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AB STRACT

Integrated pest management (IPM) researchers are often confronted with data
of limited quantity and caliber. This study proposes a method to enrich
prospective IPM data sets by pooling sample data originating from different
experimental designs. Predictive risk performance of alternative estimation
procedures are compared and a Stein—-rule estimator is proposed as an
alternative to traditional statistical approaches to pooling data. The
Stein—rule estimator adjusts between ordinary least squares (OLS) estimates
and restricted least squares (RLS) estimates based on the correctness of the
restrictions. This type of analysis is required for any investigation of
economic thresholds because the procedure will indicate whether the various
restrictions associated with pooling conform to the data sets.
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Pooling Data for Pest Management
Analysis: A Stein-rule Approach

Philip I. Szmedra
Michael E. Wetzstein
James W. Todd

INTRODUCTION

Integrated pest management (IPM) researchers are aware of the importance

of comprehensive cross—-sectional data. But required data often are not
available, necessitating the design and implementation of experiments to
provide the needed information. Applicability of available data is sometimes
suspect due to design aberrations or regional differences in population
dynamics and damage effects of particular species. Analyses carried out
under these circumstances are apt to contribute to the uncertainty facing
farmers confronting pest management problems. Uncertainty has been
hypothesized as a major factor leading farmers to use pesticides to decrease
the risk of crop damage from agricultural pests (11) .1/ Increasing the
efficiency with which data are evaluated and incorporated in pest management
research may decrease uncertainty and lessen the environmental threat posed
by unwarranted pesticide use.

This paper proposes a method for combining entomological and plant pathogen
data originating from different experimental designs, along with theoretical
considerations, to evaluate yield loss in soybean production. We employ a
Stein-rule approach and compare relative estimator performance according to a
number of statistical criteria. The methodology allows the researcher to
determine at once the correctness of pooling to expand the available data set
and also provides parameter estimates that derive from the restrictions
imposed.

Early economic investigations of the economic threshold concept involved
modeling production systems and imposing different aspects of IPM methods.
Hall and Norgaard (2) considered both the timing and level of treatment when
multiple pesticide applications were appropriate. Talpaz and Borosh (18)
showed that for cotton insects, fewer treatments with higher dosages per
application will maximize profits. These works provided significant
improvement over the economic threshold developmental studies of Stern and
others (16) and Headley (3). However, they were limited in scope and
application since significant species interactions were ignored or other
simplifying assumptions were adopted. Confining analyses to a single crop
pest does not provide a sufficiently general approach to describe the
multipest and beneficial insect environment. These limitations can be
attributed to the lack of requisite data documenting the functional
relationships between pests and predators, and their combined effects om crop
damage and final yield.

1/ Underscored numbers in parentheses refer to literature cited in the
References section.



A significant exception is the work of Reichelderfer and Bender (13) who
analyzed the efficiency of alternative biological and chemical pest control
strategies for reducing yield loss in soybean due to the Mexican bean beetle.
In another study, Shoemaker (15) employed a dynamic programming model,
incorporating prey—-predator interaction as well as pesticide residues to
obtain a numerical solution to a specific example. However, in both studies,
species interaction remained restricted due to the limited scope of the
experimental design underlying the data.

All of these models are generally driven by one set of data. However, little
or no effort was directed toward investigating the validity of data sets
employed. The lack of a valid data set may result in increasing rather than
reducing the uncertainty of pest control decisions. In many cases,
additional information about the phenology of each interacting organism may
exist. This additional information may stem from theoretical relationships
among certain components of the model or from a related experiment
independent of the data under consideration. Incorporating the additional
information into the modeling effort may not only enhance the data set by
possibly incorporating additional prey—predator relationships, but may also
provide an avenue for validation.

DESCRIPTION OF THE METHOD

Scientists have proposed numerous procedures for dealing with the question of
pooling data, most involving an analysis of variance and covariance. The
usual procedure involves statistically testing whether the parameter values
of the model in question have changed over time, with the decision to pool
depending on the chosen significance level of the test. We modify this
approach by first consider{ng the possibility of combining cross—sectional
data originating from different experimental designs using a Stein-rule
alternative to the traditional pooling techniques, and then evaluating
relative estimator performance.

Consider the model:

vij = X358 ¢

j uij:i=1,...,N,

i=1,c . ., 7T, [1]

where Y;j is a dependent variable observation representing yield for
experimental plot i in data set j (J representing the number of possible data
sets from differing experimental designs), X;j is a (lxk) vector of
observations on k pests and bemeficials, B. is a (kxl) parameter vector that
is constant across plots but is allowed to vary between experimental designs,
and u;; is an erfor term in which all the classical assumptions hold (no
autocorrelation, heteroskedasticity, or correlatiog with the design matrix X,
normally distributed with mean zero and variance o“ for all

i=1, ..., Nand j=1,. . ., J). In estimating the parameters in
equation [1], a primary consideration in the pooling decision is whether or
not the parameter values are consistent over each data set, or in other
words, whether or not the null hypothesis Ho: By =By - . « = By is true.
More specifically, our concern focuses on whether coefficients associated
with pests and beneficials common to the data sets in question are
significantly different from one another.



A common estimation strategy is to pool or not to pool the total NJ sample
observations on the basis of an F-test for the equality of the separate
coefficient vectors Bys By’ . . . ,By (8). To perform the F-test, one needs
to compute the sum of squared residuals for both the restricted or pooled
model in which the restrictions B; = By =. . . By are imposed, and the
unrestricted model in which the parameters of the model are allowed to vary
between experimental designs. For the unrestricted model, equation [1] can
be written:

y‘ = X‘ B‘ + u‘, where [2]
*_ yl *_ X1x Bl *_ b |
y= Y, X = 2 B*= B2 L "2

Iy Xy By uy,

so that each y. is (Nx1), X. is (Nxk), B. is (kx1l), and uw; is (Nxl)for j = 1,
« « «» J. For this model, ghe maximum likelihood (OLS) eStimator is

b=S" X‘ Y* where S = x* X‘, and b is minimum variance unbiased.

The pooled or restricted model is equivalent to equation [2] subject

to the restrictions R = r, where r is the null vector and

Ik

I, is a k order identity matrix so that R is a [(J-1)k x Jk] matrix.
Consequently, (J-1)k is the number of linearly independent restrictions on
the model. For the pooled model, the RLS estimator that combines the
restrictions and the sample data is: b* = b—S_IR'[RS-IR']'le. The RLS
estimator b* is biased unless the restrictionms RB‘ = 0 are true (that is,
unless By =Py = « o o = BJ) but has covariance matrix no greater than that
of the OLS estimator b.

The traditional pretest estimator chooses between b and b* on the basis of
the likelihood ratio statistic:

& = (Rb)' [RS™1IR']"1 (Rb)/(J-1)ke2, (3]

where 02 = (y*-X*b) "(y*-X*b)/(NJ-JK) (1). The statistic & has a central F
distribution with (J-1)k and (NJ-JK) degrees of freedom if Rp* = O.
Therefore, the RLS estimator b* is chosen if the null hypotheses RB‘ =0 are
accepted and the OLS estimator b is chosen otherwise. In a repeated sampling
context, the data, linear hypotheses, and level of significance all determine
the combination of the two estimators that are chosen on the average.
However, the cavalier way in which the significance level of the test is
chosen in most applied work motivates a number of alternatives. Employing a
random coefficients specification, implying the possibility that parameters
may change for each observation,may be appropriate. Another specification



alternative in this sampling context may be a switching regression regime in
which the regression coefficients are allowed to be the same within subsets
of observations but different across subsets (7). The method chosen here
allows the estimator to provide parameter estimates closer to b* or b
depending on the correctness of the restrictions imposed.

We can compare the relative predictive performance of b, b‘. and the
traditional pretest estimator using the following risk function:

E[(B - p*)’ S(B - p*)1, [4]
where B is an estimator of the true parameter vector P*, and E is the
expectation operator. Choosing B to minimize [4] will result in an estimator
that minimizes the sum of squared errors in predicting y*. Among b, b*, and
the traditional pretest estimator based on &, only b is minimax, in terms of
predictive risk as measured by [4]; that is, it minimizes the maximum
expected loss over all possible parameter values. This motivates the
Stein-rule estimator:

0 = (1-c/ 8)(b-b*) + b*, [5]

where ¢ = [(J-1)k-2]/(NJ-JK + 2). The right hand side of [5] is minimax and
has predictive risk less than or equal to that of the OLS estimator b (6,
10). Notice that the smaller the value of the test statistic &, the further
O is moved from b toward b*. This result is intuitively appealing since
smaller values of ® are associated with acceptance that the restrictions By =
By « ¢« o = By are true, or equivalently, that pooling the data is desirable.
A positive part version of [5] that has predictive risk less than or equal to
0 is:

8% = Ijc, =] (8)(1-c/ 8)(b-b*) + b*, [6]

where the indicator function I[,,6 »] (8) =1 if ¢ {8 { » but zero otherwise
(7). Notice that if I[;, »] = 0, 0% = ps,

The Stein-rule is based on the apparent statistical paradox that allows the
overall average value of a number of related or unrelated means to be a
better indicator of the true mean values than each mean taken individually.
The essential process in the Stein-rule approach is the "shrinkage” of all
individual averages toward the grand average. The procedure makes a
preliminary "guess” that all the true and unobservable means are near the
overall mean. If the data support this assumption, then the observed
estimates are "shrunk” further toward the grand average. If the data
contradict the assumption then little shrinkage occurs. In addition, the
number of parameter values being estimated also influences the shrinkage
factor. Estimation of a large number of means allows the shrinkage factor to
be more extreme either toward or away from the grand mean since observed
variations are less likely to represent random fluctuations. The reduction
in risk as measured by mean square error can be substantial, particularly if
the number of means is greater than five or six. In the present application,
the Stein-rule provides significantly better estimates in terms of risk
efficiency than the OLS estimates if the restrictions imposed upon the data
sets are correct, that is, they correspond to the actual parameter values.

If the restrictions are not correct, the Stein-rule estimates will closely
correspond to the OLS results.



SAMPLING TECHNIQUES AND SOYBEAN PESTS

Entomologists generally employ two types of experimental methods for
quantifying pest damage in field crops. Caged experiments are one method
used to estimate damage activity of confined populations. Procedures include
maintaining a constant number of pests over a portion of the plant for a
specific period. Damage is then evaluated at the end of the period and
projected yield reductions can be determined. A second method involves field
plots. Experimental field plots provide the ability to assess the
effectiveness of varying treatment regimes on pest populations and damages,
symptomatic expression of disease vectors, and resultant final yield.

Sampling techniques that allow physical counts of above—ground insects
include direct observation on the plant (in situ), shake—cloth samples, and
sweep net techniques. Shake-cloth samples are generally taken by placing a
large cloth (1m2) or polyethylene film between 2 plant rows and shaking 30 cm
of row from either side over the cloth for 30 seconds (9). Insects falling
onto the cloth are then counted. For some pests of soybean, notably
velvetbean (or other lepidopterous) caterpillars and stink bugs, this
technique yields an approximation of the absolute numbers of insects in the
length of row sampled. Sweep net samples involve the use of a 38 cm-
diameter muslin net to sweep insects from the plant leaf canopy. Sweeps may
be done along or across rows, with counts of insects in the net being taken
at the end of a given number of sweeps. Data from this technique can be
transformed to produce absolute estimates of insect numbers per linear
measure of row (14, 12).

Total reliance on one sampling method reportedly influences results due to
selective error (l); for instance, the collector searching more diligently at
low than at high population levels. The ability to employ data originating
from a number of different experiments in determining damage rates minimizes
the effect of possible spurious observations and results, and underlies any
attempts at validation. The principal pests of soybean in the Gulf Coast
States and Georgia are the southern green stink bug (SGSB) Nezara viridula
(L.), and the velvetbean caterpillar (VBC) Anticarsia gemmatalis (Hubner).
These insects account for two-thirds of soybean dollar losses from insect
pest damage in Georgia (17). The SGSB damages the soybean by feeding on pods
and transmitting disease agents. Damaged seeds result in a reduction of
grade and market value. The VBC, a defoliator of soybean usually during the
later stages of plant maturity, can account for over 90 percent of total
foliage damage (4). Another principal pest, the three—cornered alfalfa
hopper (TCAH) Spissistilus festinus (Say), attacks soybeans and other legumes
by egg laying and feeding punctures in seedling soybean stems. Girdling
weakens the stem so that wind or rain may result in breakage and plant death.
Later in the season, the insect may feed on tender petioles, causing new
shoots to die (3). Spiders are among the first arthropods to invade newly
planted soybean stands and are important beneficial predators during the
production season.

Of the number of fungal diseases that affect the soybean plant, brown spot,
Septoria glycines (Hemmi), is one of the earliest leaf diseases to appear on
young plants. Severely affected leaves become yellow and drop, causing
stunted growth and diminished yields.



TESTING THE PROCEDURE

Cage data were available documenting the yield reduction effects of the
presence of VBC and SGSB on Bragg variety soybeans grown at the Coastal
Plains Experiment Station, Tifton, Georgia. Todd et al. (20) collected data
on the percentage of seeds with SGSB damage and total yield (bushel per acre)
under constant levels of pest infestation. Fourth and fifth instar nymphs of
SGSB and large larvae of VBC were infested in cage at the beginning of RS
(reproductive stage 5 in soybean plant development, representing beginning
seed), R5.5 (mid pod-fill), and R6 (full seed). Reinfestation was made at
3-day intervals to replace dead or missing individuals. Each reproductive

stage represents a 15-day period. Sixty observations were generated using
this experimental approach.

A second data set was comprised of field plot data originating from an
experiment conducted at the Coastal Plain Experiment Station during the 1983
growing season (21). Coker 237 soybean variety was grown under different
types of treatment regimes. A Latin square experimental design was used,
with plots 3 meters square, each containing four rows, 1 meter apart. Insect
counts were made weekly over a 10-week period, using shake-cloth and sweep
net techniques to document numbers of VBC, SGSB, TCAH, spiders, soybean
looper (SBL) Pseundoplusia includens, and corn earworm (CEW) Heliothis zea.

In addition, the final insect count also included a visual rating of the
incidence of brown spot present in each plot according to the following
scale: 1 = 0-10 percent involved, 2 = 11-30 percent, 3 = 31-50 percent, 4 =
51-70 percent, and 5 = 71-90 percent. The second experimental design yielded
150 sample observations.

SBL and CEW, both generally foliage feeders, infest soybean usually during
the vegetative and early pod setting stages of development. This time period
was designated as weeks 1 through 4 for modeling purposes. Their combined
effects were aggregated into one variable designated as FOLG. SGSB were not
included in the following field plot yield model since they were not present
in numbers sufficient to cause yield loss. The incidence of SGSB in the
Coastal Plain region had been significantly diminished during the 1983 and
1984 production seasons (19). Research entomologists attribute this
reduction to periods of severe winter weather, which killed many of the
insects overwintering in trees and decaying vegetative matter adjacent to
production fields. SGSB repopulates a region at a very slow rate, often
taking years to establish pre-kill numbers, which may account for the
negligible field-plot sample populations.

Li f Variabl 1 Abt iati

CEW Corn earworm

D Brown spot disease

FOLG Combined effects of SBL and CEW during the vegetative and
early pod setting stages of soybean development

SBL Soybean looper

SGSB Southern green stink bug

SPID1 Spiders in weeks 1 through 4

SPID2 Spiders in weeks 5 through 10

TCAH Three—cornered alfalfa hopper

VBC Velvetbean caterpillar



The two experimental designs result in the following two models predicting
soybean yield.

Y
c

fc(VBC. SGSB) , (7]

Y

p fp(VBC, TCAH, FOLG, SPID1, SPID2, D), [8]

where the dependent variables Y and Y are soybean yield for caged and field
plot experiments, respectively.c SPID1Pand SPID2 are variables accounting for
the presence of spiders in weeks 1 through 4 and 5 through 10, indicating a
first— and second-half season presence. D represents brown spot disease.

The expectation is that all independent variables will exhibit an inverse
relationship with yield, with the exception of beneficial variables SPID1 and
SPID2, which could exhibit positive relationships. In addition to the two
experimental designs, the field plot data included a regime in which a
pesticide application was applied once per week in weeks 5 through 10. Thus,
yield reduction should occur only as a result of pest infestation in weeks 1
through 4. Since foliage feeders and spiders are the only uncontrolled
influences on yield within this period, the following yield model results:

Yt = ft(FOLG, SPID1). [9]
The pooling procedure outlined earlier is employed to investigate if the
coefficients associated with VBC are consistent between data sets. OLS, RLS,
and Stein-rule coefficients are estimated with the restriction that VBC
coefficients are equal in [7] and [8] and coefficients associated with FOLG
and SPID1 are equal in [8] and [9].

RESULTS AND DISCUSSION

Linear regression results and Stein-rule estimates for the caged experiment,
4-week, and full-season field plots are presented in tables 1, 2, and 3.
Alternative model specifications such as logarithmic did not improve the
summary statistics. In addition, there was no significant interaction among
the independent variables. Dummy variables D1, D2, and D3 are associated
with disease levels 1, 2, and 3. The fifth disease level did not occur in
this sample and the fourth disease level was incorporated as the intercept.
The Stein-rule estimates under the positive-part rule appear without
comparable t—statistics since the sampling distribution of this estimator is
not yet known (7).

All estimated coefficients are consistent in sign with a priori assumptions,
although magnitudes of these variables appear to vary considerably between
data sets in the unrestricted results. VBC damage effects were substantially
greater when determined within the field plot experimental design than in the
caged design. The damage coefficients associated with the full-season field
plot regression model were larger by a factor of 12 (-0.261 versus —-0.021).
In addition, the effect of FOLG in the 4-week field plot was substantially
greater than in the full-season field plot (-2.045 versus -0.011). The
damage effect of TCAH during the latter portion of soybean reproductive
growth was significant and unexpected, as these insects are considered to be
principally a pest of seedling stands. These results indicate that the
presence of TCAH in later growth stages inflicts considerable damage and
contributes to diminished yields.



Table 1: Regression results describing the damage effects of caged
velvetbean caterpillar and southern green stinkbug populations on Bragg
soybean, Tifton, Georgia, 1981 1/

Unrestricted Restricted

Variable (OLS) (RLS) Stein—rule

Constant 62.4222/ 62.5362/ 62.430
(33.74) (32.15)

VBC -.0212/ -.0212/ .021
(9.84) (9.54)

SGSB -.0752/ -.0742/ .075
(4.03) (3.74)

1/ t-statistic in parentheses.
2/ Significantly different from zero at 0.005 significance level.

Table 2: Regression results from field plot data describing the effects of
soybean looper and corn earworm (FOLG) and spiders (SPID1) on Coker 237
soybean yield during the vegetative and early reproductive stages of growth,
Tifton, Georgia, 1983 1/

Unrestricted Restricted

Variable (OLS) (RLS) Stein-rule

Constant 45,3782/ 44,0322/ 45.279
(23.75) (21.94)

FOLG -2.0453/ -.011 -1.890
(2.04) (.01)

SPID1 .758 .005 .702
(1.02) (.006)

1/ ¢-statistic in parentheses.
2/ Significantly different from zero at 0.005 significance level.
3/ significantly different from zero at 0.025 significance level.



Table 3:

Regression results from full-season field plot data describing

the yield influencing effects of insect pests, beneficials, and Septoria
Glycines (Hemmi) on Coker 237 soybean, Tifton, Georgia, 1983 1/

Unrestricted Restricted
Variable (OLS) (RLS) Stein-rule

Constant 39.0772/ 33.5792/ 38.671
(12.92) (10.56)

VBC -.2612/ -.021 -.243
(5.07) (.39)

TCAH -.6513/ -.7543/ -.658
(2.48) (2.73)

FOLG -.0113/ -.0113/ -.011
(2.48) (2.31)

SPID1 .003 .005 .003
(.88) (1.45)

SPID2 .442 .075 .415
(1.20) (.19)

D1 14.1972/ 19.8722/ 14.616
(3.87) (5.15)

D2 4.049 8.1722/ 4.353
(1.45) (2.79)

D3 2.521 5.5603/ 2.746
(.939) (1.96)

RMSE4/ 7.410 7.791 7.410

1/ t-statistic in parentheses.
2/ Significantly different from zero at 0.005 significance level.
;j Significantly different from zero at 0.025 significance level.
Y

RMSE is Root Mean Squared Error.



By killing photosynthetic leaf surface and decreasing functional leaf area,
the incidence and severity of brown spot were expected to significantly
decrease final yields. The coefficients for D1-D3, which were interpreted as
intercept shifters in this model, demonstrate the importance of including
pathogen data when modeling pest damage. The statistical insignificance of
the coefficients for D2 and D3 in the unrestricted full-season field plot
results may be attributed to the limitations of using single—season data.
IPM extension recommendations in Georgia have not included control of
specific disease vectors. These results indicate that fungal diseases of
soybean significantly lower yields, especially when considering the
interaction of defoliating, and pod- and seed-damaging insects. Farmers
should therefore consider controls specific to these disease agents.

The computed F-value & = 8.9559 from [3] was used for testing whether the
parameter values in question remain virtually the same between the
experimental designs. This value indicates that the restricted or pooled
model would not be chosen from a pretest perspective given an F[1 255] =
2.04 critical value at the .05 level of significance. Since the gia31lional
likelihood ratio test yielded a value relatively far from the critical value,
one would expect the Stein-rule to produce an estimator that gave substantial
weight to the unrestricted OLS estimator. The Stein-rule estimates lie very
close to those produced by the unrestricted model, indicating that pooling
the data sets did not improve estimates substantially over the traditional
OLS technique (see tables 1, 2, and 3). Root mean square error (RMSE)
criteria based on actual and predicted soybean yields for the full-season
data set were calculated. RMSE for the unrestricted model and the Stein-rule
estimator were the same, while that for the restricted model was greater.
These results indicate that incorporating additional information did not
greatly enhance the data set. The lack of data set conformability or
validity may be due to the influence of climate on both the soybean plant and
insects. In addition, the different soybean varieties used in the
experiments may have significant differences in insect and disease
resistance. However, the Stein-rule provided the analytical ability to
determine the appropriateness of considering the pooled data set. Failure to
consider the additional information may lead to erromeous results and
implications. Specifically, the OLS coefficient associated with VBC for the
caged experiment was less than 8 percent of the corresponding VBC coefficient
in the field plot experiment. Only considering the caged data set when
determining economic thresholds may severely understate the influence VBC
exerts on soybean and may lead to estimates of economic thresholds that are
significantly above the actual threshold.

Incorporating additional information into the analysis provides a method for
validating and modifying a particular data set. If the restrictions do not
conform to the data sets, the Stein—rule estimates will not deviate from OLS
estimates and predictive performance (RMSE) between the two estimates will
not deviate significantly. Our results tend to fall in this category.
Conversely, if the restrictions conform with the data sets then the
Stein-rule estimates may result in improved predictive performance and lower
RMSE compared with OLS and RLS estimates. This analysis is of central
importance since economic threshold studies are totally dependent on
experimental designs modeling pest damage.

10



SUMMARY AND CONCLUSION

IPM researchers are often confronted with the problem of limited quantity and
caliber of data. The resultant limitations on model design and
specification, given the intricacies of a dynamic production system, allow
uncertainty to enter the modeling process. Considering the levels of
uncertainty facing the farmer confronting pest management decisions, IPM
recommendations based upon models developed from the narrow perspective of a
single pest or single interactive insect relationship may contribute to
uncertainty rather than alleviate it. In this study we have proposed a
method to enrich prospective IPM data sets by pooling sample data originating
from different experimental designs. A Stein-rule estimator was offered as
an alternative to traditional approaches to pooling data, since it ad justs
between OLS and RLS based on the correctness of the restrictions.

Results indicated that the restrictions imposed did not conform to the data
sets. Thus, the validity of the data sets could not be confirmed and further
investigation into relationships among the variables is required. In
general, this type of analysis is necessary for any investigation of ecomomic
thresholds when data pooling is an option, since the procedure will indicate
if the various restrictions do conform to the data sets. If they are
conformable, this analysis may result in Stein-rule estimates with lower RMSE
for incorporation into an economic threshold analysis. Finally, our approach
in expanding data availability for the applied researcher should allow better
agro—ecosystem modeling, and provide those in extension IPM greater
confidence when providing the farmer with specific IPM recommendations.

11
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