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Estimating the Potential Value of 
Variable Rate Nitrogen Applications: 
A Comparison of Spatial Econometric 

and Geostatistical Models 

Terrance M. Hurley, Kikuo Oishi, and Gary L. Malzer 

Site-specific crop response functions (SSCRFs) are useful for estimating the value of 
variable rate nitrogen applications (VRA), but appropriate statistical models are 
necessary. Problems estimating SSCRFs using experimental field data include 
region, spatial, treatment, and strip dependent heteroskedasticity and correlation. 
We develop a spatial autoregressive error (SARE) model for dealing with these 
problems and compare results with previous analysis based on a geostatistical (GEO) 
model. VRA value estimates for the two models differ notably for 1995 data fiom 
Southern Minnesota. Furthermore, findings show that the results of a comparison 
of model performance are location specific. 

Key words: geostatistics, precision agriculture, site-specific crop response functions, 
spatial autoregressive error, variable rate nitrogen application 

Introduction 

Precision agriculture (PA) uses site- (or region-) specific information to improve manage- 
ment. The PA hypothesis asserts that varying production inputs between or within 
fields can benefit farmers or the environment. Crop response to production inputs can 
vary between or within fields due to variation in conditions such as soil type, organic 
matter, topography, and drainage. If field conditions interact with production inputs, 
varying these inputs in response to site-specific information on varied field conditions 
can increase input productivity. 

Recent attempts to test the PA hypothesis for variable rate nitrogen applications 
(VRA) on corn have used multiple regression analysis to estimate site-specific crop 
response functions (SSCRFs) based on data from randomized complete block design field 
experiments (e.g., Davis et al., 1996; Malzer et al., 1996; Bongiovanni and Lowenberg- 
DeBoer, 2000,2001; Lambert, Bongiovanni, and Lowenberg-DeBoer, 2002; and Hurley, 
Malzer, and Kilian, 2002a,b, 2004). Early work relied on ordinary least squares (OLS), 
the simplest form of multiple regression analysis. OLS assumes regression errors are 
homoskedastic and uncorrelated-an assumption soundly rejected by later work. Thus, 
OLS produces inefficient parameter estimates and may over- or understate statistical 
significance (Schabenberger and Pierce, 2002). 
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The first problem identified with OLS was spatial correlation. More recently, problems 
with region, treatment, and strip dependent heteroskedasticity and correlation have been 
identified. Lambert, Bongiovanni, and Lowenberg-DeBoer (2002), hereafter referred to 
as LBL, use a geostatistical model (Cressie, 1993) to deal with spatial correlation. They 
also use a spatial econometric model (Anselin, 1988) to deal with spatial correlation and 
region heteroskedasticity. A comparison of the geostatistical and spatial econometric 
models favored the latter for field data from Argentina. However, the geostatistical 
model did not address region heteroskedasticity. Neither model examined treatment and 
strip heteroskedasticity and correlation. 

Hurley, Malzer, and Kilian (2004), denoted here as HMK, present a conceptual frame- 
work to explain the presence of region, spatial, and treatment dependent heteroskedas- 
ticity and correlation in SSCRF estimates. Their paper also argues that the presence of 
strip heteroskedasticity and correlation is to be expected in common randomized 
complete block design field experiments because treatments are randomized between, 
but not within strips. These insights are used to motivate a geostatistical model with 
heteroskedasticity, and fmed and random effects. The authors confirm the presence of 
region, spatial, treatment, and strip dependent heteroskedasticity and correlation using 
Minnesota field data, and then estimate the potential value ofVRA. However, given the 
findings reported by LBL, it is natural to wonder whether the geostatistical framework 
used by HMK is a good choice. 

The purpose of this study is to develop and present a spatial econometric model for 
estimating SSCRFs that incorporates region, treatment, and strip dependent hetero- 
skedasticity and correlation. The comparison of the geostatistical and spatial econometric 
models is then revisited by comparing results from this new spatial econometric model 
to the geostatistical model reported by HMK. 

Methods 

Conceptual Framework 

Following HMK, define crop yield, y, as  depending on two types of inputs: y = f(x, z), 
where x represents variable inputs and z represents fmed inputs. Variable inputs can 
be thought of as a farmer's managed inputs (e.g., nitrogen and pesticides). Fixed inputs 
can be thought of as inputs that influence yield, but are not actively managed by a 
farmer (e.g., soil type, rainfall, and topography). For expositional brevity, assume x and 
z are scalars. 

The precision agriculture (PA) hypothesis implies farmers or the environment can 
benefit from varying the amount of variable input between or within fields in response 
to between- or within-field variation in the availability of a fxed input. For example, to 
maximize the net return to a variable input, a farmer should set the value of marginal 
product equal to its marginal cost; ignoring well-known caveats, 

wherep, andp, are the price of crop yield and the variable input, and x* is the optimal 
level of variable input. The implicit function theorem implies this optimal level of vari- 
able input varies in response to the fmed input when variable and fmed inputs interact: 
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when 

For instance, if soil type varies within a field, a farmer should adjust inputs like 
nitrogen within the field only if there is some type of interaction between soil type and 
nitrogen. 

Iff (x, z) is continuously differentiable in x and z, a Taylor series expansion yields: 

and 

where 

are real constants that indicate how variable and fured inputs combine to influence 
yield, and f (0,O) is yield with no variable or fured inputs. Equation (2) suggests the null 
hypothesis Pkzkz = 0 V kx > 0 and kz z,> 0, which implies PA cannot be used to the benefit of 
a farmer or the environment because there is no interaction or synergy between the var- 
iable and fured inputs. 

HMK show how to test for this interaction by estimating SSCRFs using data from a 
randomized complete block design experiment. To review their argument, consider a set 
of data (y,, xi, zi, ei) for i = 1,2, ..., N collected from such an experiment. An individual 
data point consists of y,, an observed yield; xi, an observed variable input; zi, an 
unobserved fured input; and ei, an error due to, for example, imperfect measurement and 
approximation. Furthermore, suppose these data are pooled for R distinct regions within 
a field such that ri E El, ..., Rl represents the region assigned to the ith observation. 
Rewrite equation (1) as: 

where 

is the regression error; Zkzri b' kz and ri are unobserved constants; and 

are estimable parameters. Under the assumption that the expected value of the regres- 
sion ermr is zero, Zkz, reflects the expectation of zp  given i E ri. Now if the PA null 
hypothesisis trueand Pkzkz = 0 b'kx E E1,21 and kz z,> 0, then akx, = akrjb'kx E El, 21,ri, and 
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rj. Therefore, if the linear or quadratic effect of a variable input on yield differs between 
regions, it should be possible for a farmer or the environment to benefit from varying the 
level of that input between regions. 

It is important to note that the unobserved fxed input has two distinct effects in 
equation (3), a fixed effect and a random effect. Each a parameter consists of two 
components. One component, PkZO, is identical for all regions in the field. The other 
component, 

m 

is a region-specific constant, also known as a fxed effect in statistical vernacular. The 
error also consists of two components. One component, ei, does not depend on the amount 
of fxed input. The other component, 

depends on the unobserved amount of fxed input and how it varies from the regional 
expectation, z )  - zkzri, which is known as a random effect in statistical vernacular. Note 
that this random effect is also influenced by the amount of variable input. 

The challenge to testing the PA hypothesis by estimating equation (3) comes from the 
structure of the error covariance: 

where E(X, k) = POk + PZkx + PZkx2. Spatial correlation in equation (4) can result from the 
random effect due to unobserved fxed inputs, 

when these fxed inputs are spatially correlated. Region and treatment dependent hetero- 
skedasticity and correlation are likely because xi and xj vary by treatment, and Zkzri and 
Zkzrj vary by region. 

Experimental Methods 

The data used to estimate SSCRFs and test the PA hypothesis were collected in 1995 
from two production field experiments in the towns of Hanska (Brown County) and 
Morgan (Redwood County), Minnesota. Each location was 164m wide and 274m long 
(4.5 ha). Within this area, six replications of six treatments were established in a 
randomized complete block design (figure 1). The six replications ran the length of the 
field. The six randomized treatments within each replication also ran the length of the 
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Field Layout 

Segments 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Region 4 Region 5 Region 6 

15.2 m 8 m 

274 m 

Example Replication 

Note: For each replication, treatments are randomly assigned to a 
strip. The example of treatment assignments above is taken from 
the first replication. 
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Figure 1. Illustration of complete randomized block 
experimental design 

134 kg ha-' 

67 kg ha" 

10 1 kg ha-' 
P 

202 kg ha-' ;3\ 
\ 3 



236 August 2005 Journal of Agricultural and Resource Economics 

field in 36 (6 replications x 6 treatments) 4.6m wide strips that included nitrogen rates 
of 0,67,101,134,168, and 202 kglha applied as anhydrous ammonia. Treatments were 
applied on November 4,1994, using a radar-controlled variable rate applicator to com- 
pensate for variations in applicator speed and ensure a constant application rate within 
each strip. 

Corn (Zea mays L.; cv. PioneerB 3531) was planted during the first week of May in 
0.76 m rows at approximately 76,500 seedslha. Grain yield was determined by harvest- 
ing the center two rows (six row strips) with a Massey FergusonB plot combine equipped 
with a ground distance monitor and a computerized ~ a r v e s t m a s t e r ~  weigh cell. Each 
of the 36 strips was divided into seventeen 15.2m harvest segments. Approximately 8m 
was discarded from the end of each strip to eliminate border effects. No headlands were 
harvested. The experiment produced 612 yield observations per field. Subsamples of 
grain were collected from each area of yield measurement to determine moisture and 
adjust yields to reflect 15.5% moisture. Dikici (2000) reports additional details and a 
descriptive summary of the data. 

This common type of randomized complete block experimental design raises another 
issue of concern not captured in equation (4). While nitrogen treatments were random- 
ized across the width of the experimental plot, they were not randomized down the length. 
Treatments were randomized between, but not within strips. This lack of randomization 
in one direction can result in the type of strip heteroskedasticity and correlation identi- 
fied in HMK. 

Combined, the conceptual framework and experimental design suggest regression 
errors may exhibit region, spatial, treatment, and strip heteroskedasticity and correla- 
tion. Therefore, OLS will be inefficient. To obtain more efficient parameter estimates, 
a model with a richer error structure is necessary. While HMK showed how to extend 
the traditional GEO model to include region, treatment, and strip effects, LBL 
demonstrated that SARE type models tended to outperform most other classes of models 
including the GEO class. Hence, we focus our attention on (a) developing a SARE model 
that incorporates region, treatment, and strip effects; (b)  demonstrating that this new 
SARE model outperforms previously used SARE models; and (c)  comparing our new 
SARE model to the GEO model reported in HMK. 

GEO Framework 

HMK assume the covariance of the regression errors is: 

2 where o,,~ > 0 and o:, > 0 are the region- and strip-specific variances for observations 
i and j ;  dij is the distance in meters between observations i and j ;  xij is an indicator 
variable equal to 1.0 if x is the same for observations i and j, and 0.0 otherwise; sij is an 
indicator variable equal to 1.0 if observations i and j came from the same strip, and 0.0 
otherwise; C1 2 0, C, 0, and C, 2 0 are spatial, treatment, and strip correlation param- 
eters that assume positive correlation; 1 2 g,(dij, a)  2 0 is a permissible semi-variogram 
distance function (e.g., see McBratney and Webster, 1986); and a is a shape or range 
parameter for the semi-variogram distance function. 
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Dividing equation (5) by aGSi and arjSj results in the correlation coefficient. When 
i + j, this correlation coefficient is comprised of three elements: (a) spatial correlation 
(C,(1 -gl(dij, a)), (b )  treatment correlation (C,xij), and (c)  strip correlation (Cssij). Since 
the correlation coefficient must always lie between 1.0 and -1.0,l.O 2 C, + C, + C, 2 0.0 
assuming spatial, treatment, and strip correlation are positive, which helps ensure the 
covariance matrix satisfies the necessary regularity conditions (i.e., positive definite). 

The classical geostatistical approach decomposes variation in the dependent variable 
into a trend, local variance (nugget), and distance effect. Equations (3) and (5) accomp- 
lish a similar decomposition, but add region, treatment, and strip effects. The trend is 
captured by ao, + alrixi + aZrixf, which is region specific. The semi-variogram is: 

for du = 0, 
(6) y. .  = LJ ~ r i s i ~ r j s j [ ~ O  + clg(dij, a) + ~ ~ ( 1 -  xij) + ~ ~ ( 1 -  sy)) for du > 0, 

where aGSi arjsjCo = ariSi aqSj(l - Cl - C, - C,) can be interpreted as the nugget, and arisi arjg 
as the sill for the ith and jth observations. Equation (6) shows explicitly how the stand- 
ard geostatistical model was modified to include region, treatment, and strip effects. 

SARE Framework 

An alternative method for capturing spatial relationships is a spatial autoregressive 
error (SARE) model. Redefine equation (1) using matrix notation as: 

where y is an N x 1 vector of observed yields, X is an N x R(Kx + 1) matrix of region- 
specific variable inputs, A is an R(Kx + 1) x 1 vector of regression coefficients, and t is 
an N x 1 vector of regression errors. Write t in the heteroskedastic autoregressive form: 

where Y is an N x N diagonal matrix with the ith diagonal element equal to a region 
and strip heteroskedasticity weight Wl, W,, and W, are N x N exogenous weighting 
matrices; A,, Ax, and As are estimable spatial, treatment, and strip dependence 
parameters; and E is an N x 1 vector of independent standard normal errors such that 
E[E] = 0 and E[EE'] = I (Anselin, 1988).' The covariance matrix is expressed as: 

where 

n = [I - nlwl - n,w, - i,w,]-'[I - i1w; - A,W; - n,w;]-'. 

We also considered the spatial autoregressive lag model: y = lilWly + XA + E. The maximized value of the log likelihood 
for this model is -2,503.71 for Hanska and -2,674.35 for Morgan. Both of these values are lower than the maximized log 
likelihoods for model 2 in table 1, which is the spatial autoregressive counterpart with the same number of parameters. These 
results are consistent with Lambert, Bongiovanni, and Lowenberg-DeBoer (2002), and suggest that the spatial autoregressive 
framework fits the data better than the spatial lag framework-which is why our efforts here focus on improving the 
traditional spatial autoregressive framework. 
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Equation (9) captures spatial correlation by defining the weighting matrix W, in 
terms of spatial contiguity, so that I, measures the intensity of spatial dependence. For 
example, a positive weight can be assigned for all columns in the ith row that corres- 
pond to observations immediately adjacent and diagonal to the ith observation (i.e., 
queen contiguity). Treatment correlation can be captured by defining the weighting 
matrix W, in terms of treatment contiguity, so that I, measures the intensity of treat- 
ment dependence. For example, a positive weight was assigned for all columns in the 
ith row corresponding to observations that had the same treatment level as  the ith 
observation. Strip correlation can be captured by defining the weighting matrix W, in 
terms of strip contiguity, so that I, measures the intensity of strip dependence. For 
example, a positive weight was assigned for all columns in the ith row that correspond 
to observations from the same strip as the ith observation. 

GEO versus SARE 

Before describing the estimation procedure, a discussion of the similarities and differ- 
ences between the GEO and SARE frameworks is warranted. Both frameworks control 
for large-scale spatial trends using regional fixed effects (i.e., different a coefficients are 
estimated for different regions within a field). Both models deal explicitly with hetero- 
skedastic region, treatment, and strip random effects. Where the two models differ is 
how they treat these random effects. For the geostatistical model, EISS1l = Z0.5PZ0.5, 
where Z is a diagonal matrix of variances and P is the correlation matrix. Recall that 
the SARE model has a similar decomposition, EISS1] = Y 0.6BY 0.5. In general, however, 
Y will not equal the diagonal variance matrix and B will not equal the correlation 
matrix. Therefore, while the covariance matrix for the GEO model is multiplicatively 
separable in the variance and correlation parameters, the covariance of the SARE model 
is not. In the SARE model, I,, I,, and I, specify to some extent the degree of spatial, 
treatment, and strip heteroskedasticity, as well as the degree of spatial, treatment, and 
strip c or relation.^ Alternatively, in the GEO model, C,, C,, C,, and a only specify the 
degree of spatial, treatment, and strip correlation, and not heteroskedasticity. 

Estimation 

Specifying SSCRFs as quadratic functions, which is consistent with both HMK and LBL, 
we estimate the SARE model defined by equations (3) and (9) with our data. Estimation 
can be accomplished in a variety of ways (Schabenberger and Pierce, 2002). The method 
used here profiles the a parameters by substituting the feasible generalized least 
squares (FGLS) estimator, and estimates the variance and covariance parameters 
(I,, Ax, I,, and $BS'dr E {I ,  ..., R )  ands  E {I ,  ..., 36))usingmaximumlikelihood(ML).The 
likelihood fundion was optimized using the unconstrained optimization routine provided 
in Matlab's@ optimization toolbox. Standard errors for the a parameters are calculated 
using FGLS and the maximum-likelihood estimates for the variance and covariance 
parameters. This estimation procedure is identical to HMK, so differences in the results 
should not be attributable to a difference in the estimation technique. 

Wall (2004) discusses and illustrates the inherent difficulties of interpreting dependence parameters in the SARE kame- 
work in relation to the correlation structure of the errors. 
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In an effort to maintain comparability, we employ as many of the same assumptions 
as possible. Because we are using the same data as HMK, we likewise use the same six 
regions of the field (see figure 1). These six regions pool observations from replications 
1-3 and 4-6 and segments 1-5,7-11, and 12-17. We also define $Bs = $:I),", and set I)," =1 
for s E 11, 19) for identification. LBL specify spatial correlation using queen contiguity 
with uniform weights that sum to one across rows, a procedure also adopted here. The 
weighting matrices for treatment and strip dependence likewise have uniform weights 
that sum to one across rows. HMK assume C, 0, C, > 0, and C, > 0, implying positive 
correlation. We place different restrictions on A,, Ax, and A, because they can imply more 
than just correlation. Instead, we restrict ( A, + Ax + A s  1 < 1 and sign(3Ll) = sign(3Lx) = 

sign(3Ls), which imply I - 3LlWl - AXWX - A,W, = I - 3L" W0 such that ( 3L0 1 < 1 and W0 is arow 
randomized matrix.3 

Under these conditions, Horn and Johnson (1993) show that the covariance matrix 
must be positive definite and that the implied correlation between observations must 
be smaller for observations which are further apart in terms of spatial, treatment, and 
strip contiguity. Note that 3L0 = A, + 1, + As can now be interpreted as the magnitude and 
direction of autocorrelation, while 3Ll/P, %/P, and 3LS/3L0 can be interpreted as the pro- 
portion of this autocorrelation attributable to spatial, treatment, and strip dependence. 
It  is also important to note these restrictions do not ensure the same positive correlations 
assumed by HMK. 

Hypothesis Tests 

The importance of incorporating region, treatment, and strip effects in the estimation 
of SSCRFs using a SARE model is evaluated by estimating a series of five nested models 
and comparing these models based on the likelihood-ratio statistic (LRS). The likeli- 
hood-ratio statistic is defined as LRS = 2(logLu - logLR), where logL, and logLR are the 
maximized log likelihoods for the unrestricted and restricted models. The LRS is asymp- 
totically distributed x2 with the degrees of freedom equal to the number of parameter 
restrictions. 

Model 1 assumes $:i,i = u2 V i, 3L1 = 0, 3*, = 0, and 1, = 0, which is the ML analogy to 
OLS. Model 2 assumes I)::, = $2 V i, 3., = 0, and 1, = 0, which is the same specification as 
the standard SARE model used by LBL and analogous to HMK's second model. Model 
3 assumes $:i,i = V i, AS = 0, and 1, = 0, which is analogous to the group-wise hetero- 
skedastic SARE model in LBL, but distinct from any model reported in HMK. Model 4 

2 assumes = I):;, V i and AS = 0, which incorporates treatment heteroskedasticity and 
correlation into model 3 and is analogous to HMK's third model, but distinct from any 
model reported in LBL. Model 5 is unrestricted; it incorporates strip heteroskedasticity 
and correlation into model 4 and is analogous to HMK's fourth model, but again is 
distinct from any model reported in LBL. 

' These restrictions were imposed by defining 

Ax - -- e '= An - , and -- 1 
A 1 + A z + A B  l + e T l + e T =  . X 1 + A x + A 8  l + e T 1 + e r r '  

and maximizing the log likelihood function over r, r,, and rx instead of A,, Az, and As. 
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The PA hypothesis for variable rate nitrogen applications (VRA) is tested by estimating 
model 6, which restricts model 5 by assuming agr, = akzrj V kz E { 1,2 I, i, and j. The hypoth- 
esis is tested using the likelihood-ratio statistic, since model 6 is nested in model 5. 

The SARE and analogous GEO models reported in HMK are not nested. Therefore, 
the likelihood-ratio statistic cannot be used for comparison. Following LBL, we compare 
these models using the Akaike information criterion (AIC), taken as AIC = -210gL + 2K, 
where logL is the maximized log likelihood and K is the number of parameter estimates 
for the model. The AIC rewards models with a higher maximized log likelihood, but pen- 
alizes ones with more parameters. Therefore, it trades off model fit for model parsimony. 
A lower AIC is preferable. 

Model Validation 

A comprehensive validation of our model and estimation procedure using methods such 
as Monte Carlo simulation is computationally impractical. Still, exploring how the 
model and estimation procedures perform on simulated data is useful. To accomplish 
this simulation for the preferred SARE model, the estimated parameters were used to 
construct the covariance matrix for the error. We then transformed a vector of 612 
independent standard normalvariates using a Cholesky decomposition and added these 
transformed variates to the yields predicted from our quadratic yield functions. The 
models were then re-estimated using these simulated yield data. 

Potential Value of VRA 

Estimates of the potential value of increased nitrogen returns from VRA are calculated 
using the a coefficient estimates from equations (4) and (5). The estimated nitrogen 
return above fertilizer costs is defined as: 

where p, and p, are the price of corn and nitrogen, respectively. The optimal VRA is 
calculated by choosing xi for i = 1, ..., 612 to maximize n. Alternatively, an  optimal 
uniform rate (URA) is calculated by choosing x = xi for i = 1, ..., 612 to maximize n. These 
optimal rates are constrained between 0 and 202 kg/ha to avoid predicting yields outside 
the range of the available data. Nitrogen returns for the optimal VRA and URA are 
compared to the University of Minnesota (UMN) recommendation (135 &/ha for Hanska 
and 140 kglha for Morgan) to determine the potential value of VRA within and between 
fields assuming the price of corn and nitrogen equal $98.21/t and $0.374/kg. 

Let nm, nURA, and nUm be the estimated nitrogen return for the optimal VRA, optimal 
URA, and UMN rate. The potential return to switching to the optimal VRA from the 
UMN rate is calculated as nm - nUMN , and represents the potential value of varying 
nitrogen applications within a field using VRA. This potential value is exclusive of the 
cost of implementing a VRA strategy (e.g., the cost of information acquisition and 
variable rate application equipment or services). The standard deviation is calculated 
using a Taylor series expansion (see Casella and Berger, 1990, pp. 328-331). 
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Table 1. Log Likelihood and Model Comparisons for Spatial Autoregressive 
Error (SARE) Model 

Hanska Morgan 

Maximized Estimated Maximized Estimated 
Model Log Likelihood Parameters Log Likelihood Parameters 

Model Comparisons 
(Restricted vs. Unrestricted) 

1 vs. 2 

2 vs. 3 

3 vs. 4 

4 vs. 5 

6 vs. 5 

Likelihood-Ratio 
Statistic 

327.44*** 

39.88*** 

76.68*** 

190.55*** 

62.53*** 

Degrees 
of Freedom 

1 

5 

6 

30 

10 

Likelihood-Ratio Degrees 
Statistic of Freedom 

354.51*** 1 

40.53*** 5 

17.83*** 6 

189.34*** 30 

79.43*** 10 

Note: Double and triple asterisks (*) denote statistical signijicance a t p  < 0.05 andp < 0.01, respectively. 
"Assumes within-field variation in crop response to nitrogen. 
bAssumes no within-field variation in crop response to nitrogen. 
'Assumes spatial correlation is present. 
dAssumes region-specific heteroskedasticity is present. 
'Assumes treatment heteroskedasticity and correlation are present. 
'Assumes strip heteroskedasticity and correlation are present. 

The potential value of switching to the optimal VRA from the UMN rate is decomposed 
as nm - nUMN = nm - nURA + nm - nUm. The potential value of VRA attributable to 
switching to the optimal URA from the UMN rate or getting the right average rate for 
a specific field is nm- nUm. The potential value of VRA attributable to switching to the 
optimal VRA from the optimal URA or varying the right average rate optimally within 
a field is nm - nURA. 

Results 

Hypothesis Tests 

We begin by comparing the alternative versions of the SARE models to test the impor- 
tance of incorporating region, spatial, treatment, and strip dependent heteroskedasticity 
and correlation. The PA hypothesis for VRA is also tested. Table 1 reports the maximized 
log likelihood and number of estimated parameters for each location and model and the 
likelihood-ratio statistic and degrees of freedom for each model comparison. 

Regression errors for the SSCRF estimates exhibit region, spatial, treatment, and 
strip dependent heteroskedasticity and correlation. Model 1 is rejected in favor of model 
2 for both locations, which indicates errors are spatially dependent. Model 2 is rejected 
in favor of model 3, indicating, in agreement with LBL, that there is significant region 
dependent heteroskedasticity. Model 3 is rejected in favor of model 4, which shows there 
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is also treatment dependent heteroskedasticity and correlation. Model 4 is rejected in 
favor of model 5, so strip dependent heteroskedasticity and correlation are important. 
These results are consistent with those reported by HMK. 

There is the potential for precision agriculture to improve nitrogen returns. Model 6 
is rejected in favor of model 5 for both the Hanska and Morgan locations, indicating crop 
response to nitrogen varied significantly among the six regions within each field (see 
table 1). This result is consistent with the findings of both LBL and HMK. 

Model Fit and Validation 

Table 2 reports the regional response coefficients and t-statistics for the best fitting 
SARE model. It reports estimates for the spatial, treatment, and strip dependence 
parameters and the likelihood-ratio statistic for the individual significance of each; the 
average estimated standard deviation; and the maximized log likelihood. Table 2 also 
reports this same information obtained from estimating each model with data simulated 
assuming the actual estimates are true.4 

The response function coefficient estimates for Hanska and Morgan all have the 
expected sign. They are all significant at 5% with the exception of the quadratic 
coefficients for Hanska regions 1 and 6. Individually, the spatial dependence parameter 
is relatively large and signscant for both Hanska and Morgan. The strip dependence 
parameter is smaller, but still sign5cant for Hanska. It is not significant for Morgan. 
The treatment dependence parameter is not significant for either Hanska or Morgan. 
Since the treatment and strip parameters are individually insignificant for Morgan, we 
also tested and rejected the hypothesis that these parameters are jointly insignificant 
( Xf21 = 9.88). Further comparisons of the maximized log likelihoods for the restricted and 
unrestricted models indicated that including the treatment dependence parameter is 
preferable to including the strip dependence parameter. However, including one or the 
other is preferable to not including both. 

The actual and simulated parameter estimates are of the same sign and magnitude. 
In terms of individual hypothesis tests for the response coefficients, there are two 
differences between the actual and simulated data for a 5% level of significance. For the 
actual data, the quadratic coefficients for regions 1 and 6 at Hanska are statistically 
insignificant, which is not the case with the simulated data. Individual hypothesis tests 
for the spatial, treatment, and strip dependence parameters are consistent across the 
actual and simulated data. 

GEO versus SARE 

We now consider a comparison of the SARE and GEO frameworks. Table 3 reports the 
Akaike information criterion (AIC) for selected SARE models. It also reports the AIC for 
analogous models from HMK. For Hanska, the GEO model 5 has a lower AIC than the 
SARE model 5. The reverse is true for Morgan. When strip heteroskedasticity and corre- 
lation are not accounted for, the SARE models have lower AICs than the GEO models 
for both locations. These results are consistent with LBL, who found a group-wise 
heteroskedastic SARE model (model 3) performed better than the standard SARE and 

More rigorous results based on Monte Carlo methods were not possible due to the computational intensity of the models. 
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Table 2. Crop Response Estimates (t-Statistics), Covariance Parameters ( XF1l), and 
Maximized Log Likelihood for Spatial Autoregressive Error Model 5 with Actual 
and Simulated Data (corn tlha for nitrogen kglha) 

Hanska Morgan 

Parameter / Region Actual Simulated Actual Simulated 

Constant 
1 9.43*** 8.27*** 6.07*** 6.14*** 

(22.14) (25.88) (20.03) (21.72) 
2 8.42*** 7.92*** 6.97*** 6.79*** 

(20.55) (22.13) (25.36) (22.31) 
3 9.13*** 8.11*** 6.35*** 6.35*** 

(25.38) (29.68) (19.30) (20.64) 
4 4.90*** 5.15*** 7.71*** 7.83*** 

(15.39) (19.68) (32.02) (37.54) 
5 3.97*** 3.75*** 8.95*** 9.32*** 

(11.14) (12.25) (26.48) (33.69) 
6 4.50*** 4.01*** 7.85*** 7.87*** 

(11.86) (13.20) (37.57) (38.48) 
Linear 

1 0.009** 0.018*** 0.046*** 0.044*** 
(1.70) (3.91) (10.41) (10.99) 

2 0.025*** 0.027*** 0.041*** 0.051*** 
(4.58) (4.83) (9.71) (11.10) 

3 0.009** 0.019*** 0.052*** 0.056*** 
(2.03) (4.60) (10.93) (12.95) 

4 0.036*** 0.030*** 0.050*** 0.054*** 
(12.71) (12.29) (14.15) (15.75) 

5 0.031*** 0.034*** 0.040*** 0.037*** 
(8.92) (10.84) (7.61) (7.92) 

6 0.025*** 0.028*** 0.041** 0.040** 
(7.38) (9.97) (13.41) (11.95) 

Quadratic 
1 -0.000021 -0.000047** -0.000076*** - 0.000074*** 

(0.90) (2.26) (3.69) (4.06) 
2 -0.000082*** -0.000079*** -0.000103*** -0.000150*** 

(3.48) (3.23) (5.15) (7.17) 
3 - 0.000021 -0.000052*** -0.000156*** -0.000180*** 

(1.08) (2.90) (6.97) (9.02) 
4 -0.000090*** -0.000061*** -0.000128*** -0.000145*** 

(6.89) (5.33) (8.33) (10.11) 
5 -0.000047*** -0.000052*** -0.000145*** -0.000130*** 

(2.91) (3.48) (6.28) (6.58) 

6 -0.000017 -0.000022** -0.000110*** -0.000095*** 
(1.07) (1.65) (8.31) (6.76) 

Spatial (I,) 0.83*** 
(188.64) 

Treatment (Iz) 0.00 
(0.00) 

strip (I,) 0.14*** 
(22.10) 

Average Standard Deviation " 2.12 
Maximized Log Likelihood -2,336.43 

Note: Double and triple asterisks (*)denote statistical significance a t p  < 0.05 andp < 0.01, respectively. 
" Calculated as follows, where is the standard deviation, and r, and si are the site and treatment strip for the ith 
observation: N 

C or,, IN t h a .  
i = l  
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Table 3. Spatial Autoregressive Error (SARE) and Geostatistical (GEO) Model 
Comparisons Using the Akaike Information Criterion (AIC) 

Hanska Morgan 

Model SARE GEO " SARE GEO " 

"AIC calculated based on values reported in Hurley, Malzer, and Kilian (2004). Hurley, Malzer, and Kilian's 
second, third, and fourth models correspond to the SARE models 2,4, and 5. 

GEO models (model 2). The results of their comparison between the standard SARE and 
GEO models were dependent on the type of distance function used for the GEO estimates. 
Our results indicate that the standard SARE model outperforms the standard GEO 
model estimated with a Guassian distance function when region, treatment, and strip 
effects are not taken into account. 

Variation in Corn Response to Nitrogen 

Figures 2 and 3 illustrate the differences in our estimates of corn response to nitrogen 
along with the differences in the optimal nitrogen rates and yields between the SARE 
and GEO models. For Hanska (figure 2), the SARE model predicts higher overall yields 
for half the field (regions 1-31 and lower overall yields for half (regions 4-61. In general, 
the response functions appear less concave for the SARE model. For regions 1-5, the 
optimal nitrogen rate is higher for the SARE model, and for region 6 it is the same. For 
Morgan (figure 3), the SARE model consistently predicts higher overall yields for all 
regions. For regions 2-5, the response functions also appear to be more concave. For 
regions 2-6, the optimal nitrogen rate is lower with the SARE model. For region 1, it is 
the same. 

Comparing the optimal VRA to the UMN rate, the SARE model produces a larger esti- 
mate of the potential return to VRA for Hanska, but a smaller estimate for Morgan (see 
table 4). The SARE model produces lower estimates for the standard deviation, which 
results in tighter confidenceintervals. The point estimate obtained from the GEO model 
falls outside the confidence interval estimated for the SARE model for both locations. 
Furthermore, the estimated confidence intervals from each model do not even overlap 
for Hanska. 

Comparing the optimal VRA to the URA rate, the SARE model produces a larger 
estimate for both locations. The SARE model produces lower estimates of the standard 
deviation and tighter confidence intervals. The point estimate obtained from the GEO 
model falls outside the SARE model's confidence interval for Morgan, but not for Hanska. 

Comparing the optimal URA to the UMN rate, the SARE model produces a larger 
estimate for Hanska, but a smaller estimate for Morgan. The SARE model produces a 
higher estimate of the standard deviation and wider confidence intervals for Hanska, but 
a lower standard deviation and tighter confidence intervals for Morgan. However, for both 
locations the SARE model produces a smaller coefficient of variation. The point estimate 
obtained from the GEO model again falls outside the SARE model's confidence interval 
for both locations. There is also no overlap in the models' confidence intervals for Hanska. 



Hurley, Oishi, and Malzer Potential Value of Variable Rate Nitrogen Applications 245 

Nitrogen Rate (kglha) Nitrogen Rate (kglha) 

REGION 1 REGION 4 
12 12 
11 11 

2 10 2 10 

e 9 - e 9 
w 

- 
8 w 8 

REGION 2 

a 0 7  
.* 

6 
5 
4 

REGION 5 
12 . I 

a 
0 7  

6 
5 
4 

Nitrogen Rate (kglha) Nitrogen Rate (kglha) 

0 30 60 90 120 150 180 210 0 30 60 90 120 

REGION 3 
12 
11 

2 10 
e 9 - w 

8 a 
0 7  
$ 6 

5 
4 

0 30 60 90 120 

REGION 6 
12 
11 

.;;; 10 
e 9 * w 

8 
a 0 7  
.d 

6 
5 
4 

180 210 0 30 60 90 120 

Nitrogen Rate (kglha) Nitrogen Rate (kglha) 

Crop Response Function -- -- -- - 
Optimal Nitrogen Rate i 

Figure 2. Estimated crop response functions and optimal 
nitrogen rates for Hanska (model 5) 
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Figure 3. Estimated crop response functions and optimal 
nitrogen rates for Morgan (model 5) 



Hurley, Oishi, and Malzer Potential Value of Variable Rate Nitrogen Applications 247 

Table 4. Difference in Returns to Nitrogen, $/ha (5th percentile, 95th percentile) 

Hanska Morgan 

Comparison SARE GEO " SARE GEO " 

VRAbvs. UMNc 33.32 11.83 26.06 35.03 
(25.03, 41.61) (-1.00, 24.65) (19.25, 32.88) (8.96, 61.10) 

VRA vs. URAd 10.04 9.85 12.35 7.64 
(0.48, 19.60) (-0.89, 20.59) (7.99, 16.71) (-1.88, 17.16) 

URA vs. UMN 23.28 1.98 13.71 27.39 
(10.16, 36.41) (-1.70, 5.65) (8.18, 19.24) (-0.44, 55.22) 

Note: Percentiles assume estimates are normally distributed. 
"Calculated based on Hurley, Malzer, and Kilian's (2004) fourth model, which is the geostatistical analogue to the 
SARE model 5. 
Optimal variable rate nitrogen application. 

'University of Minnesota recommended uniform rate nitrogen application. 
Optimal uniform rate nitrogen application. 

Whipker and Akridge (2003) report the results of a survey of agronomy dealerships 
throughout the United States. The results of their survey provide some insight into 
whether these estimates of the potential value of precision agriculture are high enough 
to justify any increased implementation costs (e.g., cost of acquiring and interpreting 
site-specific information and the cost of carrying out variable rate applications). The 
results of the survey indicated that the average cost of global positioning satellite (GPS) 
soil sampling was $15.30/ha. Average yield monitor data analysis cost was $3.14/ha. 
Average geographic information system (GIs) mapping cost was $8.80/ha. The average 
cost of agronomic recommendations based on GPS or GIs was $6.42/ha. The average 
cost of GPS controller driven, single nutrient, variable rate fertilizer application was 
$13.12/ha. Combined, these costs equal $46.78/ha, which exceeds the estimated 
potential value of variable rate nitrogen applications for both Hanska and Morgan 
regardless of whether or not we use the SARE or GEO estimates. However, with the 
GEO model, $46.78/ha falls inside Morgan's 90% confidence interval for switching from 
the UMN recommendation to the URA or VRA. Therefore, while both models offer the 
same conclusion for Hanska, they give somewhat different conclusions for Morgan. 

Conclusions 

Testing the precision agriculture (PA) hypothesis for variable rate nitrogen applications 
(VRA) has proven challenging due to the difficulties of collecting, analyzing, and inter- 
preting appropriate data. Site-specific crop response functions (SSCRFs) provide a 
useful tool for evaluating the PA hypothesis, but appropriate statistical models are 
necessary. Problems that can hinder the estimation of SSCRFs using data from random- 
ized complete block design field experiments include region, spatial, treatment, and 
strip heteroskedasticity and correlation. The purpose of this paper was to propose a 
spatial autoregressive error (SARE) model for dealing with these problems and to 
compare the results of this model with the geostatistical (GEO) model proposed by 
Hurley, Malzer, and Kilian (2004). 

Results using the spatial autoregressive model confirm previous results based 
on a geostatistical model. There is significant region, spatial, treatment, and strip 
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heteroskedasticity and correlation, and potential for VRA to improve nitrogen returns. 
A comparison of the SARE and GEO models based on the Akaike information criterion 
favored the GEO model for one experimental location and the SARE model for the other. 
The SARE model, however, consistently produced lower estimates for the coefficient of 
variation. The SARE model also tends to be computationally less intensive and more 
practical to estimate because it can be accomplished with fewer matrix inversions. 
Alternatively, covariance parameter estimates for the GEO model have a more direct 
interpretation in terms of heteroskedasticity and correlation. 

Lambert, Bongiovanni, and Lowenberg-DeBoer (2002) show comparisons of fit 
between SARE and GEO models may be sensitive to the distance function used for the 
GEO semi-variogram. The results are also likely to be sensitive to the specification of 
the spatial weight matrix employed by the SARE model. However, they conclude that 
the estimates of the potential value of VRA, at least for their Argentina field, were not 
very sensitive to whether a SARE or GEO model was used to estimate SSCRFs. There- 
fore, from a practical standpoint, the choice of models was not so critical. Our results 
suggest the choice of model could be critical. The two models produced estimates for the 
optimal nitrogen rates and potential value of VRA that were notably different. 

I t  is important to understand that there are a variety of differences between the 
Lambert, Bongiovanni, and Lowenberg-DeBoer (2002) and the Hurley, Malzer, and 
Kilian (2004) data sets. For example, the experiments were from different locations and 
different years. Treatment rates differed. One used a yield monitor to measure yields, 
while the other employed a plot combine. One used topographical and other information 
to divide the field into regions, while the other used a rectangular grid. Still, with all 
these differences, we find the same qualitative results as Lambert, Bongiovanni, and 
Lowenberg-DeBoer for the same types of comparisons using the Hurley, Malzer, and 
Kilian data-both SARE and GEO models do better than OLS, and a SARE model with 
group (region)-wise heteroskedasticity performs better than SARE or GEO models 
without. We also find the same type of results with the SARE model as those reported 
by Hurley, Malzer, and Kilian with the GEO model-important spatial, region, treat- 
ment, and strip effects. Lambert, Bongiovanni, and Lowenberg-DeBoer reported 
important spatial and region effects. While they did not report any treatment or strip 
effects, neither did they rule them out. Given the theoretical underpinnings of the 
spatial, region, and treatment effects, they are likely to be important in any SSCRF 
estimation. The strip effect is likely attributable to an idiosyncratic feature of the 
experimental design-the lack of within-strip randomization. Therefore, strip effects are 
unlikely to be of concern when estimating SSCRFs with data from experiments that 
randomize treatments within as well as between strips. 

As a final note, we pursued the SARE framework instead of the spatial lag (SL) 
framework because our initial comparison of the two favored the SARE framework. 
However, this initial comparison did not include the region, treatment, and strip 
heteroskedasticity and correlation that were found to be important embellishments to 
the SARE and GEO models. Future work might try including these factors in an SL 
model to see if these initial rankings are robust. I t  should be noted that within the SL 
framework, it is possible to handle region, treatment, and strip effects using either the 
GEO or the SARE strategy. 

[Received July 2003;$nal revision received May 2005.1 
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