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Modeling Nonnegativity via Truncated Logistic and
Normal Distributions: An Application to
Ranch Land Price Analysis

Feng Xu, Ron C. Mittelhammer, and L. Allen Torell

This study presents an empirical method of modeling the nonnegativity of
dependent variables using truncated logistic and normal disturbance distri-
butions. The method is applied in estimating a ranch land hedonic price func-
tion. Results show that the degree of truncation is significant.

Key words: logistic and normal distributions, model misspecification, non-
negativity, ranch land prices, truncation.

Introduction

The dependent variables being modeled in empirical economic analyses are oftentimes
nonnegative random variables in nature. Examples in the agricultural economics literature
abound, and include a myriad of past studies modeling quantities demanded or supplied,
price dependent inverse demand or supply functions, and hedonic price functions. In
these cases, any distribution assumed for the disturbance term in a regression-type model
that allows negative dependent variable values to occur with nonzero probability is a
model misspecification, a priori. A popular assumption for the disturbance distribution
in applied work is some member of the normal family of distributions, but this family of
distributions is a priori incorrect if it is utilized in modeling cases where the dependent
variable of a regression model with additive disturbances is nonnegatively valued. In fact,
any family of disturbance distributions having the real line for its support will be similarly
a priori inappropriate unless the distributions are subsequently truncated from below in
order that the nonnegativity of the dependent variable be properly represented.

Presumably an implicit assumption made in past studies is that, although normality
(or any other distribution having the real line for its support) is literally incorrect as the
disturbance distribution, the offending lower tail of the distribution associated with neg-
ative dependent variable values, and upper-bounded by the truncation point, has near-
zero probability regardless of the value of the explanatory variables in the data set being
analyzed, and, hence, regardless of the expected value of the dependent variable. This
implicit or explicit assumption of stochastic irrelevance of negatively valued dependent
variable values presumes knowledge of the location of the regression function surface
relative to the spread of the disturbance distribution over all points in the data set, which
is information that, in actuality, is generally unavailable to the researcher a priori. Fur-
thermore, even if the negative dependent variable values were to occur with "small
probability" under a given disturbance distribution, such as the normal distribution, there
is ambiguity relating to how small such probabilities need to be in order for the truncation
bias introduced into the estimates of model parameters to be inconsequential. Ultimately,
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the primary issue of concern to the researcher is whether the form of the actual disturbance
distribution that is enforcing nonnegativity also has significant implications for the func-
tional specification of the conditional expectation function being estimated in a regression
model, as could be the case, for example, for a normal disturbance distribution.

Given recent advances in nonlinear estimation techniques, and nonnested and condi-
tional moment hypothesis testing procedures, systematic investigations of the empirical
relevance and implications of the nonnegativity/truncation assumption are now well with-
in the range of feasibility. The purpose of the current study is to present the results of
one such explicit investigation. Specifically, within the context of a rangeland hedonic
price analysis, we provide statistical evidence against the assumption of an untruncated
normal or logistic distribution for the disturbance term, and we document the practical
significance of truncation bias with respect to predicting hedonic land values. Our results
coincide with the results of Xu, Mittelhammer, and Barkley (1991, 1993), who demon-
strated the significance of the truncation effect in another empirical investigation. The
results of the current study, together with the previous work of Xu, Mittelhammer, and
Barkley (1991, 1993), suggest that the truncation effect may not be as innocuous as many
researchers would like to believe, and lead to important questions regarding the appropriate
functional specification of regression functions.

The remainder of the article is organized as follows. First, the pertinent statistical theory
underlying the specification of truncated regression models based on a normal or logistic
disturbance distribution is presented. Next, the results of an application of the theory to
a hedonic model of ranch land sales are discussed. Finally, implications of the results and
suggested directions for future research are presented.

Truncation Models Based on the Logistic and Normal Distributions

Let a statistical model for the random variable Y be represented in standard regression
form as

(1) Y= g(X; ') + = g(.) + ,

where g(.) is a differentiable function of the explanatory variables (X) and the vector of
unknown parameters to be estimated (3). Assume initially that the error term 1 has either
a logistic or normal distribution, each with mean zero and scale parameter r, as

exp(-Ai/r)

(2) = r(1 + exp(-/r))2 or

f(u)1= exp(-.5(A/r)2),
2irT

2

respectively. For empirical modeling purposes, we examine the logistic distribution as a
potential alternative to the normal distribution because it is analytically more tractable
than the normal, while providing similar probabilistic properties. The major difference
between the two distributions is that the logistic distribution has slightly thicker tails
(Amemiya, p. 269; Johnson and Kotz, pp. 5-6).

In applications involving nonnegatively valued dependent variables, it is commonly
assumed, either explicitly or implicitly, that P(Y < 0) = P(At < -g(')) is negligible and
Eu = [0], so that under standard regularity conditions (e.g., Amemiya, pp. 127-35),
nonlinear least squares estimation procedures applied to (1) result in consistent and as-
ymptotically normal estimates of the parameter vector f. Under the assumption of a
disturbance distribution having the real line for its support, such as either the normal or
logistic distribution, this is tantamount to assuming that truncation of the distribution
from below is negligible or irrelevant. In order to define a statistical model context in
which a straightforward assessment can be made of the validity of P(u < -g(.)) 0 and
Ei = [0], and thus the significance of the truncation effect, assume that the dependent
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variable Y in (1) is truncated at zero, i.e., Y > 0. It can be shown (appendix A), under
the distributional assumptions in (2), that the expected value of the truncated distribution
for Y is given, respectively, by

(3) E(Y | Y - 0) = r(1 + exp(-g(X; #3)/r))ln(l + exp(g(X; f/r))), or

Y (g(X; M)/T)

where ¢(.) and 4(.) are, respectively, the probability density and the cumulative density
function of the standard normal distribution. Thus, a specification of the truncated version
of model (1) in a form suitable for nonlinear least squares estimation of the parameter
vector ( and scale parameter r is

(4) Y= E(YI Y > 0) + = H(X; 3, r) + c,

where E(e) = 0, and H(X; (, r)represents the conditional expectation of Y either for a
logistic or normal distribution for A.

It can be shown that each of the functional specifications for H(X; (, r) in (3) subsumes
the standard untruncated specification for the expected value of Y, i.e., EY = g(X; (), as
a special limiting case. In particular, in either case (appendix B),

(5) lim H(X; 3, r) = g(X; ().
r--0

This nesting of the standard untruncated functional specification for the expected value
of Y within specification (4) allows an asymptotic one-sided t-test to be used to test the
significance of the null hypothesis (Ho: r = 0) versus the alternative hypothesis (Ha: r >
0), thereby testing the statistical significance of the truncation effect. A significant t-statistic
provides statistical evidence against an untruncated error distribution specification
for the model. The test statistic would be calculated in the usual way as r/(Var(r))- 5, where
r is the estimate of i, and Var(r) is a consistent estimate of the asymptotic variance of
r provided by a nonlinear least squares estimation of (4). 1

In order to characterize the effect of truncation on the marginal effects of the explanatory
variables in (1), first note that differentiation of H(X; 3, r) with respect to the ith explan-
atory variable, Xi, yields a functional relationship between OH(X; ,, r)/dXi and Og(X; f)/
OXi. In particular, defining

D(g(X; t)/r) = 1 - (exp(-g(-)/r)ln(l + exp(g(-)/r)), or

D(g(X; )/r) = 1 - (g(.)/I) ¢(g(' )/r) ((g( )/r)

for the logistic and normal distribution, respectively, it follows that

(6) OH(X; (t, r) (X; ) (g (X ; )g(3)
(6)

The D(') function represents a proportionality factor relating marginal effects of explan-
atory variables under the truncated and untruncated regression models. Regarding the
range of the function D, note that for (g(X; P)/r) E [0, oo), D(g(X; ()/r) is a monotonically
increasing function such that D(g(X; ()/r) E [.3069, 1] for the logistic distribution and
D(g(X; f)/r) E [.3634, 1] for the normal distribution. It follows that

dH(X; t, r) < dg(X; ()
:daxi ax '

the closer (g(X; 0)/r) is to zero, the larger dg(X; )/dXi is relative to 9H(X; A, r)/dX,, and
as (g(X; 3)/ir) o, I g(X; O)/dXiI - I dH(X; (3, r)/dXi I. This is in accordance with the
fact that both P(Y - 0) = (1 + e-g(x;)/T)- for the logistic distribution and P(Y - 0) =
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Table 1. Definitions of Variables as Used in the Statistical Analysis

Variable Definition

PRICEA UY Ranch sale price on a $/AUY basis.
BLMA UY AUY carrying capacity from BLM land.
FSA UY AUY carrying capacity from USFS land.
STATA UY AUY carrying capacity from state trust land.
PERBLM Percentage of total ranch carrying capacity from

BLM land, i.e., (BLMAUY/TOTAUY) 100.
PERFS Percentage of total ranch carrying capacity from

USFS land, i.e., (FSAUY/TOTAUY). 100.
PERST Percentage of total ranch carrying capacity from

state trust land, i.e., (STATAUY/TOTAUY) 100.
SIZE Size of the ranch purchased in sections, including

both deeded and leased lands.
ACCULTAU Acres of cultivated land included with the ranch sale

on $/AUY basis.
HBVALA UY Appraised value of houses and buildings included

with the ranch sale on $/AUY basis.
PROD Average rangeland productivity, computed as the to-

tal number of AUY included in the sale, divided
by the total number of sections sold.

TIME Time trend variable defined as the number of years
following January 1979 that the range sold, i.e.,
January 1982 = 3; July 1988 = 9.5.

COSTA UY Cost advantage per AUY of carrying capacity on the
ranch.

1(g(X; 03)/r) for the normal distribution are monotonically increasing in (g(X; /3)/r), so
that as P(Y > 0) -- 1, and thus as (g(X; 0)r) --- oo, the truncation effect eventually vanishes.

The preceding discussion indicates that for the truncation effect on the marginal impact
of the explanatory variables to be negligible, it must be the case that the value of g(X; 3)
relative to the scale parameter r is sufficiently large so that D(g(X; ()/r) ; 1 for all values
of the explanatory variables X in the data being analyzed. The assumption would appear
to be quite stringent, especially since at the outset of the analysis, it is typically the case
that neither g(X; 0) nor r are known to the researcher. A prudent research strategy would
be to test the significance of the truncation effect, as we illustrate in the next section.

An Application to a Ranch Land Market Hedonic Price Function

Empirical Model

The data set used in this study is identical to the ranch land sales data for New Mexico
reported in Torell and Doll. Detailed information on the data can be obtained from that
source. Data characteristics are summarized briefly as follows. Sales judged to be sub-
stantially influenced by nonagricultural factors were deleted. Sales with capacity below 25
AUY 2 also were deleted. The value of livestock and machinery was excluded from the
sale price. The final data set included 452 ranch land sales from January 1979 to December
1988 in New Mexico. Variable definitions are provided in table 1.

Using the specification of Torell and Doll, a hedonic model of per AUY sale price
(PRICEA UY) of ranches was specified in the context of equation (1) as follows:

g(X; 3) = o0 + 31PERBLM + ( 2PERFS + 13PERST + ( 4SIZE + j 53SIZE2

(7) + ( 6ACCULTAU + ,7HBVALAUY + ( 8PROD + 39TIME

+ BloTIME2 + S11TIME3 + ( 12COSTAUY + 1 3(TIME)(PERBLM)

+ 134(TIME)(PERFS) + 315(TIME)(PERST).
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The corresponding functional form, incorporating the truncation effect via equation (3),
and expressed in a form suitable for nonlinear least squares estimation, is

(8) PRICEAUY= r(1 + exp(-g(X; 3)/r))ln(l + exp(g(X; f/r)) + E, or

PRICEAUY= g(X; @) + T (- (XA ; 3) +
0(g(X; O)/7)

for the logistic or normal distribution, respectively, where f = {fo, 1, *.., 115} and X

denotes parameters to be estimated. All variables on the right-hand side of (7) are local
and specific ranch characteristics except COSTA UY and TIME. These latter two variables
capture the effects on ranch land prices of economic variables as they changed or were
anticipated to change through time (Torell and Doll).

The models represented by (7) and (8) were estimated using the MODEL procedure in
the SAS/ETS package (SAS Institute, Inc.). Nonlinear least squares estimation results are
presented in table 2. The results reported under the heading "Model I" use all of the
variables specified in (7), while the results reported under the heading "Model II" exclude
two slope shifters (TIME. PERFS and TIME PERST) that were not statistically signif-
icant in model I.

The null hypothesis that the truncation effect is insignificant was rejected at the .01
level of type I error in models I and II, using either the logistic or normal distribution.
Thus, the effect of truncation is judged to be significant using either distributional as-
sumption, and it is concluded that the specification of the expectation of ranch land sales
given by (7), which does not account for truncation, is inappropriate.

A nonnested P-test (Davidson and MacKinnon; MacKinnon, White, and Davidson)
was used to test which, if any, of the truncated models were appropriate for representing
the prices. Let two alternative model specifications be given by

H,: Y= L(X, ) + E,, and
(9)

H2: Y= N(Z, ) + E2.

The P-test of the appropriateness of specification H1 can be accomplished in three steps.
First, the parameters of both models H1 and H2 are estimated using appropriate econo-
metric techniques. Second, a general compound model is estimated in the form

(10) - L(X, 3) = a[N(Z, ) - L(X, A)] + Fb + E3,

where F represents the gradient vector of L(X, d) evaluated at 3, and a and b (a vector)
are parameters to be estimated. Finally, a t-test of the null hypothesis, H1: a = 0, is
conducted using the results from estimating model (10). If H1 (a = 0) is accepted, then
specification H1 is deemed compatible with the data at the chosen level of type I error.
In order to test the appropriateness of H2, the roles of L(X, 13) and N(Z, y) are reversed
in the P-test procedure. It is possible for either, neither, or both L(X, d) and N(Z, y) to
be compatible with the data.

The outcomes of the P-tests were such that the truncated specification based on the
logistic distribution is rejected as being compatible with the data at any conventional level
of type I error (table 3). The truncated model based on the normal distribution is judged
to be data compatible at any level of type I error < .13.

Testing the Adequacy of the Truncated Normal Specification

Clearly, a large number of alternative functional specifications of the hedonic price function
could have been analyzed in this study. Furthermore, given the complexity of land markets,
the correct number and types of variables to choose in specifying a hedonic model are
never obvious. Finally, the analyst always is working with data that are limited in terms
of the number of variables and observations available, and in quality. An important
question is whether the chosen empirical model represents adequately the conditional
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Table 3. P-Tests of Model Specification

Probability
Hypothesis t-Value Itl > t-Value

Logistic vs. Non-Logistic 3.01 .004
Normal vs. Non-Normal 1.52 .129

expectation of land prices relative to the vector of explanatory variables actually used in
the model.

The Bierens conditional moments test provides a mechanism for addressing this ques-
tion. In the current context, the null hypothesis-Ho: E(Y I X, Y > 0) = H(X; 3, r) for
some 3 and r-is tested using the Bierens procedure. The Bierens test is consistent against
all departures from the null hypothesis. That is, it is a test designed to reject Ho with
probability -> 1 as sample size - co for any hypothesis alternative to Ho. Here, the test
is based on the statistic

n

(11) (t) = (l/n) 2 (Yj - H(X; A, r))exp(t'(Xj)),
j=1

where (Xj) = [tan- (Xj), ... , tan- l(m)]'; Xjk is the jth observation on the kth explanatory
variable; and tan-'(Z) represents the arctangent of Z (Bierens, pp. 1445-46). Bierens
showed that Vn/iM(t) N[0, s2(t)] as n --> c, and defined a consistent estimator of s2(t)
to form the statistic W(t) = n[M(t)]2 /s2 (t), which converges asymptotically to a chi-square
random variable with one degree of freedom under Ho and approaches infinity with
probability one as n -- oo when Ho is false. The choice of t and the calculation of s 2(t)
are discussed in appendix C.

An outcome of Bierens' conditional moments test was calculated to be W(t) = 2.51,
which has a probability value of .114. Thus, the null hypothesis that the conditional
expectation of land prices is represented adequately by the estimated truncated normal
hedonic model is accepted at conventional levels of type I error. This is not to say that
all relevant factors affecting land values have been taken into account. Rather, the test
results suggest that given the regressors (X) actually used in the empirical model, the
estimated truncated normal model provides an adequate representation of E(Y I X, Y
> 0).

For additional perspective on the adequacy of the truncated normal model, an untrun-
cated model with heteroskedastic disturbances was examined as an alternative for rep-
resenting the nonnegativity of the dependent variable. The idea was to allow the variance
of the disturbance term to decrease sufficiently for small values of the regression function,
and thereby utilize the decreased spread of the disturbance distribution for modeling
nonnegativity of Y. Harvey's heteroskedastic regression model,

(12) Yt = g(Xt; 1) + At

2 = var(At) = exp ao + j Xjt

was estimated via the SHAZAM econometrics computer program (White et al.), where
g(Xt; 3) was specified as indicated in (7) with the last two variables removed (i.e., the
same variables as were in model II of table 2). Then a's represent parameters to be
estimated in the variance function, and Xjt refers to the jth explanatory variable in the
(k x 1) vector, Xt. All but two of the estimated coefficients of the variance equation were
statistically significant at the .05 level, and the overall heteroskedastic model appeared to
fit the data reasonably well (R2 = .77).3

A nonnested J-test was used to test the hypothesis that the truncated normal model
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was compatible with the data using the heteroskedastic model as an alternative model
for land price determination. Specifically, the compound model,

(13) Y = (1 - a)H(X; A, r) + ag(X; O) + E,

was estimated via nonlinear least squares, where g(X; 3) represents the predicted values
of Y generated from the fitted heteroskedastic model, and then the hypothesis a = 0 was
tested using an asymptotic t-test.4 The estimated value of a was .073 with a standard error
of .297, resulting in a t-value of .247, which is insignificant at any reasonable level of
type I error. Thus, contrasted with the heteroskedastic model, and consistent with the
Bierens test, the truncated normal model still is judged to be compatible with the data.

The roles of H(.) and g(.) were reversed in (13), and the new compound model was
estimated via nonlinear generalized least squares using the heteroskedastic structure in-
dicated in (12) to represent the disturbance term variances. The estimated value of a was
.509 with a standard error of .247 x 10- 3, resulting in a t-value of 2,056.3, which is
clearly significant. Thus, contrasted against the truncated normal model, the heteroske-
dastic model is soundly rejected as an appropriate specification for the hedonic price
function.

Results Summary

As in Torell and Doll, the total ranch value (PRICETOT) can be calculated as PRICETOT
= PRICEA UY TOTA UY, where TOTA UYrefers to the total number of AUYs available
from the purchased ranch land, consisting of AUYs generated from deeded land, Bureau
of Land Management (BLM) land, U.S. Forest Service (USFS) land, and New Mexico
state trust land. Differentiating PRICETOT with respect to AUYs obtained from each
land type gives the equation of marginal value for each land type. For example, using
model II, recalling the variable definitions given in table 1, and using result (6), the equation
for the marginal value of deeded land is given by

OPRICETED T Y (g( X) I)'( + f 4SIZE + 15SIZE2
ODEEDAUY k D

+ 8aPROD + f 9TIME + loTIME2 + l 11TIME3),

where DEEDA UYrefers to the number of AUYs obtained from deeded land. The marginal
value of deeded land is seen to depend on ranch size, productivity, unspecified factors
captured in the trend variables of the model, and the truncation effect.

Regarding the practical significance of the truncation effect in this application, note that
the values of D(g(X; l)/r) were .9769 and .9676 evaluated at the mean level of predicted
sale prices, and .8899 and .7233 evaluated at 50% of the mean level of predicted price
from model II based on truncation using the logistic and normal distributions, respectively.
The effect becomes substantially more pronounced the lower the predicted sale price.
Figure 1 is an explicit illustration of the magnitude of the truncation effect, providing the
estimated trends of marginal value of deeded land in dollars per AUY with or without
truncation, calculated at the mean levels of variables for each year. Note that the value
of D(.) is also calculated at the mean levels of variables for each year. As can be seen,
the estimated marginal values of deeded land are mostly larger when generated from the
model ignoring truncation than from the truncated models, especially at low levels of
predicted sale prices of ranch land, as observed after 1986 when New Mexico ranch land
values reached their lowest value in nearly 15 years.

The marginal implicit values of AUY land are provided in table 4. These values are
estimates of the amount by which the price of an average (BLM) AUY is discounted
(relative to deeded land) as the proportion of BLM leased land increases by 1%. As can
be seen from these estimates, the marginal implicit values of a BLM grazing permit
estimated from the model ignoring truncation were smaller in magnitude (less negative)
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$/AUY

.Ignoring Truncation

/

.-Truncation Via
: Logistic Distribution

Yearu2500 - I I I I I i ,

79 80 81 82 83 84 85 86 87 88 89

Figure 1. Estimated trend of marginal value of deeded land, 1979-89

than the estimates from the models incorporating truncation. The estimated values from
the two models incorporating truncation are very close in each of the 10 years considered.

For the public land policy questions addressed by Torell and Doll, the important model
parameters were the price discount for public lands relative to deeded land (i1 through
f3, and f13 through ,15), and the rate at which past underpricing of public land forage has
been capitalized into the value of public land ranches (P12). Our results suggest that the

Table 4. Comparison of Estimated Marginal Implicit Values of
the BLM Land with/without Truncation, 1979-89

Marginal Implicit Value

Ignoring Truncation via Truncation via
Year Truncation Logistic Distr. Normal Distr.

-........................................................... ($/A U Y ) -----------------------------------------
1979 -38.54 -42.20 -42.66
1980 -37.52 -43.60 -44.08
1981 -36.63 -43.23 -43.65
1982 -35.71 -42.63 -43.07
1983 -34.72 -41.28 -41.96
1984 -33.84 -40.75 -41.45
1985 -32.97 -39.79 -40.56
1986 -32.00 -35.99 -36.44
1988 -30.21 -35.49 -35.98
1989 -29.61 -35.44 -36.05
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lack of explicit representation of the truncation effect in Torell and Doll's 1991 model
may have led to some distortion in the parameter estimates of key interest to the policy
questions addressed by these authors.

Concluding Comments

Given the prevalence ofnonnegatively constrained dependent variables in the econometric
models of various aspects of the agricultural economy, and given the increasingly available
computational ability to perform nonlinear parameter estimation, the time may be right
for a more systematic evaluation of the need for explicitly incorporating the effects of the
nonnegativity constraint into the specification of model structures. One method of ex-
plicitly modeling the nonnegativity constraint is provided by the truncated logistic and
normal distribution specifications presented in this article. The method is straightforward
to implement using a nonlinear least squares algorithm, and allows a direct test of the
significance of the truncation effect. Of course, modeling truncation via distributions other
than the logistic or normal can be pursued following an approach analogous to the one
used in this study. It also may be possible to represent nonnegativity of the dependent
variable without the use of truncated distributions by choosing a disturbance distribution
that does not have the real line for its support but, rather, has support that exhibits a
finite lower bound equal to or exceeding the critical value of -g(X; F). However, in the
absence of a priori knowledge relating to the value of ( or the form of g(.), this latter
approach may not be straightforward. Furthermore, one might attempt to model non-
negativity by utilizing a set of disturbance distributions whose variances are some function
of the location of the regression function (i.e., functionally heteroskedastic disturbances)
in an attempt to lessen the influence of the lower tail of the disturbance distribution. One
might also combine the aforementioned approaches. In any case, modeling the statistical
nature of the disturbance term remains an empirical question, and the results of this study
suggest that there is an additional issue that deserves future consideration in specifying
the functional structure of models purporting to explain prices, quantities, or other non-
negatively constrained random variables-namely, the effect of inherent lower bounds on
the support of the error distribution of the model.

In a seeming routine hedonic analysis of land values, the routine assumption that any
truncation effect induced by the nonnegativity of land values can be ignored in the spec-
ification of the model was rejected for a logistic disturbance distribution in half of the
cases analyzed by Xu, Mittelhammer, and Barkley (1991, 1993), and was rejected in this
study for both of the models analyzed. One wonders how many other researchers, by
routinely dismissing the truncation effect without analysis, have introduced a model
misspecification that has detrimentally affected both dependent variable predictions and
assessments of explanatory variable impacts.

[Received December 1992; final revision received September 1993.]

Notes

Under the null hypothesis of no truncation effect, the conditional expectation of Y becomes simply g(x; X)

(= x3 in linear models), which involves neither truncation terms nor the r parameter. The statistical test effectively
examines whether the truncation terms and the r parameter are irrelevant in the specification of the conditional
expectation of Y. The test is akin to testing hypotheses concerning the functional form parameter, X, in the Box-
Cox model.

2 An animal unit (AU) is considered to be one mature cow with calf, or the equivalent. An animal unit month
(AUM) is the amount of forage required by an AU for one month, and an animal unit year (AUY) is the forage
required for an AU for one year.

3 Details concerning the results of estimating the multiplicative heteroskedasticity model, as well as the results
pertaining to the subsequent J-tests contrasting the heteroskedastic and normal truncated models, will be provided
by the authors to interested readers upon request.

4 See Davidson and MacKinnon for additional details concerning the implementation of the J-test. Note that
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the J-test was also initially used in an attempt to perform the earlier nonnested tests involving the logistic and
normal truncated models, but problems of convergence of the nonlinear least squares algorithms resulted in the
use of the P-tests reported previously.
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Appendix A: Derivation of E(YI Y > 0)

Logistic Distribution

The logistic density function for AL when E(A) = 0 and Var(C,) = a2 is defined by

exp(-At/r)

[1 + exp(-t/r)]2 '

where r = or-V//T is a scale parameter. Given that Y = g(X) + At (suppressing the parameter vector 3), the density
function for Y is then

) exp[- Y - g(X))/r]
r[1 + exp(-(Y- g(X))/r)]2 '

By definition, the truncated density for Y when Y > 0 is given by

f(Y I Y 0)=p( ) forY-0.
P(Y>_ 0)

Given that the cumulative distribution function for Y is given by

F(Y) 1 + exp(-(Y - g(X))/r)'

it follows that

exp(g(X)/r) 1
P(Y> O)= 1 - F(O)= ) 1

1 + exp(g(X)/r) 1 + exp(-g(X)/r)'

The derivation of E(Y I Y > O) then proceeds as follows:

E(Y I Y > O)

o Yf(YI Y > O)dY
Jo

=P(Y > 0)- 1 exp[-(Y - g(X))/r]
Jo r{l + exp[-(Y - g(X))/r]}2
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r_ - (g(X)+Z.) exp[-Z]
= P(Y 0) 1 ((X + Z-Z]2d [let Z = (Y- g(X))/r]

Jg(x)lr I{1 + exp[-Z]} 2

= g(X)+ P(Y > 0)-I J xZr ex dZ{1 + exp[-Z]} 2

exp(g(X)/r)(-g )) + [1 + exp(g(X)/T)]ln(l + exp(g(X)/r))

= dY^ -- + ~P(Y> 0) -- 1 + exp(g(X)/r)

= g(X) - g(X) + P(Y > 0)-'r ln(l + exp(g(X)/T))

[i+ exp(g(X)/rJ .]- In(1 + exp(g(X)/r))I + exp(g(X)/r]

= T{1 + exp[-g(X)/r]}ln{l + exp[g(X)/r]},

where we have used the fact that

P(Y 0) exp(g(x)/r)
P(Y > 0)

1 + exp(g(x)/r)'

Normal Distribution

The normal density function for Y, with mean g(X) and variance r2, is given by

1I [p/ 5Y- g(X)) ]
f(Y) 7rr5 expl-.5

The truncated density function for Y is defined by

f(Y)
f(Y I Y 0)) for Y > 0.

P(Y - 0)

The term P(Y > 0) can be derived as

0,1
P(Y 0) = J f ( dY= J\ , -7 exp[-L 5 . ) jdY

= Jf_ r exp[-.5(Z)2] dZ [let Z = (Y - g(X))/r]

= xJ ¥ -- exp[-.5(Z) 2] dZ = 1 - b[g(X)/r].
-g/ 27

Then the derivation of E(Y I Y > 0) proceeds as follows:

E(Y | Y > 0)

Yf(YI Y > ) dY

= [F(g(X)/r)]-1 J Y - exp[-.5((Y - g(X))/r)2] dY

= [((X)/r)l- (g(X) + Zr) exp[-.5Z 2] dZ et Z = g(X)

= g(X) + [4f(g(X)/)] -' Z -- expt-.5Z2] dZ
Jg(X)/ \

=g(X) + [,(g(X)/r)]-1 f - exp[-V] dV [let V= .5Z2]
Jg(-(x)/T)

2
V27r

= g(X) + [b(g(X)/r)] 1 r [-exp(- V)]
Vr .5(-+ X/)X

=g(X) + [I(g(X)/T)]-'T[O(g(X)/r)].
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Appendix B: Demonstration that
limToE(Y I Y > 0) = g(X) for g(X) > 0

Logistic Distribution

Use L'Hopital's rule on E(Y I Y > 0) as follows:

E(Y l Y ) [(l + exp[-g(X)/r])ln(l + exp[g(X)/r])]/Or
lim E(Y I Y > 0) = lim
r--o r-o o (r -)/dr

= lim g(X){ - exp[-g(X)/r]}ln{l + exp[g(X)/r]}
T-0

= g(X),
where the last equality follows from a second application of L'Hopital's rule.

Normal Distribution

lim E(Y I Y > 0) = lim [g(X) + [,(g(X)/r)]-'r[¢(g(X)/r)]]
r--0 T->0

g(X),
which follows immediately from the fact that

lim ¢(g(X)/r) = 0 and lim [4(g(X)/r)]-' = 1.
T--0 T--0

Appendix C: Estimating s2(t) and Choosing t in the Bierens' Test

Let 0 = (fi' l )'. A consistent estimator of the asymptotic variance of n'A(t) is given by

s
2(t) = n-' (Y -H(Xj; bt))2 exp(t'(Xj,)) - (t)i-' 2

j= 1

where

b(t) =n [ H(; d )) exp(t'(Xj))]

and

A n 1 a \H(X[ ; 0)0aH(Xj; 0)
j =1[ O' d J

Regarding the choice of t, let T represent a hypercube in R", where m equals the number of explanatory
variables in the hedonic model (i.e., m is the column dimension of X). Following Bierens, define

T= x [1, 5].

Let t,, t,,.. t,. be v + 1 random choices of (m x 1) vectors contained in the set T, and define t =
argmax W(t). Then t is chosen via the following decision rule:
tEt, ..... t..

t= t{J if J
{ t) wt 0 ) ^ }np

i

I-- t WV(t) - W(to) > ynp

for positive constants y and p. In this study, y = p = .5, which was chosen based on Bierens' (p. 1453) Monte
Carlo evidence. The value of v is chosen to be equal to the number of data observations available, which in the
current application was 452.
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