𝟑𝟑) × 𝑓𝑓(𝚯𝚯3)  

where 𝑓𝑓(𝒀𝒀| 𝚯𝚯1,𝚯𝚯2),𝑓𝑓(𝚯𝚯𝟐𝟐|𝚯𝚯𝟑𝟑), and 𝑓𝑓(𝚯𝚯3) are the likelihood layer, process layer, and hyper 

prior layer, respectively. 𝚯𝚯1 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛, 𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2,⋯ ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝜎𝜎𝜖𝜖) is the set 

of parameters for the likelihood layer, 𝚯𝚯2 = (𝛼𝛼,𝛽𝛽,𝑝𝑝,𝜌𝜌0,𝜌𝜌𝑝𝑝, 𝜏𝜏0, 𝜏𝜏𝑝𝑝), and 𝚯𝚯3 is the set of all 

hyperparameters in the distributions of the 𝚯𝚯2. Likelihood layer is  

 
       𝑓𝑓(𝒀𝒀| 𝚯𝚯1,𝚯𝚯2) = (

1
�2𝜋𝜋𝜎𝜎𝜖𝜖2

)𝑛𝑛exp
(𝒚𝒚 − 𝝁𝝁)′(𝒚𝒚 − 𝝁𝝁)

2𝜎𝜎𝜖𝜖2
  

where  𝒚𝒚 is the vector of yield data, 𝝁𝝁 is the vector with the elements equal to E(min(𝑎𝑎𝑖𝑖 +

𝑏𝑏𝑁𝑁𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) + 𝜖𝜖𝑖𝑖), n is the number of observations, and 𝜎𝜎𝜖𝜖2 is the variance component of 𝜖𝜖.  

The process layer deals with the model's spatial structure and finds a specific estimate for each 

location. The correlation matrix plays a vital role in the spatial structure of the data. Different 
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parameters have been defined in the three mentioned methods, which should be determined in 

this layer. In the CAR and SAR model, the parameters are 𝜏𝜏, and 𝜌𝜌, and in the exponential 

model, the parameters are 𝜎𝜎, and 𝜌𝜌.   

The stochastic spatial process in this model has distribution    

𝑓𝑓(𝚯𝚯2|𝚯𝚯3) =
1

�(2𝜋𝜋)𝑛𝑛�𝚺𝚺𝑝𝑝�
exp �−

1
2

(𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑷𝑷�)′𝜮𝜮𝑝𝑝−1(𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

− 𝑷𝑷�)�   
1

�(2𝜋𝜋)𝑛𝑛|𝜮𝜮0|
exp �−

1
2

(𝒂𝒂 − 𝒂𝒂�)′𝜮𝜮0−1(𝒂𝒂 − 𝒂𝒂�)�   
1

�(2𝜋𝜋)𝑛𝑛𝜎𝜎𝑏𝑏2
exp �−

1
2𝜎𝜎𝑏𝑏

(𝑏𝑏

− 𝑏𝑏�)2� 

where 𝑷𝑷�, and 𝒂𝒂�, are 𝑝̅𝑝𝟏𝟏, 𝑎𝑎�𝟏𝟏; respectively. The covariance matrix in this layer could be any of the 

covariances defined in the previous section.   

The hyper prior layer contains the priors for all the parameters in the process layer and some 

from the likelihood layer. The priors for 𝑝𝑝, 𝛼𝛼, and 𝛽𝛽 are normal, with large variances to be non-

informative. The priors for the variance components are inverse gamma with parameters 𝛼𝛼 =

2 ,𝛽𝛽 = 1 for the 𝜏𝜏. Obviously, the covariance matrix in the normal distribution must be positive 

definite. Since the value of 𝜌𝜌 could affect the positive definity of the covariance matrix, a careful 

selection of prior seems necessary. In practice, the restriction  1
𝜆𝜆1

< 𝜌𝜌 < 1
𝜆𝜆𝑛𝑛

 should be imposed in 

the prior where the 𝜆𝜆𝑖𝑖 is the eigenvalue of the W, however, the restriction turns to  1
𝜆𝜆1

< 𝜌𝜌 < 1 

when the row standardized form of  W is used (Haining, 1993). We consider 0 < 𝜌𝜌 < 1, standard 

uniform prior, because only positive autocorrelation is expected. The improper prior proportional 

to the inverse of standard error for the variance component of 𝜎𝜎𝜖𝜖 is considered in all three 

models. The prior for the sill and range parameter in the exponential correlation function 
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consider being an improper distribution of 𝑓𝑓(𝜌𝜌,𝜎𝜎) ∝ 1
𝜎𝜎
. Fuglstad et al. 2015 showed that this 

improper prior has stable results and can be used widely.  

 

6. Data and Data Analysis   

We consider the corn yield response to nitrogen from Bongiovanni and Lowenberg-DeBoer 

2000. The data were collected from a strip plot design in "Las Rosas" farm in Cordoba's 

southwestern corner of Argentina. The data are for the single year 1999. Six different levels of 

nitrogen, namely 0,19,53,66,106, and 131.5 kg ha-1, were applied to the farm based on a strip 

plot design. The highest nitrogen rate was higher than the value of nitrogen that was expected to 

maximize the response. The yield data and the selected nitrogen levels are given in Fig.1 and 

Fig.2, respectively. The original data contain 1738 locations that were digitalized as polygons. 

The centroid point is generated and considered as a data point in each area. 486 plots of the fields 

are selected from the data set such that all six levels of nitrogen were chosen, and we face 

unbalanced data for each level.  

To estimate the linear plateau model in the Bayesian framework, the HMC algorithm is 

employed through the Rstan package in R. HMC algorithm in Stan uses a dynamic Hamiltonian 

Markov Chain to reduce the time of calculation and increase the chance of convergence. 

Different iteration and warmup values are employed for models to meet the convergence criteria 

for each model. The number of iterations and warmup for each model are given in Table1 

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). Different convergence criteria such as Gelman-

Rubin statistics (Rhat) showed the ratio for the variance of parameters when the chain's data are 

pooled, and the number of effective samples is considered.  Trace and Trunk plot, which shows 
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the Markov property of the data and mixing chain property of chains, respectively, for the model 

also monitored to ensure convergence of the estimators and the results' reliability in the model.  

Models with SAR and exponential correlation matrix converge nicely. However, these criteria in 

the CAR correlation matrix model are not met entirely like the two other models.  The time for 

running this model is given in Table 1. The site-specific estimated results of 𝑎𝑎𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,   and 

 𝑦𝑦𝑖𝑖 are given in figure 3 to figure 5. 

 Table 1 shows the estimated values for the parameters and their related Gelman-Rubin statistics 

(Rhat) for all three models. The estimated correlation parameters emphasize the spatial 

behavior's existence in the model's parameters that should be considered in the data analysis. We 

can compare the posterior likelihood value for the models since they have the same number of 

parameters. The time for getting an effective sample indicates that although the CAR model is 

far faster than the SAR model for creating an iteration, it needs more iterations and hence more 

time to converge. Also, the Rhat statistics show that the CAR model does not converge as well as 

the SAR model even with more iterations. Based on the likelihood criterion, it is clear that the 

model with exponential correlation model is the best and the model with CAR correlation matrix 

is not as good as the SAR model.   However, the exponential correlation matrix model is not 

feasible for a more extensive data set due to the computational burden. The SAR model fits well 

on the data and simultaneously met the convergence criteria. Besides, this model is faster than 

the two other models in simulating an effective sample. 

The optimal nitrogen value is calculated based on the posterior distribution of the parameters for 

every specific part of the field.  The posterior distribution of each 𝑎𝑎𝑖𝑖, 𝑏𝑏 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 is 

estimated, then the results plug into equation (6), and the optimal value for nitrogen is obtained. 
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The results are given in figure 6. The exponential differs more than the other two because it was 

estimated using a smaller dataset.   

  

7. Conclusions 

Recently, Park, et al. (2020) provide a stochastic linear plateau model with site-specific 

parameters; however, they consider only the plateau part as a site-specific parameter. In this 

paper, intercept and plateau parameters in the plateau model can be determined specifically for 

each location. Three different correlation matrices are considered.  

In this application, all three models perform well in fitting the data set. In the CAR and SAR 

model, the neighbors' covariance is considered equal without attention to the distance between 

these two points. In the example in hand, the neighbors have a similar distance. However, in 

general, the distance between every neighbor could be far different. Table 1 shows that the CAR 

and SAR models are far faster than the exponential covariance model. They can be more easily 

used for large datasets due to the precision matrix's sparsity. If the number of locations is large 

and the data have some well-defined equally distant regions, the CAR and SAR models are 

feasible. Simultaneously, the exponential correlation function cannot be used in large data sets 

due to the computational burden of calculating the inverse and determinant of an extensive dense 

matrix. In the problem at hand, it seems that the model with SAR correlation matrix is preferred 

to the CAR based on the likelihood and the computational time to simulate an effective sample.   

The site-specific optimal nitrogen value depends on the mean of the posterior distribution and the 

variance of estimated parameters in each site. So, the accuracy of the estimation procedure could 

significantly affect the optimal recommendation value.  
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Table 1. Parameters estimation and the Rhat value in three models for the yield 

a Desktop PC with Intel Core i5-9500 CPU @ 3.00 GHz and 32 GB DDR4 

 

 

Parameters  CAR (Rhat) SAR (Rhat) Exponential (Rhat) 

𝑎𝑎�  60.86 (2.01) 58.85 (1.01) 58.69(1.01) 

𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖  0.97 (1.00) 0.97 (1.00) 0.04(1.00) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖  0.35 (1.01) 0.25(1.00) 10.17(1.00) 

𝑏𝑏�  0.11(1.10) 0.13(1.00) 0.11(1.01) 

𝑝̅𝑝 69.35(2.25) 68.17(1.01) 70.15 (1.01) 

𝜌𝜌𝑝𝑝  0.89 (1.91) 0.96 (1.00) 1.29 (1.00) 

𝜏𝜏𝑝𝑝  0.35 (1.18) 0.28(1.00) 0.60 (1.01) 

Log posterior 

likelihood  

-2427.81(1.81) -1811.05(1.00) 794.18(1.14) 

Max time for an 

effective sample 

(parameter) 

21481 

 (𝑝̅𝑝) 

348.52 

(𝑎𝑎�) 

108952 

(lp) 

Time(hours)a 30.96 25.58 268.55 

Iteration 600000 435000 60000 

Warmup  300000 120000 35000 
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Figure 1. The amount of applied nitrogen 
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Figure 2. Value of actual yield 
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Figure 3. The intercept value for exponential, SAR, and CAR model 
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Figure 4. The plateau value for exponential, SAR, and CAR model 
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Figure 5.The fitted value for exponential, SAR, and CAR model 
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Figure 6. The optimal nitrogen value for exponential, SAR, and CAR model 

 

 


