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Approximately 11% of the 2017 world population or 821 million people had insufficient dietary energy for 

a healthy and active life (FAO et al. 2018). Undernourishment is increasing since 2014 and is most 

prevalent in Sub-Saharan Africa (23.2% of the population), the Caribbean (16.5% of the population) and 

Southern Asia (14.8% of the population) (FAO et al. 2018). Reaching UN Sustainable Development Goal 2 

to end global hunger by 2030 is jeopardized by climate change (Hoegh-Guldberg et al. 2018). Climate 

change is projected to raise agricultural prices (Nelson et al. 2014) and to expose in total an additional 77 

million people to risk of hunger by 2050 (IFPRI, 2019). Policy strategies to safeguard food security under 

climate change focus on technical innovations such as new crop varieties and climate-smart farming 

practices, and intra- and international reallocation of agricultural production (Hertel 2018; Nelson et al. 

2014).   

The latter includes a focus on international trade as an important adaptation mechanism (Huang, von 

Lampe, and van Tongeren 2011; Brown et al. 2017). Trade links food deficit and surplus countries and 

raises countries’ food consumption possibility through specialization in the production of crops for which 

countries have a comparative advantage. Climate change affects regions and crops differently 

(Rosenzweig et al. 2014), possibly causing shifts in regional comparative advantages and raising potential 

for new trade patterns. Studies evaluating the role of trade in agricultural adaptation find that restricting 

trade exacerbates the negative impact of climate change on agricultural welfare, while liberalizing trade 

attains the opposite effect (Stevanović et al. 2016; Wiebe et al. 2015; Gouel and Laborde 2018; Costinot, 

Donaldson, and Smith 2016; Baldos and Hertel 2015; Cui et al. 2018). However, with the exception of Cui 

et al. (2018), these studies do not assess whether the findings result solely from a pure trade effect – in 

that case trade integration has the same effect with or without climate change – or whether a real 

adaptation effect is involved – meaning that the impact of trade integration becomes larger under climate 

change.  

We focus on global hunger projections towards 2050, and analyze how climate change and trade 

liberalization and facilitation scenarios interact in their impact on hunger. We use an established economic 

(GLOBIOM) and crop (EPIC) modeling approach to investigate climate change impacts on the agricultural 

sector (Mosnier et al. 2014; Leclère et al. 2014; Baker et al. 2018; Havlík et al. 2015). GLOBIOM is a partial 

equilibrium model with a bilateral trade specification, that allows for detailed trade cost analysis, and 

models the emergence of new trade patterns in response to climate change (as opposed to Armington-

based models). We analyze a set of 50 integrated trade and climate change scenarios that capture 

variability in regional trade barriers and in climate projections originating from different models, 
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emissions scenarios and CO2 fertilization effects. This approach makes three innovations to the literature. 

Building on our large set of scenarios we estimate the adaptation effect of trade in a more robust way 

using a regression framework, we assess both tariff and non-tariff type trade barriers, and we include 

trade effects at the intensive and extensive margin. 

The adaptive effect of international trade for global hunger  

Building on the approach of Baker et al. (2018), this paper uses ten climate change and five trade 

scenarios, and analyzes hunger effects at the global and regional level. Four representative concentration 

pathways (RCPs, 2.6 Wm-2 scenario, 4.5 Wm-2 scenario, 6 Wm-2 scenario and 8.5 Wm-2 scenario) are 

projected by the HadGEM2-ES general circulation model (GCM) with CO2 fertilization effects, and, for 

RCP8.5, also without CO2 fertilization effects. RCP8.5 is implemented with 4 alternative GCMs (GFDL-

ESM2M, NorESM1-M, IPSL-CM5A-LR, and MIROC-ESM-CHEM). Crop yields that are projected by the EPIC 

crop model under the nine RCP x CO2 x GCM combinations are compared to projections without climate 

change impacts (NoCC). In the Baseline trade scenario trade barriers are kept constant at 2000 level. The 

Fixed imports scenario prevents agricultural imports to be larger than in the NoCC scenario. In the 

Facilitation scenario, barriers that limit the expansion of trade (e.g. transaction costs, infrastructure costs) 

are set close to zero, as in Baker et al. (2018). In the Tariff elimination scenario agricultural tariffs are 

progressively phased out between 2020 and 2050, i.e. -25% in 2020, -50% in 2030, -75% in 2040 and -

100% in 2050. Lastly, the Facilitation + Tariff elimination scenario combines the previous two. 

Socioeconomic developments are modelled according to the second Shared Socio-Economic Pathway 

(SSP2), where global population reaches 9.2 billion by 2050 and regional income grows according to 

historical trends (Fricko et al. 2017). The scenario design is discussed in further detail in Methods. 

Through adjustments in trade, supply and demand induced by the different climate and trade scenarios, 

the 2050 global population at risk of hunger deviates substantially from the SSP2 baseline projection 

(Figure 1, Supplementary Table 1 and 2). First, without changes in trade barriers, projections across RCP8.5 

scenarios range from a reduction of 3 million to an increase of 48 million hungry people compared to the 

baseline (-2% to +29%), depending on the GCM and CO2 fertilization effect. With Fixed imports, hunger 

exacerbates across all RCP8.5 scenarios, with in the most extreme case an additional 89 million hungry 

people compared to the baseline (+54%). This means that some regions importantly depend on 

agricultural imports to limit the impact of climate change on hunger. In the Baseline trade scenario, the 

total agricultural trade volume increases 2% to 14% across RCP8.5 scenarios through an expansion at the 

intensive as well as extensive margin (new flows representing 1% – 2.5% of the total trade volume) 

(Supplementary Table 1). By preventing endogenous market responses to climate change the Fixed 

imports scenario leads to a lower global crop production efficiency (-1% to -3%), a lower total crop calorie 

production (-1% to -3%), higher agricultural prices (+2% to +10%), and lower global food availability (-12 

to -40 kcal/cap/day) across RCP8.5 scenarios compared to the Baseline trade scenario (Supplementary 

Table 2). On average, Fixed imports increases the hunger effect of RCP8.5 scenarios by 144%, which is 

larger than the impact of trade restriction found by Wiebe et al. (2015) on food price effects (63%) and by 

Gouel and Laborde (2018) on agricultural welfare effects (76%). 
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Figure 1 | Global population at risk of hunger (million) in 2050 across climate change and trade scenarios. wt: with CO2 
fertilization effect, wo: without CO2 fertilization effect. The black dotted horizontal line indicates the population at risk of hunger 
in the SSP2 baseline (163 million). 

Second, the Facilitation and Tariff elimination scenarios both reduce the risk of hunger from climate 

change, but it is only in the Facilitation + Tariff elimination scenario that the impact of the most negative 

climate change scenario is fully compensated. Trade liberalization and facilitation reduces hunger by 

enhancing climate-induced trade adjustments – total agricultural trade triples to quadruples across 

RCP8.5 scenarios with more important adjustments at the extensive margin (new trade flows representing 

5 to 8% of total trade volume) – and by increasing the efficiency of agricultural production under climate 

change (Supplementary Table 1 and 2). Either trade liberalization or trade facilitation suffices to 

compensate the impact on hunger under intermediate climate change scenarios (RCP4.5wt – RCP6wt). In 

RCP2.6wt the population at risk of hunger is consistently lower than the SSP2 baseline because crop yields 

in many regions increase or remain unaffected in this scenario (Supplementary Figure 1). The hunger 

effect under the most extreme climate change scenario is reduced by 79% under Facilitation, 63% under 

Tariff elimination and 114% under Facilitation + Tariff elimination. These are larger than the 44% lower 

hunger effect under market integration in Baldos and Hertel (2015) or the 46% lower price effect under 

trade liberalization in Wiebe et al. (2015).  

To analyze how climate change and trade scenarios interact in their impact on hunger, and thus to reveal 

the adaptation effect of trade, we regress hunger outcomes from GLOBIOM on crop yield shocks projected 

by EPIC and average trade costs in regional level linear regression models (Table 1). We interpret these 

results for a 6% reduction in crop yield and a 29% reduction in trade costs, which corresponds to the 

average impacts of climate change scenarios and trade policy scenarios respectively. Regression results 

(Table 1) reveal that a 6% reduction in crop yields within a region leads on average to a reduction in food 

availability of 11 kcal/cap/day (95% confidence interval (CI), 13 – 9 kcal/cap/day) and an additional 0.65 

million people at risk of hunger (CI, 0.29 – 1 million). For a 29% decrease in trade costs, we project that 
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average food availability within a region increases 11 kcal/cap/day (CI, 9 – 13 kcal/cap/day) and that there 

are 1.53 million fewer people undernourished (CI, 1.89 – 1.18 million). Regional differences matter and 

are discussed in the next section. We find a significant negative interaction effect between trade costs 

and climate-induced crop yield change. This means for example that the average hunger impact of a 6% 

climate-induced reduction in crop yields is more than halved (from an additional 0.65 million to an 

additional 0.26 million hungry people) with a 29% reduction in trade costs. The adaptation effect of 

reducing trade costs by 29% is -0.39 million hungry people. When considering also the direct positive 

effect of reducing trade costs, the impact of a 6% reduction in crop yield is already completely 

compensated by a 11% reduction in trade costs – the negative hunger effect of a 6% reduction in crop 

yields (+0.65 million) is offset by the sum of the direct effect (-0.52 million) and the adaptation effect (-

0.13 million) of reducing trade costs by 11%. These results imply that trade costs importantly determine 

how climate change affects hunger (or that climate change alters the relation between agricultural trade 

and global hunger) and point to a global climate change adaptation potential of reducing trade costs 

through trade liberalization and facilitation. 

Table 1 | Results from OLS estimation of the impact of crop yields, trade costs and their interaction on population at risk of 
hunger and food availability. Observations are GLOBIOM output for each region under the 5 different trade scenarios and 10 
different climate change scenarios in 2050. The regression models are described in the Methods.  

  
Population at risk of hunger (million) Food availability (kcal/cap/day) 

  

Crop yield  
(% change) 

-11.497 *** 191.791 *** 

(3.213) 
 

(18.021) 
 

Trade cost 4.528 *** -32.517 *** 

(0.538) 
 

(3.596) 
 

Crop yield (% change) x  
Trade cost 

-20.149 *** 65.838 ** 

(6.685) 
 

(28.481) 
 

  

Significance levels: *p<0.1; **p<0.05; ***p<0.01. Regional fixed effects included. Two outliers are removed, [EUR, T1, 
8p5wo] and [CSI, T1, 8p5wo]. Heteroskedastic robust standard errors in brackets. N = 548. Adjusted R squared is 0.916 
for hunger regression and 0.977 for food availability regression.  

 

Regional perspective on trade’s adaptation potential  

The hunger outcomes of different climate and trade scenarios differ substantially among regions (Figure 

2). South Asia (SAS) and Sub-Saharan Africa (SSA) are most severely affected by climate change and 

experience the largest hunger-increasing effect from import restrictions. Across RCP8.5 scenarios, 

projections for the Baseline trade scenario range from a marginal reduction to a large increase in 

population at risk of hunger in SAS and SSA (-2% to +75% and -1% to +35% compared to the baseline, 

respectively). Across these scenarios, SAS and SSA become larger net agricultural importers (net imports 

increase by 23 to 137% in SAS and by 7 to 40% in SSA), increasing imports from regions with the highest 

crop yields across RCP8.5 scenarios, LAC, EUR and EAS (Supplementary Figure 1). Intra-regional trade 

increases by 14% to 57% in SSA, but varies across RCP8.5 scenarios in SAS (+10% to -36%). With Fixed 

imports an additional 7 to 51 million people are at risk of hunger in SAS, while in SSA the impact ranges 

from a reduction of 0.83 million to an increase of 27 million. Preventing trade adjustments to climate 

change increases agricultural prices and lowers food availability. Consistent with the global picture, 
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Facilitation + Tariff elimination reduces agricultural prices, increases food availability, and reduces hunger 

in SAS and SSA across all RCP8.5 scenarios. SAS faces higher agricultural tariffs in 2000 than SSA leading 

to larger absolute changes in terms of prices, food consumption and hunger from tariff elimination. Other 

regions experience much smaller hunger effects of climate change and trade scenarios. This is in line with 

other studies showing that South Asia and Sub-Saharan Africa are most vulnerable to climate change and 

would benefit most from trade integration (Gouel and Laborde 2018; Baldos and Hertel 2015). 

 

Figure 2 | Population at risk of hunger in 2050 under different climate change and trade scenarios in each region (million). 
Regions are United States of America (USA), Russia and West Asia (CSI), East Asia (EAS), Southeast Asia (SEA), South Asia (SAS), 
Middle-East and North-Africa (MNA), Sub-Saharan Africa (SSA), Latin American Countries (LAC), Oceania (OCE), Canada (CAN) and 
Europe (EUR). The population at risk of hunger is zero in each climate change and trade scenario in CAN and EUR.  The black 
dotted horizontal line indicates the population at risk of hunger in the SSP2 baseline. 

To reveal regional differences in how climate change and trade scenarios interact in their impact on 

hunger, we add regional interaction effects in the regressions presented in Table 1 (Supplementary Table 

3). In most regions, climate-induced decreases in crop yields reduce food availability and increase hunger 

while reduced trade costs have the opposite effects, with the largest impacts in low-income regions (SSA 

and SAS), followed by middle-income regions (EAS, MNA, CSI and LAC). In USA and OCE reduced trade 

costs slightly reduce food availability while hardly affecting hunger. Reduced food availability translates 

into either large, small or insignificant effects on hunger, depending on regional income levels. As 

described in Hasegawa et al. (2015; 2018), at similar per capita food availability levels, risk of hunger is 

higher in low-income countries because of an inverse relationship between per capita income and 

inequality in domestic food distribution. The latter relates to poor infrastructure and remoteness which 

limit local markets in distributing food equally (Brown et al. 2017).  

The hunger effect from the interaction between trade costs and climate-induced yield changes, i.e. the 

adaptation effect of reducing trade costs, is large and negative only for SSA and SAS (Supplementary Table 

3). A 6% reduction in crop yields increases hunger in SAS on average with 4.47 million people and is offset 

by a 29% reduction in trade costs through a direct effect (-3.86 million) and adaptation effect (-0.61 
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million). In SSA, a 6% reduction in crop yields increases hunger on average with 5.24 million people and is 

compensated by a 26% reduction in trade costs through a direct effect (-4.29 million) and adaptation 

effect (-0.96 million). Figure 3 plots the predicted hunger-yield relationship in SAS and SSA for different 

levels of international trade costs (Supplementary Figure 2 for all regions). This visual illustrates the direct 

effect of trade costs (a downward shift of the curve for lower trade costs) and the adaptation effect of 

trade costs (a flatter slope for lower trade costs). The importance of the trade adaptation effect increases 

the more negative climate-induced crop yield change. For example, in SSA the estimated hunger effect of 

the average crop yield change in the most extreme climate change scenario (RCP8.5wo, -21% reduction 

in crop yield) is an additional 19.2 million people undernourished and is compensated by a 50% trade cost 

reduction through a direct effect of -10.5 million and adaptation effect of -8.7 million people hungry. 

Especially in the poorest regions (SAS and SSA) climate-induced crop yield changes increase hunger and 

lower trade costs through trade liberalization and investments in trade infrastructure reduce hunger, 

directly and indirectly by lowering the sensitivity of hunger to climate change. 

 

Figure 3 | Plot of the fitted linear response of population at risk of hunger (million) to climate-induced crop yield change in 
SAS and SSA for different values of trade costs (1st decile, median, 9th decile). Shaded areas indicate prediction intervals. 
Prediction based on an OLS estimation of a regional level linear regression of the impact of crop yield change, trade costs and 
their interaction on population at risk of hunger. Regression results are shown in Supplementary Table 3 and the regression model 
is described in Methods. 

Inter-regional specialization  

In Figure 4 we assess to what extent climate change shifts the pattern of comparative advantage of four 

key staple food crops (corn, wheat, soya and rice) across GCMs and RCPs. In line with Ricardo’s theory, a 

region is regarded as having a comparative advantage when it specializes in a certain crop, such that its 

share of world production increases, when trade costs reduce. Under no climate change, USA has a 

comparative advantage in corn production, LAC in soya, and OCE and EUR in wheat (Figure 4a). Under 
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climate change, LAC and USA have a comparative advantage in corn production, SEA and EAS in rice, LAC 

in soya, and OCE, CSI, EUR and CAN in wheat (Figure 4b). Figure 4c compares regions’ specialization in 

response to a trade cost reduction under climate change and no climate change. The small number of 

significant differences reveals that the overall pattern of comparative advantage of the four crops remains 

similar under climate change. While climate change affects the relative productivity and cost 

competitiveness of regions, it does not radically alter the relative position of each region for these crops 

(Supplementary Figure 3 and 4). Figures on crop shares in a region’s total production, and on export shares 

in a region’s crop production (Supplementary Figures 6 and 7) corroborate this. SAS and SSA increase total 

agricultural imports under climate change, indicating a low comparative advantage in overall agricultural 

production. Climate change increases particularly the import of those crops for which SAS and SSA already 

have a large net import in the baseline (soya in SAS, and rice and wheat in SSA, Supplementary Figure 8). 

These increased imports originate from major baseline producing regions, which maintain a comparative 

advantage under climate change (soya from LAC, wheat from EUR and rice from EAS and SEA, cfr. Figure 

4b and Supplementary Figure 5). The impact of climate change on rice in SAS and corn in SSA, which are 

of critical importance in regional food production and consumption, is mixed. In the baseline, SAS is a 

large producer of rice with small net imports to satisfy its consumption (Supplementary Figure 5 and 8). 

Under intermediate climate change scenarios, SAS becomes a net rice exporter, while under RCP8.5 

scenarios it becomes a larger net rice importer. This trend remains in the Facilitation scenario, while under 

Tariff elimination SAS becomes a larger net rice importer in each climate change scenario. SSA is large 

corn producer and a net exporter in the baseline (Supplementary Figure 5 and 8). Across all climate change 

scenarios, SSA maintains a surplus corn production and increases its net exports, increasing trade 

specifically to SAS and EAS. In the trade scenarios, most strongly under Facilitation, SSA further increases 

its net corn exports. Besides increasing exports to EAS and SAS, SSA also increases its intra-regional trade.  
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Figure 4 | Inter-regional specialization in corn, rice, soya and wheat in response to trade cost reduction in 2050 under a) 
constant climate, b) climate change, and c) the difference between climate change and no climate change. Each subplot 
presents the results of a crop-specific OLS estimation of a regional level linear regression model on the impact of export trade 
costs on share of global production. Each point shows the estimated impact of a 1% reduction in trade costs on exports for a 
particular crop and region on share of world production in percentage, with lines denoting the corresponding 95% confidence 
interval (heteroskedastic robust standard errors). For a) observations are taken from the constant climate change scenario and 4 
trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff). Only regions are selected whose share of world 
production of the crop in the baseline is larger than 1%, and which have a surplus production of the crop in at least one of the 
three trade integration scenarios. 95% confidence interval of USA – wheat is [-0.24, 0.35]. N is 16 for corn, 16 for rice, 8 for soya, 
and 27 for wheat. For b) and c) observations are taken from the 9 climate change scenarios and 4 trade scenarios (Baseline trade, 
Facilitation, Tariff, Facilitation + Tariff) with exclusion of regions that have a deficit production in each trade and climate change 
scenario. N is 215 for corn, 216 for rice, 108 for soya and 263 for wheat. For c) the outcome variable is the difference in share of 
world production with the no climate change scenario. The regression models are described in the (Supplementary) Methods. 

Existing literature suggests that trade acts as an adaptation mechanism because it facilitates responses to 

a climate-induced altered pattern of comparative advantage (e.g. Costinot et al 2016; Gouel and Laborde 

2018). We provide quantitative evidence for a climate change adaptation effect of trade. Yet, changing 

comparative advantage in crops is not the main driver of this effect. Our results suggest that trade 

liberalization and facilitation creates the largest gain in food availability for regions with a deficit 

production and low yield for staple food crops, which are the regions that are most vulnerable to 

undernourishment due to low income endowments (Supplementary Figures 4, 9 – 12). This explains the 

high climate change adaptation effect on hunger of trade adjustments in SAS and SSA.  
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Discussion  

International trade contributes importantly to climate change adaptation, especially in the poorest and 

most hunger-affected regions. Trade liberalization and facilitation can completely compensate the 

hunger-increasing effect of climate change, even in the worst climate change scenario. We find that under 

the worst climate change conditions, hunger is 107% lower with open trade than with restricted trade. 

Others focusing on agricultural GDP by 2100 come to more conservative estimates of 62.5% ((Stevanović 

et al. 2016)) and 81% (Gouel and Laborde, 2018). We quantify the climate change adaptation effect of 

trade, showing that it becomes larger the more negative the climate-induced yield impact. By expanding 

explorative scenario analyses, accounting for how climate change and trade interact in their impact on 

hunger, and allowing for trade adjustments at the intensive and extensive margin, we demonstrate a more 

substantial role for trade in climate change adaptation. Despite these important methodological 

innovations there are limitations to this study, which paves the way for further research.  With a focus on 

food availability, long term trends and climate change adaptation, we do not account for distributional 

issues of food and nutrition security, short term shocks and extreme weather events, and potential 

adverse climate mitigation effects of trade.  

Our results imply an enormous potential to use trade instruments to mitigate adverse hunger effects of 

climate change and thereby endorse the importance of the Doha Round of trade negotiations. Climate 

change alters the trade food security nexus, calling for a better integration of a climate policy agenda 

within the Doha Development Agenda. The innovative insight from this paper that the benefits of trade 

liberalization increase substantially with more severe climate change, implies that contemplating the 

climate change adaptation potential of trade in negotiations might even facilitate resuming the Doha 

agenda. We need to stress that compensating for climate-induced increases in hunger requires both trade 

liberalization by relaxing import tariffs and facilitation through investments in trade infrastructure. 

Particularly for SSA and SAS trade policies should be an important element in climate adaptation 

strategies, as these regions are not only most vulnerable to climate-induced hunger but also have the 

largest potential to compensate this through further trade liberalization and facilitation.   
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Method 

Modelling framework We use the Global Biosphere Management Model (GLOBIOM) for our analysis. 

GLOBIOM is a recursive dynamic, spatially explicit, economic partial equilibrium model of the agriculture, 

forestry and bioenergy sector. Starting in 2000, the model computes a market equilibrium in 10 year time 

steps until 2050 by maximizing welfare (the sum of consumer and producer surplus) subject to 

technological, resource and political constraints. On the demand side, a representative consumer for each 

one of the 30 economic regions optimizes consumption in response to product prices and income. For this 

paper, we mainly present the model results aggregated to 11 world regions: United States of America 

(USA), Canada (CAN), Europe (EUR), Oceania (OCE), Southeast Asia (SEA), South Asia (SAS), Sub-Saharan 

Africa (SSA), Middle-East and North-Africa (MNA), East Asia (EAS), CSI (Russia and West Asia) and Latin 

American Countries (LAC). In the aggregation of trade flows and trade costs between the 30 economic 

regions, a distinction is made between extra-regional (among world regions) and intra-regional trade 

(within one world region). GLOBIOM is a bottom-up model building on a high spatial grid-level resolution 

on the supply side. Land is disaggregated into Simulation Units, clusters of 5 arcmin pixels which are 

aggregated based on the same altitude, slope and soil class, 30 arcmin pixel and country boundaries. 

GLOBIOM’s crop production sector includes 18 major crops (barley, beans, cassava, chickpeas, corn, 

cotton, groundnut, millet, palm oil, potato, rapeseed, rice, soybean, sorghum, sugarcane, sunflower, 

sweet potato, wheat) under 4 management systems (irrigated – high input, rainfed – high input, rainfed 

– low input and subsistence). Crop production parameters are based on the detailed biophysical crop 

model EPIC. Additional biophysical models are used to represent the livestock [RUMINANT - (Herrero et 

al. 2013)] and forestry [G4M – (Forsell et al. 2016)] sectors. Further information regarding the model 

structure and parameters is documented in (Havlík et al. 2011; Havlik et al. 2014). 

Crop yields adjust endogenously in the model by changing the management system or location of 

production, and exogenously according to long-term technological development and climate change 

impacts (Leclère et al. 2014). Output from the EPIC crop model is used to compute at each time step yields 

shifters for each climate change scenario and each crop and management system at a disaggregated 

spatial scale (pixel-level). Based on inputs from climate models (daily climatic conditions including solar 

radiation, min and max temperature, precipitation, wind speed, relative humidity and CO2 concentration), 

EPIC simulates scenario-specific yields which are used together with historical values to compute the yield 

shifters. EPIC crop yield impacts, and their implementation in GLOBIOM, are further explained in Leclère 

et al. (2014) and Baker et al. (2018). 

International trade International trade is represented through Enke-Samuelson-Takayama-Judge spatial 

equilibrium assuming homogenous goods (Takayama and Judge 1971). Bilateral trade flows are 

determined by the initial trade pattern, relative production costs of regions and the minimization of 

trading costs. Trade costs are composed of tariffs from the MAcMap-HS6 database (Bouët et al. 2008) and 

transport costs (Hummels 2001). A non-linear element is added in which trade costs increase with traded 

quantity to model persistency in trade flows via a constant elasticity function for trade flows observed in 

the base year, and a quadratic function for new trade flows. The non-linear element reflects the cost of 

trade expansion in terms of infrastructure and capacity constraints in the transport sector and is reset 

after each 10 year time step. Compared to other global economic models, GLOBIOM’s trade 

representation is positioned between the rigid Armington approach of general equilibrium models and 

the flexible world pool market approach of many partial equilibrium models. Further information on the 
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international trade representation in GLOBIOM can be found in supplementary material of Baker et al. 

(2018). 

Risk of hunger We use an indicator for the population at risk of hunger developed by Hasegawa et al. 

(2015). It is based on the FAO methodology in which the number of people at risk of hunger is calculated 

by multiplying the share of population at risk of hunger with the total population. The share of the 

population at risk of hunger is the proportion of the population whose food availability falls below the 

mean minimum dietary energy requirement. Three parameters are used to calculate this share: the mean 

minimum dietary energy requirements (MDER), the coefficient of variation (CV) of the distribution of food 

within a country and the mean food availability (kcal per capita per day). Minimum dietary energy 

requirements are exogenously calculated based on demographic composition (age, sex) of future 

population projections. Future changes in the inequality of food distribution among households within a 

region are also exogenous and follow a region’s projected income growth. This is based on an estimated 

relationship between income and the CV of food distribution with observed historical national-level data. 

Food availability in kcal per capita per day is endogenously determined with GLOBIOM at the regional 

level. More information on the method can be found in Hasegawa et al. (2015; 2018). 

Scenario design We simulate climate change scenarios corresponding to four representative 

concentration pathways (RCPs, 2.6 Wm-2 scenario, 4.5 Wm-2 scenario, 6 Wm-2 scenario and 8.5 Wm-2 

scenario) (van Vuuren et al. 2011) as projected by the HadGEM2-ES general circulation model (GCM) 

(Martin et al. 2011; Collins et al. 2011). CO2 fertilization effects are included in all RCPs and RCP8.5 is also 

implemented without CO2 fertilization. RCP8.5 is furthermore implement with 4 additional GCMs to 

reflect uncertainty in climate models: GFDL-ESM2M (Dunne et al. 2012), IPSL-CM5A-LR (Dufresne et al. 

2013), MIROC-ESM-CHEM (Watanabe et al. 2011), and NorESM1-M (Bentsen et al. 2013). The impact of 

corresponding climate changes on agricultural yields is based simulations from the crop model EPIC 

(Leclère et al. (2014), Baker et al. 2018). In the baseline scenario with no climate change (No_CC) 

exogenous change to crop yields originates only from long-term technological development assumptions. 

We implement four trade scenarios to analyze the role of trade in climate change adaptation. The first 

scenario, Fixed imports, limits imports to be less than or equal to imports observed in the baseline scenario 

without climate change. This indicates what happens if adjustments in trade flows in response to climate 

change are restricted, thus limiting trade as an adaptation mechanism. In addition, we implement three 

trade integration scenarios to assess what happens if the trade adaptation mechanism is promoted. In 

the first scenario, Facilitation the non-linear part of trade costs is set close to zero, following the approach 

described in Baker et al. (2018). This reflects the impact of reducing transaction costs, infrastructure costs 

and other non-tariff barriers limiting the expansion of trade flows. In the second scenario, Tariff 

elimination, all agricultural tariffs are progressively phased out between 2020 and 2050, i.e. -25% in 2020, 

-50% in 2030, -75% in 2040 and -100% in 2050. The last one, Facilitation + Tariff elimination, is a 

combination of the previous two ones and presents the most extensive open trade scenario. In the 

Baseline trade scenario trade barriers are kept constant at their level in 2000, but trade patterns are 

allowed to vary endogenously across the different climate impact scenarios. 

Socioeconomic developments are modelled according to the second Shared Socio-Economic Pathway 

(SSP2), which reflects a ‘Middle of the Road’ scenario where population reaches 9.2 billion by 2050 and 

income grows according to historical trends in each region (Fricko et al. 2017). The SSP scenarios have 

been discussed widely in the literature and are often used as a basis for harmonizing key macroeconomic 
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assumptions for integrated assessment modeling of different climate futures, e.g. Riahi et al. (2017). SSP2 

projects a decrease in the global population at risk of hunger over time, from 867 million in 2000 to 163 

million by 2050. This is because of an increase in food consumption and an improved food distribution 

within regions, which are in turn both related to the assumed income growth under SSP2 (Hasegawa, 

Fujimori, Takahashi, et al. 2015). 

Statistical analysis We analyze the results from the scenario runs with a regional level linear regression 

model to infer the underlying relationship between trade costs, crop yield changes and hunger as 

predicted by GLOBIOM. The following two models are estimated by Ordinary Least Squares (OLS) 

(regression results in Table 1): 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑜𝑓 ℎ𝑢𝑛𝑔𝑒𝑟𝑖𝑡𝑟 = 

 𝛽1𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 + 𝛽2 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽3𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗  𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽4𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀  

 𝐹𝑜𝑜𝑑 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡𝑟 = 

 𝛽1𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 + 𝛽2 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽3𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗  𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽4𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀  

Population at risk of hungeritr gives the number of people at risk of hunger (million) and Food availabilityitr 

the food availability (kcal/cap/day) in 2050 in each region i, trade scenario t and climate change scenario 

r. Crop yieldir gives the change in average crop yield (kcal/ha) compared to average crop yield in no climate 

change in 2050 for each region i and climate change scenario r. Trade costitr gives the log of the weighted 

average trade costs (USD/kcal) on all trade flows in 2050 per region i, trade scenario t and climate change 

scenario r. Region is a categorical variable with 11 levels (USA, CAN, EUR, MNA, SEA, EAS, SSA, SAS, CSI, 

OCE, LAC). Further details on the regression, including the model with regional interaction effects (Figure 

3 and SI Table 3), are included in the Supplementary Information (SI).  

Comparative advantage When trade barriers are removed, Ricardo’s trade theory predicts that countries 

produce and export relatively more of the goods for which they have a comparative advantage (Costinot, 

Donaldson, and Komunjer 2012). To assess comparative advantage we estimate a linear regression model 

of the effect of trade cost reduction on the share of a region’s production in total world production for 

each crop, the share of each crop in a region’s total crop production, and the share of a region’s production 

that is exported. The following three models are estimated by Ordinary Least Squares (OLS) for each crop 

separately (regression results Figure 4 and Supplementary Figure 6 and 7): 

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑤𝑜𝑟𝑙𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟 = 𝛽1 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗  𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑐𝑟𝑜𝑝 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟 = 𝛽1 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗  𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑𝑖𝑡𝑟 = 𝛽1 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗  𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

Share of world productionitr gives the share of production of a crop that region i represents in total world 

production of the crop in each trade scenario t and climate change scenario r. Share of regional crop 

productionitr share of production that a crop represents in total crop production of region i in each scenario 

(t,r). Share of production exporteditr share of production of a crop that is exported in region i in each 

scenario (r,t). Trade costsitr is the log of weighted average of trade costs on exports (USD/ton) per region 

i, trade scenario t and climate change scenario r. Region is a categorical variable with 11 levels (USA, CAN, 

EUR, MNA, SEA, EAS, SSA, SAS, CSI, OCE, LAC). Further details on the regression are included in the SI. 

These indicators take into account differences in land productivity, land endowment and price 

competitiveness between crops and regions. In the SI we report additional indicators including the relative 
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competitiveness across regions for each crop (Supplementary Figure 3) and the ratio of the yield of each 

crop compared to other crops between regions (Supplementary Figure 4) which reflects the pure Ricardo-

based comparative advantage.  
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Supplementary Method 

1. Trade costs in GLOBIOM 

 
Bilateral trade flows are determined by the initial trade pattern, relative production costs of regions and 

the minimization of trading costs. Trade costs are composed of tariffs from the MAcMap-HS6 database 

(Bouët, Decreux, Fontagné, Jean, & Laborde, 2008), transport costs (Hummels, 2001) and a non-linear 

element in which trade costs increase with traded quantity to model persistency in trade flows. The latter 

element reflects the cost of trade expansion in terms of infrastructure and capacity constraints in the 

transport sector and is reset after each 10 year time step. The implication of the trade scenarios for 

production, trade patterns and trade costs varies across crops and regions because the level of initial trade 

barriers is for example different. The impact differs also across climate change scenarios through the 

dependency of trade on the competitiveness of each region. The spatial price equilibrium approach 

implies that trade will occur when the cost of trade between two regions is smaller than the regional price 

difference, and this price difference will become equal to the marginal trade cost in equilibrium (McCarl 

& Spreen, 2002). We aggregate these computed trade costs on each trade flow to obtain a measure that 

reflects the implication of trade scenarios on overall trading costs for each crop and region. GLOBIOM 

models bilateral trade flows and trade costs at the level of 30 sub-regions. To be in line with the level of 

analysis of the paper, we aggregate this information to the level of 11 regions (USA, CAN, EUR, MNA, SEA, 

EAS, SSA, SAS, CSI, OCE, LAC). The correspondence between country, sub-region and region level is shown 

in Supplementary Table 4.  

For the analysis on hunger (see also section 2.1) we calculate the weighted average over all agricultural 

imports, exports and intra-regional trade flows for each region i, trade scenario t and climate change 

scenario r:  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑖𝑡𝑟 = ∑
𝑥𝑖𝑘𝑡𝑟

𝑡𝑜𝑡𝑎𝑙_𝑥𝑖𝑡𝑟
∗ 𝑡𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑖𝑘𝑡𝑟

 

𝑘

 

where 𝑥𝑖𝑘𝑡𝑟 are the trade flows of crop k in, out and within region i in each scenario (t,r) and 𝑡𝑜𝑡𝑎𝑙_𝑥𝑖𝑡𝑟 is 

the sum of all trade flows in, out and within region i in each scenario (t,r).  

For the analysis on comparative advantage (see also section 2.2), we calculate a weighted average of trade 

cost on exports of crop k, region i, trade scenario t and climate change scenario r: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑖𝑘𝑡𝑟 = ∑
𝑥𝑙𝑗𝑘𝑡𝑟

𝑥𝑖𝑘𝑡𝑟
∗ 𝑡𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑙𝑗𝑘𝑡𝑟

 

𝑙∈𝑖,𝑗∉𝑖

 

where 𝑥𝑙𝑗𝑘𝑡𝑟 are export flows of crop k from sub-region l (∈ 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖) to sub-region j (∉ 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖) in each 

scenario (t,r) and 𝑥𝑖𝑘𝑡𝑟 is the total export of crop k from sub-regions l to sub-regions j in each scenario 

(t,r).  
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2. Statistical analysis 

 

Hunger and food availability regression analysis 

The following regression models with regional fixed effects are estimated with OLS (results in Table 1):  

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑜𝑓 ℎ𝑢𝑛𝑔𝑒𝑟𝑖𝑡𝑟 = 

𝛽1𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 + 𝛽2 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽3𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗  𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽4𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

𝐹𝑜𝑜𝑑 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡𝑟 = 

 𝛽1𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 + 𝛽2 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽3𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗  𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 + 𝛽4𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

with  

 Population at risk of hungeritr: continuous variable that gives the number of people at risk of 

hunger (million) in 2050 in region i, trade scenario t and climate change scenario r. 

 Food availabilityitr: continuous variable that gives the food availability (kcal/cap/day) in 2050 in 

region i, trade scenario t and climate change scenario r.  

 Region: categorical variable with 11 levels (USA, CAN, EUR, MNA, SEA, EAS, SSA, SAS, CSI, OCE, 

LAC) 

 Crop yieldir: continuous variable that gives percentage change in average crop yield (kcal/ha) 

compared to crop yield in no climate change in 2050 for each region i and climate change scenario 

r. This variable is centered (demeaned) to solve structural multicollinearity.  

 Trade costsjtr: continuous variable that gives the logarithm of the weighted average trade costs 

(USD/kcal) on all trade flows in 2050 per region i, trade scenario t and climate change scenario r. 

Trade costs are weighted based on the trade quantity of each trade flow in and out of a region. 

This variable is centered (demeaned) to solve structural multicollinearity.  

Standard errors are estimated robust to heteroscedasticity using the HC3 method as recommended by 

Long and Ervin (2000)1. The F statistic of overall significance rejects null hypothesis at 1% significance level 

for both models. Summary statistics of the dependent and explanatory variables are shown in Table 1 

below. 

Supplementary Method Table 1 | Descriptive statistics of the dependent and explanatory variables (at regional level). The 
sample is composed of observations for the 11 regions for the 5 trade scenarios, the no climate change scenario and the 9 climate 
change scenarios. Two outliers in terms of trade costs are removed: [EUR, T1, 8p5wo] and [CSI, T1, 8p5wo]. This leads to 548 
observations ( = 11 regions x 5 trade scenarios x 10 RCP-GCM scenarios – 2 outliers).   

 Min Average Max 

Population at risk of hunger (million) 0 14.19 87.63 
Food availability (kcal/cap/day) 1758 2230 2655 
Crop yield (difference with NoCC) -38% -5% +36% 
Trade costs (US$/106 kcal) 15.09 67.60 221.67 

 

                                                           
1 HC3 is a refined version of White’s method for estimation of heteroskedastic standard errors (HC0). Long and Ervin 
(2000) demonstrate with Monte Carlo simulations that the HC3 method outperforms HC0 for small sample sizes (N 
< 250). 
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The following regression models with regional interaction terms are estimated with OLS (results in Figure 

3 and Supplementary Table 3): 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑜𝑓 ℎ𝑢𝑛𝑔𝑒𝑟𝑖𝑡𝑟 = 

 𝛽1𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛 + 𝛽2 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛 + 𝛽3𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗  𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

𝐹𝑜𝑜𝑑 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡𝑟 = 

 𝛽1𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛 + 𝛽2 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛 + 𝛽3𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑𝑖𝑟 ∗  𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

with variables as for the model with regional fixed effects.  

Standard errors are estimated robust to heteroscedasticity using the HC3 method. The calculation of 

regional interaction effects is done with the Delta Method. In specific, we calculate the interaction effects 

between regional dummies and the continuous variables. The regional fixed effect is not added to the 

interaction effect because we are interested for example in the effect of exogenous crop yield change on 

hunger in each region, without including the effect of being a certain region on hunger. The sample is 

composed of observations for 9 regions for the 5 trade scenarios, the no climate change scenario and the 

9 climate change scenarios. One outlier in terms of trade costs are removed: [CSI, T1, 8p5wo]. This leads 

to 449 observations ( = 9 regions x 5 trade scenarios x 10 RCP-GCM scenarios – 1 outliers). The F statistic 

of overall significance rejects null hypothesis at 1% significance level for both models. 

 

Comparative advantage regression analysis 

The following models are estimated with OLS for corn, soya, rice and wheat (results in Figure 4 and 

Supplementary Figures 6 and 7):  

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑤𝑜𝑟𝑙𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟 = 𝛽1 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗  𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑐𝑟𝑜𝑝 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖𝑡𝑟 = 𝛽1 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗  𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑𝑖𝑡𝑟 = 𝛽1 𝑇𝑟𝑎𝑑𝑒 𝑐𝑜𝑠𝑡𝑠𝑖𝑡𝑟 ∗  𝑅𝑒𝑔𝑖𝑜𝑛 +  𝜀 

with 

 Share of world productioniktr: share of production that region i represents in total world 

production of the crop in each scenario (t,r) in 2050 (ranges between [0, 1]).  

 Share of specific crop in total regional crop productioniktr: share of production that the crop 

represents in total crop production of region i in each scenario (t,r) in 2050 (ranges between [0, 

1]). 

 Share of production that is exportediktr: share of production of the crop that is exported in region 

i in each scenario (r,t) in 2050 (ranges between [0, 1]). 

 Region: categorical variable with 11 levels (USA, CAN, EUR, MNA, SEA, EAS, SSA, SAS, CSI, OCE, 

LAC) 

 Trade costsiktr: log of the weighted average trade costs on exports (USD/ton) in 2050 for the crop 

per region i, trade scenario t and climate change scenario r. Trade costs are weighted based on 

the trade quantity of each export flow. This variable is centered (demeaned) to solve structural 

multicollinearity.  
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The regressions are estimated with three different samples: only no climate change scenario included 

(Figures Xa), only climate change scenarios included (Figures Xb) or only climate change scenarios with as 

the dependent variable the difference in outcome variable between climate change and no climate 

change (Figures Xc). Standard errors are estimated robust to heteroscedasticity using the HC3 method 

and the calculation of the regional interaction effect is done with the Delta Method.  
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Supplementary Figures 
 

 

Supplementary Figure 1 | Impact of climate change on average crop yield in each region by 2050. The x-axis indicates the crop 
yield under no climate change (without GLOBIOM market feedback, determined by assumption on technological development) 
and y-axis the crop yield as projected by the EPIC crop model under climate change for different RCP x GCM combinations (without 
adaptation measures). Points above the black line indicate an increase in crop yield, points below a decrease in crop yield. 
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Supplementary Figure 2 | Plot of the fitted linear response of population at risk of hunger (million) to climate-induced crop 
yield change for different values of trade costs (1st decile, median, 9th decile). Shaded areas indicate prediction intervals. 
Prediction based on an OLS estimation of a regional level linear regression of the impact of crop yield change, trade costs and 
their interaction on population at risk of hunger. Regression results are shown in Supplementary Table 3 and the regression model 
is described in online and Supplementary Methods. 
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Supplementary Figure 3 | Relative competitiveness (across regions) in response to climate change in 2050 under the 
Facilitation + Tariff elimination scenario. The y axis indicates the producer price relative to the world average producer price for 
each crop, with values below zero indicating an above average competitiveness. The black dot indicates the relative producer 
price under no climate change, while the boxplot the relative producer price over the 9 climate change scenarios. Distinction is 
made between regions that have a deficit production in each trade and climate change scenario (Always deficit), and regions that 
do not (Not always deficit). 
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Supplementary Figure 4 | Relative yield of corn, rice, soya and wheat in response to climate change in 2050 under the Baseline 
trade scenario. The y-axis indicates for each crop the ratio of yield to the average yield of all other crops. A ratio larger than 1 
(above the dotted line) indicates a low opportunity cost in terms of land. The black dot indicates the ratio in the no climate change 
scenario, while the boxplots the ratio under the 9 climate change scenarios. Distinction is made between regions that have a 
deficit production in each trade and climate change scenario (Always deficit), and regions who do not (Not always deficit). 

 

Supplementary Figure 5 | Share of production volume that each region represents of total world production for corn, rice, 
soya and wheat in the SSP2 baseline in 2050.  
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Supplementary Figure 6 | Intra-regional specialization in corn, rice, soya and wheat in response to trade cost reduction in 2050 
under a) constant climate, b) climate change, and c) the difference between climate change and no climate change. Each 
subplot presents the results of an OLS estimation of a regional level linear regression model on the impact of export trade costs 
on share of a particular crop in total regional crop production. Each point shows the estimated impact of a 1% reduction in trade 
costs for a particular crop and region on share of regional crop production in percentage, with lines denoting the corresponding 
95% confidence interval (heteroskedastic robust standard errors). For a) observations are taken from the constant climate change 
scenario and 4 trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff). Only regions are selected where the share 
of production of the crop in total regional crop production in the baseline is larger than 2%, and which have a surplus production 
of the crop in at least one of the three trade integration scenarios. N is 20 for corn, 12 for rice, 8 for soya, and 27 for wheat. For 
b) and c) observations are taken from the 9 climate change scenarios and 4 trade scenarios (Baseline trade, Facilitation, Tariff, 
Facilitation + Tariff) with exclusion of regions that have a deficit production in each trade and climate change scenario. N is 215 
for corn, 216 for rice, 108 for soya and 263 for wheat. For c) the outcome variable is the difference in share of regional crop 
production with the no climate change scenario. The regression models are described in the online and Supplementary Methods. 
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Supplementary Figure 7 | Export orientation of production in corn, rice, soya and wheat in response to trade cost reduction in 
2050 under a) constant climate, b) climate change, and c) the difference between climate change and no climate change. Each 
subplot presents the results of a crop-specific OLS estimation of a regional level linear regression model on the impact of export 
trade costs on share of production exported. Each point shows the estimated impact of a 1% reduction in trade costs for a 
particular crop and region on share of production exported in percentage, with lines denoting the corresponding 95% confidence 
interval (heteroskedastic robust standard errors). For a) observations are taken from the constant climate change scenario and 4 
trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff). Only regions are selected whose share of world 
production of the crop in the baseline is larger than 1%, and which have a surplus production of the crop in at least one of the 
three trade integration scenarios. 95% confidence interval of USA – rice is [-0.85, 0.27], of LAC – wheat [-0.69, 0.90] and of USA – 
wheat [-0.57, 0.59]. N is 16 for corn, 16 for rice, 8 for soya, and 27 for wheat. For b) and c) observations are taken from the 9 
climate change scenarios and 4 trade scenarios (Baseline trade, Facilitation, Tariff, Facilitation + Tariff) with exclusion of regions 
that have a deficit production in each trade and climate change scenario. N is 215 for corn, 216 for rice, 108 for soya, and 263 for 
wheat. For c) the outcome variable is the difference in share of production exported with the no climate change scenario. The 
regression models are described in the online and Supplementary Methods. 
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Supplementary Figure 8 | Net trade (1000 ton) in South Asia (SAS) and Sub-Saharan Africa (SSA) for corn, rice, soya and wheat 
under climate change and trade scenarios in 2050. Values above zero indicate net exports, while negative values indicate net 
imports. 

 

 

Supplementary Figure 9 | Corn yield (ton/ha) under climate change and under no climate change in each region based on 
projections by the EPIC crop model in 2050. Under no climate change crop yields are determined by base year yields and 
assumptions on technological development over time. 



13 
 

 

Supplementary Figure 10 | Rice yield under climate change and no climate change in each region as projected by the EPIC crop 
model in 2050. Under no climate change crop yields are determined by base year yields and assumptions on technological 
development over time. 

 

Supplementary Figure 11 | Soya yield under climate change and no climate change in each region as projected by the EPIC crop 
model in 2050. Under no climate change crop yields are determined by base year yields and assumptions on technological 
development over time. 
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Supplementary Figure 12 | Wheat yield under climate change and no climate change in each region as projected by the EPIC 
crop model in 2050. Under no climate change crop yields are determined by base year yields and assumptions on technological 
development over time. 
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Supplementary Tables 
Supplementary Table 2 | Global trade adjustments under trade and climate change scenarios compared to the SSP2 baseline 
computed by GLOBIOM by 2050. Total trade growth and specific extensive margin trade growth, the latter indicated as new 
trade flows compared to the 2000 trade pattern and new trade flows compared to the baseline SSP2 trade pattern. RCP: 
Representative Concentration Pathway, with (wt) or without (wo) CO2 fertilization effect. GCM: General Circulation Model.  

   
Trade adjustments 

RCP  GCM Trade scenario 
Total trade 

volume 
(1000 ton) 

Difference in 
total trade 

w.r.t. 
baseline (%) 

Total volume 
of new trade 
flows w.r.t. 

2000 
(1000 ton) 

Total volume 
of new trade 
flows w.r.t. 

baseline 
(1000 ton) 

NoCC None Baseline 1317834 0 18727 0 

2p6wt HadGEM2-ES Baseline 1359078 0.03 20991 13240 

4p5wt HadGEM2-ES Baseline 1375502 0.04 22346 14634 

6p0wt HadGEM2-ES Baseline 1383007 0.05 22529 19376 

8p5wt GFDL-ESM2M Baseline 1471206 0.12 19937 7485 

8p5wt HadGEM2-ES Baseline 1401549 0.06 25142 31346 

8p5wt IPSL-CM5A-LR Baseline 1429006 0.08 22770 12219 

8p5wt MIROC Baseline 1480669 0.12 19782 32376 

8p5wt NorESM1-M Baseline 1348113 0.02 19942 17856 

8p5wo HadGEM2-ES Baseline 1497331 0.14 29199 37426 

NoCC None Fixed imports 1317191 0.00 18726 0 

2p6wt HadGEM2-ES Fixed imports 1189833 -0.10 17319 0 

4p5wt HadGEM2-ES Fixed imports 1178552 -0.11 17344 0 

6p0wt HadGEM2-ES Fixed imports 1187908 -0.10 17502 0 

8p5wt GFDL-ESM2M Fixed imports 1223395 -0.07 16637 0 

8p5wt HadGEM2-ES Fixed imports 1132023 -0.14 16921 0 

8p5wt IPSL-CM5A-LR Fixed imports 1214310 -0.08 16295 0 

8p5wt MIROC Fixed imports 1144187 -0.13 16166 0 

8p5wt NorESM1-M Fixed imports 1174511 -0.11 16569 0 

8p5wo HadGEM2-ES Fixed imports 1127856 -0.14 17178 0 

NoCC None Facilitation + Tariff 5845726 3.44 65044 338724 

2p6wt HadGEM2-ES Facilitation + Tariff 6266867 3.76 66401 380811 

4p5wt HadGEM2-ES Facilitation + Tariff 5960152 3.52 67875 372203 

6p0wt HadGEM2-ES Facilitation + Tariff 6167365 3.68 66789 393398 

8p5wt GFDL-ESM2M Facilitation + Tariff 6473411 3.91 67580 340295 

8p5wt HadGEM2-ES Facilitation + Tariff 5629993 3.27 69609 399729 

8p5wt IPSL-CM5A-LR Facilitation + Tariff 5977386 3.54 70197 352002 

8p5wt MIROC Facilitation + Tariff 5994512 3.55 65398 383632 

8p5wt NorESM1-M Facilitation + Tariff 5745481 3.36 67255 392088 

8p5wo HadGEM2-ES Facilitation + Tariff 5182680 2.93 18727 409417 

GCM MIROC: MIROC-ESM-CHEM 
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Supplementary Table 3 | Global market responses to trade and climate change scenarios compared to the Baseline trade (T0) 
scenario by 2050.  

      Market responses 

RCP  
With / 

without 
CO2 

GCM Trade scenario 

Global 
production 
efficiency, 
difference 
to T0 (%) 

Crop calorie 
production, 

difference to 
T0 (%) 

Food 
availability , 
difference to 

T0 
(kcal/cap/day) 

Agricultural 
prices, 

difference 
compared 
to T0 (%) 

No CC None Fixed imports 0.00 0.00 -0.02 0.00 

2p6wt HadGEM2-ES Fixed imports 0.00 -0.01 -3.15 0.01 

4p5wt HadGEM2-ES Fixed imports -0.01 -0.01 -7.59 0.02 

6p0wt HadGEM2-ES Fixed imports -0.01 -0.01 -9.19 0.02 

8p5wt GFDL-ESM2M Fixed imports -0.01 -0.01 -18.01 0.02 

8p5wt HadGEM2-ES Fixed imports -0.01 -0.02 -21.34 0.03 

8p5wt IPSL-CM5A-LR Fixed imports -0.02 -0.02 -21.73 0.04 

8p5wt MIROC Fixed imports -0.01 -0.01 -12.30 0.02 

8p5wt NorESM1-M Fixed imports -0.02 -0.02 -16.71 0.05 

8p5wo HadGEM2-ES Fixed imports -0.03 -0.03 -40.54 0.10 

No CC None Facilitation + Tariff 0.08 0.08 78.96 -0.17 

2p6wt HadGEM2-ES Facilitation + Tariff 0.07 0.08 82.80 -0.17 

4p5wt HadGEM2-ES Facilitation + Tariff 0.07 0.08 73.93 -0.17 

6p0wt HadGEM2-ES Facilitation + Tariff 0.07 0.08 75.67 -0.17 

8p5wt GFDL-ESM2M Facilitation + Tariff 0.09 0.10 84.08 -0.18 

8p5wt HadGEM2-ES Facilitation + Tariff 0.07 0.08 63.12 -0.16 

8p5wt IPSL-CM5A-LR Facilitation + Tariff 0.05 0.08 65.44 -0.17 

8p5wt MIROC Facilitation + Tariff 0.07 0.08 70.55 -0.17 

8p5wt NorESM1-M Facilitation + Tariff 0.06 0.08 62.34 -0.16 

8p5wo HadGEM2-ES Facilitation + Tariff 0.04 0.05 48.31 -0.15 

GCM MIROC: MIROC-ESM-CHEM 
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Supplementary Table 4 | Results from OLS estimation of the impact of crop yields, trade costs and their interaction on 
population at risk of hunger and food availability including regional interaction effects. Observations are GLOBIOM output for 
9 regions (EUR and CAN excluded) under the 5 different trade scenarios and 10 different climate change scenarios in 2050. The 
regression models are fully described in the Supplementary Methods.   

    
Food availability 
(kcal/cap/day) 

Population at risk of hunger 
(million) 

    coefficient se   coefficient se   

Crop yield (% change) CSI 144.38 75.23 * -0.98 0.49 ** 

Crop yield (% change) EAS 315.53 64.28 *** -18.93 6.14 *** 

Crop yield (% change) LAC 286.44 52.38 *** -8.52 1.23 *** 

Crop yield (% change) MNA 94.27 80.54  -0.95 3.76  
Crop yield (% change) OCE 66.86 101.28  -0.04 0.12  
Crop yield (% change) SAS 429.02 53.89 *** -78.95 18.33 *** 

Crop yield (% change) SEA 312.61 126.01 ** -12.51 6.88 * 

Crop yield (% change) SSA 614.15 106.97 *** -92.60 20.72 *** 

Crop yield (% change) USA 268.76 34.80 *** -0.14 0.02 *** 

Trade cost  CSI -47.51 10.78 *** 0.30 0.05 *** 

Trade cost  EAS -37.11 3.95 *** 2.61 0.42 *** 

Trade cost  LAC -31.18 6.19 *** 1.71 0.21 *** 

Trade cost  MNA -75.09 14.25 *** 4.31 0.69 *** 

Trade cost  OCE 35.05 13.67 ** -0.02 0.02  
Trade cost  SAS -68.10 6.51 *** 11.87 1.25 *** 

Trade cost  SEA 6.86 14.40  0.15 0.84  
Trade cost  SSA -88.90 8.93 *** 15.17 1.67 *** 

Trade cost  USA 32.50 3.62 *** -0.02 0.00 *** 

Crop yield (% change) x Trade cost CSI -41.83 98.17  0.14 0.46  
Crop yield (% change) x Trade cost EAS -89.27 120.41  10.14 10.04  
Crop yield (% change) x Trade cost LAC -111.99 170.29  3.84 3.62  
Crop yield (% change) x Trade cost MNA -135.55 103.49  7.51 3.79 ** 

Crop yield (% change) x Trade cost OCE 115.82 92.49  -0.10 0.10 * 

Crop yield (% change) x Trade cost SAS 4.90 71.44  -33.03 18.35 * 

Crop yield (% change) x Trade cost SEA 41.41 201.15  0.76 8.64  
Crop yield (% change) x Trade cost SSA 163.72 149.63  -60.40 17.33 *** 

Crop yield (% change) x Trade cost USA 115.70 35.32 *** -0.07 0.02 *** 

Significance levels: *p<0.1; **p<0.05; ***p<0.01. Heteroskedastic robust standard errors. EUR and CAN are not 

included as they have always zero hunger. One outlier is removed: [CSI, T1, 8p5wo].  N =  449. Adjusted R squared 

is 0.999 for food availability regression and 0.982 for hunger regression.  
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Supplementary Table 5 | Regions, sub-regions and countries in GLOBIOM. 

Region Sub-region Country 

CAN Canada Canada 
CSI Former USSR Belarus, Moldova, Ukraine, Russia, Azerbaidjan, Kazakhstan, 

Turkmenistan, Uzbekistan, Armenia, Georgia, Kyrgyzstan, 
Tajikistan 

EAS China People's Republic of China, Hong Kong  
Japan Japan  
South Korea Korea 

EUR EU Baltic Estonia, Latvia, Lithuania  
EU Central East Bulgaria, Czech Republic, Hungary, Poland, Romania, 

Slovakia, Slovenia  
EU Mid West Austria, Belgium, France, Germany, Luxembourg, 

Netherlands  
EU North Denmark, Finland, Ireland, Sweden, United Kingdom  
EU South Cyprus, Greece, Italy, Malta, Portugal, Spain  
Rest of Central Eastern Europe (RCEU) Albania, Bosnia Herzegovina, Croatia, Macedonia, Serbia  
Rest of Western Europe (ROWE) Iceland, Norway, Switzerland, Greenland 

LAC Brazil Brazil  
Mexico Mexico  
Central America (RCAM) Bahamas, Belize, Costa Rica, Cuba, Dominican Republic, El 

Salvador, Guadeloupe, Guatemala, Jamaica, Nicaragua, 
Panama, Trinidad and Tobago  

South America (RSAM) Argentina, Bolivia, Chile, Colombia, Ecuador,Guyana, 
Paraguay, Peru, Suriname, Uruguay, Venezuela  

MNA Middle East – North Africa Egypt, Algeria, Libya, Morocco, Tunisia, Bahrain, Iran, Iraq, 
Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, 
Syria, United Arab Emirates, Yemen  

Turkey Turkey 
OCE ANZ Australia, New Zealand  

Pacific Islands Fiji, French Polynesia, New Caledonia, Papua New Guinea, 
Samoa, Solomon Islands, Vanuatu 

SAS India India   
Rest of South Asia (RSAS) Afghanistan, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka 

SEA South East Asia – other Pacific Asia 
(RSEA_OPA) 

Brunei Daressalam, Indonesia, Malaysia, Myanmar, 
Philippines, Singapore, Thailand, East Timor  

South East Asia – (ex-)planned 
economies (RSEA_PAC) 

Cambodia, DPR of Korea, Laos, Mongolia, Viet Nam 

SSA Congo Basin Cameroon, Central African Republic, Congo Republic, 
Democratic Republic of Congo, Equatorial Guinea, Gabon  

Eastern Africa Burundi, Ethiopia, Kenya, Tanzania, Uganda, Rwanda  
South Africa South Africa  
Southern Africa Angola, Botswana, Comoros, Lesotho, Madagascar, Malawi, 

Mauritius, Mozambique, Namibia, Reunion, Swaziland, 
Zambia, Zimbabwe  

Western Africa and Rest of Sub-Saharan 
Africa 

Benin, Burkina Faso, Cape Verde, Chad, Côte d'Ivoire, 
Djibouti, Eritrea, Gambia, Ghana, Guinea, Guinea-Bissau, 
Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra 
Leone, Somalia, Sudan, Togo 

USA USA Region United States, Puerto Rico  
 



19 
 

Supplementary References 
  

Bouët, A., Decreux, Y., Fontagné, L., Jean, S., & Laborde, D. (2008). Assessing applied protection across 
the world. Review of International Economics, 16(5), 850–863. https://doi.org/10.1111/j.1467-
9396.2008.00753.x 

Hummels, D. (2001). Toward a Geography of Trade Costs. 

Long, J. S., & Ervin, L. H. (2000). Using Heteroscedasticity Consistent Standard Errors in the Linear 
Regression Model. The American Statistician, 54(3), 217–224. 

McCarl, B. A., & Spreen, T. H. (2002). Applied Mathematical Programming Using Algebraic Systems. 
Texas A&M University 2011. 

 


