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1 Introduction

For young children and their caretakers in developing countries, indoor air pollution (IAP)
is a silent health and mortality threat. How many lives can potentially be saved if indoor
air quality is improved? IAP is widely identified as globally the most health-endangering
environmental factor (World Health Organization, 2016). More than 40% of the world
population – almost 3 billion individuals – rely on open fire or simple stoves fueled by dirty
fuels including coal, biomass fuel, and kerosene. Of these, a vast majority burn organic
biomass fuels (e.g., wood, agricultural waste, and animal dung) for cooking and as
domestic sources of energy (World Health Organization, 2018a). Around 95% of these
individuals live in poverty in the low and middle-income countries of Asia, Western Pacific,
and Africa (Duflo et al., 2008b).1

IAP is primarily due to incomplete burning of solid fuels for heating, lighting, and
cooking. The combination of traditional cooking stoves and polluting fuels generates high
levels of hazardous indoor air pollutants (e.g., Fullerton et al., 2008; Duflo et al., 2008b;
Rehfuess et al., 2011; Barron and Torero, 2017). Diseases attributed to poor air quality
inside the house (e.g., heart disease, respiratory diseases) are the leading causes of death
worldwide, to the tune of 4 million people per year, (World Health Organization, 2018a)2

and the biggest cause of disability-adjusted life years (DALYs) lost in Southeast Asia and
Sub-Saharan Africa.3 Globally, IAP ranks third place among the lists of causes of DALYs
lost (Apte and Salvi, 2016).

Women and young children (especially, children younger than five years old) are
particularly vulnerable to the negative health risks associated with IAP, as women often
disproportionately and simultaneously shoulder the responsibility of cooking and child care
(Edwards and Langpap, 2012). For example, in India, approximately 56% of under-five
children stay with their mothers at all times including during cooking (Rehfuess et al.,
2011). Acute lower respiratory infections (ALRI), including pneumonia, is the second
dominant cause of under-five mortality worldwide after premature birth, and one-third of
ALRI-related deaths are said to be due to poor air quality at home (World Health

1This includes 80% of the population in China, 82% in India, 87% in Ghana, 95% in Afghanistan, and
95% in Chad who rely primarily on polluting cooking fuels.

2According to World Health Organization (2016), IAP from the consumption of polluting fuels led to 3.8
million premature mortality in 2016 alone, or 6.7% of global deaths, which is more serious than total death
tolls of tuberculosis, malaria and HIV/AIDS. Of these, 403,000 were under-five children. Air pollution is the
leading environmental factor for death in India, accounting for about 1.2 million deaths in 2017, nearly 40
percent of which are due to poor indoor air quality (Global Burden of Disease 2017).

3The DALY is the most commonly used measure of national burden of disease and combines years lost
because of disability with those because of death.
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Organization, 2018b).4 We found nearly 200 epidemiological publications that study the
health consequences of solid fuels, e.g., biomass fuels and coal (Zhang and Smith, 2007).
These provided some of the first systematic evidence of the correlation of adverse health
outcomes and IAP including chronic obstructive pulmonary disease (COPD), ALRI,
asthma, lung cancer, and immune system impairment (Zhang and Smith, 2007). In
parallel, Duflo et al. (2008a) presents one of the earliest studies on the health impact of
IAP, and finds a high degree of correlation between using a traditional stove and having
symptoms of respiratory illness using a linear probability model with a variety of controls.

With respect to the mortality implications of IAP, Naz et al. (2016) finds an odds ratio
of 1.30 between indoor polluting fuel use and under-five mortality in India using household
survey data. This is before any measures are undertaken to address potential endogeneity
and omitted variable biases (e.g., household size, dwelling size, local governance and cultural
factors, distance to towns, and ambient air and soil quality).5 The reliability of these and
other early non-causal estimates of the consequences of IAP have been questioned due to
inadequate controls for health outcomes and lack of convincing identification strategies (Duflo
et al., 2008b). Given that the youngest and most vulnerable members of the household are
more homebound, a shift in cooking fuel choice practice to improve indoor air quality carries
with it the potential to impact the health and long term well-being of the lion’s share of
households in the developing world even without resorting to large scale intervention in
infrastructure. The validity of the IAP-infant link, and its causal nature, in particular, beg
investigation.

4There are a number of studies on IAP and health outcomes. Silwal and McKay (2015) find that the
use of firewood instead of kerosene, LPG and electricity for cooking damages lung capacity by 9.4 percent
in Indonesia using proximity to the nearest market to instrument for fuel choice. Edwards and Langpap
(2012) investigate the impacts of firewood consumption and whether mother cooks while caring for children
on children’s respiratory health in Guatemala using household’s gas stove ownership and mother’s age as IVs
as instruments for the two regressors of interest. Both of these studies find weak justification in the tests
to validate the exclusion restriction and exogeneity of instruments, however. Pitt et al. (2006) examine the
effect of time spent cooking on incidence of any respiratory symptom for all adults and adult women using
gender-specific hierarchies as instruments for exposure to IAP. They find that a four hour per day increase
in the time spent cooking increases the likelihood of having a respiratory symptom by 10.8 percentage
points. Liu et al. (2020) investigate the causal effect of using non-solid fuels instead of solid fuels on elder’s
health by estimating the capability to deal with activities of daily living (ADL) and instrumental ADL on
household fuel choice in rural China using the share of village citizens who rely on clean fuels for cooking as
an instrument. These studies do not examine the role of IAP on infant mortality, however.

5For instance, the demographic and political characteristics of the state governors, such as their age,
education, gender, political power and affiliation, and relationship with the government, could affect the
implementation of the central government policy and local policy initiation about household fuel use and
air pollution in general. Region-specific socio-cultural trends may also prevent households from switching
to clean energy, for example when rural households consider the use of animal dung as clean and natural in
addition to lower cost. Distance to towns can proxy ease of access to clean fuels, including electricity for
example. Ambient air quality may reflect local abundance of forests and coal deposits, and while soil quality
can proxy for agricultural land use and agricultural crop waste.

2



There is now a small and growing literature on the causal health impact of exposure to
IAP. The findings so far are nuanced. The first randomized control trial (RCT)
experiments aimed at demonstrating health impacts of IAP were carried out in San Marcos
city, Guatemala (Diaz et al., 2007; Smith-Sivertsen et al., 2009). Using logistic random
intercept models, the study finds that the use of improved cooking stoves (planchas) has a
protective health effect by reducing exposure to IAP and symptoms of headache and sore
eyes during 18 months of their follow-up. Contrary to these findings, the longer term
impacts of improved cook stoves have appeared less promising. To this end, Hanna et al.
(2016) demonstrates that improved cook stoves, in fact, did not reduce smoke exposure
following the second year of installation, or improve the health of recipients and greenhouse
gas emissions at all in an RCT in rural Orissa, India, due to improper use or lack of
maintenance.6

In addition to dedicated RCTs, only a few related national level studies in developing
economies exist, but these focus almost exclusively on outdoor air quality, leveraging, for
example, intertemporal and spatial heterogeneity in the incidences of wildfires,
meteorological shocks, exogenous shifts in national energy infrastructure, industrial
structure/technology and cross-border pollution for identification (Jayachandran, 2009;
Arceo et al., 2016; Cesur et al., 2017; Beach and Hanlon, 2018; Benshaul-Tolonen, 2019; Jia
and Ku, 2019). An exception is Imelda (2018), which uses a quasi-experimental
difference-in-differences strategy to estimate that a 1.1 percent reduction in infant
mortality rate or four saved infant lives every 10,000 live births7 resulted from an
Indonesian government program of subsidizing households to switch from kerosene to liquid
petroleum gas (LPG) as cooking fuel.8 No studies to date have presented causal estimates

6Other studies that focus on the effectiveness of specific policies and programs (e.g., improved cooking
stoves, house construction, and voucher allocation for electrification) on reducing IAP and improving selected
health outcomes include Bruce et al. (2004), Duflo et al. (2008a), Smith-Sivertsen et al. (2009), Hanna et al.
(2016), and Barron and Torero (2017).

7We consider infant mortality, similarly defined as in Imelda (2018), as an alternative outcome variable to
compare implication of our analysis with that of Imelda (2018) and find that a family using polluting fuels
for cooking has a 4.8 percent higher probability of experiencing infant mortality within one year of birth,
implying the loss of 25 lives every 10,000 live births. Hence, the reason why we have a higher estimate on
the death toll of IAP is that we include, for example, biomass fuels in our list of polluting fuels, which are
the most dangerous for the life or health of a child.

8In a follow-up paper, Imelda (2020) finds a 16-34 percent and an 8-25 percent reduction respectively
in infant mortality, similarly defined as in Imelda (2018), and child’s birth weight response to the same
government program with a highlight on its effects on perinatal mortality—deaths within the first week
after birth—using difference-in-differences (DID) specification with district-specific time trends. The author
also shows that the intensity of the program leads to a 1.2 percentage point reduction in both infant and
perinatal mortality with no impact on postneonatal mortality—deaths during the period 1-12 months of
life—by replacing a binary treatment variable with a continuous variable of program intensity in the DID
equation.
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of the impact of polluting fuel choice that account for the role of biomass fuel despite its
overwhelming popularity in developing countries.

This paper contributes to the nascent literature on the IAP-child mortality link by
estimating the causal impact of indoor air pollution through the use of polluting fuels for
cooking on under-five mortality. Our analysis is based on a large-scale household survey in
India that contain records of household-level health and demographic information, as well
as type of fuels used for cooking, from 1992 to 2016. Specifically, we rely primarily on three
rounds of India’s National Family Health Survey (NFHS, also referred to as the
Demographic and Health Survey–DHS) — NFHS-1 (1992–93), NFHS-2 (1998–99), and
NFHS-4 (2015–16) with detailed observations on 369,416 singleton live-born children, of
whom 19,474 died in the 5-years prior to the respective survey years. An important reason
why we chose India as a starting point here is that the NFHS survey includes detail
questions regarding respondents’ use of 10 possible types of cooking fuels, including
biomass fuels (firewood, straw, shrubs, grass, agricultural waste, and dung), kerosene,
coal/lignite, charcoal, as well as biogas, LPG and natural gas, and electricity. The vast
majority of Indian families rely on biomass fuels for domestic uses such as cooking. In this
regard, we see India as a good representative of countries in the developing world, where
biomass fuels are also the predominant choice by poor households.

In addition to introducing an extensive list of controls, we pay particular attention to
the reverse causality between child mortality and cooking fuel choice. This is important
for several reasons. First, a switch to cleaner cooking fuels is a readily available remedial
measure subsequent to any prior mortality events that may have been caused by poor air
quality in a household.9 Second, air pollution can also adversely affect an individual’s long-
term earnings through poor health and low productivity (Graff Zivin and Neidell, 2013; Isen
et al., 2017). Relatively poorer households are caught in a vicious cycle (or poverty trap)
wherein they are only able to afford cheaper and more polluting cooking fuel options, which
adversely affects household health and mortality and, in turn, household earnings (Hanna
and Oliva, 2015; Graff Zivin and Neidell, 2012, 2018; Chang et al., 2016, 2019).10

For identification, therefore, we leverage two instrumental variables for household fuel
9There exist vast literature on the household’s averting behavior for clean air in response to adverse

impacts of outdoor air pollution on health (Gerking and Stanley, 1986; Mansfield et al., 2006; Graff Zivin
and Neidell, 2009; Moretti and Neidell, 2011; Barreca et al., 2016; Deschenes et al., 2017; Ito and Zhang, 2020).
The studies provide evidence that households react to changes in health outcomes due to air pollution by
adjusting their behavior, adopting new technologies, and investing in protective goods in response to health
shocks.

10As an example, a strong negative effect of air pollution (carbon monoxide–CO) on fourth-grade test
scores (math and language skills) was observed in Santiago, Chile, and a 50% increase in CO in Santiago
between 1990 to 2005 reduced an individual’s lifetime earnings by around US$100 million (Bharadwaj et al.,
2017).
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choice – the speed of change in forest cover and agricultural land ownership. Density of forest
cover across different locations determines the availability or access, lower opportunity costs
for households to collect, and lower prices for local firewood (often classified as a polluting
fuel). Furthermore, households that own land for agricultural purposes are more likely to use
polluting fuels such as agricultural crop waste, animal dung, and even firewood. Our estimate
of the causal effect of IAP, as determined by cooking fuel choice on under-five mortality, thus
rely on plausibly exogenous variations in IAP introduced by the speed of change in forest
cover and status of agricultural land ownership. Conditional on other controls included in
our empirical specifications, we do not expect these two variables to have any impact on
child mortality. Another identification assumption is monotonicity or no-defiers (Imbens
and Angrist, 1994), which we check by investigating the cumulative distribution function of
polluting fuel choice, separately for those with Zi = 1 and Zi = 0, where Zi is an instrument.
We show that the monotonicity assumption holds as an increase in the instrument leads to
a monotonic change in the uptake of the treatment.

Our analysis shows that a household relying on a polluting fuel for cooking has a 4.7

percent higher probability of experiencing under-five child mortality. In addition, we carefully
address the issue of heterogeneous treatment effect and explore heterogeneity according to
children’s age group, as well as household size. A child’s age is widely acknowledged as a key
factor determining tolerance to environmental hazards (Black et al., 2003; Gurley et al., 2013;
Ezeh et al., 2014; Naz et al., 2015, 2016). Household size, particularly in the Indian context,
can change the practical feasibility of using stoves for clean fuels, typically appropriate for
smaller families, and a child’s proximity to cookstoves or exposure to IAP. We find that IAP
contributes to infant mortality in households with fewer than ten members, particularly, poor
indoor air quality raises the risk of infant mortality for households with 3-6 members. For
instance, a household using dirty fuels for cooking has 11.6 and 9.0 percent higher probability
of having neonatal mortality incidence for those with 3-4 and 5-6 members, respectively.

The local average treatment effect (LATE) of IAP on infant mortality is highly
heterogeneous by household size, and households with five and six members mainly drive
our key LATE estimates. Furthermore, we provide additional results on the
disproportionate impact of IAP on neonatal mortality. Finally, our findings complement
Imelda (2018, 2020), which provide the lower-bound estimates on the health impacts of
clean cooking fuels due to the absence of biomass fuels in consideration, but we include
biomass fuels in the list of polluting fuels. When only biomass fuels are counted as
polluting fuels, the probability of experiencing under-five mortality decreases from 4.7 to
4.0 percent for a household using biomass fuels for cooking.

We assess the robustness of these findings by estimating a variety of specifications with
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additional controls and fixed effects. Particularly, we test how our main results change
when we take into account globally the second-largest IAP-reducing policy, National
Biomass Cookstoves Initiative, and find that the results are strongly robust to the addition
of this widely implemented state-level voucher program in India, and the program is not
associated with IAP, which is consistent with previous findings of IAP-limitation policy
failures by Hanna et al. (2016). By plotting the cumulative distribution functions of
polluting fuel use for households (i) with and without agricultural land, and (ii) living in a
region with an above- and below-median speed of change in forest cover, we argue in favor
of the monotonicity condition applying in our setting since the cumulative distribution
functions do not cross. Following Lee (2018), we also correct the standard errors given that
we have multiple instruments and LATEs, and our estimates and derived conclusions are
robust and qualitatively identical.

Taken together, this paper makes the following two contributions to the literature on
the impact of IAP on child mortality. First, to our knowledge, this paper offers the first
estimates of the causal effect of IAP, as proxied by cooking fuel choice that includes the use
of biomass fuels, on infant mortality while addressing the endogeneity in the relationship
between cooking fuel choices and mortality. While the endogeneity issue in the mortality-
IAP (or -cooking fuel) relationship has been recognized (Schindler et al., 2017), it has not
been addressed in any empirical settings to date, perhaps due to the challenge in finding
valid instrumental variables.11

Second, we utilize the NFHS data sets — a widely-accepted gold standard for research
in the developing world — covering 601,509 representative households from all 36 states and
640 districts of India over the last 25 years. Our goal is to complement earlier studies by
externally validating the link between IAP and infant mortality as shown in the RCTs of
Duflo et al. (2008a) and Hanna et al. (2016) in Orissa and Diaz et al. (2007) and Smith-
Sivertsen et al. (2009) in the city of San Marcos, for example. A detailed and large-scale
data set collected from this nationwide household survey, covering both urban and rural
areas, allows us to provide more broadly representative empirical estimates of the causal
relationship between cooking fuel choice, and therefore IAP, and infant mortality. The data
set also allows us to cast a wide net in measuring child mortality, and accordingly to show the
nuanced impact of IAP on the mortality risks of four different age-groups including neonatal,
post-neonatal, child, and under-five. As an additional improvement over earlier studies, we
consider a total of 10 types of cooking fuels to include the choice of biomass fuels as a major

11Those few studies mentioned earlier attempt to address the endogeneity in the lung capacity-use of
firewood, respiratory illness-time spent cooking, and children’s respiratory health-firewood consumption
relationships using IV strategy.
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contributor to IAP that is not yet rigorously addressed in the literature.
Finally, we provide a careful examination of the heterogeneity in the mortality risks

implied by IAP. Our analysis covers heterogeneous treatment effects by the child’s age and
household size. First, we find that switching from clean to polluting fuels leads to an
increase in neonatal and under-five mortality, but not post-neonatal and child mortality.
The existing economic studies such as Hanna et al. (2016) and Imelda (2018) do not
examine the heterogeneous effect of IAP on a child’s health by age group, however, are
limited to only infants (children with less than one year of age). Imelda (2020)
exceptionally investigates the heterogeneity by child’s age groups by dividing the infant
mortality into perinatal and post-neonatal mortality. Second, we check the heterogeneity of
the IAP-mortality link by the number of household members. The results suggest that
infants who live in families with fewer than ten members, in particular, those with five and
six members, using dirty cooking fuels, are subject to a greater risk of mortality.

The rest of the paper is structured as follows. Section 2 provides the background on
IAP and child mortality in India and presents the trend analysis of under-five mortality
attributed to the cooking fuel types. Section 3 lays out the empirical strategy, and Section
4 describes the data and presents descriptive statistics for the sample. Section 5 presents
model results and a set of robustness tests. Section 6 concludes.

2 Background

With a population of 1.4 billion, India is the second-most populous country in the world
and the tenth-biggest contributor to global gross domestic product. Over 72% of households
in India (more than 90% of the rural population and 31% of the urban population) use
dirty fuels to cook their meals and as the main energy source. This section first discusses
India’s challenges related to IAP due to cooking fuel choice and the potential effect on early
childhood (under-five) mortality. We then present and discuss the trends in India’s under-five
mortality incidence in relation to type of cooking fuels.

2.1 Indoor Air Pollution and Infant Mortality in India

The United States Environmental Protection Agency (EPA) sets standards for PM10

concentrations at 50 µg/m3 based on an annual average, and at 150 µg/m3 based on a
24-hour average (https://www3.epa.gov/region1/airquality/pm-aq-standards.html).
However, the 24-hour average of PM10 concentration in solid fuel firing households in India
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often exceeds 2,000 µg/m3 (Smith, 2000). Saksena et al. (1992) finds higher concentrations
of PM10 (20,000 µg/m3) near the cooking location in India, with the concentration
decreasing substantially with distance away from kitchen.

According to the World Health Organization (WHO), IAP is responsible for 3.5% of
the total burden of disease in India (Bonjour et al., 2007), while 20% of deaths among
children aged under-five can be attributed to IAP due to polluting fuels use (Bassani et al.,
2010; Upadhyay et al., 2015). Additionally, and as reported earlier, Naz et al. (2016) finds a
positive association and estimates an odds ratio of 1.30 between IAP and under-five mortality
in India. Beyond child mortality, Balakrishnan et al. (2019) using data from Global Burden
of Disease 2017, estimated that 1.2 million deaths in India (or 12.5% of the total deaths)
were attributable to air pollution, including 0.7 million to ambient (outdoor) PM2.5 and 0.5
million to IAP. Finally, Smith (2000) estimated that around 2 billion days of work lost due
to the diseases caused by IAP in India while Duflo et al. (2012) reports that a large portion
of absence from schooling in rural areas of India is due to poor health.

Due to perceived health threats from polluting fuels, Indian authorities and
non-governmental organizations (NGOs), have implemented policies and programs for
reducing IAP. For example, subsidizing cleaner fuel technologies, distributing “improved
cooking stoves”, and convincing households to improve ventilation system within the
household are common interventions. Among these policy strategies, the improved cook
stove has become the most popular policy prescription for reducing IAP with the
government of India implementing the second-largest program in the world to limit
emission of smoke within households by distributing roughly 33 million biomass-based
improved stoves in rural areas during 1984-2000 through its National Biomass Cookstoves
Initiative (NBCI). However, these initiatives have received mixed reviews: while improved
biomass stoves have reduced the time and effort that rural women put into collecting fuel
per meal by half, its effectiveness in reducing IAP and health benefits were far below the
expectations. In fact, studies suggest that “improved” cooking stoves had a hazardous
impact on health due to inefficient use (Hanbar and Karve, 2002; Kishore and Ramana,
2002).

2.2 Infant Mortality Trends in India

Figure 1 shows the trend in infant mortality by cooking fuel choices in India. Compared to
the under-five mortality incidence that has leveled off at around 3.1% per year for households
that use clean fuel for cooking, the under-five mortality rate remains more than twice as high
for households using polluting fuel — although this rate has declined sharply by about 45%
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over the past 25 years.12 There is some variation in the mortality rate by age group: the
neonatal mortality rate (defined as the likelihood of passing away during the first 28 days
of early life) is the highest, followed by post-neonatal mortality (measured as the likelihood
of passing away between approximately the first month after birth and end of the first year
of life) and then child mortality (assessed as the likelihood of passing away between ages of
one and five). Decreasing trends are also observed for each age group, where the neonatal
mortality rate declined from 4.4% in 1992 to 3.1% in 2016, post-neonatal mortality rate from
3.0% in 1992 to 1.3% in 2016, and child mortality rate from 1.1% in 1992 to 0.3% in 2016
for those using polluting fuels for cooking.13

3 Empirical Strategy

In this section, we first describe the empirical specification for the relationship between
cooking fuel choice and child mortality. We then discuss the challenges in estimating the
causal effect of cooking fuel choice on under-five mortality.

3.1 Indoor Air Pollution and Infant Mortality

To investigate the causal effect of indoor air pollution on infant mortality, we specify the
following relationship:

Yihvdst = α + βDhvdst +Xhvdstγ +Mjhvdstλ+Wihvdstδ+

+ µt + ηs + (ηs × µt) + εihvdst
(1)

where Yihvdst is one of the four binary variables for under-five mortality (under-five, child,
post-neonatal, and neonatal) taking the value 1 if the mortality happened over the considered
age-periods, and 0 if the child survived during the age-period for child i, in household h, in
village v, in district d of state s, in survey year t. The key regressor is a binary variable for
solid fuel use (Dhvdst) in household h, in village v, in district d of state s, in year t as defined
above. The vectors Xhvdst,Mjhvdst, andWihvdst are respectively composed of household (h)

12The mortality rate (mortality incidence proportion, %) is calculated by the ratio (Number of child
deaths/Total number of live births) for the trend analysis presented in Figure 1. In this paper, we will refer
to mortality rate interchangeably with mortality incidence proportion.

13The mortality rates for each of the preceding three age-groups including neonatal, post-neonatal, and
child add up to the under-five mortality rate. This is because (i) the three successive age groups constitute the
first 5 years of life, and (ii) the mortality incidence proportions for different age groups have been calculated
using a common denominator, total number of live births during the five-year window. The details about
constructing the mortality measure has been provided in Section 4.
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characteristics including place of residence, household wealth index, number of household
members, place where food is cooked and type of house, mother (j) characteristics including
mother’s age and mother’s education, and child (i) characteristics including gender of the
child and breastfeeding status. The error term, εihvdst, captures the remaining unobserved,
time-varying, and child-specific factors.

The state fixed effects, ηs, control for all permanent unobserved determinants of mortality
across states, while the inclusion of year fixed effects for year of survey, µt, nonparametrically
adjusts for national trends in under-five mortality, which is important in light of the time
patterns observed in Figure 1. To control for possible unobserved spatial differences in
cooking fuel at different periods, we interact the time fixed effect with the state fixed effect
and include state-specific time trends, ηs × µt, to allow the unobserved time trend to vary
across states.14

3.2 Identification

The key identification challenge is the potential endogeneity resulting from non-random use
of polluting fuels. In the empirical literature on air pollution and its health consequences, it
is commonly assumed that IAP affects mortality and other human health outcomes but not
vice versa. In practice, IAP and choice of fuel types for cooking can be affected by mortality,
morbidity, and other health outcomes. For example, Duflo et al. (2008b) document the
potential impact of IAP on health, productivity, and ultimately long-term earnings. Noting
that low-income households can only afford the cheaper fuel option which is frequently
polluting and adversely affects health and earnings, we have a simultaneity issue that makes
the choice of cooking fuel endogenous in Equation (1). We address this reverse causality
from health outcomes to cooking fuel choice by estimating Equation (1) with instrumental
variables (IVs).

A set of variables including speed of change in district forest cover over the period 2007–
13 and household ownership status of agricultural land are tested as IVs both individually
and combined, and the instruments are described in detail in the next section. Note that
the variables measuring the relative change in tree cover over the given period are measured
at the district level even though village-level information is available, for example, in the
Census data. This is due to the random Primary Sampling Unit (PSU) point (or village/city
block) displacement in the NFHS GPS data, which limits our ability to correctly match the

14Controlling for State×Time fixed effects allows us to estimate the effect of region-specific characteristics
varying over time, which can be seen as regional (or neighborhood) differences such as culture, weather
conditions, environmental features, and local-level policies or programs on cooking fuels.
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PSUs with Census locations at the village-level.15 In other words, we are unable to correctly
match the NFHS dataset with Census and other datasets at sub-district (or tehsil) and
village levels as the maximum displacement buffers for particular cluster points overlay with
level 3 administrative (sub-district) boundaries. Figure 2 shows the displacement strategy
of PSU points in NFHS-4 and the difficulty in correctly identifying the sub-districts and
villages where the NFHS survey respondents reside. Although the PSU point displacement is
random, it would affect our empirical analysis because we combine NFHS data with satellite
and Census data by location.

Although we compute the speed of change in forest cover as a relative change in the
percentage of forested area in the total geographical area using multiple years of satellite
data, we have a single observation for each of the districts; thus, we are unable to use district
fixed effects in Equation (1).

4 Data

Our empirical analysis is based on three datasets. The first data set (nearly 0.4 million
observations) is nationally-representative National Family Health Survey (NFHS) in India.
The NFHS collects individual-level data on mortality incidence and other socio-economic
characteristics for every member in the sample household. Additionally, it also contains
household-level information on wealth, housing, place of residence and agricultural land
ownership status. Importantly, for our analysis, NFHS data includes information on the
type of cooking fuel that a household uses, allowing us to approximate indoor air quality at
the household level. To date, four rounds of the survey have been conducted since 1992–
93.16 Our analysis relies primarily on three rounds of this survey: NFHS-1 (1992–93),
NFHS-2 (1998–99), and NFHS-4 (2015–16). We are unable to use the NFHS-3 (2005–06) in
our empirical analysis due to the absence of district identifiers in the questionnaire of this
particular round for confidentiality of HIV testing. A total of 879,495 ever-married women
of reproductive ages between 15–49 years (260,289 from urban and 619,206 from rural areas)

15According to the description of the NFHS GPS data provided by the DHS Program, the displacement
is restricted so that the PSU points stay within the country, the NFHS survey region (state), and district
area. Therefore, the displaced cluster’s coordinates are located within the same country, state, and district
areas as the undisplaced cluster. This random error can substantively affect analysis results, where analysis
questions look at small geographic areas including sub-districts and villages/city blocks.

16While the first three NFHS survey datasets cover all states of India, which includes more than 99% of
India’s population, the most recent NFHS data for the years 2015–16 (NFHS-4), adds all union territories
for the first time. It is worth noting that we treat union territories as states. The NFHS-4 also provides vital
estimates of most demographic and health indicators at the district level for all 640 districts in the country
(as per the 2011 Census).
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were included in the three surveys (NFHS-1, NFHS-2, and NFHS-4), that we analyzed in this
paper. Ever-married women, aged less than 15, are excluded from the sample, and all the
women interviewed in the survey were ever-married, of whom only 271 were aged less than
15 years. Our analysis is based on a pooled dataset of 270,559 singleton live-born children,
of whom 18,168 died in the 5-years before the respective survey years.

Second, as a primary database on land use of the country, we use satellite data on forests
from the Planning Commission of India. Third, from the 2011 Census of India, we also
obtain land use information at the village and city block level. Specifically, we utilize the
total surface area of the land of each geographical region and the land covered by forests,
both measured in hectares.

4.1 Under-Five Mortality

Under-five mortality rates are an appealing measure of the effect of indoor air pollution
for at least two reasons. First, children under five years tend to spend most of their time
at home alongside their mothers, and since women are primarily responsible for cooking in
India, under-five children are more likely to be exposed to indoor air pollution. Second,
earlier years of life are especially vulnerable periods, and losses of life expectancy due to
environmental exposure are likely to be large. Our primary outcome variable is under-
five mortality. In addition, we consider three preceding age groups, including child, post-
neonatal, and neonatal mortality. Neonatal mortality is a death occurred over the first 28
days of life; post-neonatal mortality is a death occurred between one month and the first
birthday; child mortality is a death occurred between exact ages one and five.

4.2 Cooking Fuel Choice and Other Controls

The key explanatory variable in our analysis is the cooking fuel type, a proxy for indoor
air pollution. Ten types of cooking fuel are reported in the NFHS datasets, and we classify
these fuels into two groups, clean and polluting, based on level of smoke produced from
cooking. The clean fuels include biogas, liquid petroleum gas (LPG) or natural gas, and
electricity while polluting fuels include animal dung, agricultural waste, straw, shrubs or
grass, firewood, charcoal, coal or lignite, and kerosene. Note that no household reported
using more than one type of fuel for cooking in the survey.

In addition to the main exposure variable, we collect information on several other
determinants of under-five mortality. Place of residence (urban or rural), household wealth
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index (high wealth, middle wealth, or low wealth),17 mother’s educational attainment
(secondary/higher, primary, or no education), type of house (pucca, semi-pucca, or
kachha), and number of household members18 are included as potential socio-economic
factors (Bassani et al., 2010; Ezeh et al., 2014; Naz et al., 2015, 2016).

Age of the mother (<20, 20–29, 30–39, and 40–49 years) and gender of the child are also
considered as potential determinants of the IAP-infant mortality link. Mother’s status of
breastfeeding (ever or never breastfed) and place where food is cooked (in the living room,
in the kitchen separate from the living room, in a separate building, or outdoors)19 are also
factors that correlate with different levels of exposure to polluting fuels. No separate kitchen
used for cooking inside the house has also been shown to be significantly associated with high
exposure to IAP,20 whereas breastfeeding protects from under-five mortality, particularly in
the neonatal and post-natal periods.21

Thus, we can control for whether food is cooked inside the house, in a separate building,
or outside using the data from NFHS-4 (2015–16) combined with an indicator for a separate
kitchen inside the house.

17The index of household wealth was constructed by principal components analysis, with weights for the
wealth index calculated by giving scores to the asset variables, for example, ownership of durable goods,
transport, and facilities in the household. “Low wealth” defined as the lowest 40% of households, “middle
wealth” defined as the middle 40% of households, and “high wealth” defined as the top 20% of households
(Filmer and Pritchett, 2001).

18Number of household members refers to the total number of members living together in a household,
which is not necessarily the same as family size. On average, households in the survey have seven members,
but there are households with as many as 46 people (maximum is 41 in the NFHS-4 data). There is a strong
positive correlation between household size and fuel choice, and the use of polluting fuels tends to increase
as household size gets larger. Gas stove limits the volume of food that can be cooked because the size of the
stove-top is small while wood burning furnaces can be built to accommodate larger utensils. The distribution
of household size suggests that households with less than about 25 members are quite prevalent in the data
while households with more than 25 members could be considered as outliers.

19In the NFHS questionnaire, the question whether the household has separate room as kitchen captures
only cooking inside the house and is not relevant to outdoor cooking. Another variable for indicating if the
household cooks inside the house, in a separate building, or outdoors is only available in NFHS-4 (2015–16).
Therefore, if we utilize this variable in our analysis, we are forced to use only the last round of NFHS survey.
We separate cooking inside the house into two groups: in a separate room as kitchen inside the house or in
the same room as they live inside the house based on variable indicating an existence of separate kitchen,
i.e., question asking whether the household has a separate room used as kitchen in house. A separate room
for cooking as compared to cooking inside is likely to be quite similar because of poor ventilation within
houses, especially in rural areas, would lead to smoke permeating throughout if cooking with wood or coal.

20See, for example, Edwards and Langpap (2012); Gurley et al. (2013); Naz et al. (2015, 2016).
21See, for example, Cushing et al. (1998); Arifeen et al. (2001); Black et al. (2003); Ezeh et al. (2014).
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4.3 Instruments for Cooking Fuel Choice

To account for the endogeneity of cooking fuel choice, we use forest cover to generate
exogenous variation in the opportunity cost of cooking fuel choice. In the absence of data
on prices of firewood and LPG, the main fuels for cooking in India, at district and/or
village level we use forest cover as a proxy for the relative price (cost) of firewood.22 We
expect that the speed of change in forest cover is exogeneous to child mortality.

The speed of change in forest cover is relevant and generates meaningful variation in
cooking fuel choice through several channels. First, wood is the most widely-used fuel for
cooking in India. Figure 3 shows that one-half of the Indian households covered in four
rounds of the NFHS rely on wood as a fuel for cooking. The speed of change in forest
cover generates variations in access to or availability of firewood (polluting) for cooking,
and households living in villages with forest use firewood twice as much as households in
villages without forest (Pinto et al., 1985). Figure 4 illustrates India’s district-wise forest
cover as in 2011 by utilizing satellite-based information from the Planning Commission of
India. The share of households using solid fuels for cooking in three of the largest five
forest cover states (88% in Odisha, 84% in Chhattisgarh, and 81% in Madhya Pradesh) is
substantially larger than the country average, 76%, suggesting that location of forests affects
cooking fuel choice. Also note that the correlation coefficient between the speed of change
in forest cover and the 2011 level of forest cover is 0.9984 (SE: 0.0024, p-value: 0.00) at
the district level. Since the speed of change in forest cover is positively correlated with the
level of forest cover, our argument here is also applicable for regions with high speed of
growth in forest cover. Furthermore, under-five mortality rates in these three states (5.9%
in Odisha, 5.8% in Chhattisgarh, and 6.6% in Madhya Pradesh) are persistently higher
than the country average, 5.3%. This geographic variable hence induces plausibly exogenous
variation in cooking fuel choice that is not correlated with the unobserved, time-varying, and
child-specific shocks to under-five mortality.

We obtain district-level satellite data on forest cover from the Planning Commission of
India (reformed as the National Institution for Transforming India–NITI Aayog in 2015)
for three years, including 2007, 2011, and 2013. The baseline regressions use the speed of

22Kuo and Azam (2019) recently attempted to determine the drivers of household’s choice of cooking fuel
in India by estimating a panel multinomial logit regression with random effects based on two rounds of India
Human Development Survey datasets. They show that access to paved road and peer effects significantly
increase the probability of rural households to adopt clean fuel while distance to the nearest town is not an
important driver of fuel choice in rural areas. In addition, Kuo and Azam (2019) find that the bargaining
power or economic status of women in the household (proxied by education, financial independence and
freedom) and price of LPG are critical for urban households to make a decision about adopting clean fuel.
However, the determinants of fuel choice have to affect the child mortality only through cooking fuel choice
in order to be valid instruments.
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change or relative change in forest cover, where forest cover is defined by forested area as
a percentage of total geographical area, based on data from the NITI Aayog to account for
the spatial and temporal variation in forest cover. A change in forest cover over the periods
2011 and 2013 minus a change in forest cover over the periods 2007 and 2011 measures the
speed of change or relative change in forest cover over the three years. In the Planning
Commission dataset, forest cover refers to all lands more than one hectare in area, with a
tree canopy density of more than 10 percent irrespective of ownership and legal status. It
also includes orchards, bamboo, and palm. The satellite-based tree cover has been classified,
based on tree canopy density, into four categories including very dense forest, moderately
dense forest, open forest, and scrub, and we consider the first three of these forest types in
our analysis excluding the scrub.

An alternative measure of forest cover is available from the 2011 Indian Census which
provides village-level data on land covered by forests (in hectares). We define forest cover
as per-capita forest area (ha/person, unreported) and percentage of total geographical area
of the village under forest (% of land area). The village-level data on population and the
geographical area of the village also come from the 2011 Census of India. Because areas
inhabited by tribal population and inaccessible hilly geographic areas present a problem in
nationwide ground-level census of trees in India (Foster and Rosenzweig, 2003), we prefer
the satellite-based data as our primary measure of forest cover and use the census-based
measure as a robustness check. The bivariate correlation of satellite-based forest cover with
census-based forest cover is 0.62. This shows that the Indian census- and satellite-based tree
cover data are indeed different but quite comparable.

Since we essentially estimate a local average treatment effect (LATE) using an IV method,
a monotonicity assumption is required to be satisfied (Imbens and Angrist, 1994). This
assumption demands, in our context, that IAP does not decrease in a household when
the household owns agricultural land or lives in an area with a forest growing at speed
above its median, or vice versa. In other words, the monotonicity assumption implies that
D1h−D0h ≥ 0 for all household h, or vice versa, where potential outcomes for IAP (treatment
or regressor of interest), Dh = {0, 1}, against an instrument, Zh = {0, 1}, is described as
Dh = D0h(1 − Zh) + D1hZh. To check whether the monotonicity assumption is valid in
our context, we plot the cumulative distribution function (CDF) of polluting fuel choice
separately for those with and without agricultural land. For our other instrument, we also
investigate the CDF of cooking fuel choice for households at above and below median speed
of change in forest cover. The CDFs of polluting fuel use against our two instruments, binary
variables, are displayed in Figure 5, and we argue that the monotonicity assumption is valid
because the CDFs do not cross implying the first-order stochastic dominance.
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Table 1 presents summary statistics on cooking fuels, infant mortality, and other
demographic indicators used in the regression analysis. As can be seen, the data suggests
that under-five mortality rate in India during the period analyzed was 5.3%, and infant
mortality rate increases as age of the child decreases. A majority (76.0%) of the households
use polluting fuels, while the remaining households use clean (electricity, LPG and natural
gas, and biogas) fuels for cooking. Three-fourth of the children included in our analysis are
from rural areas. Overall across rural and urban areas 67.9% of the mothers with children
aged under five are in the 20-29 years old age bracket. In terms of other socio-economic
characteristics, including household wealth, mother’s education, gender of child, location
where food is cooked, and type of house, the individuals included in the analysis are evenly
distributed.

Tables 2 and 3 provides the mean and standard deviation of the four outcome variables
(infant mortality for different age-groups) and key explanatory variable (type of cooking
fuel) by geographic region, age and gender of the household head, along with the associated
number of observations. Evidently, infant mortality rate and fuel choices significantly vary
across regions throughout the country (Table 2). By contrast, infant mortality and fuel
choices are relatively stable across different age groups (top panel of Table 3) and gender
(bottom panel of Table 3) of the household head.
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5 Results

In this section, we first present the estimated average marginal effects23 of cooking fuel choice
on child mortality using a multivariate probit and the IV (2SLS) regressions. We then discuss
the implications of our baseline results and present a set of robustness tests. We begin with
the probit model results to create a comparable benchmark against the existing literature.

5.1 Probit Estimates

Table 4 presents the results of estimating Equation (1) as a pooled probit model for under-five
mortality under three different specifications with more control variables added successively.
The average marginal effect (AME) of the key regressor, use of polluting fuel for cooking,
ranges from 2.3 to 0.8 percentage points in the three regressions. The basic model shown in
Column (1) includes year and state fixed effects and is estimated using NFHS-1, NFHS-2,
and NFHS-4, while the probit models, shown in Columns (2) and (3), are estimated using
only NFHS-4 because a variable capturing an actual place where food was cooked is only
available in the last round of survey. Since calculated marginal effects of polluting fuel use
are consistently greater than zero and statistically significant at 1 percent level for each
specification, we conclude that indoor air pollution (IAP) is linked with the mortality risk
amongst children aged under-five in India. We consider the last regression as our preferred
or primary specification because the inclusion of state-by-year dummies controls for time-
variant spatial factors including state attributes (e.g., characteristics of state magistrate,
whether there is any government program regarding the child health service in the state,

23Marginal effects are computed using two methods: average marginal effects (AME) and marginal effects
at the means (MEM). MEM is calculated by setting the values of all covariates to their means within the
sample. On the other hand, to obtain the AME, the marginal effect is first calculated for each individual
with their observed levels of covariates, and these values are then averaged across all individuals. Since our
independent variables, except for the number of household members, including our key regressor, fuel choice,
are binary variables, the average marginal effects measure discrete change or how the predicted probabilities
(infant mortality) change as the binary independent variables change from 0 to 1. For probit regression, the
average marginal effect of xk = (x1k · · ·xik · · ·xNk)

′
(N×1) on y = (y1 · · · yi · · · yN )′(N×1) is calculated by

AME =
1

N

N∑
i=1

(
f
(
x′iβ̂|xik = 1

)
− f
(
x′iβ̂|xik = 0

))
where f(·) is the probability distribution function for a standardized normal variable, and x′i =
(xi1 · · ·xik · · ·xiK)(1×K) is a vector of explanatory variables. Intuitively, for example, the AME of fuel
choice demonstrates that a change of polluting fuel for cooking from 0 to 1 changes the probability that the
under-five mortality takes the value of 1 by how many percentage points. There are several ways to compute
the standard errors for the AMEs of regressors. The standard errors of the AMEs in this paper have been
computed using the Delta method, which is a semi-parametric method for deriving the variance of a function
of asymptotically normal random variables with known variance.
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and access to medical facilities) and local characteristics (e.g., distance from urban areas
and large cities, percentage of districts, sub-districts, or villages with paved roads, outdoor
air quality, and quality of soil and water resources) that could affect both under-five mortality
and fuel choice.

To examine the effect of cooking fuel choice on infant mortality in more detail, we
consider three alternative age groups: neonatal, post-neonatal, and child. Table 5 provides
the estimates for child mortality. The average marginal impact of IAP on child mortality
decreases significantly from 0.8 to 0.09 percentage points as well as the associations of
other confounders change dramatically in magnitude. This major decrease is quite intuitive
because the most vulnerable period (or the first year of life) has been excluded from the
first five years of life. In other words, childhood between ages one and five is a less risky
period compared to neonatal and post-neonatal periods which are included in under-five
years of age. The results for the post-neonatal mortality are presented in Table 6. The
average marginal effect of IAP on post-neonatal mortality is estimated at 0.1 percentage
point; however, it is not statistically significant.

Table 7 shows the results for neonatal mortality. Compared to other two relatively older
age groups, average marginal effect of polluting fuel choice on neonatal mortality is estimated
at 0.6 percentage point, the largest estimate among these three alternative age groups. One
would expect that the youngest age group should have the largest coefficient estimate since
the neonatal period is the most vulnerable time for a child’s survival and is the age group
that spends most of the time with mother. Overall our results offer that the harmful impact
of IAP on child mortality increases for the youngest children, which is consistent with the
existing child’s age-risk of dying (or -child’s vulnerability) argument. A comparison between
baseline results in Table 4 and those under the three alternative outcomes in Tables 5–7
suggests that the key results are robust to the range of plausible age differences of child
mortality from the literature. An important implication of this finding is that the harmful
effect of IAP can be reduced by improving the care for infants to increase immunity and by
limiting a child’s time spent with mother while cooking.

The average marginal effects of the other variables are all intuitively signed and are
consistent with the infant mortality literature. The risk of mortality in mothers who had
never breastfed is the highest compared to other confounders, which is in line with previous
findings (Cushing et al., 1998; Arifeen et al., 2001; Black et al., 2003; Ezeh et al., 2014).
While infant mortality is positive and significant for teenage mothers, older mothers (in age
groups 20-29 and 30-39) have a lower risk of under-five child mortality. Our results also
show that mother’s education is inversely related to under-five mortality. Infant mortality
is also higher in households of middle- and low-wealth compared to the high-wealth ones,
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households with no separate kitchen inside the house, and households that live in semi-pucca
and kaccha (makeshift and temporary) houses. Cooking outside is essentially the same as
cooking in the living room in terms of their association with infant mortality (Column (3) of
Tables 4–7), possibly due to poor ambient air quality. We also estimate specifications with
district and district× time fixed effects and obtain qualitatively identical results.

In Table 8, we compare our results from a nonlinear model with those from Naz et al.
(2016) which uses a multivariate logistic regression and data from NFHS-1 (1992–93), NFHS-
2 (1998-99) and NFHS-3 (2005–06) to estimate an association between use of polluting
fuel for cooking and infant mortality. The results (or odds ratio) of Naz et al. (2016) are
reported in Column (1), while our replication results and corresponding calculated average
marginal effects are shown in Column (2). Since our analysis utilizes the most recent round
of NFHS, or NFHS-4 (2015–16), we also estimate simple logistic regression with the same
specification as Naz et al. (2016) using NFHS-4 data. Columns (3) and (4) present the
estimated odds ratios and corresponding marginal effects using only NFHS-4 (2015–16) and a
complete sample between 1992–2016 (NFHS-1-4), respectively. Compared with our primary
specification (Column (5) of Table 8) which includes additional controls for the location
where food is cooked (inside/outside/separate room of the house) and a set of fixed effects,
the replicated (or Naz et al. (2016)) average marginal effects of polluting fuel use on infant
mortality are almost always higher.

5.2 Linear IV Estimates

We address the endogeneity of cooking fuel choice using IV strategy. We explore the speed of
change in forest cover and agricultural land ownership respectively as a region and household-
specific characteristics, which create exogenous variations in fuel choice of the households
and serve as IVs for our endogenous variable.24

24The bivariate correlations of under-five mortality with agricultural land ownership and speed of change
in forest cover are 0.0036 (SE: 0.0020, p-value: 0.07) and -0.0112 (SE: 0.0021, p-value: 0.00), respectively.
One may argue that infant mortality is negatively associated with ownership of agricultural land through
an income channel considering that agricultural production is a source of household revenue. The negative
relationship between infant mortality and household wealth is illustrated in Figure 6a. However, Figure 6b
shows that agricultural land ownership status is negatively associated with the household wealth. This means
that variation in agricultural land ownership is not necessarily a proxy for variation in household wealth in
India. This observation is consistent with the fact that there are many small farm households in India.
Hence, it suggests that the household’s status of agricultural land ownership does not necessarily indicate
that a family is wealthy, supporting the idea that agricultural land ownership status at least does not affect
the household fuel choice through the income channel. Note that we use household wealth (stock) as a proxy
of household’s income (flow) given that the DHS data does not include actual earnings of the household.
Our argument here holds if household wealth represents its income. We find (unreported) a negative
and statistically significant relationship between agricultural land ownership and principal components of
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We first present evidence on how speed of change in forest cover and agricultural land
ownership relate to household’s choice of fuel types used for cooking. The relationships are
estimated using linear model, where the dependent variable is a binary variable whether
fuel choice. The correlation coefficients of speed of change in forest cover and agricultural
land ownership with mean fractions of polluting fuel use for cooking are 0.0824 (SE: 0.0430,
p-value: 0.06) and 0.5816 (SE: 0.0332, p-value: 0.00) at the district-level, respectively.

Column (1) of Table 9 reports the first-stage results when the indicator variable for
household’s agricultural land ownership is used as an IV. Agricultural land ownership is a
binary variable, which takes value 1 if household owns land for agricultural purposes in a
given year. This variable has a positive and statistically significant impact on cooking fuel
choice. Agricultural households are likely to consume their own agricultural crop waste and
animal dung as cooking fuel which are classified as polluting. This confirms that agricultural
land ownership generates plausible variation in fuel choice. Columns (2)–(5) of Table 9
present the estimates from the IV (2SLS) regressions for four different age groups. The
coefficient estimates on polluting fuel for cooking for under-five and neonatal mortality are
positive and statistically significant, ranging from 0.037 to 0.048.

Column (1) in top panel of Table 10 presents the first-stage results when speed of change
in forest cover and an indicator variable for household’s agricultural land ownership are
jointly included as IVs. The joint F -statistic on the excluded instruments is large enough to
suggest that these two IVs provide plausible variations in fuel choice that we can leverage
to identify a causal effect of fuel choice on infant mortality.25 Columns (2)–(5) in top panel
present the estimates from the IV (2SLS) regressions for four different age groups. The
coefficient estimates for polluting fuel for cooking for under-five and neonatal mortality are
positive and statistically significant at 5 percent level, ranging from 0.034 to 0.047. In
other words, a family relying on polluting fuel for cooking has a 4.7 and 3.4 percent higher
probability of experiencing child mortality in the first five years and within the first 28
days of life, respectively. Heteroskedasticity-consistent standard errors were clustered at the

household wealth index which require households to have flows of income to operate them (or with variable
cost) such as ownership of refrigerator, television, washing machine, electric fan, air conditioner or cooler,
and computer, conditional on a set of time and spatial fixed effects. Thus, we can assume that wealth and
income are correlated. Additionally, some of our other controls, such as mother’s education and the number
of household members, potentially capture the household income.

25Although there is theoretically no concern about the “relatively large” value of F -statistic on excluded
IVs, in practice, one may be concerned about it. The “large” value of F -stat on IVs is possibly due to (i)
a large sample, and (ii) “perfect” multicollinearity between instruments and an endogenous regressor. The
latter would indicate that the instruments are not exogenous. This would be the case if R2 of the first-stage
regression is “too large” and household fuel choice is perfectly correlated with the speed of change in forest
cover and agricultural land ownership. The R2 of 0.54 shown in Column (1) of Table 10, Panel A, indicates
that our endogenous regressor not perfectly correlated with the instruments. Hence, we consider that the
value of F -statistic reflects our sample size.
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district level instead of PSU level, given the utilization of district-level speed of change in
forest cover as one of the instruments. The Hansen’s J-statistic suggests that the excluded
IVs are exogenous.

The existing economic studies that causally estimate the impact of IAP on infant
mortality such as Imelda (2018, 2020) is limited to an impact of kerosene to LPG, and
thereby leaving out the dirtiest indoor fuels, the biomass fuels including animal dung,
agricultural waste, straw, shrubs, grass, and firewood. However, the literature suggests that
(i) a vast majority of households use polluting fuels indoors use biomass fuels, (ii) biomass
fuels, being the cheapest, are most popularly used by the poor, and (iii) biomass fuels are
far more health-endangering than kerosene, for example (Fullerton et al., 2008). Hence, to
check how our results change if we redefine polluting fuels to include only biomass fuels –
since these are the key fuel choice that our IVs are supposed to have impact on. The causal
effects of biomass fuel for cooking on under-five and neonatal mortality range from 2.9 to
4.0 percent (Columns (2)–(5) in bottom panel of Table 10). These are lower than the
counterparts above of 3.4 and 4.7 percent since biomass fuels are part of our complete list
of polluting fuels.

Since our local average treatment has heterogeneous effects, the moment condition
evaluated at two-stage least squares (2SLS) estimand, which is a positively-weighted
average of multiple local average treatment effects (LATEs) given more than one
instrument, would be misspecified (Lee, 2018). The conventional heteroskedasticity-robust
variance of the 2SLS estimator would be misleading. Thus, Table 10 also reports
heteroskedasticity standard errors robust to multiple-LATEs, and our conclusion is
qualitatively the same.

Additional heterogeneity results: We make use of data splits to analyze
heterogeneous LATEs by household size in addition to heterogeneity by child’s age. A
subpopulation of households with fewer than ten members is found as the driver of our
main estimates of local average effects of polluting fuel use for cooking on infant mortality
for four different age-groups presented in the top panel of Table 10, given that such
households constitute 92 percent of our sample (top panel of Table 11). Interestingly, a
positive effect of IAP on post-neonatal mortality turns out to be statistically significant at
the 10% level when the sample is restricted to households with fewer than ten members,
with coefficient estimate of 2.4 percent. Regressions in panels B and C of Table 11 using
other two subpopulations of households with more than ten members suggest that speed of
change in forest cover is not relevant to the polluting fuel choice for cooking, and local
average effects of IAP is not statistically significant at the 10 percent level for all
age-groups.
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We further analyze the heterogeneous treatment effects of IAP on infant mortality by
household size, focusing on five subpopulations of households with ten or fewer members:
those with fewer than 2 members, 3-4 members, 5-6 members, 7-8 members, and more than
8 members (Figure 7). The joint F -statistic on the excluded instruments indicates that
the two IVs introduce meaningful variations in fuel choice in all regressions estimated on
subpopulations except for households with one and two members. The results suggest that
the local average effect of IAP on under-five mortality is statistically significant only for
households with five and six members at 1 percent significance level, with an estimate of
11.1 percent.26 In addition, a household with 3-4 and 5-6 members using polluting fuels
for cooking has 11.6 and 9.0 percent higher probability of experiencing neonatal mortality,
respectively. Higher probability of younger child’s death in relatively smaller families with
three and four household members could be due to a lack of family members who can take care
of infants except for a mother cooking using dirty fuels. The effects of IAP on infant mortality
for all age-groups are essentially zero for households with 1-2, 7-8, and 9-10 members. Post-
neonatal and child mortality are not affected by IAP in any of the households with different
pairs of family members. Supplementary Appendix Table S.1 provides the detailed results.27

Results above indicate that infants living in a relatively smaller family are subject to a
26The local average effects of IAP on under-five and post-neonatal mortality are positive, with coefficients

ranging from 0.102 to 0.227, and significantly different from zero for households with three and four members
at the 1% level. However, Hansen’s J-statistic suggests that the excluded IVs in under-five and post-neonatal
mortality regressions for households with three and four members are not exogenous since the null hypothesis
of the Sargan-Hansen test is rejected at the 5% and 1% level, respectively.

27We also investigate how classification affects our results of heterogeneous LATE by household size by
choosing other sets of subpopulations of households with fewer than ten or twelve members. We first combine
3-4 and 5-6 members into one group and 7-8 and 9-10 into another single group. With this new classification,
our results suggest that local average treatment effects of IAP on under-five, post-neonatal, and neonatal
mortality are positive and statistically significant at 1 percent level. However, the excluded IVs in these
regressions are hardly exogenous according to Hansen’s J-statistic (Supplementary Appendix Figure S.1 and
Table S.2). Supplementary Appendix Figure S.2 and Table S.3 show the heterogeneous treatment effects of
IAP on infant mortality when the sample of households with twelve or fewer members is classified into four
groups (3-by-3) in terms of household size. The result reveals that IAP increases the neonatal mortality for
households with 4-6 members. The local treatment effects of IAP on under-five and post-neonatal mortality
are positive and statistically significant at the 1% level; however, the excluded IVs are not exogenous in
these two particular regressions according to Hansen’s J-statistic. The effects of IAP on infant mortality for
all age-groups are not significantly different from zero for households with members other than 4-6. When
the sample of households with twelve or fewer members is classified into three groups (4-by-4) in terms of
household size, we also find that a household with 1-4 and 5-8 members relying on polluting fuel for cooking
respectively has a 14.0 and 5.1 percent higher probability of experiencing neonatal mortality (Supplementary
Appendix Figure S.3 and Table S.4). The local average effect of IAP on under-five mortality is 6.3 percent
and statistically significant at the 1 percent level. Although the coefficient estimates on IAP in under-five
and post-neonatal mortality are positive and statistically significant at the 1% level, the null hypothesis of
the Sargan-Hansen test is rejected at the 10% and 5% level, respectively, suggesting that the excluded IVs
are endogenous in those two regressions. The heterogeneous treatment effects of IAP on infant mortality for
all age-groups are essentially zero for households with 9-12 members.
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greater risk of mortality due to IAP, whereas IAP in a relatively larger household has no
significant effect on infant mortality. There are several conjectures that can explain why a
household with few members has a greater risk of child mortality. For example, it could be
because no one is available other than an individual who is cooking to take care of the child
and keep them away from the cooking place while food has been cooked. However, one might
suggest that a larger household using solid fuel has essentially a zero risk of experiencing child
mortality arguing that cooking in a separate building or outdoors is more practical for such a
household, while there is more probability of infant mortality in a smaller household because
a separate building is not necessary to cook for those few household members, leading such
household to cook in the same location as they live in, which means the child is closer to IAP.
But household size is negatively correlated with cooking in a separate building (ρ: −0.003,
SE: 0.002, p-value: 0.213) and outdoors (ρ: −0.005, SE: 0.002, p-value: 0.020), and thus the
latter argument is less likely valid.

We checked if our result of heterogeneous treatment effects by household size is due to the
number of household members or location of cooking by adding the location of cooking place
to the heterogeneity analysis. In particular, we split the subsamples again by cooking place
location and estimate local average effects of IAP on infant mortality for smaller households
that cook their food in a separate building and larger households that make their meal in
the same room as they live in (unreported). Then we find no clear evidence that location
of cooking place drives our household size heterogeneity results. Hence, we argue that a
hazardous impact of IAP on infant mortality is present in smaller households using polluting
fuels for cooking due to lack of child caretakers because our heterogeneity results above stay
the same when restricting the sample of smaller households to those cooking in a separate
building and larger household to those cooking in their living room.

5.3 Robustness Checks

To assess the robustness of our findings, we re-estimate the causal effect of cooking fuel
choice on infant mortality using (two-step) IV probit regressions as an alternative to the IV
regression. We find that IV probit provides exactly the same conclusion as the IV (2SLS)
regression, verifying that the results are robust to an alternative estimation approach. Table
A.1 presents the parameter estimates derived from the IV probit regression for under-five,
child, post-neonatal, and neonatal mortality (with the same specification as used in Table
10 where both relative change in forest cover over time and agricultural land ownership are
used as IVs). It shows that using dirty fuels instead of clean fuels causes under-five and
neonatal mortality, and the corresponding coefficient estimates on polluting fuel for cooking
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ranges from 0.539 to 0.569.
Second, the National Biomass Cookstoves Initiative (NBCI) was launched by the Indian

government to enhance the use of improved biomass cookstoves in 2009. The pilot projects
distributed 12,000 improved cookstoves to households in the states of Jammu and Kashmir,
Uttar Pradesh, Bihar, Madhya Pradesh, Jharkhand, Chhattisgarh, Karnataka, and
Odisha.28 Hence, we additionally control for states where improved cookstoves program has
been implemented by adding a dummy variable which indicates states where there is NBCI
program. Notice that we omit the state fixed effect for one of the NBCI states to resolve
the collinearity problem. It is important to note that we did not control for states with
another government program, National Programme on Improved Chulha (NPIC), since it
already became a nationally disseminated program. Table A.2 reports results from the first
and second-stage regressions of IV (2SLS) regression where a dummy variable is added to
our preferred specifications in Table 10. The first stage regression results suggest that the
effect of the NBCI program on household fuel choice is not statistically significant, which is
consistent with the existing findings from the literature including Hanna et al. (2016). The
results obtained with the inclusion of the dummy variable for NBCI implementation are
qualitatively identical to the IV (2SLS) regression results.

Third, we disaggregate our key regressor by ranking fuel types from 1 (the cleanest fuel)
to 10 (the dirtiest fuel) based on their cleanliness or the energy ladder concept (Holdren
and Smith, 2000). The assigned values to different types of fuels used for cooking are: 1 =
electricity, 2 = LPG or natural gas, 3 = biogas, 4 = kerosene, 5 = coal or lignite, 6 = charcoal,
7 = firewood, 8 = straw, shrubs or grass, 9 = agricultural waste, and 10 = animal dung.
Table A.3 shows that if dirtiness level of cooking fuel increases by 1 unit, the probability
of under-five and neonatal mortality will rise by 0.8 and 0.6 percent, respectively. In other
words, the probability of experiencing child mortality within five years and 28 days of birth
increases respectively by 0.8 and 0.6 percent if a household switches to a fuel type that is
dirtier by one level along the energy ladder. Notice that the key regressor here, dirtiness
level of cooking fuels, is a categorical variable. Our results here remain remarkably similar
to our baseline results that use the cooking fuel choice as a binary variable.

Finally, we leverage satellite- and census-based data on forest cover (% of geographical
area) in 2011 to test whether we can still identify a positive impact of polluting fuel use on
under-five and neonatal mortality incidences. Using data on 2011 satellite-based forest cover
and tree cover from the 2011 Indian Census as alternates to a satellite-based speed of change

28The government of India had also initiated the National Programme on Improved Chulha (NPIC) in
1984 to provide efficient cooking stoves to rural areas in an attempt to limit air pollution. NPIC became a
nation-wide program in 1986 and was implemented until 2000. Since this program had universal coverage
throughout the country, we cannot use this program for a robustness check.
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in forest cover, we find that the results are also exceptionally robust to the utilization of
either satellite- or census-based tree cover for a single year as one of the IVs for household
fuel choice (Tables A.4 and A.5, respectively).

6 Conclusion

Almost half of the global population continues to depend on dirty cooking fuels, and it
constitutes the largest source of poor indoor air quality. In 2015, 64% of the Indian
population used different types of solid fuels for cooking including wood, dung and coal,
second after Sub-Saharan Africa. Each year, diseases attributed to indoor air pollution
(IAP) kill 1.2 million people, including 100,000 children in India. Leveraging a unique and
large-scale household survey data from 1992 to 2016 and geospatial information of forest
cover in India, we find that the use of polluting fuels for cooking or IAP in general increases
under-five mortality and that our results are robust to a variety of empirical specifications.

Our analysis presents two important departures from the existing literature. First, we
utilize nationally-representative demographic survey data instead of focusing on RCTs
conducted in a particular region of the country as commonly analyzed in the literature
(Diaz et al., 2007; Smith-Sivertsen et al., 2009; Hanna et al., 2016). Our analyses based on
simple probit regressions lead to a 0.6 percentage points decrease in the estimates of the
marginal impact of cooking fuel on infant mortality relative to the extant literature. This
suggests that the literature has tended to overestimate the association between IAP and
under-five mortality by approximately 145,000 deaths per year nationally as compared to
our estimates. Our non-IV estimation departs from the existing literature in terms of
additional controls and a more recent sample which points to the importance of including a
full set of controls.

Second, ours is the first empirical analysis to address the endogeneity in cooking fuel
choice when quantifying the causal effect of cooking fuels, including most health-endangering
biomass fuels, on infant mortality. The speed of change in forest cover and agricultural land
ownership status in India provide plausibly exogenous variation in cooking fuels for causal
identification. The IV (2SLS) analysis based on the speed of change in forest cover and
agricultural land ownership shows that a household using solid fuel for cooking has a 3.4

and 4.7 percent higher probability of experiencing child mortality within 28 days and five
years of birth, respectively. However, we find no causal impact of fuel choice on child and
post-neonatal mortality. The present study also offers the first empirical analysis showing
that the local average effect of IAP on infant mortality is significantly heterogeneous by a
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child’s age and household size.
We conclude with some caveats and directions for future research. First, our analysis

is based on an indirect indicator of IAP, i.e., type of cooking fuels, to estimate the causal
impact of IAP on under-five mortality due to the lack of data availability. Using direct
measures of IAP (CO and PM emissions in homes) recorded by 24-hour carbon monoxide
readings might provide more accurate estimates. Although cooking is the main source of
IAP, it is not the only source of CO emission inside the house that puts children at risk.
The WHO guidelines for indoor air quality (World Health Organization, 2014) recommend
that kerosene be considered as a solid fuel and encourage not to use it indoor. However,
nearly 1 billion people who do not have electricity access still use kerosene to light up their
homes. Besides creating IAP, kerosene use inside the house also generates other sources of
risks such as fires and carbon monoxide poisoning. Therefore, we might have underestimated
the causal estimate of the impact of IAP on infant mortality due to the absence of a direct
measure of IAP and indirect measures for other sources of household air pollution.

Second, we focus on the causal impact of IAP on infant mortality. It is well understood
that IAP has an impact on other socio-economic and health outcomes in addition to infant
mortality. Hence, future research could empirically examine the impact of cooking fuels
on productivity of children and adults, school attendance, labor market participation, all
of which could have important implications on the broader economy and contribute to the
economic literature of indoor air quality or household energy choice.
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Figure 1: Mortality Trend in Different Child’s Age-Groups by Fuel Type in India

Notes: Based on NFHS datasets 1992–93, 1998–99, 2005–06, and 2015–16. In the medical literature, the
measure of incidence proportion (or cumulative incidence) is described as the fraction of children alive
at the start of a period who die over that period (Greenland and Rothman, 2008; Centers for Disease
Control and Prevention, 2006). To adjust for multiple-stage cluster sample design and apply the complex
sample design parameters in estimating indicators, “svyset” and “svy” commands were used for calculating
weighted estimates of mortality incidence proportion. The NFHS sample was selected through a two-stage
sample design, and the commands deal with multiple stages of clustered sampling. Notice that the incidence
proportions of neonatal, post-neonatal and child mortality add up to under-five mortality incidence because
(i) these three preceding and successive age groups fully make up the first five years of life, and (ii) the measure
of mortality incidence for all four different age groups have been calculated using a common denominator
(or total number of live births).
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Figure 2: Displacement of PSUs (Villages/City Blocks) in India’s NFHS-4 (2015–16)

Notes: The figure shows how the PSU points are displaced in NFHS-4 (2015–16) survey based on few
PSU points in Kerala district. In order to ensure that respondent confidentiality is maintained, the GPS
(latitude/longitude positions) of respondent locations are randomly displaced according to the “random
direction, random distance” method. The displacement is randomly carried out so that (i) urban clusters
are displaced up to 2 kilometers, (ii) rural clusters are displaced up to 5 kilometers, with 1% of the rural
clusters displaced up to 10 kilometers. According to the description of the DHS GPS data provided by the
DHS Program, the displacement is restricted so that the points stay within the same country, state, and
district areas as the undisplaced cluster. The buffer analysis on few PSU points in Kerala district as an
example suggests that identification of villages/towns and sub-districts (or tehsils) is questionable because
2-5-kilometer buffers intersect with boundaries of villages/towns and sub-districts.
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Figure 3: Share of Households in the NFHS relying on Different Types of Fuels for Cooking

Notes: The figure shows the share of households covered in four rounds of National and Family Health
Survey (NFHS) using different types of fuels for cooking in India over the period 1992–2016. The line
charts depict the share of households using each type of cooking fuel for each individual rounds of survey,
while the bar chart illustrates the share for all four rounds of survey between 1992 and 2016 (the bars
for clean fuels are filled with pattern, whereas the bars for polluting fuels are in solid fill). Wood is the
leading fuel used for cooking in India, accounting for 50.1% of the sampling households in the NFHS over
the period. The second dominant cooking fuel is a liquid petroleum gas (LPG) and/or natural gas with
a share of 32.4%. The other clean fuels account for only 1.4% (electricity and biogas account for about
0.9% and 0.4%, respectively). Overall, based on our classification of cooking fuels, we can see that one-
third of the Indian households have been consuming clean fuels for their cooking, while the majority or the
remaining two-thirds of the households have been relying on polluting fuels for cooking over the past 25 years.
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Figure 4: India’s District-Wise and Satellite-based Forest Cover

Notes: Based on a satellite-based data on forest cover from the Planning Commission of India. The figure
depicts the 2011 district-wise forest cover (measured by percentage of geographical area covered by forests)
in India. The forest cover includes all types of forests (different canopy density classes) including very
dense (lands with tree canopy density of 70% and above), moderately dense (lands with tree canopy density
between 40% and 70%), and open forests (lands with tree canopy density between 10% and 40%). The scrub
or degraded forest lands with canopy density less than 10% is not considered for calculating forest cover.
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Figure 5: Cumulative Distribution Functions (CDFs) of Polluting Fuel Choice

(a) By Ownership Status of Agricultural Land (b) By Speed of Change in Forest Cover

Notes: Based on NFHS-4 (2015–16) dataset. This figure plots the cumulative distribution function of
polluting fuel choice for households with and without land for agricultural purposes (left panel) and those
living in an area with forest cover growing at speed above and below the median speed of change in forest
cover (right panel).

Figure 6: Mortality in Different Age-Groups of Children and Ownership Status of
Agricultural Land by Household Wealth in India

(a) Infant Mortality (b) Ownership of Agricultural Land

Notes: Based on NFHS datasets 1992–93, 1998-99, 2005–06, and 2015–16. Panel (a) shows that under-
five mortality incidence proportion is higher in households with lower wealth, suggesting the probability
of mortality decreases as a family becomes wealthier. The “low wealth” is the bottom 40% of households,
“middle wealth” is the middle 40% of households, and “high wealth” is the top 20% of households. Panel
(b) depicts the mean fraction of households that own land for agricultural purposes by dividing agricultural
households into five groups (quintiles) based on household wealth.

37



Figure 7: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and Household
Size using IV (2SLS) Regressions for Households with Fewer than Ten Members

(Classified as 2-by-2 groups) (IVs = Speed of Change in Forest Cover and Agricultural
Land Ownership): SEs clustered at district level

(a) Household size = {1, 2},
N = 1,239

(b) Household size = {3, 4},
N = 48,162

(c) Household size = {5, 6},
N = 70,990

(d) Household size = {7, 8},
N = 39,945

(e) Household size = {9, 10},
N = 19,809

Notes: The figure presents heterogeneous treatment effects of IAP (defined by polluting fuel use) on infant
mortality by both child’s age and household size using five distinct subpopulations of households with fewer
than ten members (based on our findings in Table 11) covered in NFHS-4 data. Panels (a)–(e) considers
each of the five subsamples from pair of 1-2 to 9-10 members in an orderly fashion. Each panel reports
results from the estimation of Equation (1) using IV regression with different dependent variables and
similar specifications where the key explanatory variable is the fitted value of polluting fuel from the first-
stage estimation. The outcome variable in each IV regression is a binary variable of infant mortality for
each of the four different age-groups, and the endogenous regressor or outcome variable in the first-stage
regression is whether fuel choice: polluting fuel. The speed of change in forest cover and agricultural land
ownership status are used as instruments, and first-stage coefficient estimates on the IVs are both positive
and statistically significant at least at the 10% level except for the speed of change in forest cover in the first-
stage regression for households with nine and ten members. The F -test on IVs verifies that the instruments
generate a plausible variation in polluting fuel for cooking, except for a subpopulation of households with one
and two members. The calculation of Hansen’s J-statistic is not available for IV regressions of households
with one and two members due to a lack of observations. The Hansen’s J-statistic suggests that the excluded
IVs are not exogenous in under-five and post-neonatal mortality regressions for households with three and
four members since a rejection of the null hypothesis of the Sargan-Hansen test is encountered at the 5%
and 1% level, respectively. All specifications contain a vector of demographic controls and a constant term.
The demographic controls include household characteristics: place of residence, household wealth, number of
household members, place where food is cooked, and type of house; mother characteristics: age and education
level; and child characteristics: gender and breastfeeding status. The state, year, and state-by-year fixed
effects are also included in every specification. Unit of observation: child. Heteroskedasticity-consistent
standard errors are clustered by districts.
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Table 1: Summary Statistics

Mean S.D. Min Max Obs.

Infant mortality (% total live births)
Under-five 0.053 0.223 0.000 1.000 369,416
Child 0.005 0.069 0.000 1.000 369,416
Post-neonatal 0.017 0.130 0.000 1.000 369,416
Neonatal 0.031 0.173 0.000 1.000 369,416

Type of cooking fuel (% households)
Clean 0.240 0.427 0.000 1.000 354,161
Polluting 0.760 0.427 0.000 1.000 354,161

Place of residence (% households)
Urban 0.244 0.430 0.000 1.000 369,416
Rural 0.756 0.430 0.000 1.000 369,416

Household wealth (wealth index, % households)
High 0.150 0.357 0.000 1.000 369,416
Middle 0.385 0.487 0.000 1.000 369,416
Low 0.465 0.499 0.000 1.000 369,416

Mother’s age (years, % households)
40-49 0.027 0.162 0.000 1.000 369,416
<20 0.041 0.199 0.000 1.000 369,416
20-29 0.679 0.467 0.000 1.000 369,416
30-39 0.253 0.435 0.000 1.000 369,416

Mother’s education (% households)
Secondary/Higher 0.458 0.498 0.000 1.000 369,219
Primary 0.151 0.358 0.000 1.000 369,219
No education 0.392 0.488 0.000 1.000 369,219

Gender of child (% households)
Female 0.481 0.500 0.000 1.000 369,416
Male 0.519 0.500 0.000 1.000 369,416

Breastfeeding status (% households)
Ever breastfed 0.654 0.476 0.000 1.000 369,416
Never breastfed 0.346 0.476 0.000 1.000 369,416

Place where food is cooked (% households)
In same room as they live in 0.369 0.483 0.000 1.000 253,670
In separate kitchen inside the house 0.447 0.497 0.000 1.000 253,670
In a separate building 0.106 0.307 0.000 1.000 253,670
Outdoors 0.078 0.268 0.000 1.000 253,670

Type of house (% households)
Pucca 0.376 0.484 0.000 1.000 358,410
Semi-pucca 0.437 0.496 0.000 1.000 358,410
Kachha 0.187 0.390 0.000 1.000 358,410

Number of household members 6.864 3.253 1.000 46.000 369,416

Notes: The table summarizes the household and individual characteristics of respondents from the three
rounds of NFHS (1992–93, 1998–99, and 2015–16) used in the regression analysis. The unit of observation
is the child. Neonatal = first 28 days after birth, Post-neonatal = period between approximately the first
month after birth and end of the first year of life, and Child = period from age of one to five. Units are %
household unless otherwise specified. The type of cooking fuel recorded in the survey as “no food cooked in
house”, “other”, and “not a de jure resident” has been coded as missing observations.
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Table 2: Summary Statistics of Infant Mortality and Fuel Choice (by State)

Panel A. Infant Mortality (fraction)

States Under-Five Child Post-Neonatal Neonatal Obs.Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Uttar Pradesh 0.074 0.262 0.006 0.080 0.024 0.153 0.044 0.204 56,090
Madhya Pradesh 0.066 0.248 0.007 0.085 0.021 0.144 0.038 0.190 32,007
Odisha 0.059 0.236 0.004 0.066 0.021 0.144 0.034 0.181 16,192
Rajasthan 0.059 0.235 0.005 0.070 0.021 0.144 0.033 0.177 25,435
Bihar 0.059 0.236 0.005 0.071 0.017 0.129 0.037 0.190 33,093
Assam 0.058 0.234 0.007 0.082 0.018 0.134 0.033 0.179 14,393
Chhattisgarh 0.058 0.234 0.005 0.070 0.014 0.116 0.040 0.196 10,695
Andhra Pradesh 0.055 0.228 0.003 0.057 0.018 0.134 0.033 0.179 5,515
Meghalaya 0.050 0.218 0.006 0.075 0.019 0.138 0.025 0.156 6,261
Gujarat 0.050 0.218 0.006 0.078 0.015 0.121 0.029 0.168 12,077

All States/UTs 0.053 0.223 0.005 0.069 0.017 0.130 0.031 0.173 369,416

Panel B. Type of Cooking Fuel (fraction)

States Mean S.D. Obs.Polluting Clean

Bihar 0.905 0.095 0.294 31,573
Meghalaya 0.896 0.104 0.305 6,247
Jharkhand 0.890 0.110 0.312 12,712
Odisha 0.881 0.119 0.323 15,487
West Bengal 0.865 0.135 0.342 9,033
Tripura 0.856 0.144 0.351 2,500
Assam 0.855 0.145 0.353 14,229
Chhattisgarh 0.838 0.162 0.368 10,108
Nagaland 0.829 0.171 0.376 5,646
Madhya Pradesh 0.812 0.188 0.391 30,658

All States/UTs 0.760 0.240 0.427 354,161

Notes: The table summarizes the infant mortality of four different age-groups (outcome variables, Panel
A) and the type of cooking fuel (key explanatory variable, Panel B) by state recorded in three rounds of
NFHS (1992–93, 1998–99, and 2015–16) used in the regression analysis. All 35 regions of India (29 states
and six union territories–UTs) are considered, and we show 10 states/UTs with highest incidence of child
mortality and highest share of households that use polluting fuel for cooking. Infant mortality and fuel
choices significantly vary across regions throughout the country. In addition, six of these ten states/UTs
(Odisha, Madhya Pradesh, Bihar, Assam, Chhattisgarh, and Meghalaya) are common in terms of highest
fraction of polluting fuel use and under-five mortality incidence proportion.
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Table 4: Probit: The Marginal Impact of Indoor Air Pollution on Under-Five Mortality

Dependent variable: Under-five mortality
(1) (2) (3)

Polluting fuel for cooking 0.023*** 0.008*** 0.008***
(0.001) (0.001) (0.001)

Place of residence: Rural 0.004*** 0.004***
(0.001) (0.001)

Household wealth: Middle 0.011*** 0.011***
(0.002) (0.002)

Household wealth: Low 0.015*** 0.014***
(0.002) (0.002)

Number of household members -0.004*** -0.004***
(0.000) (0.000)

Mother’s age: <20 0.018*** 0.018***
(0.003) (0.003)

Mother’s age: 20-29 -0.008*** -0.008***
(0.002) (0.002)

Mother’s age: 30-39 -0.012*** -0.012***
(0.002) (0.002)

Mother’s education: Primary 0.008*** 0.008***
(0.001) (0.001)

Mother’s education: No education 0.010*** 0.010***
(0.001) (0.001)

Gender of child: Male 0.004*** 0.004***
(0.001) (0.001)

Never breastfed 0.049*** 0.049***
(0.001) (0.001)

Food cooked: In separate kitchen inside -0.002** -0.002**
(0.001) (0.001)

Food cooked: In a separate building -0.002 -0.003*
(0.002) (0.002)

Food cooked: Outdoors 0.000 0.000
(0.002) (0.002)

House type: Semi-pucca 0.004*** 0.004***
(0.001) (0.001)

House type: Kachha 0.005*** 0.005**
(0.002) (0.002)

Year fixed effects Yes Yes Yes
State fixed effects Yes Yes Yes
State-by-Year fixed effects No No Yes

Observations 354,161 230,091 230,091
Probit log-likelihood -71,277 -37,008 -37,000

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is
under-five mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects in
Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed effects
include dummies for 36 states. The unit of observation is the child. Standard errors of the probit regressions
are clustered at the PSU level, and standard errors of the AMEs in parentheses are calculated by applying
the Delta method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 5: Probit: The Marginal Impact of Indoor Air Pollution on Child Mortality

Dependent variable: Child mortality
(1) (2) (3)

Polluting fuel for cooking 0.0040*** 0.0009** 0.0009**
(0.0004) (0.0004) (0.0004)

Place of residence: Rural 0.0004 0.0004
(0.0004) (0.0004)

Household wealth: Middle 0.0008 0.0008
(0.0006) (0.0006)

Household wealth: Low 0.0015** 0.0014**
(0.0007) (0.0007)

Number of household members -0.0005*** -0.0005***
(0.0001) (0.0001)

Mother’s age: <20 -0.0032*** -0.0031***
(0.0011) (0.0011)

Mother’s age: 20-29 -0.0021*** -0.0021***
(0.0005) (0.0005)

Mother’s age: 30-39 -0.0010** -0.0010**
(0.0005) (0.0005)

Mother’s education: Primary 0.0010*** 0.0010***
(0.0004) (0.0004)

Mother’s education: No education 0.0018*** 0.0019***
(0.0003) (0.0003)

Gender of child: Male -0.0004* -0.0004*
(0.0002) (0.0002)

Never breastfed 0.0023*** 0.0023***
(0.0002) (0.0002)

Food cooked: In separate kitchen inside -0.0002 -0.0002
(0.0003) (0.0003)

Food cooked: In a separate building -0.0002 -0.0002
(0.0004) (0.0004)

Food cooked: Outdoors -0.0001 -0.0002
(0.0004) (0.0004)

House type: Semi-pucca 0.0001 0.0001
(0.0003) (0.0003)

House type: Kachha 0.0003 0.0003
(0.0004) (0.0004)

Year fixed effects Yes Yes Yes
State fixed effects Yes Yes Yes
State-by-Year fixed effects No No Yes

Observations 351,822 228,039 228,039
Probit log-likelihood -10,428 -4,074 -4,074

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is child
mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects (FEs) in
Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed effects
include dummies for 36 states. The number of observations is lower than that in Table 4 because there exist
five states for which state FEs perfectly explain child mortality, and thus those five state FEs are dropped
because probit models cannot be estimated when the outcome variable is perfectly predicted by the regressor.
The unit of observation is the child. Standard errors of the probit regressions are clustered at the PSU level,
and standard errors of the AMEs in parentheses are calculated by applying the Delta method. Significance:
*p < 0.10, **p < 0.05, and ***p < 0.01.

43



Table 6: Probit: The Marginal Impact of Indoor Air Pollution on Post-Neonatal Mortality

Dependent variable: Post-neonatal mortality
(1) (2) (3)

Polluting fuel for cooking 0.009*** 0.001 0.001
(0.001) (0.001) (0.001)

Place of residence: Rural 0.002*** 0.002***
(0.001) (0.001)

Household wealth: Middle 0.005*** 0.005***
(0.001) (0.001)

Household wealth: Low 0.007*** 0.007***
(0.001) (0.001)

Number of household members -0.001*** -0.001***
(0.000) (0.000)

Mother’s age: <20 0.003 0.003
(0.002) (0.002)

Mother’s age: 20-29 -0.004*** -0.004***
(0.001) (0.001)

Mother’s age: 30-39 -0.004*** -0.004***
(0.001) (0.001)

Mother’s education: Primary 0.003*** 0.003***
(0.001) (0.001)

Mother’s education: No education 0.005*** 0.005***
(0.001) (0.001)

Gender of child: Male -0.001* -0.001*
(0.000) (0.000)

Never breastfed 0.015*** 0.015***
(0.001) (0.001)

Food cooked: In separate kitchen inside -0.001 -0.001
(0.001) (0.001)

Food cooked: In a separate building -0.001 -0.001
(0.001) (0.001)

Food cooked: Outdoors 0.000 0.000
(0.001) (0.001)

House type: Semi-pucca 0.001 0.001
(0.001) (0.001)

House type: Kachha 0.000 0.000
(0.001) (0.001)

Year fixed effects Yes Yes Yes
State fixed effects Yes Yes Yes
State-by-Year fixed effects No No Yes

Observations 354,161 229,696 229,696
Probit log-likelihood -29,912 -14,389 -14,389

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is
post-neonatal mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects
(FEs) in Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed
effects include dummies for 36 states. The number of observations is slightly lower than that in Table 4
because there exists one state for which state FE perfectly explains post-neonatal mortality, and thus that
state FE is dropped because probit models cannot be estimated when the outcome variable is perfectly
predicted by the regressor. The unit of observation is the child. Standard errors of the probit regressions
are clustered at the PSU level, and standard errors of the AMEs in parentheses are calculated by applying
the Delta method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 7: Probit: The Marginal Impact of Indoor Air Pollution on Neonatal Mortality

Dependent variable: Neonatal mortality
(1) (2) (3)

Polluting fuel for cooking 0.011*** 0.006*** 0.006***
(0.001) (0.001) (0.001)

Place of residence: Rural 0.001 0.001
(0.001) (0.001)

Household wealth: Middle 0.006*** 0.006***
(0.001) (0.001)

Household wealth: Low 0.007*** 0.006***
(0.002) (0.002)

Number of household members -0.002*** -0.002***
(0.000) (0.000)

Mother’s age: <20 0.018*** 0.018***
(0.003) (0.003)

Mother’s age: 20-29 -0.001 -0.001
(0.002) (0.002)

Mother’s age: 30-39 -0.007*** -0.007***
(0.002) (0.002)

Mother’s education: Primary 0.004*** 0.004***
(0.001) (0.001)

Mother’s education: No education 0.003*** 0.003***
(0.001) (0.001)

Gender of child: Male 0.005*** 0.005***
(0.001) (0.001)

Never breastfed 0.032*** 0.032***
(0.001) (0.001)

Food cooked: In separate kitchen inside -0.002* -0.002*
(0.001) (0.001)

Food cooked: In a separate building -0.002 -0.002
(0.001) (0.001)

Food cooked: Outdoors 0.000 0.000
(0.001) (0.001)

House type: Semi-pucca 0.003*** 0.003***
(0.001) (0.001)

House type: Kachha 0.004*** 0.004***
(0.002) (0.002)

Year fixed effects Yes Yes Yes
State fixed effects Yes Yes Yes
State-by-Year fixed effects No No Yes

Observations 354,161 230,091 230,091
Probit log-likelihood -47,742 -26,355 -26,348

Notes: Each column reports AMEs for a multivariate probit regression where the dependent variable is
neonatal mortality and the key explanatory variable is polluting fuel for cooking. The year fixed effects in
Columns (2) and (3) include dummies for two years of interview (2015 and 2016). The state fixed effects
include dummies for 36 states. The unit of observation is the child. Standard errors of the probit regressions
are clustered at the PSU level, and standard errors of the AMEs in parentheses are calculated by applying
the Delta method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 8: The Effect of Polluting Fuel for Cooking on Infant Mortality
(Comparison of Results from Simple Logit Regressions)

(1) (2) (3) (4) (5)
NFHS-1-3 (1992–2006) NFHS-4 NFHS-1-4 This

Naz et al. (2016) Replication (2015–16) (1992–2016) paper

Dependent variable: Under-five mortality
Odds Ratio 1.30*** 1.27*** 1.28*** 1.25*** 1.25***

(0.065) (0.117) (0.054) (0.047)
Marginal Effect 0.014*** 0.010*** 0.013*** 0.009***

(0.003) (0.004) (0.003) (0.001)
Observations 138,063 150,845 32,503 181,791 230,091

Dependent variable: Child mortality
Odds Ratio 1.42** 1.55** 0.75 1.24 1.38**

(0.291) (0.250) (0.194) (0.208)
Marginal Effect 0.004** -0.001 0.002 0.001**

(0.002) (0.001) (0.001) (0.000)
Observations 138,063 150,845 31,810 181,791 228,039

Dependent variable: Post-neonatal mortality
Odds Ratio 1.42*** 1.40*** 1.08 1.28*** 1.11

(0.127) (0.177) (0.099) (0.072)
Marginal Effect 0.008 0.001 0.005*** 0.001

(0.005) (0.002) (0.002) (0.001)
Observations 138,063 150,845 32,503 181,791 229,696

Dependent variable: Neonatal mortality
Odds Ratio 1.23*** 1.18** 1.46*** 1.25*** 1.30***

(0.076) (0.168) (0.068) (0.061)
Marginal Effect 0.006** 0.010*** 0.007*** 0.007***

(0.002) (0.003) (0.002) (0.001)
Observations 138,063 150,845 32,503 181,791 230,091

Notes: Column (1) shows the odds ratio from logit regression in Naz et al. (2016), while Columns (2), (3) and
(4) show the odds ratio from logit regression with specification exactly the same as in Naz et al. (2016). The
differences in odds ratio presented in Columns (1) and (2) are due to difference in number of observations
because we control for exactly the same variables as in Naz et al. (2016) (including type of cooking fuel, house
type, location of cooking place, household wealth, breastfeeding status, gender of child, mother’s working
status, mother’s educational attainment, mother’s age, place of residence, and year of survey). We have
very few observations in Column (3) because only a (state module) sub-sample of women were asked about
their employment status, resulting in a lot of missing observations for mother’s working status variable in
the NFHS-4 (2015–16). Column (5) presents odds ratio and the associated average marginal effects from
logit regressions with our primary specification (or specification in Column (3) of Tables 4-7). One of our
controls, a variable indicating whether household cooks inside the house, in a separate building, or outdoors,
is only available in NFHS-4, thus, we use only last round of the survey in Column (5). The numbers
of observations for child and post-neonatal mortality regressions are lower than that for under-five and
neonatal mortality regressions in Column (5) because there exist respectively five and one state(s) for which
state FEs perfectly explain child and post-neonatal mortality, and thus those state FEs are dropped. It is
because logit models cannot be estimated when the outcome variable is perfectly predicted by the regressor.
The unit of observation is the child. Standard errors of the logit regressions in parentheses are clustered at
the primary sampling unit (PSU) level, and standard errors of the corresponding AMEs in parentheses are
calculated by applying the Delta method. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 9: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IV = Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.048*** 0.0004 0.011 0.037***
(0.017) (0.0044) (0.010) (0.014)

Owns agricultural land 0.057***
(0.002)

Observations 230,091 230,091 230,091 230,091 230,091
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IV 799.71

Notes: All specifications contain an unreported vector of demographic controls and constant term. The
demographic controls include household characteristics: place of residence, household wealth, number of
household members, place where food is cooked, and type of house; mother characteristics: age and
educational attainment; and infant characteristics: gender and breastfeeding status. The state, year, and
state-by-year dummies are also controlled in every specification. OLS regression does not drop the state FEs
that perfectly explain the child and post-natal mortality incidences, and thus the number of observations is
the same across four IV regressions. The unit of observation is the child. Standard errors in parentheses are
clustered at the primary sampling unit (PSU) level. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table 10: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Speed of Change in Forest Cover and Agricultural Land Ownership):

SEs clustered at district level

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting/Biomass Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. Indoor air pollution = Polluting fuel
Polluting fuel for cooking 0.047**[***] -0.001 0.014 0.034**[**]

(0.020) (0.005) (0.011) (0.015)
[0.018] [0.005] [0.010] [0.014]

Speed of change in forest cover 0.030***
(0.011)

Owns agricultural land 0.054***
(0.003)

Observations 196,344 196,344 196,344 196,344 196,344
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 169.10
Hansen’s J-statistic 0.95 0.78 0.20 1.80
χ2 p-value 0.33 0.38 0.65 0.18

Panel B. Indoor air pollution = Biomass fuel
Biomass fuels for cooking 0.040**[***] -0.001 0.012 0.029**[**]

(0.017) (0.004) (0.009) (0.013)
[0.015] [0.004] [0.008] [0.012]

Speed of change in forest cover 0.035***
(0.013)

Owns agricultural land 0.064***
(0.003)

Observations 196,344 196,344 196,344 196,344 196,344
R2 0.52 0.02 0.00 0.01 0.02
F -stat on IVs 212.02
Hansen’s J-statistic 0.93 0.78 0.19 1.80
χ2 p-value 0.34 0.38 0.66 0.18

Notes: The first column reports result from the first-stage regression of our IV (2SLS) regression using NFHS-
4 data. The dependent variable is a binary variable of whether fuel choice: polluting fuel (top panel) and
biomass fuel (bottom panel). The F -test on IVs—district-wise speed of change in forest cover calculated as a
relative change in the percentage of forested area in the total geographical area of the region over the period
2007, 2011, and 2013 using satellite-based data and an indicator variable for household’s agricultural land
ownership—verifies that the instruments generate a plausible variation in polluting (top panel) and biomass
(bottom panel) fuels for cooking. Columns (2), (3), (4) and (5) report results from the estimation of Equation
(1) using IV regression with different dependent variables and similar specification where the key explanatory
variable is the fitted value of polluting fuel (top panel) or biomass fuel (bottom panel) from the first-
stage estimation. The Hansen’s J-statistic suggests that the excluded IVs are exogenous. All specifications
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and educational attainment; and infant
characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. Unit of observation: child. Heteroskedasticity-consistent standard errors
clustered by districts are in parentheses. Robust to multiple-LATEs and heteroscedasticity standard errors
(Lee, 2018) of the key regressor and statistical significance based on them are in square brackets. The
statistical significances of the key regressors are the same for all regressions when the standard errors are
clustered by PSUs. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.

48



Table 11: Heterogeneous Effects of Polluting Fuel Use on Infant Mortality by Household
Size from IV (2SLS) Regressions (IVs = Speed of Change in Forest Cover and Agricultural

Land Ownership): SEs clustered at district level

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Fuel Use Under-Five Child Post-Neonatal Neonatal

Panel A. Number of household members ∈ [1, 10]
Polluting fuel for cooking 0.076*** 0.002 0.024* 0.050***

(0.023) (0.006) (0.013) (0.017)
Speed of change in forest cover 0.032***

(0.011)
Owns agricultural land 0.051***

(0.003)

Observations 180,145 180,145 180,145 180,145 180,145
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 148.80
Hansen’s J-statistic 1.91 0.61 0.66 2.59
χ2 p-value 0.17 0.43 0.42 0.11

Panel B. Number of household members ∈ [11, 20]
Polluting fuel for cooking 0.016 0.000 -0.010 0.026

(0.045) (0.010) (0.019) (0.036)
Speed of change in forest cover -0.016

(0.018)
Owns agricultural land 0.084***

(0.010)

Observations 15,685 15,685 15,685 15,685 15,685
R2 0.51 0.01 0.00 0.01 0.01
F -stat on IVs 38.00
Hansen’s J-statistic 0.67 1.00 0.00 0.60
χ2 p-value 0.41 0.32 0.99 0.44

Panel C. Number of household members ∈ [21, 30]
Polluting fuel for cooking -0.076 -0.039 -0.014 -0.024

(0.072) (0.031) (0.015) (0.048)
Speed of change in forest cover -0.068

(0.102)
Owns agricultural land 0.264***

(0.073)

Observations 481 481 481 481 481
R2 0.53 0.04 -0.02 0.11 0.06
F -stat on IVs 6.79
Hansen’s J-statistic NA NA NA NA
χ2 p-value NA NA NA NA

Notes: Based on three subsamples of NFHS-4 data: households with 1-10 (panel A), 11-20 (panel B), and
21-30 (panel C) members. Given that only 33 children are in households with more than 30 members, we
ignore such households without loss of any inference. The outcome variable in the first-stage regression is
whether fuel choice: polluting fuel. The F -test on the IVs verifies that the instruments generate a plausible
variation in polluting fuels for cooking (panels A and B) except for households with 21-30 members (panel
C). The Hansen’s J-statistic suggests that the excluded IVs are exogenous for IV regressions in panels A and
B; however, the statistic is not available in panel C due to a small number of observations. All specifications
contain an unreported vector of demographic controls and a constant term. The demographic controls
include household characteristics: place of residence, household wealth, number of household members,
place where food is cooked, and type of house; mother characteristics: age and educational attainment; and
infant characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. Unit of observation: child. Heteroskedasticity-consistent standard errors
clustered by districts are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Appendix

Table A.1: Cooking Fuel Choice and Infant Mortality from IV Probit Regression (IVs =
Speed of Change in Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.539*** -0.112 0.457 0.569**
(0.208) (0.577) (0.322) (0.237)

Speed of change in forest cover 0.030***
(0.004)

Owns agricultural land 0.054***
(0.002)

Observations 196,344 196,344 194,831 195,949 196,344
R2 0.54
F -stat on IVs 339.59
Model Wald χ2 3,883.75 389.81 1,489.68 2,503.41
Model degrees of freedom 50.00 49.00 45.00 48.00 49.00
Model Wald p-value 0.00 0.00 0.00 0.00 0.00
Exogeneity test Wald p-value 0.04 0.73 0.21 0.05
Wald χ2 test of exogeneity 4.42 0.12 1.56 3.78

Notes: The first column reports result from the first-stage OLS regression of IV probit using NFHS-4
where the dependent variable is a binary variable for polluting fuel. The F -test on IVs—district-wise
speed of change in forest cover calculated as a relative change in the percentage of forested area in the
total geographical area of the region over the period 2007, 2011, and 2013 using satellite-based data and
an indicator variable for household’s agricultural land ownership—confirms that the instruments create a
significant variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) report coefficient estimates
from the estimation of Equation (1) using IV probit regression with different dependent variables and a
similar specification. All specifications contain an unreported vector of demographic controls and constant
term. The demographic controls include household characteristics: place of residence, household wealth,
number of household members, place where food is cooked, and type of house; mother characteristics: age
and educational attainment; and infant characteristics: gender and breastfeeding status. The state, year,
and state-by-year dummies are also controlled in every specification. Some state FEs are excluded because
they perfectly predict the outcome variable in child and post-neonatal mortality regressions. The unit of
observation is the child. Heteroskedasticity-consistent standard errors, clustered by PSUs, are in parentheses.
The standard errors of the key regressors in the first-stage regression and joint F -statistic on the excluded IVs
are different from those in Column (1) of Table 10 due to difference in cluster level. However, the statistical
significances of the key regressors are the same for all IV probit regressions when the standard errors are
clustered by districts. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A.2: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Speed of Change in Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.047** -0.001 0.014 0.034**
(0.019) (0.005) (0.010) (0.015)

Cookstoves Program States (NBCI) 0.056 0.055*** 0.004*** 0.012*** 0.038***
(0.055) (0.007) (0.001) (0.005) (0.005)

Speed of change in forest cover 0.030***
(0.004)

Owns agricultural land 0.054***
(0.002)

Observations 196,344 196,344 196,344 196,344 196,344
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 339.59
Hansen’s J-statistic 1.25 0.67 0.25 1.67
χ2 p-value 0.26 0.41 0.62 0.20

Notes: The first column reports result from the first-stage regression of 2SLS regression using NFHS-4
where the dependent variable is a binary variable for polluting fuel. The F -test on IVs—district-wise
speed of change in forest cover calculated as a relative change in the percentage of forested area in the
total geographical area of the region over the period 2007, 2011, and 2013 using satellite-based data and
an indicator variable for household’s agricultural land ownership—verifies that the instruments generate a
plausible variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) report results from the second-
stage regressions of 2SLS regression with different dependent variables and similar specification where the
key explanatory variable is the fitted value of polluting fuel from the first-stage estimation. All specifications
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and educational attainment; and infant
characteristics: gender and breastfeeding status. In addition to these demographic controls, we control
for a dummy variable indicating states where the National Biomass Cookstove Initiative (NBCI) has been
implemented by the government of India. The state, year, and state-by-year dummies are also controlled
in every specification. The Hansen’s J-statistic suggests that the excluded IVs are exogenous. Unit of
observation: child. Parentheses contain standard errors clustered by PSUs. Significance: *p < 0.10,
**p < 0.05, and ***p < 0.01.

51



Table A.3: Levels of Dirtiness of Cooking Fuels and Infant Mortality from IV (2SLS)
Regressions (IVs = Speed of Change in Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Dirtiness level of cooking fuels 0.008*** -0.0002 0.002 0.006**
(0.003) (0.001) (0.002) (0.002)

Speed of change in forest cover 0.066***
(0.025)

Owns agricultural land 0.344***
(0.014)

Observations 196,344 196,344 196,344 196,344 196,344
R2 0.52 0.02 0.00 0.01 0.01
F -stat on IVs 313.55
Hansen’s J-statistic 0.28 0.60 0.03 0.61
χ2 p-value 0.60 0.44 0.87 0.44

Notes: All specifications contain an unreported vector of demographic controls and constant term. The
demographic controls include household characteristics: place of residence, household wealth, number of
household members, place where food is cooked, and type of house; mother characteristics: age and
educational attainment; and infant characteristics: gender and breastfeeding status. The state, year, and
state-by-year dummies are also controlled in every specification. The Hansen’s J-statistic suggests that the
excluded IVs are exogenous. Unit of observation: child. Parentheses contain standard errors clustered by
PSUs. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A.4: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Satellite-based Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.045** -0.0001 0.012 0.032**
(0.018) (0.005) (0.010) (0.014)

Forest cover (satellite-based, 2011 ) 0.050***
(0.008)

Owns agricultural land 0.057***
(0.002)

Observations 206,548 206,548 206,548 206,548 206,548
R2 0.54 0.02 0.00 0.01 0.01
F -stat on IVs 376.95
Hansen’s J-statistic 1.28 1.06 0.37 1.70
χ2 p-value 0.26 0.30 0.54 0.19

Notes: The first column reports result from the first-stage regression of our 2SLS regression using NFHS-4
data. The dependent variable is a binary variable of whether fuel choice. The F -test on IVs—2011 district-
wise forest cover calculated as a percent of total geographical area of the region using satellite-based data and
an indicator variable for household’s agricultural land ownership—verifies that the instruments generate a
plausible variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) report results from the second-
stage regressions of 2SLS regression with different dependent variables and similar specification where the
key explanatory variable is the fitted value of polluting fuel from the first-stage estimation. All specifications
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and educational attainment; and infant
characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. The Hansen’s J-statistic suggests that the excluded IVs are exogenous.
Unit of observation: child. Parentheses contain standard errors clustered by PSUs. Significance: *p < 0.10,
**p < 0.05, and ***p < 0.01.
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Table A.5: Cooking Fuel Choice and Infant Mortality from IV (2SLS) Regressions
(IVs = Census-based Forest Cover and Agricultural Land Ownership)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Polluting fuel for cooking 0.033* -0.001 0.001 0.033**
(0.018) (0.004) (0.009) (0.014)

Forest cover (census-based, 2011 ) 0.037***
(0.009)

Owns agricultural land 0.057***
(0.002)

Observations 212,493 212,493 212,493 212,493 212,493
R2 0.54 0.03 0.00 0.01 0.02
F -stat on IVs 385.00
Hansen’s J-statistic 2.40 0.90 3.18 1.16
χ2 p-value 0.12 0.34 0.07 0.28

Notes: The first column reports result from the first-stage regression of 2SLS regression using NFHS-4
where the dependent variable is a binary variable for polluting fuel. The F -test on IVs—district-wise forest
cover calculated as a percent of total geographical area of the region using the 2011 Indian Census and
an indicator variable for household’s agricultural land ownership—verifies that the instruments generate a
plausible variation in polluting fuel for cooking. Columns (2), (3), (4) and (5) report results from the second-
stage regressions of 2SLS regression with different dependent variables and similar specification where the
key explanatory variable is the fitted value of polluting fuel from the first-stage estimation. All specifications
contain an unreported vector of demographic controls and constant term. The demographic controls include
household characteristics: place of residence, household wealth, number of household members, place where
food is cooked, and type of house; mother characteristics: age and educational attainment; and infant
characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. The Hansen’s J-statistic suggests that the excluded IVs are exogenous.
Unit of observation: child. Parentheses contain standard errors clustered by PSUs. Significance: *p < 0.10,
**p < 0.05, and ***p < 0.01.
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Supplementary Appendix

Table S.1: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and Household
Size using IV (2SLS) Regressions for Households with Fewer than Ten Members

(2-by-2 Classification) (IVs = Speed of Change in Forest Cover and Agricultural Land
Ownership): SEs clustered at district level

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. Number of household members = {1, 2}
Polluting fuel for cooking 0.317 -0.000 0.004 0.313

(0.451) (0.148) (0.308) (0.457)
Speed of change in forest cover 0.095**

(0.039)
Owns agricultural land 0.043*

(0.022)

Observations 1,239 1,239 1,239 1,239 1,239
R2 0.53 0.30 0.04 0.08 0.19
F -stat on IVs 5.12
Hansen’s J-statistic NA NA NA NA
χ2 p-value NA NA NA NA

Panel B. Number of household members = {3, 4}
Polluting fuel for cooking 0.227*** 0.010 0.102*** 0.116**

(0.063) (0.017) (0.035) (0.046)
Speed of change in forest cover 0.038***

(0.012)
Owns agricultural land 0.036***

(0.004)

Observations 48,162 48,162 48,162 48,162 48,162
R2 0.58 -0.04 0.00 -0.04 -0.01
F -stat on IVs 39.10
Hansen’s J-statistic 4.16 1.41 6.12 2.48
χ2 p-value 0.04 0.24 0.01 0.11

Panel C. Number of household members = {5, 6}
Polluting fuel for cooking 0.111*** 0.005 0.016 0.090***

(0.029) (0.007) (0.015) (0.022)
Speed of change in forest cover 0.036***

(0.011)
Owns agricultural land 0.055***

(0.004)

Observations 70,990 70,990 70,990 70,990 70,990
R2 0.54 -0.01 0.00 0.01 -0.02
F -stat on IVs 106.63
Hansen’s J-statistic 2.84 0.14 1.99 1.63
χ2 p-value 0.09 0.71 0.16 0.20
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Table S.1: (Continued)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel D. Number of household members = {7, 8}
Polluting fuel for cooking -0.025 -0.004 -0.001 -0.021

(0.036) (0.010) (0.022) (0.029)
Speed of change in forest cover 0.027**

(0.013)
Owns agricultural land 0.052***

(0.005)

Observations 39,945 39,945 39,945 39,945 39,945
R2 0.52 0.02 0.00 0.01 0.01
F -stat on IVs 66.25
Hansen’s J-statistic 0.04 0.20 1.05 1.30
χ2 p-value 0.84 0.65 0.30 0.25

Panel E. Number of household members = {9, 10}
Polluting fuel for cooking -0.072 -0.004 -0.027 -0.040

(0.049) (0.009) (0.023) (0.043)
Speed of change in forest cover 0.016

(0.017)
Owns agricultural land 0.064***

(0.008)

Observations 19,809 19,809 19,809 19,809 19,809
R2 0.54 0.00 0.00 0.00 0.00
F -stat on IVs 35.11
Hansen’s J-statistic 0.00 0.10 1.86 0.60
χ2 p-value 1.00 0.75 0.17 0.44

Notes: The table presents heterogeneous treatment effects of IAP on infant mortality by both child’s age
and household size using five subpopulations of households with fewer than ten members (based on our
findings in Table 11) covered in NFHS-4 data. Panel A–E considers each of the five subsamples from
pair of 1-2 to 9-10 members in an orderly fashion. The first column provides results from the first-stage
regressions of the IV (2SLS) regressions, where the dependent variable is a binary variable of whether fuel
choice: polluting fuel. Columns (2), (3), (4) and (5) report results from the estimation of Equation (1)
using IV regression with different dependent variables and similar specifications where the key explanatory
variable is the fitted value of polluting fuel from the first-stage estimation. The outcome variable in an IV
regression is a binary variable of infant mortality for each of the four different age-groups. All specifications
contain an unreported vector of demographic controls and a constant term. The demographic controls
include household characteristics: place of residence, household wealth, number of household members,
place where food is cooked, and type of house; mother characteristics: age and educational attainment; and
infant characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. Unit of observation: child. Heteroskedasticity-consistent standard errors
clustered by districts are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Figure S.1: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and
Household Size using IV (2SLS) Regressions for Households with Fewer than Ten Members
(2-by-2 Classification, Groups are Combined) (IVs = Speed of Change in Forest Cover and

Agricultural Land Ownership): SEs clustered at district level

(a) Household size = {1, 2},
N = 1,239

(b) Household size = [3, 6],
N = 119,152

(c) Household size = [7, 10],
N = 59,754

Notes: The figure presents heterogeneous treatment effects of IAP (defined by polluting fuel use) on infant
mortality by both child’s age and household size using three distinct subpopulations of households with fewer
than ten members (based on our findings in Table 11) covered in NFHS-4 data. Panels (a)–(c) considers each
of the three subsamples from 1-2, 3-6, and 7-10 members in an orderly fashion. Each panel reports results
from the estimation of Equation (1) using IV regression with different dependent variables and similar
specifications where the key explanatory variable is the fitted value of polluting fuel from the first-stage
estimation. The outcome variable in each IV regression is a binary variable of infant mortality for each
of the four different age-groups, and the endogenous regressor (i.e., the outcome variable in the first-stage
regression) is whether fuel choice: polluting fuel. The speed of change in forest cover and agricultural land
ownership status are used as instruments, and first-stage coefficient estimates on the IVs are both positive
and statistically significant at least at the 10% level. The F -test on IVs verifies that the instruments generate
a plausible variation in polluting fuel for cooking, except for a subpopulation of households with one and two
members. The calculation of Hansen’s J-statistic is not available for IV regressions of households with one and
two members due to a lack of observations. The Hansen’s J-statistic suggests that the excluded IVs are not
exogenous in under-five, post-neonatal and neonatal mortality regressions for households with 3-6 members
since a rejection of the null hypothesis of the Sargan-Hansen test is encountered at least at the 5% level.
All specifications contain a vector of demographic controls and a constant term. The demographic controls
include household characteristics: place of residence, household wealth, number of household members,
place where food is cooked, and type of house; mother characteristics: age and educational attainment; and
infant characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. Unit of observation: child. Heteroskedasticity-consistent standard errors
are clustered by districts.
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Table S.2: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and Household
Size using IV (2SLS) Regressions for Households with Fewer than Ten Members (2-by-2

Classification, Groups are Combined) (IVs = Speed of Change in Forest Cover and
Agricultural Land Ownership): SEs clustered at district level

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. Number of household members = {1, 2}
Polluting fuel for cooking 0.317 -0.000 0.004 0.313

(0.451) (0.148) (0.308) (0.457)
Speed of change in forest cover 0.095**

(0.039)
Owns agricultural land 0.043*

(0.022)

Observations 1,239 1,239 1,239 1,239 1,239
R2 0.53 0.30 0.04 0.08 0.19
F -stat on IVs 5.12
Hansen’s J-statistic NA NA NA NA
χ2 p-value NA NA NA NA

Panel B. Number of household members = [3, 6]
Polluting fuel for cooking 0.159*** 0.006 0.049*** 0.104***

(0.029) (0.007) (0.016) (0.021)
Speed of change in forest cover 0.037***

(0.011)
Owns agricultural land 0.048***

(0.003)

Observations 119,152 119,152 119,152 119,152 119,152
R2 0.56 -0.02 0.00 -0.01 -0.02
F -stat on IVs 112.01
Hansen’s J-statistic 5.22 0.29 5.46 3.74
χ2 p-value 0.02 0.59 0.02 0.05

Panel C. Number of household members = [7, 10]
Polluting fuel for cooking -0.042 -0.004 -0.010 -0.027

(0.029) (0.007) (0.017) (0.024)
Speed of change in forest cover 0.023*

(0.013)
Owns agricultural land 0.055***

(0.004)

Observations 59,754 59,754 59,754 59,754 59,754
R2 0.52 0.01 0.00 0.01 0.01
F -stat on IVs 90.37
Hansen’s J-statistic 0.00 0.13 2.65 1.75
χ2 p-value 0.96 0.72 0.10 0.19

Notes: In this table, panel B combines the subsamples in panels B and C of Table S.1, while panel C combines
the subsamples in panels D and E of Table S.1.
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Figure S.2: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and
Household Size using IV (2SLS) Regressions for Households with Fewer than Twelve

Members (3-by-3 Classification) (IVs = Speed of Change in Forest Cover and Agricultural
Land Ownership): SEs clustered at district level

(a) Household size = [1, 3],
N = 15,573

(b) Household size = [4, 6],
N = 104,818

(c) Household size = [7, 9],
N = 51,537

(d) Household size = [10, 12],
N = 16,927

Notes: The figure presents heterogeneous treatment effects of IAP (defined by polluting fuel use) on infant
mortality by both child’s age and household size using four distinct subpopulations of households with fewer
than twelve members (generally based on our findings in Table 11) covered in NFHS-4 data. Panels (a)–
(d) considers each of the four subsamples from 1-3 to 10-12 members in an orderly fashion. Each panel
reports results from the estimation of Equation (1) using IV regression with different dependent variables
and similar specifications where the key explanatory variable is the fitted value of polluting fuel from the first-
stage estimation. The outcome variable in each IV regression is a binary variable of infant mortality for each
of the four different age-groups, and the endogenous regressor (i.e., the outcome variable in the first-stage
regression) is whether fuel choice: polluting fuel. The speed of change in forest cover and agricultural land
ownership status are used as instruments, and first-stage coefficient estimates on the IVs are both positive
and statistically significant at least at the 5% level except for the speed of change in forest cover in the first-
stage regression for households with 10-12 members. The F -test on IVs verifies that the instruments generate
a plausible variation in polluting fuel for cooking in all regressions. The Hansen’s J-statistic suggests that
the excluded IVs are not exogenous in under-five and post-neonatal mortality regressions for households with
4-6 members since a rejection of the null hypothesis of the Sargan-Hansen test is encountered at the 5% level.
All specifications contain a vector of demographic controls and a constant term. The demographic controls
include household characteristics: place of residence, household wealth, number of household members,
place where food is cooked, and type of house; mother characteristics: age and educational attainment; and
infant characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. Unit of observation: child. Heteroskedasticity-consistent standard errors
are clustered by districts.
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Table S.3: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and Household
Size using IV (2SLS) Regressions for Households with Fewer than Twelve Members (3-by-3
Classification) (IVs = Speed of Change in Forest Cover and Agricultural Land Ownership):

SEs clustered at district level

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. Number of household members = [1, 3]
Polluting fuel for cooking 0.196 0.020 0.089 0.088

(0.146) (0.038) (0.083) (0.121)
Speed of change in forest cover 0.046***

(0.015)
Owns agricultural land 0.028***

(0.006)

Observations 15,573 15,573 15,573 15,573 15,573
R2 0.59 0.11 0.00 0.01 0.10
F -stat on IVs 14.73
Hansen’s J-statistic 1.99 0.73 1.27 1.66
χ2 p-value 0.16 0.39 0.26 0.20

Panel B. Number of household members = [4, 6]
Polluting fuel for cooking 0.150*** 0.006 0.039*** 0.105***

(0.028) (0.007) (0.014) (0.020)
Speed of change in forest cover 0.036***

(0.011)
Owns agricultural land 0.051***

(0.003)

Observations 104,818 104,818 104,818 104,818 104,818
R2 0.55 -0.03 0.00 -0.00 -0.03
F -stat on IVs 112.43
Hansen’s J-statistic 4.17 0.01 4.39 2.25
χ2 p-value 0.04 0.91 0.04 0.13

Panel C. Number of household members = [7, 9]
Polluting fuel for cooking -0.034 -0.001 -0.005 -0.028

(0.029) (0.007) (0.018) (0.025)
Speed of change in forest cover 0.025**

(0.012)
Owns agricultural land 0.055***

(0.004)

Observations 51,537 51,537 51,537 51,537 51,537
R2 0.52 0.01 0.00 0.01 0.01
F -stat on IVs 85.75 13.07 2.14 756.46 18.29
Hansen’s J-statistic 0.04 0.14 2.86 1.14
χ2 p-value 0.85 0.71 0.09 0.29
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Table S.3: (Continued)

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel D. Number of household members = [10, 12]
Polluting fuel for cooking 0.015 -0.008 -0.018 0.041

(0.048) (0.013) (0.024) (0.039)
Speed of change in forest cover 0.000

(0.020)
Owns agricultural land 0.071***

(0.008)

Observations 16,927 16,927 16,927 16,927 16,927
R2 0.52 0.01 -0.00 0.00 0.00
F -stat on IVs 35.77
Hansen’s J-statistic 0.37 0.28 0.00 0.29
χ2 p-value 0.54 0.60 0.98 0.59

Notes: The table presents heterogeneous treatment effects of IAP on infant mortality by both child’s age and
household size using four subpopulations of households with fewer than twelve members (generally based
on our findings in Table 11) covered in NFHS-4 data. Panel A–D considers each of the four subsamples
from 1-3 to 10-12 members in an orderly fashion. The first column provides results from the first-stage
regressions of the IV (2SLS) regressions, where the dependent variable is a binary variable of whether fuel
choice: polluting fuel. Columns (2), (3), (4) and (5) report results from the estimation of Equation (1)
using IV regression with different dependent variables and similar specifications where the key explanatory
variable is the fitted value of polluting fuel from the first-stage estimation. The outcome variable in an IV
regression is a binary variable of infant mortality for each of the four different age-groups. All specifications
contain an unreported vector of demographic controls and a constant term. The demographic controls
include household characteristics: place of residence, household wealth, number of household members,
place where food is cooked, and type of house; mother characteristics: age and educational attainment; and
infant characteristics: gender and breastfeeding status. The state, year, and state-by-year dummies are also
controlled in every specification. Unit of observation: child. Heteroskedasticity-consistent standard errors
clustered by districts are in parentheses. Significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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Figure S.3: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and
Household Size using IV (2SLS) Regressions for Households with Fewer than Twelve

Members (4-by-4 Classification) (IVs = Speed of Change in Forest Cover and Agricultural
Land Ownership): SEs clustered at district level

(a) Household size = [1, 4],
N = 49,401

(b) Household size = [5, 8],
N = 110,935

(c) Household size = [9, 12],
N = 28,519

Notes: The figure presents heterogeneous treatment effects of IAP (defined by polluting fuel use) on infant
mortality by both child’s age and household size using three distinct subpopulations of households with fewer
than twelve members (generally based on our findings in Table 11) covered in NFHS-4 data. Panels (a)–(c)
considers each of the three subsamples of 1-4, 5-8, and 9-12 members in an orderly fashion. Each panel
reports results from the estimation of Equation (1) using IV regression with different dependent variables
and similar specifications where the key explanatory variable is the fitted value of polluting fuel from the first-
stage estimation. The outcome variable in each IV regression is a binary variable of infant mortality for each
of the four different age-groups, and the endogenous regressor (i.e., the outcome variable in the first-stage
regression) is whether fuel choice: polluting fuel. The speed of change in forest cover and agricultural land
ownership status are used as instruments, and first-stage coefficient estimates on the IVs are both positive
and statistically significant at the 1% level except for the speed of change in forest cover in the first-stage
regression for households with 9-12 members. The F -test on IVs verifies that the instruments generate a
plausible variation in polluting fuel for cooking in all regressions. The Hansen’s J-statistic suggests that
the excluded IVs are not exogenous in under-five and post-neonatal mortality regressions for households
with 1-4 members since a rejection of the null hypothesis of the Sargan-Hansen test is encountered at the
10% and 5% level, respectively. All specifications contain a vector of demographic controls and a constant
term. The demographic controls include household characteristics: place of residence, household wealth,
number of household members, place where food is cooked, and type of house; mother characteristics:
age and educational attainment; and infant characteristics: gender and breastfeeding status. The state,
year, and state-by-year dummies are also controlled in every specification. Unit of observation: child.
Heteroskedasticity-consistent standard errors are clustered by districts.
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Table S.4: Heterogeneous Effects of IAP on Infant Mortality by Child’s Age and Household
Size using IV (2SLS) Regressions for Households with Fewer than Twelve Members (4-by-4
Classification) (IVs = Speed of Change in Forest Cover and Agricultural Land Ownership):

SEs clustered at district level

1st stage 2nd stage
(1) (2) (3) (4) (5)

Polluting Under-Five Child Post-Neonatal Neonatal
Fuel Use

Panel A. Number of household members = [1, 4]
Polluting fuel for cooking 0.247*** 0.012 0.095*** 0.140***

(0.068) (0.017) (0.035) (0.051)
Speed of change in forest cover 0.039***

(0.012)
Owns agricultural land 0.036***

(0.004)

Observations 49,401 49,401 49,401 49,401 49,401
R2 0.58 -0.01 0.00 -0.02 0.01
F -stat on IVs 40.24
Hansen’s J-statistic 3.57 0.95 4.93 2.10
χ2 p-value 0.06 0.33 0.03 0.15

Panel B. Number of household members = [5, 8]
Polluting fuel for cooking 0.063*** 0.003 0.010 0.051***

(0.024) (0.006) (0.012) (0.019)
Speed of change in forest cover 0.032***

(0.011)
Owns agricultural land 0.053***

(0.003)

Observations 110,935 110,935 110,935 110,935 110,935
R2 0.53 0.01 0.00 0.01 0.00
F -stat on IVs 132.53
Hansen’s J-statistic 1.98 0.00 0.31 2.61
χ2 p-value 0.16 0.99 0.58 0.11

Panel C. Number of household members = [9, 12]
Polluting fuel for cooking -0.022 -0.001 -0.022 0.001

(0.036) (0.008) (0.018) (0.030)
Speed of change in forest cover 0.008

(0.016)
Owns agricultural land 0.069***

(0.007)

Observations 28,519 28,519 28,519 28,519 28,519
R2 0.53 0.02 0.00 0.00 0.01
F -stat on IVs 55.30
Hansen’s J-statistic 0.01 0.27 1.01 0.41
χ2 p-value 0.92 0.60 0.31 0.52

Notes: The table presents heterogeneous treatment effects of IAP on infant mortality by both child’s age and
household size using three subpopulations of households with fewer than twelve members (generally based
on our findings in Table 11) covered in NFHS-4 data. Panel A–C considers each of the three subsamples
from 1-4 to 9-12 members in an orderly fashion.
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