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The Use of Mean-Variance for Commodity Futures
and Options Hedging Decisions

Philip Garcia, Brian D. Adam, and Robert J. Hauser

This study provides additional evidence of the usefulness of mean-variance
procedures in the presence of options which can truncate and skew the returns
distribution. Using a simulation analysis, price hedging decisions are examined
for hog producers when options are available. Mean-variance results are con-
trasted with optimal decisions based on negative exponential and Cox-Rubin-
stein utility functions over 56 ending price scenarios and two levels of risk
aversion. The findings from our simulation, which considers discrete contracts,
basis risk, lognormality in prices, transactions costs, and alternative utility
specifications, affirm the usefulness of the mean-variance framework.

Key words: discrete contracts, hedging, mean-variance, options, utility spec-
ifications.

Introduction

Optimal hedging in the presence of commodity options was first considered by Wolf in
a linear mean-variance framework. For traditional portfolio choices, mean-variance may
approximate utility maximizing choices very well (Kroll, Levy, and Markowitz). However,
the availability of options raises theoretical concern about the usefulness of the mean-
variance approach for hedging decisions (Lapan, Moschini, and Hanson). The inclusion
of commodity options can lead to a truncated or skewed distribution of returns. In
addition, the use of options means that the random variables in the choice set are non-
linearly related to the strike price which violates the location-scale condition for consis-
tency between mean-variance and expected utility (Lapan, Moschini, and Hanson).' Only
limited information exists on the usefulness of the mean-variance framework in the
presence of options. Hanson and Ladd show that when these conditions are violated, the
mean-variance approach may still provide a good approximation within a framework of
constant absolute risk aversion, normally distributed output price, no transaction costs,
and no basis uncertainty.

The purpose of this article is to further explore the implications of the presence of
options on the selection of marketing strategies. Using a simulation analysis, price hedging
decisions are examined for hog producers when options are available. It is assumed that
the producer maximizes expected utility in a two-period model based on expectations
about the ending distribution of cash and futures prices. Mean-variance (MV) results are
contrasted with optimal decisions based on negative exponential and Cox-Rubinstein
utility functions over 56 ending price scenarios and two levels of risk aversion. Because
options can result in skewed outcome distributions (Cox and Rubinstein, p. 318), we also
examine a third-order approximation to the negative exponential utility function (MV3),
which is nearly as straightforward to apply as the MV, and empirically allows skewness
to influence the selection of the optimal strategy.

The analysis differs from previous research in other important dimensions. The discrete
nature of futures and options contracts is recognized by permitting the producer to choose
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only their integer multiples. A much larger set of possible (simultaneous) futures and
options positions than in previous studies is considered, and basis risk and transaction
costs are incorporated into the hedging model. In addition, daily price relatives are spec-
ified to follow a lognormal distribution which is consistent with traditional option pricing
models but which may lead to violation of the location-scale condition for consistency
between MV and expected utility (Meyer).

The results affirm the usefulness of the mean-variance framework in the presence of
options, particularly at or around market expectations. Overall, the MV framework iden-
tifies optimal strategies in a high percentage of the cases examined. When errors occur,
often the magnitudes of the losses from using the strategies identifed by the MV framework
measured in certainty equivalents are small.

Conceptual Framework

Theoretical Model

A two-period model is used to simulate a hog producer's choice of pricing strategies. In
period 1, given a quantity of the cash commodity which in period 2 will equal the size
of a futures contract, the producer formulates an expectation of the bivariate distribution
of cash and futures prices. Expected utility is maximized by buying or selling puts, calls,
and futures contracts. These contracts are offset at the time the cash commodity is sold.

Income (R) is represented as the sum of cash sales and the profits made in the futures
and options markets. Formally, R is

R = Qy + C [p2 - rp]N [-rcINCi + [f 2 - f]NF
(1) j i

-(to2 + toj)abs(NP) - (to2 + to!)abs(NC) - (tf)abs(NF),

where R = income; Q = quantity of cash commodity to be sold in period 2; y = price per
unit of cash commodity in period 2; r = risk-free rate of return + unity (r adjusts period
1 premium values to period 2 terms); p5 = price of put option at jth strike price in period
t, t = 1, 2; c5 = price of call option at ith strike price in period t, t = 1, 2; f = price of
futures contract in period t, t = 1, 2; NF, NPj, and NCi are integers representing contracts
in futures, puts at the jth strike price, and calls at the ith strike price (positive values
indicate long positions in period 1 and negative values indicate short positions); "abs"
indicates the absolute value of the integer contracts; toj is the transaction cost for put
options at the jth strike price in period t; tot is the transaction cost for call options at the
ith strike price in period t; and tfis the transaction cost for the futures contracts.

In this framework, the producer's problem is:

Max EU(R)
(2) NF,NPj,NC

s.t. NF, NPj, and NC, are integers2

or

Max f U(R)G'(R) dR
(3) NF,NPj,NC,

s.t. NF, NPj, and NC, are integers,

where U(R) is the producer's utility function and G'(R) represents the producer's expec-
tation of the probability density function of R.

Utility Considerations

Two utility functions are used to characterize the producer's preferences-the negative
exponential and the Cox-Rubinstein. The negative exponential utility function can be
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expressed as EU(R) = -exp(-qR), where q is the Arrow-Pratt (AP) coefficient of absolute
risk aversion, -U"/U'. As is well known, the negative exponential specification imposes
constant absolute risk aversion (CARA) (AP' = dAP/dR = 0), which implies that changes
in the level of wealth do not influence investment decisions. In addition, we examine the
Cox-Rubinstein utility function which has been used in the analysis of options (Cox and
Rubinstein, p. 318). The Cox-Rubinstein utility function is expressed as EU(R) =
(1/(1 - d))R'- d, where d is the level of constant relative risk aversion. In this formulation,
AP = d/R and AP' = -d/R2 < 0, which implies a decreasing absolute risk aversion utility
function (DARA) for d > 0.

Decision Analytics

Two decision approaches, MV and the MV3, are used to identify their usefulness for risky
pricing situations in the presence of options. The MV approach has been widely used in
economic and financial analysis. The form of the mean-variance specification is

(4) EU(R) = m -(q/2)v,

where m is the mean of the outcome distribution, v is the variance of the outcome
distribution, and q is the level of constant absolute risk aversion (Robison and Barry).
The MV model is consistent with expected utility when utility is quadratic, outcomes are
normally distributed, and/or choices involve a single random variable or linear combi-
nations of the random variable (Meyer; Robison and Barry). In the presence of options,
it is likely that these conditions are violated. Options can skew and truncate the returns
distribution. Also, unlike futures contracts, options contracts are exercised depending on
whether the futures price is greater than or less than the strike price of the option. Thus,
the random variables in the choice set depend not only on the other random variables,
but also are nonlinearly dependent on the strike prices of the options (Lapan, Moschini,
and Hanson). These shortcomings make the use of the MV dependent on the ability to
approximate results obtained from more general utility specifications.

Option positions may cause highly skewed return distributions. Cox and Rubinstein
suggest that an evaluation of option positions would be seriously incomplete if it focused
only on mean and variance and neglected an assessment of skewness. Therefore, a third-
order Taylor series expansion to the negative exponential utility function is specified. The
MV3 specification explicitly considers the skewness, mean, and variance of the producer's
choice set, or the distribution of returns. The specification is written as

(5) EU(R) = -exp(-qm) - (q2/2)exp(-qm)v + (q3 /6)exp(-qm)vl 5s,

where R = income, m = mean, v = variance, s = the third moment ofR about its mean,
and q is defined above. In equation (5), positive skewness is associated with higher expected
utility (Cox and Rubinstein, pp. 318-19). While not necessarily consistent with expected
utility, the use of the MV3 should permit a closer assessment of the importance of skewness
in the decision framework, particularly within the context of the negative exponential
specification.

Empirical Considerations

Producer Model

Following Wolf, and Hanson and Ladd, only price risk on a fixed quantity is considered.
Given the confinement technology used in hog production, quantity risk is assumed to
be minimal. The hog producer is assumed to farrow an amount of pigs in period 1 whose
sale weight six months later (in period 2) will equal the size of a futures contract. Selecting
the size of operation equal to the size of a futures contract highlights the use of options
(through mitigating the fixed futures contract size) and their effects on the returns distri-
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bution. This cash position creates a situation with a relatively large number of opportu-
nities for the substitution of options for futures and increases the likelihood that the
returns distribution will not be consistent with a mean-variance framework. For example,
hedging a portion of the contract size requires the use of options. With larger production
(e.g., three contract sizes), hedging a portion of the output can be accomplished with
discrete futures contracts (i.e., one contract would permit hedging of one-third of the
output), reducing the importance of options and their likely effects on the returns distri-
bution. The relationship between size and the usefulness of options was identified by
Hauser and Andersen.3

Six months is the approximate lag between farrowing pigs and selling them for con-
sumption. It is assumed that no trades take place between period 1 and period 2. Options
and futures contracts are offset at the time the cash commodity is sold, and no time value
remains in the option premium.

The commission costs of using futures and options contracts are considered in evaluating
marketing alternatives. Here, the commission cost for futures is $80/contract per round
turn, or $.27/cwt. For options, it is 5% of the premium on each purchase or sale (e.g., an
option with a premium of $2.76/cwt would cost $.14/cwt if the option were allowed to
expire, and $.28/cwt if it were offset with another purchase or sale in the options market).
The commission costs assumed are those that are commonly charged by a full-service
broker to a producer who trades only one or a few contracts at a time. Since average
commission costs typically decrease as the number of contracts traded increases, these
costs may be higher than many producers would be required to pay. Also, because full-
service quotes were used, discounts may be available. Thus, the commission costs assumed
here may influence the results slightly in the direction of a cash-only marketing strategy.4

Given these assumptions, producer income, R, can be rewritten as

R = Qy + [Max(xp- f 2, 0) rpJ]NP, + ^ [Max(f 2 - xci, 0) - rc]NC,
(6)

+ (f 2
- f)NF -(to 2 + to))abs(NP)- (to2 + to)abs(NC) - (tf)abs(NF),

where xpj = jth strike price for put options, xci = ith strike price for call options, and
to2 and to2 are zero if the respective option is not exercised.

With an initial cash position, Q, the producer generates income by simultaneously
choosing positions in futures and options. To make the simulation manageable, several
assumptions are made about the producer's choice set. Three strike prices for puts and
three for calls are considered: one at the money, one $2 in the money, and one $2 out of
the money. Also, the producer is permitted to buy or sell only one futures contract, as
well as one put and one call at each strike price.5 The number of strategies involving
integer multiples of contracts is given by 3i+j+1, where 3 is the number of instruments
traded (i.e., futures, put, and call options), i is the number of call strikes, and j is the
number of put strikes, and with a futures contract adding an additional combination. This
means that 2,187 marketing strategies (37) are permitted under the expectations of each
ending price distribution.

Under these assumptions, expected utility can be written
rUF

2
rUY

(7) EU(R) = U(R)L'(y, f 2) dydf,
J LF

2
LY

where L'(y, f 2) is the producer's expectation of the joint distribution of cash price and
futures price, LF2 and UF2 are the lower and upper bounds of integration for the futures
price, and LY and UY are the lower and upper bounds for the cash price.

Structure of the Simulations

We simulate a producer's choice 448 times. Specifically, two levels of risk aversion, 56
sets of producer price expectations of mean and volatility, and the two utility specifications
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(negative exponential and the Cox-Rubinstein) and their approximations (MV and MV3)
are examined (2 56 4 = 448).6

Two levels of risk aversion are specified-risk averse and slightly risk averse. To com-
pare the results from the different utility specifications, the risk parameters (q and d)
should reflect similar levels of risk aversion. By equating the Arrow-Pratt measures of
absolute risk aversion from each utility specification, the relationship d = R q is derived.
Using values ofq specified from the ranges suggested by Holt and Brandt for hog producers,
and setting R at the period 1 futures price of $44/cwt, values of d are calculated. The risk
parameters (q, d) were specified for the risk averse producer (q = .030, d = 1.32), and for
the slightly risk averse producer (q = .010, d = .44).

The 56 sets of price expectations are built around a base scenario of mean and volatility
which reflect prices and their variation for the 1980-88 period.7 In the base scenario, the
current (period 1) futures price for the contract expiring six months later (period 2) is
$44/cwt and is used as the producer's expectation of the mean of the price distribution.
The producer's expectation of the annualized percentage standard deviation of log-price
return in period 2 is 23, which reflects the annualized average six-month volatility of the
futures contract. In other scenarios, the producer's expectation for the mean varies in-
crementally from $40/cwt to $48/cwt, a range of 9% in either direction from the market's
expectation. Consistent with the variability of annualized volatilities found over this time
period, the producer's expectation of volatility primarily varies from 16 to 30, a range of
30% in either direction from the market's expectation. This range was further expanded
to examine the case where a producer's expectation of volatility is considerably lower
than the market's, which is consistent with findings indicating that a farmer's elicited
annualized volatilities may be markedly below the market's (Eales et al.).8

Cash and futures prices are specified to follow a bivariate lognormal distribution. This
formulation is based on previous research (Hauser, Andersen, and Offutt) and the results
of statistical testing performed here which could not reject lognormality of daily price
relatives. The expected mean of the period 2 cash price is assumed to equal the expected
mean of the period 2 futures price, with basis risk entering the model through the cor-
relation coefficient of the bivariate distribution. The correlation coefficient between cash
and futures is set at .95, which reflects the correlation of futures and cash prices in various
cash markets (e.g., Omaha) on the last option trading day for each September and March
futures contract over the 1980-88 period. The option premiums in period 1 are calculated
from Black's model using a volatility of 23 and an underlying futures price of $44/cwt,
which should provide representative premiums for the analysis considered here (Hauser
and Neff).

Solution Procedures and Calculation of Certainty Equivalence

A mean-variance specification of expected utility at times may provide analytical solutions
for the hedging model (Wolf). However, in the presence of options, other utility specifi-
cations, in general, do not; numerical search procedures must be used to solve for optimal
values (e.g., Hanson and Ladd). Solution procedures often specify the contracts purchased
or sold in fractions, and do not reflect the restrictions implied by futures and options
contracts of fixed sizes. This is especially important in analyzing models containing both
futures and options, because options, through the selection of strike prices, can mitigate
the effects of fixed futures contract sizes (Hauser and Andersen).

Here, numerical procedures are used to search for solutions of integer positions in the
futures and option markets. For the negative exponential and Cox-Rubinstein utility
functions, under each level of risk aversion and price scenario, the maximization procedure
evaluates each possible combination of puts, calls, and futures contracts by numerically
integrating the utility of return R (6) achieved over a joint probability distribution of cash
and futures prices as indicated in (7). In the base scenario, the producer agrees with the
market's expectations of mean and volatility of the ending price distribution. The param-
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eters of the density function L'(y, f 2) are changed in other scenarios in order to analyze
the choice of marketing strategies as the producer's expectations differ from those of the
market.

For MV and MV3 approximations, the expected utility for each combination of con-
tracts is solved by first numerically integrating expressions (8) through (10), below, over
the price distribution in period 2 for each level of risk aversion, so that the mean (m),
variance (v), and skewness (s) for each combination of contracts can be determined:

(8) m = E(R) = fJ Rf(y, f 2) dy df2 ,

(9) v = E(R - m)2 = (R - m)2f(y, f 2) dy df2 ,

(10) s = E(R - m)3 = f (R - m)3 f(y, f 2) dy df2 .

Then, using the MV and MV3 specifications (4) and (5), respectively, the expected utility
of each combination of contracts is calculated. 9 For a given set of risk preferences and set
of price expectations, the marketing alternative with the highest expected utility is iden-
tified as the "best" strategy.

Certainty equivalence (CE) can be used to measure in monetary terms the differences
in expected utility from alternative marketing strategies. CE is the difference between the
expected value and the risk premium (Robison and Barry), and provides monetary values
of alternative strategies discounted for risk. For a particular risky strategy, the certainty
equivalent is the risk-free return necessary to achieve the same level of expected utility
as that obtained from using the strategy. In the context of a negative exponential utility
function, for a given strategy, the expected utility = U = E[-exp(-qR)], where R is a
random variable depending on prices and the market positions associated with the strategy.
The certainty equivalent must provide the same level of expected utility, U. As a result,
U = E[-exp(-qCE)], which is equal to [-exp(-qCE)] since CE is a particular value
rather than a random variable. Solving for CE, CE = -[ln(-U)]/q. Thus, CE gives a
monetary value for the risk-free return that provides the same expected utility as the risky
market strategy. For the Cox-Rubinstein utility function, CE can be found in a similar
manner and is expressed as CE = [(1 - d)Ul/ (I - '.

Certainty equivalence and the difference in CE are used to calculate the loss from using
the MV and MV3 procedures to approximate the underlying utility specifications. Consider
a comparison between the negative exponential and the MV for a particular ending price
scenario. First, the "best" strategy is selected using both the negative exponential speci-
fication and the MV. Then, under the negative exponential specification, the CE is cal-
culated for the "best" strategy chosen with each procedure. The difference between the
two CE calculations is defined as the loss in CE from choosing the strategy identified by
the MV framework.

Simulation Results

The use of two utility functions was specified to identify the robustness of the MV approach
to a DARA as well as a CARA specification. However, the selected marketing strategies
resulting from the negative exponential and the Cox-Rubinstein functions were identical.
Over the range of returns, levels of initial wealth considered, and the degree of risk aversion,
the shape of the negative exponential and the Cox-Rubinstein functions were very similar,
differing appreciably only at very low levels of wealth (fig. 1). In the appendix, we show
that as the level of wealth increases, the functions more closely approximate each other.
Simulations run in the most extreme case, assuming zero initial wealth, did not produce
any difference in the findings. The similarity in the results also is likely attributable to
the integer constraints, which do not permit fractions of futures, puts, and call contracts
to be utilized. Hence, in this simulation, the MV and the MV3 approximate both the
DARA and the CARA specifications to the same degree. Below, because of its use and
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Table 1. Best Strategies and CE Loss in $/cwt when Approximations Are Used Rather than
Negative Exponential: Risk Averse Producer

3rd-Order
Price Neg. Approximation Mean-Variance

Expectations Exponential (MV3) (MV)

Scenario Volatility Mean Best CE Best Loss Best Loss

11
12
13
14
15
16
17

21
22
23
24
25
26
27

31
32
33
34
35
36
37

41
42
43
44
45
46
47

51
52
53
54
55
56
57

61
62
63
64
65
66
67

71
72
73
74
75
76
77

81
82
83
84
85
86
87

9
9
9
9
9
9
9

16
16
16
16
16
16
16

19.5
19.5
19.5
19.5
19.5
19.5
19.5

21.25
21.25
21.25
21.25
21.25
21.25
21.25

23
23
23
23
23
23
23

24.75
24.75
24.75
24.75
24.75
24.75
24.75

26.5
26.5
26.5
26.5
26.5
26.5
26.5

30
30
30
30
30
30
30

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

460
28
1

730
1,459
1,468
1,483

460
109
28

757
739

1,468
1,472

460
352

1,081
1,090

850
770

1,472

676
361
364

1,093
1,094

851
1,499

712
607
365
365

1,094
1,094
1,580

713
689
608
365

1,337
1,094
1,823

715
689
608

1,418
1,337
1,094
1,097

716
717

1,445
1,418
1,419
1,419
1,341

53.53
51.30
51.76
52.52
53.44
54.81
59.76

51.21
47.35
46.39
46.24
47.07
48.85
54.21

49.48
45.29
44.29
44.17
44.82
46.12
50.83

48.48
44.60
43.91
43.75
44.33
45.50
49.38

47.70
44.31
43.66
43.65
44.21
45.18
48.42

47.35
44.36
43.80
43.64
44.12
45.05
47.87

47.25
44.63
43.95
43.85
44.24
44.92
47.42

47.68
45.17
44.76
44.53
44.77
45.35
47.28

460
28
1

730
1,459
1,468
1,483

460
109
28

757
739

1,468
1,472

460
352

1,081
1,090

850
770

1,472

676
361
364

1,093
1,094

851
1,499

712
607
365
365

1,094
1,094
1,580

715
689
608
365

1,337
1,094
1,836

716
689
608

1,418
1,337
1,094
2,097

716
1,445
1,445
1,418
1,419
2,187
2,160

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
.00
.00
.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
.00
.00
.00
.00
.00

2.43

.00

.00

.00

.00

.00

.00
2.38

.00

.00

.00

.00

.00
3.06
2.29

460
28
1

730
1,459
1,468
1,483

460
109

28
757
739

1,468
1,472

460
352

1,081
847
850
742

1,471

460
361
364

1,093
850
851

1,471

676
607
365
365

1,094
1,094

743

679
446
608
365

1,337
1,094
1,823

680
689
608

1,418
1,337
1,094
1,095

716
1,445
1,445
1,418
1,418
1,337
1,094

.00

.00

.00

.00

.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

.00

.00

.00

.03

.00

.21

.21

.03

.00

.00

.00

.06

.00

.62

.25

.00

.00

.00

.00

.00
.69

.29

.13

.00

.00

.00

.00

.00

.33

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.03
.27
.77
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Figure 1. Negative exponential (CARA) and Cox-Rubinstein (DARA) utility specifications

familiarity, we focus on differences between the negative exponential utility function and
the MV and MV3 procedures. The only difference between these results and the DARA
specification is that the CE loss from differences in the optimal strategies is modestly
larger with the DARA specification.

Summary results of the simulations are provided in tables 1 and 2. Each row of a table
represents an alternative scenario of the ending price distribution. For each price scenario,
the strategy selected as "best" under the utility function and approximating approaches
is identified.10 The CE is presented for the optimal strategy under the negative exponential
utility specification. The losses (differences) in CE from choosing a strategy using the
MV3 and MV approximations when the negative exponential is assumed to be correct
also are identified." For example, for the risk averse producer under scenario 57 (i.e.,
expectations of the volatility and mean equal to 23 and 48, respectively), the best strategy
is #1,580; with the MV3 approximation, it is also #1,580; and with the MV, it is #743.
Calculated using the negative exponential specification, the CE of strategy #1,580 is
$48.42/cwt. Because identical strategies are selected, the use of the MV3 approximation
results in no loss. The loss in CE from using the MV approximation is $.69/cwt. The
results for a slightly risk averse producer are interpreted similarly, with the CE and the
loss calculated under the slightly risk averse negative exponential specification.

In general, the results suggest that the approximating procedures work rather well,
particularly at or around market expectations and at low levels of volatility. Under market
expectations (volume = 23, mean = 44), the same strategies are selected by all three
specifications and do not involve options. For the risk averse producer, this strategy is
#365, a traditional hedge using a short futures position. For the slightly risk averse pro-
ducer, the strategy selected is #1,094, a long cash-only position. Under market expecta-
tions, no loss in CE exists by selecting a marketing strategy that considers only mean and
variance. The absence of options in the strategy mix is consistent with Lapan, Moschini,

Notes: The utility specifications are defined in the text. "Volatility" and "Mean" reflect expected annualized
volatility and mean in $/cwt of the second period price distribution. See text for a discussion of the selection
of "best" strategy and differences in certainty equivalence (CE).
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Table 2. Best Strategies and CE Loss in $/cwt when Approximations Are Used Rather than
Negative Exponential: Slightly Risk Averse Producer

Price
Expectation

Scenario Volatility

11 9
12 9
13 9
14 9
15 9
16 9
17 9

21 16
22 16
23 16
24 16
25 16
26 16
27 16

31 19.5
32 19.5
33 19.5
34 19.5
35 19.5
36 19.5
37 19.5

41 21.25
42 21.25
43 21.25
44 21.25
45 21.25
46 21.25
47 21.25

51 23
52 23
53 23
54 23
55 23
56 23
57 23

61 24.75
62 24.75
63 24.75
64 24.75
65 24.75
66 24.75
67 24.75

71 26.5
72 26.5
73 26.5
74 26.5
75 26.5
76 26.5
77 26.5

81 30
82 30
83 30
84 30
85 30
86 30
87 30

3rd-Order
Neg. Approximation Mean-Variance

is Exponential (MV3) (MV)

Mean Best CE Best Loss Best Loss

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

40
42
43
44
45
46
48

703
28
1

730
1,459
1,468
1,484

703
352

28
730

1,468
1,471
1,485

703
379
352
847
742

1,472
1,485

703
676
361

1,093
770

1,472
1,485

703
703
607

1,094
1,094
1,581
1,485

703
713
689

1,337
1,095
1,824
1,485

703
716
716

1,418
1,338
1,107
1,593

707
716
720

1,449
1,458
1,431
2,079

53.96
51.43
51.98
52.52
53.77
55.16
61.25

53.16
48.07
47.16
47.18
48.40
50.87
58.62

52.57
46.75
45.14
44.53
45.85
48.77
56.88

52.24
46.17
44.34
43.95
45.07
47.71
55.90

51.87
45.68
43.92
43.74
44.73
46.83
54.85

51.46
45.63
44.13
43.81
44.73
46.66
53.73

51.02
45.96
44.52
44.13
44.88
46.67
53.04

50.49
46.90
45.88
45.53
46.17
47.61
52.76

703
28

1
730

1,459
1,468
1,484

703
352

28
730

1,468
1,471
1,485

703
379
352
847
742

1,472
1,485

703
676
361

1,093
770

1,472
1,485

703
676
607

1,094
1,094
1,499
1,485

703
713
689

1,337
1,095
1,824
1,485

703
716
689

1,418
1,338
1,098
1,836

707
717
720

1,449
1,458
1,431
2,079

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
.00
.00
.00
.00
.00
.00

.00

.00

.00

.00

.00

.00

.00

.00

.01

.00

.00

.00

.01
.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.04

.00

.00

.04

.01

.00

.02

.00
.00
.00
.00
.00

703
28

1
730

1,459
1,468
1,484

703
352

28
730

1,468
1,471
1,485

703
379
352
847
742

1,472
1,485

703
676
361

1,093
770

1,472
1,484

703
676
607

1,094
1,094
1,499
1,484

703
713
689

1,337
1,094
1,824
1,484

703
716
689

1,418
1,338
1,098
1,754

707
717
720

1,446
1,449
1,422
1,107

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00
.00
.00
.00
.00
.31

.00

.01

.00

.00

.00

.01

.33

.00

.00

.00

.00
.05
.00
.34

.00

.00

.04

.00

.00

.04

.52

.00

.02

.00

.04

.04

.34

.70

Refer to notes to table 1.



Options Hedging Using Mean- Variance 41

and Hanson who demonstrate that options are not used as hedging instruments when
futures and options prices are perceived to be unbiased.

The use of the MV3 leads to the same optimal strategy as the negative exponential
specification in 88% of the cases. For the slightly risk averse producer, when the expected
volatility is below the market's expectation (i.e., scenarios 11-47), the strategies are iden-
tical. For higher volatilities, a small number of strategy differences occur, but their ap-
pearance seems to be random and their CE losses never exceed $.04/cwt. For the risk
averse producer, differences in strategy selection do not occur when the expected volatility
is equal to or less than the market's expectations (i.e., scenarios 11-57). However, above
this point, several large differences appear at combinations of high expected mean and
volatility (scenarios 67, 77, 86, and 87).

The similarity of the optimal strategies under most price scenarios is not surprising
since the MV3 is a third-order approximation to the same underlying utility function,
which permits skewness to enter into the approximating function. However, the large
differences in CE at high expected mean and volatility are unexpected, but are attributable
to the increased skewness of the returns distribution at high means and levels of volatility,
the higher level of risk aversion, and the nature of the third-order approximation. 12 Higher
levels of mean and volatility allow the producer the opportunity to choose futures and
options positions to achieve higher levels of positive skewness. Unfortunately, the MV3
approximation breaks down at high levels of variance and skewness in the returns dis-
tribution, and high levels of risk aversion. The third term in expression (5) becomes large
as skewness and variance increase, causing the approximation to become an increasing
function of variance. Examining the first and second partials of(5) with respect to variance
(v) indicates that, for skewness (s) greater than zero, utility is a decreasing and then
increasing function of variance. Expected utility is at a minimum where v = (2/qs)2,
meaning that as skewness (s) and risk aversion (q) increase, utility begins to increase with
increasing variance at smaller levels of variance. The use of this approximation in these
circumstances results in the selection of strategies associated with increasing variance,
generates large differences in CE, and is inconsistent with utility maximization for the
risk averse producer.

The use of the MV procedure identifies the same optimal strategy as the negative
exponential specification in 73% of the cases. The pattern of CE losses is much less
pronounced than under the MV3 approximation. Also, it seems to be slightly more
symmetric, occurring more often below the market's mean expectation than under the
MV3 approximation. In figure 2, a representation is provided of the return density func-
tions for strategies chosen under the negative exponential and the MV for the risk averse
producer under price scenario 87. In this most extreme case, where CE differs by $.77/
cwt, the return density functions differ substantially. The return density function for the
MV cash-only position reflects the lognormal distribution of prices because no options
positions are included. In contrast, under the negative exponential, the effect of multiple-
options positions is demonstrated by the truncated and positively skewed shape of the
return density function. Evaluated under the same ending distribution of prices, the
difference in the density functions highlights the effects of options on the return distribution
and the difficulty of the MV procedure in capturing the full range of risk preferences in
this extreme case. Nevertheless, within $1 of the market's mean expectation, the mean-
variance procedure correctly identifies the optimal strategy in 85% of the cases, with the
largest CE differences being only $.05/cwt. Within $2 of the market's mean expectation,
the MV procedure correctly identifies the optimal strategy in 80% of the cases, with the
largest difference being $.34/cwt. The MV approximation also yields considerably smaller
CE differences than MV3 in those cases where the MV3 differences are relatively large.

Finally, a slight asymmetry exists in the pattern of losses for both approximating func-
tions. When the expected volatility is well below market expectations (scenarios 11-27),
optimal strategies under the negative exponential function and the two approximating
procedures are identical. Above this point, differences in the strategies selected and CE
losses occur. The exact reason for this occurrence is difficult to identify, but may be related
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Figure 2. Return density functions for optimal strategies chosen under negative exponential and
MV utility specifications with expected mean = 48 and expected volatility = 30

to the low variance which implies reduced uncertainty about the returns from alternative
strategies. At extremely low levels of volatility, the mean of the return distribution takes
on an increased importance. Selection of the optimal strategy is based more on the expected
utility from higher mean returns. This can be seen clearly in the context of equations (4)
and (5). To provide insight into this proposition, additional experiments were performed
for the MV under price scenarios 11-27 assuming risk neutrality (q = 0), which effectively
eliminates the importance of uncertainty in the decision process. For both risk averse and
slightly risk averse producers, the optimal strategies and CE were almost identical to
those identified by the negative exponential and the MV in tables 1 and 2. Hence, at very
low levels of volatility and reduced uncertainty about the return distribution from alter-
native strategies, all three specifications identify basically the same strategies which pro-
vide the highest mean returns.
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Summary and Conclusions

The availability of options on agricultural futures has raised some concern about the
usefulness of the mean-variance framework in risk-management analyses since options
can truncate and highly skew the return distributions of marketing strategies. Here, a two-
period simulation model of a hog producer's hedging decisions was used to investigate
differences in optimal strategies and in ex ante utility under alternative utility specifications
in the presence of options and futures contracts. The results from two approximating
procedures, mean-variance and a third-order Taylor series expansion to a negative ex-
ponential function, were contrasted with those generated by the negative exponential utility
function (a CARA specification) and the Cox-Rubinstein utility function (a DARA spec-
ification). The third-order approximation permits the skewness of the return distribution
often imparted by option positions to influence the selection of the optimal strategy.

Over the simulation values considered here, the marketing strategies selected under the
CARA and the DARA specifications were identical. Limited differences in the shape of
the utility functions existed except at very low levels of wealth. The similarity in the
results also may be attributable to the integer marketing constraints which do not permit
fractions of futures, put, or call contracts to be used.

The findings suggest that the third-order approximation and the mean-variance frame-
work provide rather good approximations, particularly at or around market expectations.
Overall, both approximating procedures accurately identify optimal strategies in a high
percentage of cases. When errors occur, often the magnitude of the CE differences is small
on a $/cwt basis, except for the third-order approximation, which is particularly sensitive
to positive skewness at higher levels of risk aversion and volatility. While the third-order
approximation is the most accurate at identifying the optimal strategies, the performance
of the mean-variance formulation also is attractive, particularly in light of its ease of
understanding and use, and because it is less susceptible to the large errors encountered
in the MV3 formulation.

In addition, the results suggest that when producers have low volatility expectations
relative to the market, the MV3 and MV formulations also work well. For the risk averse
and slightly risk averse producers, appropriate strategies are identified in most cases when
volatility expectations were below the market's. This indicates that if a producer's volatility
expectations are low relative to the market, as some research has suggested, then the use
of these approximations may identify utility maximizing strategies in a consistent manner.

In general, the results regarding the usefulness of the mean-variance framework in the
presence of options are consistent with those of Hanson and Ladd who examined this
question in a more simplified framework which assumed continuous (non-discrete) po-
sitions in only futures and a put option with a single strike price, normally distributed
output price, no transactions costs, and no basis uncertainty. The findings from our
simulation, which considers discrete contracts, basis risk, lognormality in prices, trans-
actions costs, and alternative utility specifications, do not change the general conclusion
that the mean-variance criterion is a good evaluation tool.

[Received March 1992;final revision received December 1993.]

Notes

The use of the expected utility framework to analyze decision making in a risky environment has been
criticized (Machina). Similarly, it is possible to generate examples where a mean-variance analysis leads to
results which are inconsistent with expected utility theory. Nevertheless, the use of expected utility and mean-
variance in theoretical and applied decision making suggests the importance of our analysis.

2 To make the empirical analysis manageable, the number of strike prices for puts and calls and the number
of contracts and options are limited. This is discussed below in the empirical specification section.

3 Our findings suggest that with larger production units, and less likelihood of the substitution of options for
futures, MV also may work well.
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4 Margin requirements are not explicitly considered here since they can be satisfied by pledging U.S. Treasury
Bills. Also, margin calls are not explicitly considered in the structure of the model.

5 Examination of situations where multiple futures contracts or multiple options contracts at the same strike
price were most likely to occur (i.e., where producer expectations of price mean and volatility differ most from
the market) indicated that these one-contract restrictions were not binding.

6 Examination of tables 1 and 2 may facilitate an understanding of the structure of the simulations. These
tables provide results for the negative exponential, MV, and the MV3 specifications for the risk averse and
slightly risk averse producers under the 56 price scenarios. Similar calculations for the Cox-Rubinstein speci-
fication were made, but, as discussed later, were not presented.

7 Daily closing futures prices from the Chicago Mercantile Exchange and daily high and low prices from
Interior Iowa, Omaha, and Sioux City livestock markets were provided by G. Futrell and D. O'Brien, Department
of Economics, Iowa State University.

8 For the period 1983-87, errors in the futures price forecasts of the price at contract expiration six months
later ranged from $.04/cwt to $18.99/cwt, with an average error of $5.66/cwt. For the period 1980-88, the
annualized volatilities of the hog futures closing prices ranged from 16 to 30. Eales et al. found that soybean
producers had annualized volatility expectations of prices as low as 9.45, even when the market's implied
volatility was 22.

9 The double integrals in equations (7)-(10) are computed using Gaussian adaptive composite quadrature.
Gaussian quadrature is performed by choosing Ncash and Nfutures prices to interpolate the continuous integrand.
To complete the inner integral, R is calculated for each cash price, given the set of futures prices. These values
of R are multiplied by the joint density function evaluated at the combinations of cash and future prices used
to calculate R. These values are in turn multiplied by standard quadrature interpolating values (weights) which
depend on the order of integration and are taken from tables. To increase precision, composite quadrature
divides the intervals LF2 to UF2 and LY to UY into several subintervals. Adaptive quadrature adapts the length
of each of these subintervals to increase the precision where the function changes most rapidly. For further
discussion, see Conte and de Boor. The GAUSS computer programs used are available from the authors. An
alternative procedure to optimize (7) involves iterating between a numerical integration routine and a nonlinear
optimization routine (Kaylen, Preckel, and Loehman). This approach permits non-integer solutions, ignoring
marketing constraints, and removes part of the attractiveness of options positions which can be used to achieve
intermediate trading positions (Hauser and Andersen).

'
0 A description of the "best" strategies is omitted for brevity, but is available from the authors upon request.
"In several cases, the optimal strategies were different, but the loss in CE was less than 1 ¢ per cwt.
12 The skewness of the returns distribution under the negative exponential function for scenarios 67, 77, 86,

and 87 are .53, 1.04, 1.92, and 1.58, respectively.
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Appendix

The Cox-Rubinstein (DARA) function is more likely to produce different rankings than the negative exponential
(CARA) function when the initial wealth is small. To verify this, we show that the relative percentage difference
in utility between the two functions resulting from incremental changes in wealth is very large when initial
wealth is small, but is small when initial wealth is large.

Let U1 = -exp(-qR), the CARA function, and U2 = (1/(1 - d))Rl -d, the DARA function, where the terms
are defined in the text. Then,

dU1d = qexp(-qR), and
dR

dU2 = Rd

dR

Expressing changes in utility as percentage changes resulting from incremental changes in R leads to

dU, qexp(-qR)dR
-- ~ = = -qdR, and

U, -exp(-qR)

dU2 R-ddR (1 - d)dR
U2 (1/(1 - d))R -d R

The relative percentage change in utility between U2 and Ul for incremental changes in wealth can then be
expressed as

dU2 (1 - d)dR
U2 R

dU -qdR

Ui

which after normalizing to make the risk aversion coefficients comparable, d = R q (see text), can be written as

dU2 (1 - d)dR

U2 R -(1 - qR)dR

dU, -qdR qR

U.

As R gets smaller,

lim (1 - qR)dRlim = co,
R-.O

+ qR

the relative difference between the two functions gets larger for smaller R. However, as R gets larger,

lim -(1 qR)dR lim - = 1 (by L'Hopital's Rule).
R-, qR R-oo q

Hence, as R gets larger, the difference between the two functions approaches a positive finite constant, showing
that differences between the two functions will be largest for small values of R.


