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Approximately 11% of the 2017 world population or 821 million people had insufficient dietary energy for
a healthy and active life (FAO et al. 2018). Undernourishment is increasing since 2014 and is most
prevalent in Sub-Saharan Africa (23.2% of the population), the Caribbean (16.5% of the population) and
Southern Asia (14.8% of the population) (FAO et al. 2018). Reaching UN Sustainable Development Goal 2
to end global hunger by 2030 is jeopardized by climate change (Hoegh-Guldberg et al. 2018). Climate
change is projected to raise agricultural prices (Nelson et al. 2014) and to expose in total an additional 77
million people to risk of hunger by 2050 (IFPRI, 2019). Policy strategies to safeguard food security under
climate change focus on technical innovations such as new crop varieties and climate-smart farming
practices, and intra- and international reallocation of agricultural production (Hertel 2018; Nelson et al.
2014).

The latter includes a focus on international trade as an important adaptation mechanism (Huang, von
Lampe, and van Tongeren 2011; Brown et al. 2017). Trade links food deficit and surplus countries and
raises countries’ food consumption possibility through specialization in the production of crops for which
countries have a comparative advantage. Climate change affects regions and crops differently
(Rosenzweig et al. 2014), possibly causing shifts in regional comparative advantages and raising potential
for new trade patterns. Studies evaluating the role of trade in agricultural adaptation find that restricting
trade exacerbates the negative impact of climate change on agricultural welfare, while liberalizing trade
attains the opposite effect (Stevanovic et al. 2016; Wiebe et al. 2015; Gouel and Laborde 2018; Costinot,
Donaldson, and Smith 2016; Baldos and Hertel 2015; Cui et al. 2018). However, with the exception of Cui
et al. (2018), these studies do not assess whether the findings result solely from a pure trade effect —in
that case trade integration has the same effect with or without climate change — or whether a real
adaptation effect is involved — meaning that the impact of trade integration becomes larger under climate
change.

We focus on global hunger projections towards 2050, and analyze how climate change and trade
liberalization and facilitation scenarios interact in theirimpact on hunger. We use an established economic
(GLOBIOM) and crop (EPIC) modeling approach to investigate climate change impacts on the agricultural
sector (Mosnier et al. 2014; Leclere et al. 2014; Baker et al. 2018; Havlik et al. 2015). GLOBIOM is a partial
equilibrium model with a bilateral trade specification, that allows for detailed trade cost analysis, and
models the emergence of new trade patterns in response to climate change (as opposed to Armington-
based models). We analyze a set of 50 integrated trade and climate change scenarios that capture
variability in regional trade barriers and in climate projections originating from different models,
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emissions scenarios and CO;fertilization effects. This approach makes three innovations to the literature.
Building on our large set of scenarios we estimate the adaptation effect of trade in a more robust way
using a regression framework, we assess both tariff and non-tariff type trade barriers, and we include
trade effects at the intensive and extensive margin.

The adaptive effect of international trade for global hunger

Building on the approach of Baker et al. (2018), this paper uses ten climate change and five trade
scenarios, and analyzes hunger effects at the global and regional level. Four representative concentration
pathways (RCPs, 2.6 Wm™ scenario, 4.5 Wm™ scenario, 6 Wm™ scenario and 8.5 Wm™ scenario) are
projected by the HadGEM2-ES general circulation model (GCM) with CO; fertilization effects, and, for
RCP8.5, also without CO; fertilization effects. RCP8.5 is implemented with 4 alternative GCMs (GFDL-
ESM2M, NorESM1-M, IPSL-CM5A-LR, and MIROC-ESM-CHEM). Crop yields that are projected by the EPIC
crop model under the nine RCP x CO; x GCM combinations are compared to projections without climate
change impacts (NoCC). In the Baseline trade scenario trade barriers are kept constant at 2000 level. The
Fixed imports scenario prevents agricultural imports to be larger than in the NoCC scenario. In the
Facilitation scenario, barriers that limit the expansion of trade (e.g. transaction costs, infrastructure costs)
are set close to zero, as in Baker et al. (2018). In the Tariff elimination scenario agricultural tariffs are
progressively phased out between 2020 and 2050, i.e. -25% in 2020, -50% in 2030, -75% in 2040 and -
100% in 2050. Lastly, the Facilitation + Tariff elimination scenario combines the previous two.
Socioeconomic developments are modelled according to the second Shared Socio-Economic Pathway
(SSP2), where global population reaches 9.2 billion by 2050 and regional income grows according to
historical trends (Fricko et al. 2017). The scenario design is discussed in further detail in Methods.

Through adjustments in trade, supply and demand induced by the different climate and trade scenarios,
the 2050 global population at risk of hunger deviates substantially from the SSP2 baseline projection
(Figure 1, Supplementary Table 1 and 2). First, without changes in trade barriers, projections across RCP8.5
scenarios range from a reduction of 3 million to an increase of 48 million hungry people compared to the
baseline (-2% to +29%), depending on the GCM and CO; fertilization effect. With Fixed imports, hunger
exacerbates across all RCP8.5 scenarios, with in the most extreme case an additional 89 million hungry
people compared to the baseline (+54%). This means that some regions importantly depend on
agricultural imports to limit the impact of climate change on hunger. In the Baseline trade scenario, the
total agricultural trade volume increases 2% to 14% across RCP8.5 scenarios through an expansion at the
intensive as well as extensive margin (new flows representing 1% — 2.5% of the total trade volume)
(Supplementary Table 1). By preventing endogenous market responses to climate change the Fixed
imports scenario leads to a lower global crop production efficiency (-1% to -3%), a lower total crop calorie
production (-1% to -3%), higher agricultural prices (+2% to +10%), and lower global food availability (-12
to -40 kcal/cap/day) across RCP8.5 scenarios compared to the Baseline trade scenario (Supplementary
Table 2). On average, Fixed imports increases the hunger effect of RCP8.5 scenarios by 144%, which is
larger than the impact of trade restriction found by Wiebe et al. (2015) on food price effects (63%) and by
Gouel and Laborde (2018) on agricultural welfare effects (76%).
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Figure 1 | Global population at risk of hunger (million) in 2050 across climate change and trade scenarios. wt: with CO,
fertilization effect, wo: without CO; fertilization effect. The black dotted horizontal line indicates the population at risk of hunger
in the SSP2 baseline (163 million).

Second, the Facilitation and Tariff elimination scenarios both reduce the risk of hunger from climate
change, but it is only in the Facilitation + Tariff elimination scenario that the impact of the most negative
climate change scenario is fully compensated. Trade liberalization and facilitation reduces hunger by
enhancing climate-induced trade adjustments — total agricultural trade triples to quadruples across
RCP8.5 scenarios with more important adjustments at the extensive margin (new trade flows representing
5 to 8% of total trade volume) — and by increasing the efficiency of agricultural production under climate
change (Supplementary Table 1 and 2). Either trade liberalization or trade facilitation suffices to
compensate the impact on hunger under intermediate climate change scenarios (RCP4.5wt — RCP6wt). In
RCP2.6wt the population at risk of hunger is consistently lower than the SSP2 baseline because crop yields
in many regions increase or remain unaffected in this scenario (Supplementary Figure 1). The hunger
effect under the most extreme climate change scenario is reduced by 79% under Facilitation, 63% under
Tariff elimination and 114% under Facilitation + Tariff elimination. These are larger than the 44% lower
hunger effect under market integration in Baldos and Hertel (2015) or the 46% lower price effect under
trade liberalization in Wiebe et al. (2015).

To analyze how climate change and trade scenarios interact in their impact on hunger, and thus to reveal
the adaptation effect of trade, we regress hunger outcomes from GLOBIOM on crop yield shocks projected
by EPIC and average trade costs in regional level linear regression models (Table 1). We interpret these
results for a 6% reduction in crop yield and a 29% reduction in trade costs, which corresponds to the
average impacts of climate change scenarios and trade policy scenarios respectively. Regression results
(Table 1) reveal that a 6% reduction in crop yields within a region leads on average to a reduction in food
availability of 11 kcal/cap/day (95% confidence interval (Cl), 13 — 9 kcal/cap/day) and an additional 0.65
million people at risk of hunger (Cl, 0.29 — 1 million). For a 29% decrease in trade costs, we project that



average food availability within a region increases 11 kcal/cap/day (Cl, 9 — 13 kcal/cap/day) and that there
are 1.53 million fewer people undernourished (Cl, 1.89 — 1.18 million). Regional differences matter and
are discussed in the next section. We find a significant negative interaction effect between trade costs
and climate-induced crop yield change. This means for example that the average hunger impact of a 6%
climate-induced reduction in crop vyields is more than halved (from an additional 0.65 million to an
additional 0.26 million hungry people) with a 29% reduction in trade costs. The adaptation effect of
reducing trade costs by 29% is -0.39 million hungry people. When considering also the direct positive
effect of reducing trade costs, the impact of a 6% reduction in crop vyield is already completely
compensated by a 11% reduction in trade costs — the negative hunger effect of a 6% reduction in crop
yields (+0.65 million) is offset by the sum of the direct effect (-0.52 million) and the adaptation effect (-
0.13 million) of reducing trade costs by 11%. These results imply that trade costs importantly determine
how climate change affects hunger (or that climate change alters the relation between agricultural trade
and global hunger) and point to a global climate change adaptation potential of reducing trade costs
through trade liberalization and facilitation.

Table 1 | Results from OLS estimation of the impact of crop yields, trade costs and their interaction on population at risk of
hunger and food availability. Observations are GLOBIOM output for each region under the 5 different trade scenarios and 10
different climate change scenarios in 2050. The regression models are described in the Methods.

Population at risk of hunger (million) Food availability (kcal/cap/day)

Crop yield -11.497 *** 191.791 ***
(% change) (3.213) (18.021)
Trade cost 4,528 *** -32.517 ***
(0.538) (3.596)
Crop yield (% change) x -20.149 *** 65.838 **
Trade cost (6.685) (28.481)

sk

Significance levels: "p<0.1; *"p<0.05; ***p<0.01. Regional fixed effects included. Two outliers are removed, [EUR, T1,
8p5wo] and [CSI, T1, 8p5wo]. Heteroskedastic robust standard errors in brackets. N = 548. Adjusted R squared is 0.916
for hunger regression and 0.977 for food availability regression.

Regional perspective on trade’s adaptation potential

The hunger outcomes of different climate and trade scenarios differ substantially among regions (Figure
2). South Asia (SAS) and Sub-Saharan Africa (SSA) are most severely affected by climate change and
experience the largest hunger-increasing effect from import restrictions. Across RCP8.5 scenarios,
projections for the Baseline trade scenario range from a marginal reduction to a large increase in
population at risk of hunger in SAS and SSA (-2% to +75% and -1% to +35% compared to the baseline,
respectively). Across these scenarios, SAS and SSA become larger net agricultural importers (net imports
increase by 23 to 137% in SAS and by 7 to 40% in SSA), increasing imports from regions with the highest
crop yields across RCP8.5 scenarios, LAC, EUR and EAS (Supplementary Figure 1). Intra-regional trade
increases by 14% to 57% in SSA, but varies across RCP8.5 scenarios in SAS (+10% to -36%). With Fixed
imports an additional 7 to 51 million people are at risk of hunger in SAS, while in SSA the impact ranges
from a reduction of 0.83 million to an increase of 27 million. Preventing trade adjustments to climate
change increases agricultural prices and lowers food availability. Consistent with the global picture,



Facilitation + Tariff elimination reduces agricultural prices, increases food availability, and reduces hunger
in SAS and SSA across all RCP8.5 scenarios. SAS faces higher agricultural tariffs in 2000 than SSA leading
to larger absolute changes in terms of prices, food consumption and hunger from tariff elimination. Other
regions experience much smaller hunger effects of climate change and trade scenarios. This is in line with
other studies showing that South Asia and Sub-Saharan Africa are most vulnerable to climate change and
would benefit most from trade integration (Gouel and Laborde 2018; Baldos and Hertel 2015).
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Figure 2 | Population at risk of hunger in 2050 under different climate change and trade scenarios in each region (million).
Regions are United States of America (USA), Russia and West Asia (CSI), East Asia (EAS), Southeast Asia (SEA), South Asia (SAS),
Middle-East and North-Africa (MNA), Sub-Saharan Africa (SSA), Latin American Countries (LAC), Oceania (OCE), Canada (CAN) and
Europe (EUR). The population at risk of hunger is zero in each climate change and trade scenario in CAN and EUR. The black
dotted horizontal line indicates the population at risk of hunger in the SSP2 baseline.

To reveal regional differences in how climate change and trade scenarios interact in their impact on
hunger, we add regional interaction effects in the regressions presented in Table 1 (Supplementary Table
3). In most regions, climate-induced decreases in crop yields reduce food availability and increase hunger
while reduced trade costs have the opposite effects, with the largest impacts in low-income regions (SSA
and SAS), followed by middle-income regions (EAS, MNA, CSI and LAC). In USA and OCE reduced trade
costs slightly reduce food availability while hardly affecting hunger. Reduced food availability translates
into either large, small or insignificant effects on hunger, depending on regional income levels. As
described in Hasegawa et al. (2015; 2018), at similar per capita food availability levels, risk of hunger is
higher in low-income countries because of an inverse relationship between per capita income and
inequality in domestic food distribution. The latter relates to poor infrastructure and remoteness which
limit local markets in distributing food equally (Brown et al. 2017).

The hunger effect from the interaction between trade costs and climate-induced yield changes, i.e. the
adaptation effect of reducing trade costs, is large and negative only for SSA and SAS (Supplementary Table
3). A 6% reduction in crop yields increases hunger in SAS on average with 4.47 million people and is offset
by a 29% reduction in trade costs through a direct effect (-3.86 million) and adaptation effect (-0.61



million). In SSA, a 6% reduction in crop yields increases hunger on average with 5.24 million people and is
compensated by a 26% reduction in trade costs through a direct effect (-4.29 million) and adaptation
effect (-0.96 million). Figure 3 plots the predicted hunger-yield relationship in SAS and SSA for different
levels of international trade costs (Supplementary Figure 2 for all regions). This visual illustrates the direct
effect of trade costs (a downward shift of the curve for lower trade costs) and the adaptation effect of
trade costs (a flatter slope for lower trade costs). The importance of the trade adaptation effect increases
the more negative climate-induced crop yield change. For example, in SSA the estimated hunger effect of
the average crop yield change in the most extreme climate change scenario (RCP8.5wo, -21% reduction
in crop yield) is an additional 19.2 million people undernourished and is compensated by a 50% trade cost
reduction through a direct effect of -10.5 million and adaptation effect of -8.7 million people hungry.
Especially in the poorest regions (SAS and SSA) climate-induced crop yield changes increase hunger and
lower trade costs through trade liberalization and investments in trade infrastructure reduce hunger,
directly and indirectly by lowering the sensitivity of hunger to climate change.
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Figure 3 | Plot of the fitted linear response of population at risk of hunger (million) to climate-induced crop yield change in
SAS and SSA for different values of trade costs (1%t decile, median, 9t decile). Shaded areas indicate prediction intervals.
Prediction based on an OLS estimation of a regional level linear regression of the impact of crop yield change, trade costs and
their interaction on population at risk of hunger. Regression results are shown in Supplementary Table 3 and the regression model
is described in Methods.

Inter-regional specialization

In Figure 4 we assess to what extent climate change shifts the pattern of comparative advantage of four
key staple food crops (corn, wheat, soya and rice) across GCMs and RCPs. In line with Ricardo’s theory, a
region is regarded as having a comparative advantage when it specializes in a certain crop, such that its
share of world production increases, when trade costs reduce. Under no climate change, USA has a
comparative advantage in corn production, LAC in soya, and OCE and EUR in wheat (Figure 4a). Under



climate change, LAC and USA have a comparative advantage in corn production, SEA and EAS in rice, LAC
in soya, and OCE, CSI, EUR and CAN in wheat (Figure 4b). Figure 4c compares regions’ specialization in
response to a trade cost reduction under climate change and no climate change. The small number of
significant differences reveals that the overall pattern of comparative advantage of the four crops remains
similar under climate change. While climate change affects the relative productivity and cost
competitiveness of regions, it does not radically alter the relative position of each region for these crops
(Supplementary Figure 3 and 4). Figures on crop shares in a region’s total production, and on export shares
in a region’s crop production (Supplementary Figures 6 and 7) corroborate this. SAS and SSA increase total
agricultural imports under climate change, indicating a low comparative advantage in overall agricultural
production. Climate change increases particularly the import of those crops for which SAS and SSA already
have a large net import in the baseline (soya in SAS, and rice and wheat in SSA, Supplementary Figure 8).
These increased imports originate from major baseline producing regions, which maintain a comparative
advantage under climate change (soya from LAC, wheat from EUR and rice from EAS and SEA, cfr. Figure
4b and Supplementary Figure 5). The impact of climate change on rice in SAS and corn in SSA, which are
of critical importance in regional food production and consumption, is mixed. In the baseline, SAS is a
large producer of rice with small net imports to satisfy its consumption (Supplementary Figure 5 and 8).
Under intermediate climate change scenarios, SAS becomes a net rice exporter, while under RCP8.5
scenarios it becomes a larger net rice importer. This trend remains in the Facilitation scenario, while under
Tariff elimination SAS becomes a larger net rice importer in each climate change scenario. SSA is large
corn producer and a net exporter in the baseline (Supplementary Figure 5 and 8). Across all climate change
scenarios, SSA maintains a surplus corn production and increases its net exports, increasing trade
specifically to SAS and EAS. In the trade scenarios, most strongly under Facilitation, SSA further increases
its net corn exports. Besides increasing exports to EAS and SAS, SSA also increases its intra-regional trade.
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Figure 4 | Inter-regional specialization in corn, rice, soya and wheat in response to trade cost reduction in 2050 under a)
constant climate, b) climate change, and c) the difference between climate change and no climate change. Each subplot
presents the results of a crop-specific OLS estimation of a regional level linear regression model on the impact of export trade
costs on share of global production. Each point shows the estimated impact of a 1% reduction in trade costs on exports for a
particular crop and region on share of world production in percentage, with lines denoting the corresponding 95% confidence
interval (heteroskedastic robust standard errors). For a) observations are taken from the constant climate change scenario and 4
trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff). Only regions are selected whose share of world
production of the crop in the baseline is larger than 1%, and which have a surplus production of the crop in at least one of the
three trade integration scenarios. 95% confidence interval of USA — wheat is [-0.24, 0.35]. N is 16 for corn, 16 for rice, 8 for soya,
and 27 for wheat. For b) and c) observations are taken from the 9 climate change scenarios and 4 trade scenarios (Baseline trade,
Facilitation, Tariff, Facilitation + Tariff) with exclusion of regions that have a deficit production in each trade and climate change
scenario. N is 215 for corn, 216 for rice, 108 for soya and 263 for wheat. For c) the outcome variable is the difference in share of
world production with the no climate change scenario. The regression models are described in the (Supplementary) Methods.

Existing literature suggests that trade acts as an adaptation mechanism because it facilitates responses to
a climate-induced altered pattern of comparative advantage (e.g. Costinot et al 2016; Gouel and Laborde
2018). We provide quantitative evidence for a climate change adaptation effect of trade. Yet, changing
comparative advantage in crops is not the main driver of this effect. Our results suggest that trade
liberalization and facilitation creates the largest gain in food availability for regions with a deficit
production and low yield for staple food crops, which are the regions that are most vulnerable to
undernourishment due to low income endowments (Supplementary Figures 4, 9 — 12). This explains the
high climate change adaptation effect on hunger of trade adjustments in SAS and SSA.



Discussion

International trade contributes importantly to climate change adaptation, especially in the poorest and
most hunger-affected regions. Trade liberalization and facilitation can completely compensate the
hunger-increasing effect of climate change, even in the worst climate change scenario. We find that under
the worst climate change conditions, hunger is 107% lower with open trade than with restricted trade.
Others focusing on agricultural GDP by 2100 come to more conservative estimates of 62.5% ((Stevanovic
et al. 2016)) and 81% (Gouel and Laborde, 2018). We quantify the climate change adaptation effect of
trade, showing that it becomes larger the more negative the climate-induced yield impact. By expanding
explorative scenario analyses, accounting for how climate change and trade interact in their impact on
hunger, and allowing for trade adjustments at the intensive and extensive margin, we demonstrate a more
substantial role for trade in climate change adaptation. Despite these important methodological
innovations there are limitations to this study, which paves the way for further research. With a focus on
food availability, long term trends and climate change adaptation, we do not account for distributional
issues of food and nutrition security, short term shocks and extreme weather events, and potential
adverse climate mitigation effects of trade.

Our results imply an enormous potential to use trade instruments to mitigate adverse hunger effects of
climate change and thereby endorse the importance of the Doha Round of trade negotiations. Climate
change alters the trade food security nexus, calling for a better integration of a climate policy agenda
within the Doha Development Agenda. The innovative insight from this paper that the benefits of trade
liberalization increase substantially with more severe climate change, implies that contemplating the
climate change adaptation potential of trade in negotiations might even facilitate resuming the Doha
agenda. We need to stress that compensating for climate-induced increases in hunger requires both trade
liberalization by relaxing import tariffs and facilitation through investments in trade infrastructure.
Particularly for SSA and SAS trade policies should be an important element in climate adaptation
strategies, as these regions are not only most vulnerable to climate-induced hunger but also have the
largest potential to compensate this through further trade liberalization and facilitation.



Method

Modelling framework We use the Global Biosphere Management Model (GLOBIOM) for our analysis.
GLOBIOM is a recursive dynamic, spatially explicit, economic partial equilibrium model of the agriculture,
forestry and bioenergy sector. Starting in 2000, the model computes a market equilibrium in 10 year time
steps until 2050 by maximizing welfare (the sum of consumer and producer surplus) subject to
technological, resource and political constraints. On the demand side, a representative consumer for each
one of the 30 economic regions optimizes consumption in response to product prices and income. For this
paper, we mainly present the model results aggregated to 11 world regions: United States of America
(USA), Canada (CAN), Europe (EUR), Oceania (OCE), Southeast Asia (SEA), South Asia (SAS), Sub-Saharan
Africa (SSA), Middle-East and North-Africa (MNA), East Asia (EAS), CSI (Russia and West Asia) and Latin
American Countries (LAC). In the aggregation of trade flows and trade costs between the 30 economic
regions, a distinction is made between extra-regional (among world regions) and intra-regional trade
(within one world region). GLOBIOM is a bottom-up model building on a high spatial grid-level resolution
on the supply side. Land is disaggregated into Simulation Units, clusters of 5 arcmin pixels which are
aggregated based on the same altitude, slope and soil class, 30 arcmin pixel and country boundaries.
GLOBIOM'’s crop production sector includes 18 major crops (barley, beans, cassava, chickpeas, corn,
cotton, groundnut, millet, palm oil, potato, rapeseed, rice, soybean, sorghum, sugarcane, sunflower,
sweet potato, wheat) under 4 management systems (irrigated — high input, rainfed — high input, rainfed
— low input and subsistence). Crop production parameters are based on the detailed biophysical crop
model EPIC. Additional biophysical models are used to represent the livestock [RUMINANT - (Herrero et
al. 2013)] and forestry [G4M — (Forsell et al. 2016)] sectors. Further information regarding the model
structure and parameters is documented in (Havlik et al. 2011; Havlik et al. 2014).

Crop vyields adjust endogenously in the model by changing the management system or location of
production, and exogenously according to long-term technological development and climate change
impacts (Leclére et al. 2014). Output from the EPIC crop model is used to compute at each time step yields
shifters for each climate change scenario and each crop and management system at a disaggregated
spatial scale (pixel-level). Based on inputs from climate models (daily climatic conditions including solar
radiation, min and max temperature, precipitation, wind speed, relative humidity and CO, concentration),
EPIC simulates scenario-specific yields which are used together with historical values to compute the yield
shifters. EPIC crop yield impacts, and their implementation in GLOBIOM, are further explained in Leclére
et al. (2014) and Baker et al. (2018).

International trade International trade is represented through Enke-Samuelson-Takayama-Judge spatial
equilibrium assuming homogenous goods (Takayama and Judge 1971). Bilateral trade flows are
determined by the initial trade pattern, relative production costs of regions and the minimization of
trading costs. Trade costs are composed of tariffs from the MAcMap-HS6 database (Bouét et al. 2008) and
transport costs (Hummels 2001). A non-linear element is added in which trade costs increase with traded
guantity to model persistency in trade flows via a constant elasticity function for trade flows observed in
the base year, and a quadratic function for new trade flows. The non-linear element reflects the cost of
trade expansion in terms of infrastructure and capacity constraints in the transport sector and is reset
after each 10 year time step. Compared to other global economic models, GLOBIOM’s trade
representation is positioned between the rigid Armington approach of general equilibrium models and
the flexible world pool market approach of many partial equilibrium models. Further information on the
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international trade representation in GLOBIOM can be found in supplementary material of Baker et al.
(2018).

Risk of hunger We use an indicator for the population at risk of hunger developed by Hasegawa et al.
(2015). It is based on the FAO methodology in which the number of people at risk of hunger is calculated
by multiplying the share of population at risk of hunger with the total population. The share of the
population at risk of hunger is the proportion of the population whose food availability falls below the
mean minimum dietary energy requirement. Three parameters are used to calculate this share: the mean
minimum dietary energy requirements (MDER), the coefficient of variation (CV) of the distribution of food
within a country and the mean food availability (kcal per capita per day). Minimum dietary energy
requirements are exogenously calculated based on demographic composition (age, sex) of future
population projections. Future changes in the inequality of food distribution among households within a
region are also exogenous and follow a region’s projected income growth. This is based on an estimated
relationship between income and the CV of food distribution with observed historical national-level data.
Food availability in kcal per capita per day is endogenously determined with GLOBIOM at the regional
level. More information on the method can be found in Hasegawa et al. (2015; 2018).

Scenario design We simulate climate change scenarios corresponding to four representative
concentration pathways (RCPs, 2.6 Wm scenario, 4.5 Wm™ scenario, 6 Wm™? scenario and 8.5 Wm~
scenario) (van Vuuren et al. 2011) as projected by the HadGEM2-ES general circulation model (GCM)
(Martin et al. 2011; Collins et al. 2011). CO; fertilization effects are included in all RCPs and RCP8.5 is also
implemented without CO, fertilization. RCP8.5 is furthermore implement with 4 additional GCMs to
reflect uncertainty in climate models: GFDL-ESM2M (Dunne et al. 2012), IPSL-CM5A-LR (Dufresne et al.
2013), MIROC-ESM-CHEM (Watanabe et al. 2011), and NorESM1-M (Bentsen et al. 2013). The impact of
corresponding climate changes on agricultural yields is based simulations from the crop model EPIC
(Leclére et al. (2014), Baker et al. 2018). In the baseline scenario with no climate change (No_CC)
exogenous change to crop yields originates only from long-term technological development assumptions.

We implement four trade scenarios to analyze the role of trade in climate change adaptation. The first
scenario, Fixed imports, limits imports to be less than or equal to imports observed in the baseline scenario
without climate change. This indicates what happens if adjustments in trade flows in response to climate
change are restricted, thus limiting trade as an adaptation mechanism. In addition, we implement three
trade integration scenarios to assess what happens if the trade adaptation mechanism is promoted. In
the first scenario, Facilitation the non-linear part of trade costs is set close to zero, following the approach
described in Baker et al. (2018). This reflects the impact of reducing transaction costs, infrastructure costs
and other non-tariff barriers limiting the expansion of trade flows. In the second scenario, Tariff
elimination, all agricultural tariffs are progressively phased out between 2020 and 2050, i.e. -25% in 2020,
-50% in 2030, -75% in 2040 and -100% in 2050. The last one, Facilitation + Tariff elimination, is a
combination of the previous two ones and presents the most extensive open trade scenario. In the
Baseline trade scenario trade barriers are kept constant at their level in 2000, but trade patterns are
allowed to vary endogenously across the different climate impact scenarios.

Socioeconomic developments are modelled according to the second Shared Socio-Economic Pathway
(SSP2), which reflects a ‘Middle of the Road’ scenario where population reaches 9.2 billion by 2050 and
income grows according to historical trends in each region (Fricko et al. 2017). The SSP scenarios have
been discussed widely in the literature and are often used as a basis for harmonizing key macroeconomic
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assumptions for integrated assessment modeling of different climate futures, e.g. Riahi et al. (2017). SSP2
projects a decrease in the global population at risk of hunger over time, from 867 million in 2000 to 163
million by 2050. This is because of an increase in food consumption and an improved food distribution
within regions, which are in turn both related to the assumed income growth under SSP2 (Hasegawa,
Fujimori, Takahashi, et al. 2015).

Statistical analysis We analyze the results from the scenario runs with a regional level linear regression
model to infer the underlying relationship between trade costs, crop yield changes and hunger as
predicted by GLOBIOM. The following two models are estimated by Ordinary Least Squares (OLS)
(regression results in Table 1):

Population at risk of hunger;, =
B1Crop yield;. + f, Trade costs;, + B3Crop yield;. + Trade costs;, + ByRegion + ¢

Food availability;,, =
BCrop yield;, + 5, Trade costs;s, + 3Crop yield;, * Trade costs;, + [,Region + ¢

Population at risk of hungers gives the number of people at risk of hunger (million) and Food availability,
the food availability (kcal/cap/day) in 2050 in each region i, trade scenario t and climate change scenario
r. Crop yield;, gives the change in average crop yield (kcal/ha) compared to average crop yield in no climate
change in 2050 for each region i and climate change scenario r. Trade cost gives the log of the weighted
average trade costs (USD/kcal) on all trade flows in 2050 per region i, trade scenario t and climate change
scenario r. Region is a categorical variable with 11 levels (USA, CAN, EUR, MNA, SEA, EAS, SSA, SAS, CSI,
OCE, LAC). Further details on the regression, including the model with regional interaction effects (Figure
3 and Sl Table 3), are included in the Supplementary Information (Sl).

Comparative advantage When trade barriers are removed, Ricardo’s trade theory predicts that countries
produce and export relatively more of the goods for which they have a comparative advantage (Costinot,
Donaldson, and Komunjer 2012). To assess comparative advantage we estimate a linear regression model
of the effect of trade cost reduction on the share of a region’s production in total world production for
each crop, the share of each crop in aregion’s total crop production, and the share of a region’s production
that is exported. The following three models are estimated by Ordinary Least Squares (OLS) for each crop
separately (regression results Figure 4 and Supplementary Figure 6 and 7):

Share of world production;,, = B, Trade costs;;,, * Region + ¢
Share of regional crop production;,, = [, Trade costs;,, * Region + ¢
Share of production exported;;, = §; Trade costs;, * Region + ¢

Share of world productiony gives the share of production of a crop that region i represents in total world
production of the crop in each trade scenario t and climate change scenario r. Share of regional crop
production;yshare of production that a crop represents in total crop production of region i in each scenario
(t,r). Share of production exportedy- share of production of a crop that is exported in region i in each
scenario (r,t). Trade costs is the log of weighted average of trade costs on exports (USD/ton) per region
i, trade scenario t and climate change scenario r. Region is a categorical variable with 11 levels (USA, CAN,
EUR, MNA, SEA, EAS, SSA, SAS, CSI, OCE, LAC). Further details on the regression are included in the SI.

These indicators take into account differences in land productivity, land endowment and price
competitiveness between crops and regions. In the Sl we report additional indicators including the relative
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competitiveness across regions for each crop (Supplementary Figure 3) and the ratio of the yield of each
crop compared to other crops between regions (Supplementary Figure 4) which reflects the pure Ricardo-
based comparative advantage.
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Supplementary Method
1. Trade costs in GLOBIOM

Bilateral trade flows are determined by the initial trade pattern, relative production costs of regions and
the minimization of trading costs. Trade costs are composed of tariffs from the MAcMap-HS6 database
(Bouét, Decreux, Fontagné, Jean, & Laborde, 2008), transport costs (Hummels, 2001) and a non-linear
element in which trade costs increase with traded quantity to model persistency in trade flows. The latter
element reflects the cost of trade expansion in terms of infrastructure and capacity constraints in the
transport sector and is reset after each 10 year time step. The implication of the trade scenarios for
production, trade patterns and trade costs varies across crops and regions because the level of initial trade
barriers is for example different. The impact differs also across climate change scenarios through the
dependency of trade on the competitiveness of each region. The spatial price equilibrium approach
implies that trade will occur when the cost of trade between two regions is smaller than the regional price
difference, and this price difference will become equal to the marginal trade cost in equilibrium (McCarl
& Spreen, 2002). We aggregate these computed trade costs on each trade flow to obtain a measure that
reflects the implication of trade scenarios on overall trading costs for each crop and region. GLOBIOM
models bilateral trade flows and trade costs at the level of 30 sub-regions. To be in line with the level of
analysis of the paper, we aggregate this information to the level of 11 regions (USA, CAN, EUR, MNA, SEA,
EAS, SSA, SAS, CSI, OCE, LAC). The correspondence between country, sub-region and region level is shown
in Supplementary Table 4.

For the analysis on hunger (see also section 2.1) we calculate the weighted average over all agricultural
imports, exports and intra-regional trade flows for each region i, trade scenario t and climate change
scenario r:

Xiktr

average trade cost;, = T
otal_x;

X —ritr

* trade coSti;,
where x;;, are the trade flows of crop k in, out and within region i in each scenario (t,r) and total_x;;, is
the sum of all trade flows in, out and within region i in each scenario (t,r).

For the analysis on comparative advantage (see also section 2.2), we calculate a weighted average of trade
cost on exports of crop k, region i, trade scenario t and climate change scenario r:
Xljktr
average trade coStyr = Z =
lei,jei

* trade costyjyer
Xiktr

where x; .+ are export flows of crop k from sub-region | (€ region i) to sub-region j (¢ region i) in each
scenario (t,r) and x;;, is the total export of crop k from sub-regions | to sub-regions j in each scenario
(t,r).



2. Statistical analysis

Hunger and food availability regression analysis
The following regression models with regional fixed effects are estimated with OLS (results in Table 1):

with

Population at risk of hunger;, =
BiCrop yield;, + B, Trade costs;, + B3Crop yield;. * Trade costs;, + [f,Region + ¢

Food availability;,, =
BiCrop yield;, + (3, Trade costs;s, + B3Crop yield;. * Trade costs;, + [,Region + ¢

Population at risk of hungeri,: continuous variable that gives the number of people at risk of
hunger (million) in 2050 in region i, trade scenario t and climate change scenario r.

Food availability;: continuous variable that gives the food availability (kcal/cap/day) in 2050 in
region i, trade scenario t and climate change scenario r.

Region: categorical variable with 11 levels (USA, CAN, EUR, MNA, SEA, EAS, SSA, SAS, CSI, OCE,
LAC)

Crop yield;: continuous variable that gives percentage change in average crop yield (kcal/ha)
compared to crop yield in no climate change in 2050 for each region i and climate change scenario
r. This variable is centered (demeaned) to solve structural multicollinearity.

Trade costsj,: continuous variable that gives the logarithm of the weighted average trade costs
(USD/kcal) on all trade flows in 2050 per region i, trade scenario t and climate change scenario r.
Trade costs are weighted based on the trade quantity of each trade flow in and out of a region.
This variable is centered (demeaned) to solve structural multicollinearity.

Standard errors are estimated robust to heteroscedasticity using the HC3 method as recommended by
Long and Ervin (2000)*. The F statistic of overall significance rejects null hypothesis at 1% significance level
for both models. Summary statistics of the dependent and explanatory variables are shown in Table 1

below.

Supplementary Method Table 1 | Descriptive statistics of the dependent and explanatory variables (at regional level). The
sample is composed of observations for the 11 regions for the 5 trade scenarios, the no climate change scenario and the 9 climate
change scenarios. Two outliers in terms of trade costs are removed: [EUR, T1, 8p5wo] and [CSI, T1, 8p5wo]. This leads to 548
observations ( = 11 regions x 5 trade scenarios x 10 RCP-GCM scenarios — 2 outliers).

Min Average Max
Population at risk of hunger (million) 0 14.19 87.63
Food availability (kcal/cap/day) 1758 2230 2655
Crop yield (difference with NoCC) -38% -5% +36%
Trade costs (USS/10° kcal) 15.09 67.60 221.67

1HC3 is a refined version of White’s method for estimation of heteroskedastic standard errors (HCO). Long and Ervin
(2000) demonstrate with Monte Carlo simulations that the HC3 method outperforms HCO for small sample sizes (N

< 250).



The following regression models with regional interaction terms are estimated with OLS (results in Figure
3 and Supplementary Table 3):

Population at risk of hunger;;, =
B.Crop yield;. * Region + 3, Trade costs;;,. * Region + [;Crop yield;, * Trade costs;,, * Region + ¢

Food availability;,, =
BiCrop yield;, * Region + 3, Trade costs;;, * Region + B;Crop yield;, » Trade costs;;, * Region + ¢

with variables as for the model with regional fixed effects.

Standard errors are estimated robust to heteroscedasticity using the HC3 method. The calculation of
regional interaction effects is done with the Delta Method. In specific, we calculate the interaction effects
between regional dummies and the continuous variables. The regional fixed effect is not added to the
interaction effect because we are interested for example in the effect of exogenous crop yield change on
hunger in each region, without including the effect of being a certain region on hunger. The sample is
composed of observations for 9 regions for the 5 trade scenarios, the no climate change scenario and the
9 climate change scenarios. One outlier in terms of trade costs are removed: [CSI, T1, 8p5wo]. This leads
to 449 observations ( = 9 regions x 5 trade scenarios x 10 RCP-GCM scenarios — 1 outliers). The F statistic
of overall significance rejects null hypothesis at 1% significance level for both models.

Comparative advantage regression analysis
The following models are estimated with OLS for corn, soya, rice and wheat (results in Figure 4 and
Supplementary Figures 6 and 7):

Share of world production;,, = B, Trade costs;;,, * Region + &

Share of regional crop production;,,, = , Trade costs;, * Region + &
Share of production exported;,,, = p, Trade costs;,, * Region + ¢
with

e Share of world productioni: share of production that region i represents in total world
production of the crop in each scenario (t,r) in 2050 (ranges between [0, 1]).

e Share of specific crop in total regional crop productioni: share of production that the crop
represents in total crop production of region i in each scenario (t,r) in 2050 (ranges between [0,
1]).

e Share of production that is exportedixr: share of production of the crop that is exported in region
i in each scenario (r,t) in 2050 (ranges between [0, 1]).

e Region: categorical variable with 11 levels (USA, CAN, EUR, MNA, SEA, EAS, SSA, SAS, CSI, OCE,
LAC)

e Trade costsi: log of the weighted average trade costs on exports (USD/ton) in 2050 for the crop
per region i, trade scenario t and climate change scenario r. Trade costs are weighted based on
the trade quantity of each export flow. This variable is centered (demeaned) to solve structural
multicollinearity.



The regressions are estimated with three different samples: only no climate change scenario included
(Figures Xa), only climate change scenarios included (Figures Xb) or only climate change scenarios with as
the dependent variable the difference in outcome variable between climate change and no climate
change (Figures Xc). Standard errors are estimated robust to heteroscedasticity using the HC3 method
and the calculation of the regional interaction effect is done with the Delta Method.
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Supplementary Figure 1 | Impact of climate change on average crop yield in each region by 2050. The x-axis indicates the crop
yield under no climate change (without GLOBIOM market feedback, determined by assumption on technological development)
and y-axis the crop yield as projected by the EPIC crop model under climate change for different RCP x GCM combinations (without
adaptation measures). Points above the black line indicate an increase in crop yield, points below a decrease in crop yield.
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Supplementary Figure 2 | Plot of the fitted linear response of population at risk of hunger (million) to climate-induced crop
yield change for different values of trade costs (1t decile, median, 9t decile). Shaded areas indicate prediction intervals.
Prediction based on an OLS estimation of a regional level linear regression of the impact of crop yield change, trade costs and
their interaction on population at risk of hunger. Regression results are shown in Supplementary Table 3 and the regression model
is described in online and Supplementary Methods.
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Supplementary Figure 3 | Relative competitiveness (across regions) in response to climate change in 2050 under the
Facilitation + Tariff elimination scenario. The y axis indicates the producer price relative to the world average producer price for
each crop, with values below zero indicating an above average competitiveness. The black dot indicates the relative producer
price under no climate change, while the boxplot the relative producer price over the 9 climate change scenarios. Distinction is
made between regions that have a deficit production in each trade and climate change scenario (Always deficit), and regions that
do not (Not always deficit).
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Supplementary Figure 4 | Relative yield of corn, rice, soya and wheat in response to climate change in 2050 under the Baseline
trade scenario. The y-axis indicates for each crop the ratio of yield to the average yield of all other crops. A ratio larger than 1
(above the dotted line) indicates a low opportunity cost in terms of land. The black dot indicates the ratio in the no climate change
scenario, while the boxplots the ratio under the 9 climate change scenarios. Distinction is made between regions that have a
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Supplementary Figure 6 | Intra-regional specialization in corn, rice, soya and wheat in response to trade cost reduction in 2050
under a) constant climate, b) climate change, and c) the difference between climate change and no climate change. Each
subplot presents the results of an OLS estimation of a regional level linear regression model on the impact of export trade costs
on share of a particular crop in total regional crop production. Each point shows the estimated impact of a 1% reduction in trade
costs for a particular crop and region on share of regional crop production in percentage, with lines denoting the corresponding
95% confidence interval (heteroskedastic robust standard errors). For a) observations are taken from the constant climate change
scenario and 4 trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff). Only regions are selected where the share
of production of the crop in total regional crop production in the baseline is larger than 2%, and which have a surplus production
of the crop in at least one of the three trade integration scenarios. N is 20 for corn, 12 for rice, 8 for soya, and 27 for wheat. For
b) and c) observations are taken from the 9 climate change scenarios and 4 trade scenarios (Baseline trade, Facilitation, Tariff,
Facilitation + Tariff) with exclusion of regions that have a deficit production in each trade and climate change scenario. N is 215
for corn, 216 for rice, 108 for soya and 263 for wheat. For c) the outcome variable is the difference in share of regional crop
production with the no climate change scenario. The regression models are described in the online and Supplementary Methods.
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Supplementary Figure 7 | Export orientation of production in corn, rice, soya and wheat in response to trade cost reduction in
2050 under a) constant climate, b) climate change, and c) the difference between climate change and no climate change. Each
subplot presents the results of a crop-specific OLS estimation of a regional level linear regression model on the impact of export
trade costs on share of production exported. Each point shows the estimated impact of a 1% reduction in trade costs for a
particular crop and region on share of production exported in percentage, with lines denoting the corresponding 95% confidence
interval (heteroskedastic robust standard errors). For a) observations are taken from the constant climate change scenario and 4
trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff). Only regions are selected whose share of world
production of the crop in the baseline is larger than 1%, and which have a surplus production of the crop in at least one of the
three trade integration scenarios. 95% confidence interval of USA —rice is [-0.85, 0.27], of LAC —wheat [-0.69, 0.90] and of USA —
wheat [-0.57, 0.59]. N is 16 for corn, 16 for rice, 8 for soya, and 27 for wheat. For b) and c) observations are taken from the 9
climate change scenarios and 4 trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff) with exclusion of regions
that have a deficit production in each trade and climate change scenario. N is 215 for corn, 216 for rice, 108 for soya, and 263 for
wheat. For c) the outcome variable is the difference in share of production exported with the no climate change scenario. The
regression models are described in the online and Supplementary Methods.
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Supplementary Figure 8 | Net trade (1000 ton) in South Asia (SAS) and Sub-Saharan Africa (SSA) for corn, rice, soya and wheat
under climate change and trade scenarios in 2050. Values above zero indicate net exports, while negative values indicate net

imports.
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Supplementary Figure 9 | Corn yield (ton/ha) under climate change and under no climate change in each region based on
projections by the EPIC crop model in 2050. Under no climate change crop yields are determined by base year yields and
assumptions on technological development over time.
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Supplementary Figure 10 | Rice yield under climate change and no climate change in each region as projected by the EPIC crop
model in 2050. Under no climate change crop yields are determined by base year yields and assumptions on technological
development over time.
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Supplementary Figure 11 | Soya yield under climate change and no climate change in each region as projected by the EPIC crop
model in 2050. Under no climate change crop yields are determined by base year yields and assumptions on technological
development over time.
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Supplementary Figure 12 | Wheat yield under climate change and no climate change in each region as projected by the EPIC
crop model in 2050. Under no climate change crop yields are determined by base year yields and assumptions on technological

development over time.
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Supplementary Tables

Supplementary Table 2 | Global trade adjustments under trade and climate change scenarios compared to the SSP2 baseline
computed by GLOBIOM by 2050. Total trade growth and specific extensive margin trade growth, the latter indicated as new
trade flows compared to the 2000 trade pattern and new trade flows compared to the baseline SSP2 trade pattern. RCP:
Representative Concentration Pathway, with (wt) or without (wo) CO, fertilization effect. GCM: General Circulation Model.

Trade adjustments

Difference in

Total volume

Total volume

Total trade total trade of new trade  of new trade
RCP GCM Trade scenario volume Wort. flows w.r.t. flows w.r.t.
(1000 ton) baseline (%) 2000 baseline
(1000 ton) (1000 ton)

NoCC None Baseline 1317834 0 18727 0
2pbwt HadGEM2-ES Baseline 1359078 0.03 20991 13240
4p5wt HadGEM2-ES Baseline 1375502 0.04 22346 14634
6pOwt HadGEM2-ES Baseline 1383007 0.05 22529 19376
8p5wt GFDL-ESM2M Baseline 1471206 0.12 19937 7485
8p5wt HadGEM2-ES Baseline 1401549 0.06 25142 31346
8p5wt IPSL-CM5A-LR Baseline 1429006 0.08 22770 12219
8p5wt MIROC Baseline 1480669 0.12 19782 32376
8p5wt NorESM1-M Baseline 1348113 0.02 19942 17856
8p5wo HadGEM2-ES Baseline 1497331 0.14 29199 37426
NoCC None Fixed imports 1317191 0.00 18726 0
2pbwt HadGEM2-ES Fixed imports 1189833 -0.10 17319 0
4p5wt HadGEM2-ES Fixed imports 1178552 -0.11 17344 0
6pOwt HadGEM2-ES Fixed imports 1187908 -0.10 17502 0
8p5wt GFDL-ESM2M Fixed imports 1223395 -0.07 16637 0
8p5wt HadGEM2-ES Fixed imports 1132023 -0.14 16921 0
8p5wt IPSL-CM5A-LR Fixed imports 1214310 -0.08 16295 0
8p5wt MIROC Fixed imports 1144187 -0.13 16166 0
8p5wt NorESM1-M Fixed imports 1174511 -0.11 16569 0
8p5wo HadGEM2-ES Fixed imports 1127856 -0.14 17178 0
NoCC None Facilitation + Tariff 5845726 3.44 65044 338724
2pbwt HadGEM2-ES Facilitation + Tariff 6266867 3.76 66401 380811
4p5wt HadGEM2-ES Facilitation + Tariff 5960152 3.52 67875 372203
6pOwt HadGEM2-ES Facilitation + Tariff 6167365 3.68 66789 393398
8p5wt GFDL-ESM2M Facilitation + Tariff 6473411 3.91 67580 340295
8p5wt HadGEM2-ES Facilitation + Tariff 5629993 3.27 69609 399729
8p5wt IPSL-CM5A-LR Facilitation + Tariff 5977386 3.54 70197 352002
8p5wt MIROC Facilitation + Tariff 5994512 3.55 65398 383632
8p5wt NorESM1-M Facilitation + Tariff 5745481 3.36 67255 392088
8p5wo HadGEM2-ES Facilitation + Tariff 5182680 2.93 18727 409417

GCM MIROC: MIROC-ESM-CHEM
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Supplementary Table 3 | Global market responses to trade and climate change scenarios compared to the Baseline trade (T0)
scenario by 2050.

Market responses

RCP Globall Crop calorie !:oo.d. Agric.ultural
With / _ pro.d.uctlon production, a.vallablllty , .prlces,
without GCM Trade scenario efficiency, difference to difference to difference
o, difference T0 (%) TO compared
to TO (%) (kcal/cap/day) to TO (%)
No CC None Fixed imports 0.00 0.00 -0.02 0.00
2p6wt  HadGEMZ2-ES Fixed imports 0.00 -0.01 -3.15 0.01
4p5wt  HadGEM2-ES Fixed imports -0.01 -0.01 -7.59 0.02
6pOwt  HadGEMZ2-ES Fixed imports -0.01 -0.01 -9.19 0.02
8p5wt  GFDL-ESM2M Fixed imports -0.01 -0.01 -18.01 0.02
8p5wt HadGEM?2-ES Fixed imports -0.01 -0.02 -21.34 0.03
8p5wt  IPSL-CM5A-LR Fixed imports -0.02 -0.02 -21.73 0.04
8p5wt MIROC Fixed imports -0.01 -0.01 -12.30 0.02
8p5wt NorESM1-M Fixed imports -0.02 -0.02 -16.71 0.05
8p5wo  HadGEM2-ES Fixed imports -0.03 -0.03 -40.54 0.10
No CC None Facilitation + Tariff 0.08 0.08 78.96 -0.17
2p6wt  HadGEM2-ES  Facilitation + Tariff 0.07 0.08 82.80 -0.17
4p5wt  HadGEM2-ES  Facilitation + Tariff 0.07 0.08 73.93 -0.17
6pOwt  HadGEM2-ES  Facilitation + Tariff 0.07 0.08 75.67 -0.17
8p5wt  GFDL-ESM2M  Facilitation + Tariff 0.09 0.10 84.08 -0.18
8p5wt  HadGEM2-ES  Facilitation + Tariff 0.07 0.08 63.12 -0.16
8p5wt  IPSL-CM5A-LR  Facilitation + Tariff 0.05 0.08 65.44 -0.17
8p5wt MIROC Facilitation + Tariff 0.07 0.08 70.55 -0.17
8p5wt NorESM1-Mm  Facilitation + Tariff 0.06 0.08 62.34 -0.16
8p5wo  HadGEM2-ES  Facilitation + Tariff 0.04 0.05 48.31 -0.15

GCM MIROC: MIROC-ESM-CHEM
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Supplementary Table 4 | Results from OLS estimation of the impact of crop yields, trade costs and their interaction on
population at risk of hunger and food availability including regional interaction effects. Observations are GLOBIOM output for
9 regions (EUR and CAN excluded) under the 5 different trade scenarios and 10 different climate change scenarios in 2050. The
regression models are fully described in the Supplementary Methods.

Food availability Population at risk of hunger
(kcal/cap/day) (million)
coefficient se coefficient se

Crop yield (% change) Csl 144.38 75.23 * -0.98 0.49 **
Crop yield (% change) EAS 315.53 64.28 *** -18.93 6.14 ***
Crop yield (% change) LAC 286.44 52.38 x*x -8.52 1.23  **x*
Crop yield (% change) MNA 94.27 80.54 -0.95 3.76
Crop yield (% change) OCE 66.86  101.28 -0.04 0.12
Crop yield (% change) SAS 429.02 53.89 *** -7895  18.33 (***
Crop yield (% change) SEA 312.61 126.01 ** -12.51 6.88 *
Crop vield (% change) SSA 614.15  106.97 *** 92.60 20.72 ***
Crop yield (% change) USA 268.76 34.80 *** -0.14 0.02 ***
Trade cost csi -47.51 10.78 *** 0.30 0.05 ***
Trade cost EAS -37.11 3.95 x** 2.61 0.42 ***
Trade cost LAC -31.18 6.19 *** 1.71 0.21 ***
Trade cost MNA -75.09 14.25 *¥** 431 0.69 ***
Trade cost OCE 35.05 13.67 ** -0.02 0.02
Trade cost SAS -68.10 6.51 *** 11.87 1.25 ***
Trade cost SEA 6.86 14.40 0.15 0.84
Trade cost SSA -88.90 8.93 (*** 15.17 1.67 ***
Trade cost USA 32.50 3.62 *** -0.02 0.00 ***
Crop yield (% change) x Trade cost csl -41.83 98.17 0.14 0.46
Crop yield (% change) x Trade cost EAS -89.27 120.41 10.14  10.04
Crop yield (% change) x Trade cost LAC -111.99 170.29 3.84 3.62
Crop yield (% change) x Trade cost MNA -135.55 103.49 7.51 3.79 **
Crop yield (% change) x Trade cost OCE 115.82 92.49 -0.10 0.10 *
Crop yield (% change) x Trade cost SAS 4.90 71.44 -33.03 1835 *
Crop yield (% change) x Trade cost SEA 41.41 201.15 0.76 8.64
Crop yield (% change) x Trade cost SSA 163.72 149.63 -60.40 17.33 (***
Crop yield (% change) x Trade cost USA 115.70 35.32 x** -0.07 0.02 ***

ko

Significance levels: "p<0.1; *p<0.05; "**p<0.01. Heteroskedastic robust standard errors. EUR and CAN are not
included as they have always zero hunger. One outlier is removed: [CSI, T1, 8p5wo]. N = 449. Adjusted R squared
is 0.999 for food availability regression and 0.982 for hunger regression.
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Supplementary Table 5 | Regions, sub-regions and countries in GLOBIOM.

Region Sub-region Country
CAN | Canada Canada
CSI | Former USSR Belarus, Moldova, Ukraine, Russia, Azerbaidjan, Kazakhstan,
Turkmenistan, Uzbekistan, Armenia, Georgia, Kyrgyzstan,
Tajikistan
EAS | China People's Republic of China, Hong Kong
Japan Japan
South Korea Korea
EUR | EU Baltic Estonia, Latvia, Lithuania
EU Central East Bulgaria, Czech Republic, Hungary, Poland, Romania,
Slovakia, Slovenia
EU Mid West Austria, Belgium, France, Germany, Luxembourg,
Netherlands
EU North Denmark, Finland, Ireland, Sweden, United Kingdom
EU South Cyprus, Greece, Italy, Malta, Portugal, Spain
Rest of Central Eastern Europe (RCEU) Albania, Bosnia Herzegovina, Croatia, Macedonia, Serbia
Rest of Western Europe (ROWE) Iceland, Norway, Switzerland, Greenland
LAC | Brazil Brazil
Mexico Mexico
Central America (RCAM) Bahamas, Belize, Costa Rica, Cuba, Dominican Republic, El
Salvador, Guadeloupe, Guatemala, Jamaica, Nicaragua,
Panama, Trinidad and Tobago
South America (RSAM) Argentina, Bolivia, Chile, Colombia, Ecuador,Guyana,
Paraguay, Peru, Suriname, Uruguay, Venezuela
MNA | Middle East — North Africa Egypt, Algeria, Libya, Morocco, Tunisia, Bahrain, Iran, Iraq,
Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia,
Syria, United Arab Emirates, Yemen
Turkey Turkey
OCE | ANZ Australia, New Zealand
Pacific Islands Fiji, French Polynesia, New Caledonia, Papua New Guinea,
Samoa, Solomon Islands, Vanuatu
SAS | India India
Rest of South Asia (RSAS) Afghanistan, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka
SEA | South East Asia — other Pacific Asia Brunei Daressalam, Indonesia, Malaysia, Myanmar,
(RSEA_OPA) Philippines, Singapore, Thailand, East Timor
South East Asia — (ex-)planned Cambodia, DPR of Korea, Laos, Mongolia, Viet Nam
economies (RSEA_PAC)
SSA | Congo Basin Cameroon, Central African Republic, Congo Republic,
Democratic Republic of Congo, Equatorial Guinea, Gabon
Eastern Africa Burundi, Ethiopia, Kenya, Tanzania, Uganda, Rwanda
South Africa South Africa
Southern Africa Angola, Botswana, Comoros, Lesotho, Madagascar, Malawi,
Mauritius, Mozambique, Namibia, Reunion, Swaziland,
Zambia, Zimbabwe
Western Africa and Rest of Sub-Saharan Benin, Burkina Faso, Cape Verde, Chad, Cote d'lvoire,
Africa Djibouti, Eritrea, Gambia, Ghana, Guinea, Guinea-Bissau,
Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra
Leone, Somalia, Sudan, Togo
USA | USA Region United States, Puerto Rico
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