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ABSTRACT 

Integrated pest management (IPM) researchers are often confronted with data 
of limited quantity and caliber.  This study proposes a method to enrich 
prospective IPM data sets by pooling sample data originating from different 
experimental designs.  Predictive risk performance of alternative estimation 
procedures are compared and a Stein-rule estimator is proposed as an 
alternative to traditional statistical approaches to pooling data.  The 
Stein-rule estimator adjusts between ordinary least squares (OLS) estimates 
and restricted least squares (RLS) estimates based on the correctness of the 
restrictions.  This type of analysis is required for any investigation of 
economic thresholds because the procedure will indicate whether the various 
restrictions associated with pooling conform to the data sets. 
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Pooling Data for Pest Management 
Analysis: A Stein-rule Approach 

Philip I. Szmedra 
Michael E. Wetzstein 

James W. Todd 

INTRODUCTION 

Integrated pest management (IPM) researchers are aware of the importance 
of comprehensive cross-sectional data«  But required data often are not 
available, necessitating the design and implementation of experiments to 
provide the needed information.  Applicability of available data is sometimes 
suspect due to design aberrations or regional differences in population 
dynamics and damage effects of particular species.  Analyses carried out 
under these circumstances are apt to contribute to the uncertainty facing 
farmers confronting pest management problems.  Uncertainty has been 
hypothesized as a major factor leading farmers to use pesticides to decrease 
the risk of crop damage from agricultural pests (IJ.) .1/  Increasing the 
efficiency with which data are evaluated and incorporated in pest management 
research may decrease uncertainty and lessen the environmental threat posed 
by unwarranted pesticide use. 

This paper proposes a method for combining entomological and plant pathogen 
data originating from different experimental designs, along with theoretical 
considerations, to evaluate yield loss in soybean production.  We employ a 
Stein-rule approach and compare relative estimator performance according to a 
number of statistical criteria.  The methodology allows the researcher to 
determine at once the correctness of pooling to expand the available data set 
and also provides parameter estimates that derive from the restrictions 
imposed. 

Early economic investigations of the economic threshold concept involved 
modeling production systems and imposing different aspects of IPM methods. 
Hall and Norgaard (2) considered both the timing and level of treatment when 
multiple pesticide applications were appropriate.  Talpaz and Borosh (18) 
showed that for cotton insects, fewer treatments with higher dosages per 
application will maximize profits.  These works provided significant 
improvement over the economic threshold developmental studies of Stern and 
others (1Ê.) and Headley (3J •  However, they were limited in scope and 
application since significant species interactions were ignored or other 
simplifying assumptions were adopted.  Confining analyses to a single crop 
pest does not provide a sufficiently general approach to describe the 
multipest and beneficial insect environment.  These limitations can be 
attributed to the lack of requisite data documenting the functional 
relationships between pests and predators, and their combined effects on crop 
damage and final yield. 

1/  Underscored numbers in parentheses refer to literature cited in the 
References section. 



A significant exception is the work of Reichelderfer and Bender (ü) who 
analyzed the efficiency of alternative biological and chemical pest control 
strategies for reducing yield loss in soybean due to the Mexican bean beetle. 
In another study. Shoemaker (l¿)   employed a dynamic programming model, 
incorporating prey-predator interaction as well as pesticide residues to 
obtain a numerical solution to a specific example.  However, in both studies, 
species interaction remained restricted due to the limited scope of the 
experimental design underlying the data. 

All of these models are generally driven by one set of data.  However, little 
or no effort was directed toward  investigating the validity of data sets 
employed.  The lack of a valid data set may result in increasing rather than 
reducing the uncertainty of pest control decisions.  In many cases, 
additional information about the phenology of each interacting organism may 
exist.  This additional information may stem from theoretical relationships 
among certain components of the model or from a related experiment 
independent of the data under consideration.  Incorporating the additional 
information into the modeling effort may not only enhance the data set by 
possibly incorporating additional prey-predator relationships, but may also 
provide an avenue for validation. 

DESCRIPTION OF THE METHOD 

Scientists have proposed numerous procedures for dealing with the question of 
pooling data, most involving an analysis of variance and covariance.  The 
usual procedure involves statistically testing whether the parameter values 
of the model in question have changed over time, with the decision to pool 
depending on the chosen significance level of the test.  We modify this 
approach by first considering the possibility of combining cross-sectional 
data originating from different experimental designs using a Stein-rule 
alternative to the traditional pooling techniques, and then evaluating 
relative estimator performance. 

Consider the model: 

'     ' -^    ^ j = 1 J, [1] 

where y^^j is a dependent variable observation representing yield for 
experimental plot i in data set j (J representing the number of possible data 
sets from differing experimental designs), X.j is a (Ixk) vector of 
observations on k pests and beneficiáis, ß. is a (kxl) parameter vector that 
is constant across plots but is allowed to vary between experimental designs, 
and u. . is an error term in which all the classical assumptions hold (no 
autocorrelation, heteroskedasticity, or correlation with the design matrix X, 
normally distributed with mean zero and variance a     for all 
i = 1, . . ., N and j = 1 ,. . ., J).  In estimating the parameters in 
equation [1], a primary consideration in the pooling decision is whether or 
not the parameter values are consistent over each data set, or in other 
words, whether or not the null hypothesis B^Q' ßi = ß2 • • • ~ ßj ^^ true. 
More specifically, our concern focuses on whether coefficients associated 
with pests and beneficiáis common to the data sets in question are 
significantly different from one another. 



A common estimation strategy is to pool or not to pool the total NJ sample 
observations on the basis of an F-test for the equality of the separate 

coefficient vectors ß^' ^2'   • • • 'ßj ^S^*  ^^ perform the F-test, one needs 
to compute the sum of squared residuals for both the restricted or pooled 
model in which the restrictions ß^ = ß2 ~* • • ßj ^^® imposed, and the 
unrestricted model in which the parameters of the model are allowed to vary 
between experimental designs.  For the unrestricted model, equation [1] can 
be written: 

y  = X  ß  + u ; where [2] 

y = 
♦  ^1 

X = X. \*= 
ßi 
ß2 

^1 
u« 

Xi ßj ^j' 

so that each y . is (Nxl) , X. is (Nxk), ß. is (kxl), and u. is (Nxl)for j = 1, 
. . •, J.  For this model, the maximum likelihood (OLS) estimator is 
b = S '*'X Y where S = X X , and b is minimum variance unbiased. 
The pooled or restricted model is equivalent to equation [2] subject 
to the restrictions Rß  = r, where r is the null vector and 

R= 
-I^ 

-It 

-Il 

I^ is a k order identity matrix so that R is a [ (J-l)k x Jk] matrix. 
Consequently, (J-l)k is the number of linearly independent restrictions on 
the model.  For the pooled model, the RLS estimator that combines the 
restrictions and the sample data is: b* = b"-S"%'[RS^^R']"^Rb.  The RLS 
estimator b  is biased unless the restrictions Rß  =0 are true (that is, 
unless ßi = ßo ~ • • • ~ ßj^ ^^^ ^^^ covariance matrix no greater than that 
of the OLS estimator b. 

The traditional pretest estimator chooses between b and b 
the likelihood ratio statistic: 

6  = (Rb)' [RS-1R']-1 (Rb)/(J-l)ka2, 

on the basis of 

[3] 

where a^  = (y*-X*b)'(y*~X*b)/(NJ-JK) (1).  The statistic 6 has a central F 
distribution with (J-l)k and (NJ-JK) degrees of freedom if Rß  = 0. 
Therefore, the RLS estimator b  is chosen if the null hypotheses Rß  =0 are 
accepted and the OLS estimator b is chosen otherwise.  In a repeated sampling 
context, the data, linear hypotheses, and level of significance all determine 
the combination of the two estimators that are chosen on the average. 
However, the cavalier way in which the significance level of the test is 
chosen in most applied work motivates a number of alternatives.  Employing a 
random coefficients specification, implying the possibility that parameters 
may change for each observation,may be appropriate.  Another specification 



alternative in this sampling context may be a switching regression regime in 
which the regression coefficients are allowed to be the same within subsets 
of observations but different across subsets (1) .  The method chosen here 
allows the estimator to provide parameter estimates closer to b* or b 
depending on the correctness of the restrictions imposed« 

We can compare the relative predictive performance of b, b*, and the 
traditional pretest estimator using the following risk function: 

Eiiß"- ß*)' S(ß"- ß*)], [4] 

where ß is an estimator of the true parameter vector ß*, and E is the 
expectation operator.  Choosing ß to minimize [4] will result in an estimator 
that minimizes the sum of squared errors in predicting y*.  Among b, b*, and 
the traditional pretest estimator based on 6, only b is minimax, in terms of 
predictive risk as measured by [4]; that is, it minimizes the maximum 
expected loss over all possible parameter values.  This motivates the 
Stein-rule estimator: 

9 = (1-c/ ô)(b-b*) + b*, [5] 

where c = [(J-l)k-2]/(NJ-JK + 2).  The right hand side of [5] is minimax and 
has predictive risk less than or equal to that of the OLS estimator b iè^ 
10.).  Notice that the smaller the value of the test statistic Ô, the further 
0 is moved from b toward b*.  This result is intuitively appealing since 
smaller values of 6 are associated with acceptance that the restrictions ß-, = 
ß2 . • . = ßj are true, or equivalently, that pooling the data is desirable. 
A positive part version of [5] that has predictive risk less than or equal to 
0 is: 

^^  = I[c, «] (6)(l-c/ ô)(b-b*) + b*, [6] 

where the indicator function Ifc, »] (6) =lifcl.ô^«> but zero otherwise 
(7).  Notice that if I^c, œ] = o! 0+ = t». 

The Stein-rule is based on the apparent statistical paradox that allows the 
overall average value of a number of related or unrelated means to be a 
better indicator of the true mean values than each mean taken individually. 
The essential process in the Stein-rule approach is the "shrinkage" of all 
individual averages toward the grand average.  The procedure makes a 
preliminary "guess" that all the true and unobservable means are near the 
overall mean.  If the data support this assumption, then the observed 
estimates are "shrunk" further toward the grand average.  If the data 
contradict the assumption then little shrinkage occurs.  In addition, the 
number of parameter values being estimated also influences the shrinkage 
factor.  Estimation of a large number of means allows the shrinkage factor to 
be more extreme either toward or away from the grand mean since observed 
variations are less likely to represent random fluctuations.  The reduction 
in risk as measured by mean square error can be substantial, particularly if 
the number of means is greater than five or six.  In the present application, 
the Stein-rule provides significantly better estimates in terms of risk 
efficiency than the OLS estimates if the restrictions imposed upon the data 
sets are correct, that is, they correspond to the actual parameter values. 
If the restrictions are not correct, the Stein-rule estimates will closely 
correspond to the OLS results. 



SAMPLING TECHNIQUES AND SOYBEAN PESTS 

Entomologists generally employ two types of experimental methods for 
quantifying pest damage in field crops.  Caged experiments are one method 
used to estimate damage activity of confined populations.  Procedures include 
maintaining a constant number of pests over a portion of the plant for a 
specific period.  Damage is then evaluated at the end of the period and 
projected yield reductions can be determined.  A second method involves field 
plots.  Experimental field plots provide the ability to assess the 
effectiveness of varying treatment regimes on pest populations and damages, 
symptomatic expression of disease vectors, and resultant final yield. 

Sampling techniques that allow physical counts of above-ground insects 
include direct observation on the plant (in situ), shake-cloth samples, and 
sweep net techniques.  Shake-cloth samples are generally taken by placing a 
large cloth (Im^) or polyethylene film between 2 plant rows and shaking 30 cm 
of row from either side over the cloth for 30 seconds (¿) .  Insects falling 
onto the cloth are then counted.  For some pests of soybean, notably 
velvetbean (or other lepidopterous) caterpillars and stink bugs, this 
technique yields an approximation of the absolute numbers of insects in the 
length of row sampled.  Sweep net samples involve the use of a 38 cm- 
diameter muslin net to sweep insects from the plant leaf canopy.  Sweeps may 
be done along or across rows, with counts of insects in the net being taken 
at the end of a given number of sweeps.  Data from this technique can be 
transformed to produce absolute estimates of insect numbers per linear 
measure of row (14. 12). 

Total reliance on one sampling method reportedly influences results due to 
selective error (D; for instance, the collector searching more diligently at 
low than at high population levels.  The ability to employ data originating 
from a number of different experiments in determining damage rates minimizes 
the effect of possible spurious observations and results, and underlies any 
attempts at validation.  The principal pests of soybean in the Gulf Coast 
States and Georgia are the southern green stink bug (SGSB) Nezara viridula 
(L.), and the velvetbean caterpillar (VBC) Anticarsia gemmatalis (Hubner). 
These insects account for two-thirds of soybean dollar losses from insect 
pest damage in Georgia (H) .  The SGSB damages the soybean by feeding on pods 
and transmitting disease agents.  Damaged seeds result in a reduction of 
grade and market value.  The VBC, a defoliator of soybean usually during the 
later stages of plant maturity, can account for over 90 percent of total 
foliage damage (1).  Another principal pest, the three-cornered alfalfa 
hopper (TCAH) Snissistilus festitius (Say), attacks soybeans and other legumes 
by egg laying and feeding punctures in seedling soybean stems.  Girdling 
weakens the stem so that wind or rain may result in breakage and plant death. 
Later in the season, the insect may feed on tender petioles, causing new 
shoots to die (1).  Spiders are among the first arthropods to invade newly 
planted soybean stands and are important beneficial predators during the 
production season. 

Of the number of fungal diseases that affect the soybean plant, brown spot, 
Septoria glycines (Hemmi), is one of the earliest leaf diseases to appear on 
young plants.  Severely affected leaves become yellow and drop, causing 
stunted growth and diminished yields. 



TESTING THE PROCEDURE 

Cage data were available documenting the yield reduction effects of the 
presence of VBC and SGSB on Bragg variety soybeans grown at the Coastal 
Plains Experiment Station, Tifton, Georgia.  Todd et al. (2jÖ.) collected data 
on the percentage of seeds with SGSB damage and total yield (bushel per acre) 
under constant levels of pest infestation.  Fourth and fifth instar nymphs of 
SGSB and large larvae of VBC were infested in cage at the beginning of R5 
(reproductive stage 5 in soybean plant development, representing beginning 
seed), R5.5 (mid pod-fill), and R6 (full seed).  Reinfestation was made at 
3-day intervals to replace dead or missing individuals.  Each reproductive 
stage represents a 15-day period.  Sixty observations were generated using 
this experimental approach. 

A second data set was comprised of field plot data originating from an 
experiment conducted at the Coastal Plain Experiment Station during the 1983 
growing season (ZD *     Coker 237 soybean variety was grown under different 
types of treatment regimes.  A Latin square experimental design was used, 
with plots 3 meters square, each containing four rows, 1 meter apart.  Insect 
counts were made weekly over a 10-week period, using shake-cloth and sweep 
net techniques to document numbers of VBC, SGSB, TCAH, spiders, soybean 
looper (SBL) Pseudoplusia includens. and corn earworm (CEW) Heliothis zea> 
In addition, the final insect count also included a visual rating of the 
incidence of brown spot present in each plot according to the following 
scale: 1 = 0-10 percent involved, 2 = 11-30 percent, 3 = 31-50 percent, 4 = 
51-70 percent, and 5 = 71-90 percent.  The second experimental design yielded 
150 sample observations. 

SBL and CEW, both generally foliage feeders, infest soybean usually during 
the vegetative and early pod setting stages of development.  This time period 
was designated as weeks 1 through 4 for modeling purposes.  Their combined 
effects were aggregated into one variable designated as FOLG.  SGSB were not 
included in the following field plot yield model since they were not present 
in numbers sufficient to cause yield loss.  The incidence of SGSB in the 
Coastal Plain region had been significantly diminished during the 1983 and 
1984 production seasons (12.).  Research entomologists attribute this 
reduction to periods of severe winter weather, which killed many of the 
insects overwintering in trees and decaying vegetative matter adjacent to 
production fields.  SGSB repopulates a region at a very slow rate, often 
taking years to establish pre-kill numbers, which may account for the 
negligible field-plot sample populations. 

List of Variables and Abbreviations 

CEW Corn earworm 
D Brown spot disease 
FOLG Combined effects of SBL and CEW during the vegetative and 

early pod setting stages of soybean development 
SBL Soybean looper 
SGSB Southern green stink bug 
SPIDl Spiders in weeks 1 through 4 
SPID2 Spiders in weeks 5 through 10 
TCAH Three-cornered alfalfa hopper 
VBC Velvetbean caterpillar 



The two experimental designs result in the following two models predicting 
soybean yield. 

Y^ = f^(VBC, SGSB), [7j 

T^ = f^(VBC, TCAH, FOLG, SPIDl, SPID2, D), [8] 

where the dependent variables Y  and Y are soybean yield for caged and field 
plot experiments, respectively.  SPIDl*'and SPID2 are variables accounting for 
the presence of spiders in weeks 1 through 4 and 5 through 10, indicating a 
first- and second-half season presence. D represents brown spot disease. 
The expectation is that all independent variables will exhibit an inverse 
relationship with yield, with the exception of beneficial variables SPIDl and 
SPID2, which could exhibit positive relationships.  In addition to the two 
experimental designs, the field plot data included a regime in which a 
pesticide application was applied once per week in weeks 5 through 10.  Thus, 
yield reduction should occur only as a result of pest infestation in weeks 1 
through 4.  Since foliage feeders and spiders are the only uncontrolled 
influences on yield within this period, the following yield model results: 

Y^ = f^(FOLG, SPIDl). £pj 

The pooling procedure outlined earlier is employed to investigate if the 
coefficients associated with VBC are consistent between data sets.  OLS, RLS, 
and Stein-rule coefficients are estimated with the restriction that VBC 
coefficients are equal in [7] and [8] and coefficients associated with FOLG 
and SPIDl are equal in [8] and [91. 

RESULTS AND  DISCUSSION 

Linear regression results and Stein-rule estimates for the caged experiment, 
4-week, and full-season field plots are presented in tables 1, 2, and 3. 
Alternative model specifications such as logarithmic did not improve the 
summary statistics.  In addition, there was no significant interaction among 
the independent variables.  Dummy variables Dl, D2, and D3 are associated 
with disease levels 1, 2, and 3.  The fifth disease level did not occur in 
this sample and the fourth disease level was incorporated as the intercept. 
The Stein-rule estimates under the positive-part rule appear without 
comparable t-statistics since the sampling distribution of this estimator is 
not yet known (J) . 

All estimated coefficients are consistent in sign with a t^rinri assumptions, 
although magnitudes of these variables appear to vary considerably between 
data sets in the unrestricted results.  VBC damage effects were substantially 
greater when determined within the field plot experimental design than in the 
caged design.  The damage coefficients associated with the full-season field 
plot regression model were larger by a factor of 12 (-0.261 versus -0.021). 
In addition, the effect of FOLG in the 4-week field plot was substantially 
greater than in the full-season field plot (-2.045 versus -0.011).  The 
damage effect of TCAH during the latter portion of soybean reproductive 
growth was significant and unexpected, as these insects are considered to be 
principally a pest of seedling stands. These results indicate that the 
presence of TCAH in later growth stages inflicts considerable damage and 
contributes to diminished yields. 



Table 1:  Regression results describing the damage effects of caged 
velvetbean caterpillar and southern green stinkbug populations on Bragg 
soybean, Tifton, Georgia, 1981  1/ 

Unrestricted       Restricted 
Variable (OLS) (RLS) Stein-rule 

Constant                 62,4222/ 62.5362/           62.430 

(33.74) (32.15) 

VBC                       -.0212/ -.0212/             .021 

(9.84) (9.54) 

SGSB                      -.0752/ -.0742/             .075 

(4.03) (3.74) 

1/ t-statistic in parentheses. 
2/ Significantly different from zero at 0.005 significance level. 

Table 2:  Regression results from field plot data describing the effects of 
soybean looper and corn earworm (FOLG) and spiders (SPIDl) on Coker 237 
soybean yield during the vegetative and early reproductive stages of growth, 
Tifton, Georgia, 1983  1/ 

Unrestricted Restricted 

Variable (OLS) (RLS) Stein-rule 

Constant 45.3782/ 44.0322/ 45.279 

(23.75) (21.94) 

FOLG -2.0453/ -.011 -1.890 

(2.04) (.01) 

SPIDl .758 .005 .702 

(1.02) (.006) 

1/ t-statistic in parentheses. 
2/ Significantly different from zero at 0.005 significance level. 
1/ Significantly different from zero at 0.025 significance level. 



Table 3: Regression results from full-season field plot data describing 
the yield influencing effects of insect pests, beneficiáis, and Septoria 
Glycines (Hemmi) on Coker 237 soybean, Tifton, Georgia, 1983  1/ 

Unrestricted       Restricted 
Variable (OLS) (RLS) Stein-rule 

Constant               39.0772/ 33.5792/           38.671 

(12.92) (10.56) 

VBC                    -.2612/ _.o21             -.243 

(5.07) (.39) 

TCAH                   -.65l3y -.7543/            -.gjg 

(2.48) (2.73) 

POLG                   -.0113/ -.0113/            -.011 

(2.48) (2.31) 

SPIDl                    .003 .005              .003 

(.88) (1.45) 

SPID2                    ,442 .075              .415 

(1.20) (.19) 

»1                    14.1972/ 19.8722/           14.516 

(3.87) (5.15) 

D2                     4.049 8.1722/            4.353 

(1.45) (2.79) 

»3                     2.521 5.5603/            2.746 

(.939) (1.96) 

ß«SE4/                  7.410 7.791             ^^4^0 

±J t-statistic in parentheses. 
J Significantly different from zero at 0.005 significance level. 
y Significantly different from zero at 0.025 significance level. 
_/ RMSE is Root Mean Squared Error. 



By killing photosynthetic leaf surface and decreasing functional leaf area, 
the incidence and severity of brown spot were expected to significantly 
decrease final yields.  The coefficients for D1-D3, which were interpreted as 
intercept shifters in this model, demonstrate the importance of including 
pathogen data when modeling pest damage.  The statistical insignificance of 
the coefficients for D2 and D3 in the unrestricted full-season field plot 
results may be attributed to the limitations of using single-season data. 
IPM extension recommendations in Georgia have not included control of 
specific disease vectors.  These results indicate that fungal diseases of 
soybean significantly lower yields, especially when considering the 
interaction of defoliating, and pod- and seed-damaging insects.  Farmers 
should therefore consider controls specific to these disease agents. 

The computed F-value 6 = 8.9559 from [3] was used for testing whether the 
parameter values in question remain virtually the same between the 
experimental designs.  This value indicates that the restricted or pooled 

model would not be chosen from a pretest perspective given an ^^"[^^^^255] "^ 
2.04 critical value at the .05 level of significance.  Since the traditional 
likelihood ratio test yielded a value relatively far from the critical value, 
one would expect the Stein-rule to produce an estimator that gave substantial 
weight to the unrestricted OLS estimator.  The Stein-rule eistimates lie very 
close to those produced by the unrestricted model, indicating that pooling 
the data sets did not improve estimates substantially over the traditional 
OLS technique (see tables 1, 2, and 3).  Root mean square error (RMSE) 
criteria based on actual and predicted soybean yields for the full-season 
data set were calculated.  RMSE for the unrestricted model and the Stein-rule 
estimator were the same, while that for the restricted model was greater. 
These results indicate that incorporating additional information did not 
greatly enhance the data set.  The lack of data set conformability or 
validity may be due to the influence of climate on both the soybean plant and 
insects.  In addition, the different soybean varieties used in the 
experiments may have significant differences in insect and disease 
resistance.  However, the Stein-rule provided the analytical ability to 
determine the appropriateness of considering the pooled data set.  Failure to 
consider the additional information may lead to erroneous results and 
implications.  Specifically, the OLS coefficient associated with VBC for the 
caged experiment was less than 8 percent of the corresponding VBC coefficient 
in the field plot experiment.  Only considering the caged data set when 
determining economic thresholds may severely understate the influence VBC 
exerts on soybean and may lead to estimates of economic thresholds that are 
significantly above the actual threshold. 

Incorporating additional information into the analysis provides a method for 
validating and modifying a particular data set.  If the restrictions do not 
conform to the data sets, the Stein-rule estimates will not deviate from OLS 
estimates and predictive performance (RMSE) between the two estimates will 
not deviate significantly.  Our results tend to fall in this category. 
Conversely, if the restrictions conform with the data sets then the 
Stein-rule estimates may result in improved predictive performance and lower 
RMSE compared with OLS and RLS estimates.  This analysis is of central 
importance since economic threshold studies are totally dependent on 
experimental designs modeling pest damage. 

10 



SUMMARY AND CONCLUSION 

IPM researchers are often confronted with the problem of limited quantity and 
caliber of data.  The resultant limitations on model design and 
specification, given the intricacies of a dynamic production system, allow 
uncertainty to enter the modeling process.  Considering the levels of 
uncertainty facing the farmer confronting pest management decisions, IPM 
recommendations based upon models developed from the narrow perspective of a 
single pest or single interactive insect relationship may contribute to 
uncertainty rather than alleviate it.  In this study we have proposed a 
method to enrich prospective IPM data sets by pooling sample data originating 
from different experimental designs.  A Stein-rule estimator was offered as 
an alternative to traditional approaches to pooling data, since it adjusts 
between OLS and RLS based on the correctness of the restrictions. 

Results indicated that the restrictions imposed did not conform to the data 
sets.  Thus, the validity of the data sets could not be confirmed and further 
investigation into relationships among the variables is required.  In 
general, this type of analysis is necessary for any investigation of economic 
thresholds when data pooling is an option, since the procedure will indicate 
if the various restrictions do conform to the data sets.  If they are 
conformable, this analysis may result in Stein-rule estimates with lower RMSE 
for incorporation into an economic threshold analysis.  Finally, our approach 
in expanding data availability for the applied researcher should allow better 
agro-ecosystem modeling, and provide those in extension IPM greater 
confidence when providing the farmer with specific IPM recommendations. 
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