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Evaluation of Volatility Spillovers and Quantile Hedging: a closer look to Brazilian 
agricultural markets 

Abstract 
We evaluate the volatility spillovers among coffee, ethanol, soybeans, reformulated blendstock 
for oxygenate blending (RBOB) futures prices, and Brazilian spot prices from 2010 to 2020. 
Using the Diebold and Yilmaz volatility spillover analytical framework (DY), we estimate the 
total volatility spillover, the gross and net directional volatility spillover. We also analyze the 
optimal hedge ratio applying the linear quantile regression (QR) model, comparing the optimal 
hedge ratios with the minimum variance (MV) and error correction model (ECM). Results show 
an increasing trend in the total volatility spillover index, suggesting an increase in the Brazilian 
market's connectedness. In addition, we identify quantile ranges where the QR hedge is 
economical and statistically significant, particularly for extreme spot prices, lower-and-upper 
quantiles. The knowledge of the volatility spillover effect in agricultural commodity markets 
may provide additional information for efficient resource allocation decisions about harvesting, 
output, storage, commercialization, and hedging. 

Keywords: Volatility spillover; Brazilian agricultural commodity; commodity futures markets; 
optimal hedging; quantile regression; minimum variance; error correction model. 
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1. Introduction 

Understanding the volatility spillover effects on asset prices is crucial to grasp the financial 

markets' dynamic pricing information. Pricing information outlines additional inputs for the agents' 

decision-making process in an increasingly connected market. For example, volatility spillover 

information may help develop public policy recommendations, optimize trading strategies, and 

improve risk management effectiveness.   

The volatility spillover in agricultural commodity markets may distinguish from additional 

information input for efficient resource allocation decisions about harvesting, output, storage, 

commercialization, and hedging. To enhance the allocative decisions, large agricultural 

commodity players and policymakers may benefit from the volatility spillover analysis of prices 

and returns (Balcilar & Bekun, 2020; Fasanya & Odudu, 2020). Therefore, the volatility spillover 

analysis may upgrade the risk management price for the Brazilian agricultural commodity markets. 

Notably, agricultural commodity domestic futures markets show thinness and low liquidity, 

expressing low hedging and portfolio diversification capacity.  

We evaluate the Brazilian volatility spillovers in the agricultural commodity between spot 

markets and futures markets. We also assess the hedging of Brazilian commodity price risk using 

the US futures markets, applying the linear quantile regression (QR) model; then, we compare the 

QR optimal hedge ratios with mainstream methods of optimal hedge estimation, minimum 

variance (MV), and error correction models (ECM) to identify the best temporal hedging strategy, 

weekly or monthly.  

Specifically, survey questions are i. to compute the total volatility spillover, the directional 

spillover to and from, and the net pairwise volatility spillover, applying the Diebold and Yilmaz 

(2009, 2012; 2014) framework (DY) for the Brazilian coffee, ethanol, soybeans, and reformulated 

blendstock for oxygenate blending (RBOB spot and futures markets; and, ii. to estimate the 

quantile regression (QR) optimal hedge ratios of the Brazilian agricultural commodity; iv. and 

finally, to compare the QR optimal hedge ratios with mainstream methods of optimal hedge 

estimation, minimum variance (MV) and error correction models (ECM). 

The next section outlines the literature on volatility spillover and hedging. Section 3 

discusses the methods and data, particularly the Diebold and Yilmaz (2009, 2012) framework (DY) 



and the MV, ECM, and QR optimal hedge methodology. The results and discussion section show 

the main research findings. Last, the conclusion section synthesizes the research results pointing 

out future research topics. 

 

2. Literature review 

2.1. Volatility spillover literature 

The literature about volatility spillover is vast, particularly research after the 2008 financial crisis. 

The Diebold and Yilmaz (2009, 2012, and 2014) (DY) model is widely used to examine the 

volatility connectedness and the spillover effects among markets. Thus, we present the main DY 

approach to measure the spillover effect as well as a summary of the literature on volatility 

spillover. 

Diebold and Yilmaz (2009) composed a measure of interdependence of asset returns and 

volatilities, examining the return spillovers and the volatility spillovers. The framework facilitates 

the analysis of non‐crisis and crisis periods, including trends and bursts in the spillover effect. 

Their study used nineteen global equity markets from 1990 to 2009, showing divergent behavior 

in the dynamics of return spillovers vs. volatility spillovers- return spillovers demonstrated a 

smooth increasing trend but no bursts.   

Later on, Diebold and Yilmaz (2012) proposed a different approach using a generalized 

vector autoregressive framework in which forecast-error variance decompositions are invariant to 

the variable ordering. The authors examined daily volatility spillovers across US stock, bond, 

foreign exchange, and commodities markets, showing that significant volatility fluctuations in all 

four markets during the sample and cross-market volatility spillovers were limited until the global 

financial crisis began in 2007. Spillovers from the stock market to other markets increased after 

the Lehman Brothers' collapse in September 2008. 

Diebold and Yılmaz (2014) evaluated the connectedness measures composed from parts of 

variance decompositions, showing useful connectedness measures. The authors analyzed the daily 

time-varying connectedness of major US financial institutions' stock return volatilities in recent 

years, including the financial crisis of 2007–2008. 



Table 1. Summary of the literature on volatility spillover in commodities markets 

Authors Period Asset Findings 

Chevallier and Ielpo 
(2013) 

1995–2012 Standart assets, commodities, and 
currencies 

Commodities exhibited weaker 
volatility spillover 

Antonakakis and Kizys 
(2015)  

1987-2014 Gold, silver, platinum, CHF/USD, 
and GBP/USD exchange rates 

Gold, silver, platinum, 
CHF/USD, and GBP/USD 
were net transmitters of returns 
spillovers 

Diebold, Liu, and Yilmaz 
(2017) 

2011-2016 Nineteen commodities. The energy sector was the 
highest contributor to other 
commodities. Energy, 
industrial metals, and precious 
metals were highly connected 

Zhang and Broadstock 
(2020) 

1982-2017 Beverage, fertilizer, food, metal, 
precious metals, raw materials, 
and oil 

Food commodities contributed 
to the system dynamic more 
than 80% after 2008 

Dahl, Oglend, and Yahya 
(2020) 

1986-2016 Crude oil and agricultural 
commodities 

Crude oil became net receiver 
after 2006, and during periods 
of financial turmoil, evidence 
of bidirectional spillover 
between crude oil and 
agricultural commodities. 

 Yoon, Al Mamun, 
Uddin, and Kang (2019) 

1999-2016 Stock, bond, currency, and 
commodities 

US stock market was the 
largest contributor of return 
spillover in the Asia-Pacific.  

Balcilar and Bekun 
(2020) 

2006-2016 Cocoa, banana,  
groundnut, soybeans, barley, 
maize, sorghum, rice, wheat, CPI, 
NOIL, and NEER.  

Banana, cocoa, groundnut, 
maize, soybeans, and wheat 
were net transmitters of 
spillovers.  

Fasanya and Odudu 
(2020) 
 

1980-2017 Wheat, rice, soybeans, groundnut, 
and palm oil 

Interdependence among 
agricultural commodities in 
Nigeria 

2.2. Quantile regression literature 

Johnson (1960) identified that the theory of hedging and speculation was inadequate for certain 

market practices. The complexity of the trader's action to distinguish between hedging and 

speculation is a challenge in formulating a specific model. Thus, a stream of literature seeks to 

discuss the theory of hedging and speculation, presenting a reformulated concept of hedging and 

building a model that clarifies hedging and speculation concepts, contributing to a better 

understanding of certain market phenomena. For instance, Hung, Chiu, and Lee (2006) derive a 

new mean-risk hedge ratio based on the concept of Value at Risk (VaR). The proposed zero-VaR 



hedge ratio has an analytical solution, and it converges to the MV hedge ratio under a simple 

martingale process or normality. A bivariate constant correlation GARCH(1,1) model with an error 

correction term is employed to estimate expected returns and time-varying volatilities of the spot 

and futures in the S&P 500 index. Empirical results indicate that the joint normality and martingale 

process does not hold for S&P 500 futures, and the conventional minimum variance hedge is 

inappropriate for a hedger who only cares about downside risk, showing an alternative hedging 

method for a practitioner to use the concept of Value-at-Risk to reflect the risk-averse level. 

  Reboredo (2013) assessed the role of gold as a safe haven or hedge against the US dollar 

(USD) using copulas to characterize average and extreme market dependence between gold and 

the USD. For a wide set of currencies, empirical evidence distinguished positive and significant 

average dependence between gold and USD depreciation, consistent with the fact that gold can act 

as a hedge against USD rate movements. Symmetric tail dependence between gold and USD 

exchange rates indicated that gold could be a safe haven against extreme USD rate movements. 

 Shrestha, Subramaniam, Peranginangin, and Philip (2018) estimated the minimum 

variance (MV) and quantile hedge ratios for three energy-related commodities, crude oil, heating 

oil, and natural gas. For crude oil and heating oil, the quantile hedge ratios had an inverted U-

shape, using daily data. However, for natural gas, the quantile hedge ratios were mostly below the 

MV hedge ratio, which is significantly lower than the naïve hedge ratio. The behavior of hedge 

ratios for daily data was consistent with empirical results, which suggest that price discovery 

mostly takes place in the futures market for natural gas.  

Troster, Bouri, and Roubaud (2019) performed a quantile regression analysis of flights-to-

safety with the implied market volatilities of stock, gold, gold-mining, and silver. The authors 

found unidirectional causality running from the stock market's volatility to gold, gold-mining, and 

silver volatilities.  

While the quantile hedge ratio in the low-volatility state is relatively flat, in the high-

volatility state, the quantile hedge varies with the spot return distribution and displays a U-type 

relationship. Moreover, the U shape is more prominent for agricultural futures and less prominent 

for others. Also, by comparing hedging effectiveness, the quantile hedge strategy is more effective 

than the no-hedge strategy and the hedging strategy derived from error correction models. 



In conclusion, the specific contribution of the research is the application of the quantile 

regression (QR) framework to estimate the optimal hedging ratios of relevant Brazilian agricultural 

commodity groups, using the US futures markets, compared to traditional hedge approaches of 

minimum variance (MV) and error-correction model (ECM). To the best of our knowledge, it is 

the first analysis of the research problem. 

 

3. Methodology and data 

3.1. Spillover approach  

The section identifies the research methods and data. We use the Diebold and Yilmaz (2009, 2012, 

and 2014) framework (DY) to compute the volatility spillover index among twelve Brazilian 

commodity spot markets and international commodity and financial futures markets. In particular, 

the index derives from the variance decomposition of an n-variable vector autoregression (VAR) 

model used to calculate the total spillovers in a simple VAR, with Cholesky factor 

orthogonalization.  

Next, the DY approach generates the directional spillovers in a generalized VAR framework 

eliminating the ordering results' dependence. As such, a covariance stationary n-variable VAR (p): 

𝑥𝑥𝑡𝑡 = � Φ𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖
𝑝𝑝

𝑖𝑖=1
+ 𝜀𝜀𝑡𝑡 

where: 𝜀𝜀~(0, Σ) = vector of i.i.d. disturbances. 

The moving average representation is:  𝑥𝑥𝑡𝑡 = ∑ A𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖∞
𝑖𝑖=0 , with the n x n coefficient matrices 

expressing 𝐴𝐴𝑖𝑖 = Φ1𝐴𝐴𝑖𝑖−1 + Φ2𝐴𝐴𝑖𝑖−2 + ⋯+ Φ𝑝𝑝𝐴𝐴𝑖𝑖−𝑝𝑝, and A0 = n x n identity matrix, with Ai = 0 for 

i < 0. Specifically, the DY approach calculates the variance decomposition, expressing each 

variable's forecast error variances in system shocks. Therefore, the variance decomposition 

demonstrates the fraction of the h-step-ahead error variance in forecasting xi resulting from shocks 

to xj, for all j ≠ i, for each i. 

The DY index uses the VAR framework of Koop, Pesaran, and Porter (1996) and Pesaran and 

Shin (1998) (KPSS), resulting in variance decompositions that order invariant. As such, the shocks 

Eq. 1 



to each variable are not orthogonal, and the sum of the contributions to the variance of the forecast 

error, the row sum of the parts of the variance decomposition table, cannot be equal to one. 

Next, we define the own variance shares as the fractions of the h-step-ahead error variances in 

forecasting xi resulting in shocks to xi, for i = 1, 2, …, n, and cross variance shares, or spillovers, 

as the fractions of the h-step-ahead error variances in forecasting xi relating to shocks to xj, for i, j 

= 1, 2, …, n, such that i ≠ j. Defining the KPSS h-step-ahead forecast error variance decompositions 

by 𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔(ℎ), for h = 1, 2, …, then: 

𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔(ℎ) =

𝜎𝜎𝑖𝑖𝑖𝑖−1 ∑ �𝑒𝑒𝑖𝑖′𝐴𝐴ℎ ∑ 𝑒𝑒𝑗𝑗�
2𝐻𝐻−1

ℎ=0

∑ �𝑒𝑒𝑖𝑖′𝐴𝐴ℎ ∑𝐴𝐴ℎ′ 𝑒𝑒𝑗𝑗�𝐻𝐻−1
ℎ=0

 

where: Σ = variance matrix for the error vector e; σij = standard deviation of the error term for the 

j-th equation; and, εi = selection vector, with one as the i-th element, and zeros otherwise. 

To estimate the total volatility spillover index, we use the volatility contributions from the 

KPSS variance decomposition. The total spillover index demonstrates the contribution of 

spillovers of volatility shocks of the asset classes to the total forecast error variance: 

𝑆𝑆𝑔𝑔(ℎ) =

∑ 𝜃𝜃�𝑖𝑖𝑖𝑖
𝑔𝑔(ℎ)𝑛𝑛

𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(ℎ)𝑛𝑛

𝑖𝑖,𝑗𝑗=1
∙ 100 =

∑ 𝜃𝜃�𝑖𝑖𝑖𝑖
𝑔𝑔(ℎ)𝑛𝑛

𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

𝑛𝑛
∙ 100 

The DY framework estimates the net volatility spillover from market i to all other markets j, 

the difference between the gross volatility shocks transmitted to and received from all other 

markets, as: 

𝑆𝑆𝑖𝑖
𝑔𝑔(ℎ) = 𝑆𝑆𝑖𝑖→𝑗𝑗

𝑔𝑔 (ℎ) − 𝑆𝑆𝑖𝑖←𝑗𝑗
𝑔𝑔 (ℎ) 

Last, we compute the net pairwise volatility spillovers between markets i and j, the difference 

between the gross volatility shocks transmitted from market i to market j, and the shocks 

transmitted from j to i: 

𝑆𝑆𝑖𝑖𝑖𝑖
𝑔𝑔(ℎ) = �

𝜃𝜃�𝑗𝑗𝑗𝑗
𝑔𝑔(ℎ)

∑ 𝜃𝜃�𝑖𝑖𝑖𝑖
𝑔𝑔 (ℎ)𝑛𝑛

𝑖𝑖,𝑘𝑘=1
−

𝜃𝜃�𝑖𝑖𝑖𝑖
𝑔𝑔(ℎ)

∑ 𝜃𝜃�𝑗𝑗𝑗𝑗
𝑔𝑔 (ℎ)𝑛𝑛

𝑗𝑗,𝑘𝑘=1
� ∙ 100 

 

= �
𝜃𝜃�𝑗𝑗𝑗𝑗
𝑔𝑔(ℎ) − 𝜃𝜃�𝑖𝑖𝑖𝑖

𝑔𝑔(ℎ)
𝑛𝑛

� ∙ 100 

Eq. 3 

Eq. 5 

Eq. 4 

Eq. 2 



To estimate the volatility values, we model the weekly log returns: 𝑟𝑟𝑡𝑡𝑖𝑖 = log ( 𝑃𝑃𝑡𝑡
𝑖𝑖

𝑃𝑃𝑡𝑡−1
𝑖𝑖 ), where 𝑟𝑟𝑡𝑡𝑖𝑖 = 

weekly log return of commodity i, week t, and 𝑃𝑃𝑡𝑡𝑖𝑖 = price of commodity i, week t. Thus, we apply 

a standard GARCH (1,1) model on the weekly log returns, 𝑟𝑟𝑡𝑡𝑖𝑖, taking the square root of the resulting 

variance to calculate the weekly volatility of commodity i on week t, 𝜎𝜎𝑡𝑡𝑖𝑖.  

3.2. The Minimum Variance Optimal Hedge Ratio (MV) 

To explain the minimum variance optimal hedge ratio (MV) calculation, we define St and Ft as the 

spot and futures prices at time t. The returns on the spot and futures hedgers' portfolio are expressed 

as: 

       ∆St = ln(St) – ln(St-1), and 
∆Ft = ln(Ft) – ln(Ft-1) 

 
The return on the hedged portfolio: RHt = ∆St – H∆Ft,, where: H = hedge ratio. 

We estimate the MV hedge ratio, HMV, by minimizing the variance of RH with relation to H: 

𝐻𝐻𝑀𝑀𝑀𝑀 =
𝐶𝐶𝐶𝐶𝐶𝐶(∆𝑆𝑆𝑡𝑡 ,∆𝐹𝐹𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(∆𝐹𝐹𝑡𝑡)

 

 
The MV hedge ratio, Equation 1, can be estimated using the coefficient in a linear regression 

of spot on futures returns, illustrating the conventional approach to estimate the MV hedge ratio. 

The linear regression equation expression is: 

∆St = α + β∆Ft  + εt                                         Eq. 8 

where: HMV = estimation of the MV optimal hedge ratio, the estimation of the slope coefficient, β. 

3.3. The Error-Correction Model Optimal Hedge Ratio (ECM) 

However, the linear regression MV optimal hedge estimation, Equation 8, does not employ the 

cointegrating equation between the ∆St and ∆Ft returns (Engle and Granger, 1987). If two-time 

series are cointegrated, then Equation 8 is spurious, so the estimated optimal hedge ratio β can be 

biased.  

Eq. 6 

Eq. 7 



In the presence of a cointegrating relationship between two-time series, particularly the 

spot and futures prices, we can apply the error correction model (ECM) to calculate the optimal 

hedge ratio: 

∆𝑆𝑆𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽∆𝐹𝐹𝑡𝑡 + 𝛾𝛾𝑢𝑢𝑡𝑡−1 + �𝜙𝜙𝑆𝑆𝑖𝑖

𝑚𝑚

𝑖𝑖=1

Δ𝑆𝑆𝑡𝑡−𝑖𝑖 + �𝜙𝜙𝐹𝐹𝑗𝑗

𝑚𝑚

𝑖𝑖=1

Δ𝑆𝑆𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡 

Where: ut is the residual from the cointegrating regression: ∆(St) = α + γ ∆ (Ft) + ut. We use the 

Akaike information criterion (AIC) to estimate the lag-length of Equation 9.  

3.4. The Quantile Regression Optimal Hedge Ratio (QR) 

Koenker and Bassett (1978) formulate the semi-parametric quantile regression method. The 

objective is to identify the relationship between the quantile of the dependent variable's conditional 

distribution and the registered covariates. Thus, we define the linear regression estimators of 

Equation 2 expressing the spot (St), and futures (Ft) returns as: 

      Yt = ∆St, t = 1, …, T, and 
Xt = ∆Ft, t = 1, …, T. 

We estimate the linear regression of the parameter vector [α,β] as: 

�𝛼𝛼,� 𝛽̂𝛽� =
𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝛼𝛼,𝛽𝛽 ∑ [𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑡𝑡(𝑥𝑥𝑡𝑡;𝛼𝛼,𝛽𝛽)]2,𝑇𝑇

𝑡𝑡=1   𝜇𝜇𝑡𝑡(𝑥𝑥𝑡𝑡;𝛼𝛼,𝛽𝛽) = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑡𝑡, 

where: µt( ) = the sample estimator of the conditional expectation function under the linear model, 

𝐸𝐸(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡) = 𝜇𝜇𝑡𝑡(𝑥𝑥𝑡𝑡;𝛼𝛼,𝛽𝛽) = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑡𝑡. As such, the linear regression estimator indicates dependence 

on the average relationship between yt and xt. 

The MV quantile regression hedge ratio (HQR) and its HQR effectiveness show economic 

validity compared with the MV and ECM optimal hedges, HMV and HECM. The difference between 

hedge ratio values does not express under-hedging or over-hedging for short and long hedgers. For 

example, if the hedger uses the MV ratio, HMV, and HQR < HMV with the realized spot price in the 

lower quantiles, 1%-to-10%, the MV hedge identifies over-hedging. In contrast, if the realized 

spot categorizes in the higher quantiles, 90%-to-99%, the MV hedge identifies under-hedging.  

The example is positive for short hedgers but deleterious for long hedgers.  

Eq. 10 

Eq. 9 



Notably, it benefits the short hedgers because they choose over-hedging when they need 

protection from the futures contract and under hedged when they do not need protection from the 

futures contracts. Specifically, the efficient scenario for an MV hedger identifies the case where 

𝛽𝛽 = 𝛽𝛽(𝜏𝜏), 𝜏𝜏 ∈ [0,1]. In this scenario, both long and short hedgers are hedged despite the realization 

of the spot prices.  

In conclusion, the estimation of 𝛽𝛽(𝜏𝜏) for different values of 𝜏𝜏 aids the identification of the 

different scenarios for the future price constellation. Besides, the estimation of 𝛽𝛽(𝜏𝜏) for different 

hedge-structure allows the identification of whether 𝛽𝛽(𝜏𝜏) depends on time horizons. The research 

estimates the QR optimal hedging ratios for fifteen quantiles, 1%, 2%, 5%, 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, 90%, 95%, 98% and 99%, and the MV and ECM hedge ratios for weekly 

and monthly data.  

3.5. Data 

We use weekly and monthly data for the following spot and futures prices series, encompassing 

three Brazilian commodity groups, softs, grains and oilseeds, and energy (see the descriptive 

statistics in appendix A.1.) from September 2010 to March 2020.  

We estimate the QR, MV, and ECM optimal hedge ratio for each group, using different 

contracts: i. the softs group, we use the CEPEA/ESALQ Arabica Coffee as spot price and the 

July 2020 ICE coffee weekly futures price series; ii. energy group, we apply the CEPEA/ESALQ 

São Paulo Hydrate Ethanol Fuel Indicator as the spot price. As the future price, we use the May 

2020 CME Ethanol futures prices and the May 2020 CME reformulated blendstock for 

oxygenate blending  (RBOB) gasoline futures prices. We also compare both ethanol and RBOB 

futures optimal hedge ratios set - QR, MV, and ECM; for the grains and oilseeds group, we use 

the ESALQ/BM&FBOVESPA Paranaguá Soybeans spot prices, and the futures prices, we use 

the March 2020 CME soybeans weekly prices. We justify using the March 2020 soybeans 

futures contracts by its synchronicity with the Brazilian soybeans harvest season.  

 

4. Empirical results and discussion 



We divide this section between the spillover and the hedge ratio analysis. The first section shows 

the volatility spillover results for the Brazilian agricultural commodity markets, coffee, ethanol, 

soybeans, and RBOB weekly log returns. Then, we investigate the minimum variance (MV), the 

error-correction model (ECM), and the quantile regression (QR) hedges for coffee, ethanol, 

RBOB, and soybeans, comparing the results for weekly and monthly data. 

 To use the regression models, we compute the Phillips-Perron (PP), and the Augmented 

Dickey-Fuller (ADF) tests with constant and trend for the coffee, ethanol, and soybeans spot and 

futures prices and RBOB futures prices, in levels and first differences. PP and ADF unit root 

tests1 reject the hypothesis of no unit root for the prices in levels. The only exception is the 

ethanol spot and future prices in levels showing the acceptance of the no unit root hypothesis in 

the level series within the 1%-to-5% statistical significance range. Therefore, except for the 

weekly ethanol prices, we estimate the optimal hedge ratios using the first differences. 

4.1. Spillover 

Table 2 shows the results of gross directional spillovers. The results are based on VAR with max 

lags of 5 and generalized variance decomposition of 10th day-ahead volatility forecast errors 

(Diebold & Yilmaz, 2012).  

 The rows sums represent the contributions 'From Others,' the sum of the columns as the 

contribution 'TO Others.' The total volatility spillover index is found in the lower right corner 

with a 41.6%. The coffee futures prices express the highest contribution from others, 59.32%, 

followed by coffee futures (46.52%), while the coffee RBOB shows the lowest contribution, 

29.14%. Accounting for the net spillover, we find the largest spillover effect from the soybean 

futures prices (SOY_F: 82.51-38.70 = 43.81%) and from others to the Ethanol spot price 

(ETH_S: 11.09-36.86 = -25.77%). Notably, there was an abrupt spike in 2020, highlighting the 

volatility spillover increase due to the Pandemic situation (See fig.1).   

 

 

 
1 For conciseness, the results are not reported here. However, they are available upon request. 



Tab. 2. Volatility spillover (connectedness) for weekly log returns Spillover (Connectedness) 
 ETH_F ETH_S COFFEE_F COFFEE_S SOY_S SOY_F RBOB FROM 

Others 
                  
ETH_F 62.29 0.78 5.18 3.84 2.33 23.32 2.25 37.71 
ETH_S 10.90 63.14 4.59 9.30 0.59 8.15 3.33 36.86 
COFFEE_F 5.57 2.07 53.48 31.04 1.98 5.57 0.29 46.52 
COFFEE_S 6.22 2.47 41.54 40.68 1.63 7.16 0.29 59.32 
SOY_S 8.64 1.19 1.49 1.74 57.07 29.14 0.72 42.93 
SOY_F 14.38 0.10 2.19 2.16 19.37 61.30 0.50 38.70 
Rbob 9.16 4.48 0.81 2.50 3.04 9.16 70.86 29.14 
Directional TO 
Others 54.87 11.09 55.80 50.59 28.94 82.51 7.37   

Directional 
Including Own 117.16 74.23 109.28 91.27 86.01 143.81 78.24 

Total 
Spillover 
41.6% 

Obs.: F = futures prices; S = spot prices. ETH stands for Ethanol, and SOY for soybeans. 
 
Fig.1. Total Volatility Spillover (Connectedness): coffee, ethanol, soybean, and RBOB. 

 

The total spillover shows the volatility from all commodities analyzed in our study. 

Nonetheless, we are also interested in understanding the directional spillover information. Thus, 

we estimate and plot the 𝑆𝑆𝑖𝑖←𝑗𝑗
𝑔𝑔 (ℎ) 'Directional TO Others' row, and the 𝑆𝑆𝑖𝑖→𝑗𝑗

𝑔𝑔 (ℎ) directional 'From 

Others' column. Fig. 3. depicts the directional spillover to others; among the commodities, either 

soybean future and spot are the greatest gross contributor to other markets. Fig. 4 illustrates the 

directional volatility spillovers from others to all the involved variables. The spillover from other 

to coffee futures price appears to be increasing over time, while the coffee spot remains steady.   

 



 Fig. 2. Directional Volatility Spillovers, TO ethanol (ETH), coffee, soybean (SOY), and RBOB 

 

Obs.: F = futures prices; S = spot prices.  

Fig. 3. Directional Volatility Spillovers, FROM ethanol (ETH), coffee, soybean (SOY), and 
RBOB 

 
Obs.: F = futures prices; S = spot prices 



We also provide the net pairwise combination of the involved variables (Equation 4). 

Thus, the plot in Appendix A.2. shows how much each commodity contributes to the volatility in 

other markets. The soybean spillover dynamic emphasizes the impacts of the US growth rate, the 

increase of the Brazilian agricultural commodity exports, especially to China, and the commodity 

markets' financialization. 

The directional volatility spillovers for the Brazilian agricultural commodity spot futures 

markets show an idiosyncratic volatility pattern for each Brazilian commodity group. The DY 

framework indicates different volatility regimes, coupled with the price level analysis, can help 

understand the market pricing dynamics and trends. Therefore, the DY volatility spillover 

describes a helpful approach to upgrade informational inputs about volatility patterns in domestic 

and international markets, formulating more efficient resource allocation decisions. In particular, 

the knowledge of the volatility spillover dynamics for the Brazilian agricultural commodity spot 

markets can result in increased competitiveness and informed production, storage, 

commercialization, and hedging decisions.  

4.2. Optimal hedge ratio analysis  

The section outlines the research results in Table 3., illustrating the findings from the minimum 

variance (MV), the error-correction model (ECM), and the quantile regression (QR) hedges for 

coffee, ethanol, RBOB, and soybeans, comparing the results for weekly and monthly data. 

Particularly, spot prices indicate the Brazilian commodity markets, and futures prices show the US 

futures markets, including RBOB futures prices. 

Appendix A.3. depicts the quantiles of the normal distribution of the variables in levels and 

first differences. We identify a different pattern in the quantile distributions among level and first 

difference series - steeper inclination and higher differences among values; and lower tendency 

and smaller differences. Since we compare spot prices of Brazilian agricultural commodities with 

US agricultural futures markets, differences in the harvest season, contract specification, 

informational richness, market depth, and hedgers' behavior may explain the results. 

We employ three approaches to estimate the optimal hedge ratios, MV, ECM, and QR, for 

the weekly and monthly data first differences of spot and futures prices, except for the ethanol spot 

and futures, where the prices are in levels. Appendix A.4. shows the optimal hedge ratio plots. 



Tab. 3. Quantile Regressions, Minimum Variance, and Error-Correction Model Optimal Hedge Ratios   
  Quantiles MV ECM 

COFFEE WEEKLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,554 0,577 
0,515 0,541 0,554 0,606 0,553 0,568 0,578 0,572 0,544 0,554 0,536 0,594 0,632 0,83 0,779 

                 
  

COFFEE MONTHLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,643 0,645 
0,47 0,699 0,649 0,716 0,751 0,677 0,619 0,658 0,604 0,581 0,565 0,697 0,657 0,557 0,481 

                 
  

ETHANOL WEEKLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,746 0,747 
0,629 0,594 0,514 0,532 0,64 0,679 0,726 0,799 0,799 0,801 0,786 0,826 1,02 1,92 1,64 

                 
  

ETHANOL MONTHLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,218 0,177 
-0,192 0,057 0,397 0,509 0,201 0,173 0,109 0,056 0,107 0,169 0,172 0,196 0,005 0,049 0,28 

                 
  

RBOB WEEKLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,107 0,116 
0,074 0,211 0,041 0,149 0,099 0,9 0,114 0,092 0,096 0,108 0,145 0,154 0,138 0,177 0,37 

                 
  

RBOB MONTHLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,111 0,096 
-0,877 -0,148 0,32 0,055 0,139 0,099 0,135 0,161 0,137 0,144 0,208 -0,011 0,001 0,283 0,569 

                 
  

SOY WEEKLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,317 0,315 
0,186 0,33 0,378 0,421 0,33 0,35 0,358 0,343 0,314 0,261 0,263 0,261 0,27 0,34 0,335 

                 
  

SOY MONTHLY 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,98 0,99 0,413 0,411 
3,006 0,445 0,272 0,472 0,408 0,429 0,399 0,382 0,358 0,283 0,311 0,398 0,425 0,7 0,779 

Source: Research results. 
  



The coffee optimal hedge ratios, the weekly QR hedge ratio values are slightly lower than 

the MV ratios for the lower quantiles, with a similar pattern for the ECM ratios, except for the 

mid-upper quantiles of the last. For the 90% and upper quantiles, both the MV and ECM coffee 

hedge ratios illustrate lower values than the QR. For example, the QR hedge ratios for coffee at 

1%, 50%, and 90% quantiles are 0.515, 0.572, and 0.594, respectively, and the MV and ECM 

ratios are 0.554 0.577, respectively.   

Comparing the monthly coffee QR and the MV and ECM optimal hedge ratios shows 

approximately similar inverted U shapes, except for differences in the 50%-to-80% quantiles. The 

results align with Lien, Shrestha, and Wu (2016), identifying that the inverted U shape QR optimal 

hedge ratios are most prominent for agricultural commodities. 

We distinguish different patterns to compare the weekly ethanol QR, MV, and ECM 

optimal hedge ratios. The QR hedge values are lower than the 40% quantile, increasing the positive 

difference slightly up to 90%, with spikes for the upper quantiles. For example, the QR hedge 

ratios for ethanol at 1%, 50%, and 90% quantiles are 0.629, 0.799, and 0.826, respectively, and 

the MV and ECM ratios are 0.746 and 0.747, respectively. 

Besides, we recognize skewed inverted U shapes, except for positive differences in the 5%-

to-20% and 99% quantiles, comparing the monthly ethanol QR and the MV and ECM optimal 

hedge ratios. Particularly, the  QR  hedge ratio for the  1%   quantile is negative, -0.192, a spurious 

value. The results align with Lien, Shrestha, and Wu (2016), who identify that the inverted U shape 

QR optimal hedge ratios are common for agricultural commodities. 

We analyze the weekly ethanol spot and the RBOB futures prices QR, MV, and ECM 

optimal hedge ratios. Comparing both the MV and ECM with the QR hedge ratios, we distinguish 

a similar whipsaw pattern. Up to the 2% quantile, the QR ratios are higher than the MV and ECM 

values, lowering around the 5% quantile. For example, the QR hedge ratios for ethanol and RBOB 

at 1%, 50%, and 90% quantiles are 0.074, 0.092, and 0.154, respectively, and the MV and ECM 

ratios are 0.107 and 0.116, respectively. Furthermore, comparing the monthly ethanol and RBOB 

QR and the MV and ECM optimal hedge ratios, we recognize skewed S shapes, with positive 

differences in the 1%-to-2% and the 90%-to-95% quantiles differing from the Lien, Shrestha, and 

Wu (2016) findings.   



The soybeans optimal hedge ratios show that the weekly QR hedge ratio values are lower 

than the MV ratios for the 1%-to-2% quantiles, with a similar pattern for the ECM ratios. For the 

2%-to-60% quantiles, the QR values are higher than both the MV and ECM hedge ratios. Further, 

the 60%-to-98% quantiles the MV and ECM hedge values are higher than the QR values, and the 

98% and upper quantiles, both the MV and ECM soybeans hedge ratios illustrate lower values 

than the QR. For example, the QR hedge ratios for soybeans at 1%, 50%, and 90% quantiles are 

0.186, 0.343, and 0.261, respectively, and the MV and ECM ratios are 0.317 0.315, respectively.  

Additionally, comparing the monthly soybeans QR, the MV and ECM optimal hedge ratios show 

approximately similar U shapes, except for differences in the 1%-to-2% and the upper 95% 

quantiles. The results do not align with Lien, Shrestha, and Wu (2016), identifying the most 

prominent inverted U shape QR optimal hedge ratios for agricultural commodities. Specifically, 

Appendix A.4. illustrates the plot of the two comparative panels. A visual inspection identifies the 

differences.  

4.3. Robustness test 

We estimate the t-test of the difference between the QR, MV, and ECM hedge ratios mean, weekly 

and monthly data (See Appendix A.5. and A.6.) as a robustness test.  

Appendix A.5. shows the difference between the QR hedge ratio and the MV ratio means. 

Mostly, the QR means are statistically different from the MV hedge ratios, with 1%-to-5% 

statistical significance levels. Furthermore, the 50% quantile mean difference shows no statistical 

significance for weekly and monthly data.  

We find similar results in Appendix A.6. Thus, the QR means are statistically different 

from the ECM hedge ratios, with 1%-to-5% statistical significance levels. Furthermore, the 50% 

quantile mean difference shows no statistical significance for weekly and monthly data. As such, 

we validate the inverted U-shaped format for the difference between the QR and the MV and ECM 

hedge ratios, in line with Lien, Shrestha, and Wu (2016). 

Using a cost-benefit analysis, the QR hedge ratio (HQR) translates economic significance 

when the quantile values are lower than the MV and ECM hedge ratios, HMV and HECM. 

Therefore, depending on the commodity market and the monthly timeframe, the HQR can be more 

efficient than the HMV and HECM.  



In conclusion, the quantile regression behavior demonstrates the spot price reacts slowly 

to changes in the market fundamentals, stocks, production, consumption, price shocks, and the 

futures price changes almost in real-time. For instance, if the spot price demonstrates a large shift 

in fundamentals, it may not fully adjust quickly to the change in one week, while the futures price 

reacts almost instantaneously. In contrast, the monthly spot and futures price series, lasting 4-

weeks, incorporate the same set of informational inputs and converge with small differentials.  

The literature on hedging distinguishes different causes for the results, e.g., transaction 

costs, liquidity, exchange margins, and leverage (Fleming, Ostdiek, & Whaley, 1996; Lien et al., 

2016; Silvapulle & Moosa, 1999).  

 

5. Conclusion and further research 

Our study analyzed the volatility spillovers between the Brazilian agricultural commodity spot 

prices and futures markets. We computed the total volatility spillover, the directional spillover to 

and from commodities, and the net pairwise volatility spillover, applying the Diebold and Yilmaz 

(2009, 2012, and 2014) framework (DY). Understanding the volatility spillover gives information 

about the market dynamic. In this sense, we evaluate optimal hedging using the linear quantile 

regression (QR) model. Specifically, we estimated the quantile regression (QR) optimal hedge 

ratios for groups of relevant Brazilian agricultural commodity groups, softs (coffee), grain and 

oilseeds (soybeans), and energy (ethanol and RBOB) using the US futures markets. Further, we 

compared the QR optimal hedge ratios with mainstream methods of optimal hedge estimation, 

minimum variance (MV), and error correction models (ECM), summarizing the research results 

to identify the best temporal hedging strategy, weekly or monthly. 

 The recent increase in total spillover effects reveals the impact of the COVID pandemic. 

Furthermore, the pairwise spillovers expose the effects of the rise in the Brazilian agricultural 

commodity exports, especially soybean exports to China, and positive informational richness 

among the agents, hedgers, speculators, and traders. The DY volatility spillover framework 

demonstrates the usefulness of estimating the dynamic relationships among the variables. The DY 

framework outline illustrates a systematic application to examine volatility spillover dynamics in 



the Brazilian agricultural commodity spot markets, regional and national, for example, to analyze 

the soybeans market volatility spillover between Mato Grosso and Paraná. 

The optimal hedging results show that spot prices tend to adjust longer than one week, 

while futures prices react promptly to a change in fundamentals. In contrast, the spot and futures 

prices series incorporate the same set of informational inputs and converge with small differentials. 

The use of the QR optimal hedge ratios for the commodities spot prices in the US futures markets 

can result in positive economic gains and more efficient resource allocation. 

Further research could deepen the study of the volatility spillover effects between food 

prices and commodities futures markets and whether using futures contracts could reduce the food 

volatility price. Understanding the price dynamics is of paramount importance not only to 

policymakers to design policies to alleviate the spike in food prices but to farmers, consumers, and 

countries since high volatility could jeopardize agricultural investment, input allocation, mainly 

when there is no mechanism to share risk (i.e., futures contracts).  
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Appendix 
A. 1. Descriptive statistics. Coffee, ethanol, soybeans spot and futures prices, gasoline futures prices. Weekly and monthly values, levels, and first 
differences. 

Weekly                             

Statistics CoffeeF D(CoffeeF) CoffeeS D(CoffeeS) SoyF D(SoyF) SoyS D(SoyS) ETHF D(ETHF) ETHS D(ETHS) RBOBF D(RBOBF) 

Mean 155.02 -0.14 162.79 -0.17 24.35  -0.01  26.19  -0.01  0.47 0.00 0.52 0.00 0.59 0.00 
Median 139.13 -0.43 144.39 -0.63 22.66  0.02  24.16  0.01  0.41 0.00 0.50 0.00 0.54 0.00 
Maximum 299.85 27.00 341.76 26.94 37.54  2.35  45.00  2.62  0.72 0.07 0.98 0.09 0.89 0.06 
Minimum 89.00 -27.95 95.47 -21.71 18.55  -6.08  18.70  -6.81  0.23 -0.13 0.30 -0.19 0.16 -0.12 
Std. Dev. 46.09 6.62 57.20 5.80 4.40  0.74  5.30  0.68  0.11 0.02 0.10 0.02 0.15 0.02 
Skewness 1.14 0.22 1.40 0.37 0.66  -1.92  0.88  -2.11  0.76 -1.20 0.98 -1.69 0.14 -1.35 
Kurtosis 3.53 5.09 4.26 5.53 2.27  16.77  3.33  24.87  2.15 11.45 4.53 18.32 1.83 8.21 
JB 114 94 196 145 47 4239 67 10289 63 1599 128 5109 30 714 
Prob          -                  -             -                  -            -              -          -              -          -               -         -               -            -                 -    

ObS. 498 498 498 498 498  498  498  498  498  498  498  498  498  498  

               
Monthly                             

Statistics CoffeeF D(CoffeeF) CoffeeS D(CoffeeS) SoyF D(SoyF) SoyS D(SoyS) ETHF D(ETHF) ETHS D(ETHS) RBOBF D(RBOBF) 

Mean 214.72 -0.28 241.39 -0.20 29.79 0.06 31.80 0.06     0.62  0.00  0.64  0.00  0.74  0.00  
Median 210.30 -0.25 242.50 -0.90 29.82 0.13 30.46 0.13  0.62  0.00  0.64  0.00  0.75  0.00  
Maximum 299.85 24.75 341.76 17.91 37.54 2.35 45.00 2.62  0.72  0.07  0.98  0.09  0.89  0.06  
Minimum 148.95 -27.95 161.93 -18.18 23.70 -2.72 25.27 -6.81  0.50  -0.08 0.49  -0.19  0.57  -0.10  
Std. Dev. 42.07 8.13 55.07 7.50 2.73 0.92 4.57 1.00  0.05  0.02  0.10  0.03  0.07  0.03  
Skewness 0.14 0.01 0.20 0.01 0.34 -0.40 1.10 -2.78  -0.21 -0.43  0.78  -2.11  -0.12  -1.30  
Kurtosis 1.76 3.95 1.62 2.88 3.24 2.89 3.61 20.79  2.77  4.38  3.55  16.29  2.88  6.66  
JB 8  5  11  0  3  3  27  1,781  1  13  14  997  0  103  
Prob 0.02 0.10 0.01 0.96      0.27        0.19        -              -       0.56             -         -               -        0.83               -    
ObS. 123 123 123 123  123  123  123  123  123  123  123  123  123  123 

Source: Research results. Obs.: D(.) = first difference; F = futures prices; S = spot prices. 
  



 

A.2. Net Pairwise Volatility Spillovers (ethanol, soybeans, coffee, and RBOB) 



A.3.A. Quantile graphs 
Coffee. Weekly data. 
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 Monthly data. 
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Source: Research results. 



A.3.B. Quantile graphs. Cont. 
Ethanot. Weekly data. 
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Ethanol. Monthly data. 
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Source: Research results. 



A.3.C. Quantile graphs. Cont. 
Ethanot and RBOB. Weekly data. 
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Ethanol and RBOB. Monthly data. 
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Source: Research results. 

 



A.3.D. Quantile graphs. Cont. 
Soybeans. Weekly data. 
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Soybeans. Monthly data. 
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Source: Research results.



A.4.A. Comparison between Quantile Regressions (QR), Minimum Variance (MV), and Error-Correction Model (ECM) Optimal Hedges. 

  

  
Source: Research results. 
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A.4.B. Comparison between Quantile Regressions (QR), Minimum Variance (MV) and Error-Correction Model (ECM) Optimal Hedges. Cont. 

  

  
Source: Research results. 
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A.4.C. Comparison between Quantile Regressions (QR), Minimum Variance (MV) and Error-Correction Model (ECM) Optimal Hedges. Cont. 

  

  
Source: Research results. 
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A.4.D. Comparison between Quantile Regressions (QR), Minimum Variance (MV), and Error-Correction Model (ECM) Optimal Hedges. Cont. 

  

  
Source: Research results. 
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A.5. Test of Difference Between Quantile Hedge Ratio and Minimum Variance Hedge. Weekly and Monthly Data.  

  Quantiles     

COFFEE WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
6.182* 3.504* 2.407* 0,111 -2,534* -3.700* -6.013*     

             

COFFEE MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
6.805* 4.230* 2.914* 0.078 -3.553* -4.399* -6.517*     

             

ETHANOL WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
6.182* 0.013* 0.010* -0.0003 -0.010* -0.014* -0.024*     

             

ETHANOL MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.045* 0.020* 0.012* -0.0003 -0.014* -0.022* -0.038*     

             

RBOB WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.032* 0.014* 0.009* -0.0004 -0.009* -0.013* -0.028*     

             

RBOB MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.082* 0.020* 0.013* -0.0003 -0.014* -0.022* -0.036*     

             

SOY WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.033** 0.422* 0.313* -0.015 -0.313* -0.432* -0.729*     

             

SOY MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
2.837* 0.570* 0.354* -0.005 -0.433* -0.586* -0.962*     

             
Source: Research results.           



A.6. Test of Difference Between Quantile Hedge Ratio and Error Correction Model Hedge. Weekly and Monthly Data.  
  Quantiles     

COFFEE WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
6.184* 3.506* 2.408* 0.113 -2.533* -3.700* -6.013*     

             

COFFEE MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
6.816* 4.234* 2.917* 0.083 -3.550* -4.394* -6.507*     

             

ETHANOL WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
6.184* 0.013* 0.010* -0.0003 -0.010* -0.014* -0.024*     

             

ETHANOL MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.044* 0.020* 0.012* -0.0003 -0.015* -0.022* -0.038*     

             

RBOB WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.032* 0.014* 0.009* -0.0004 -0.009 -0.013* -0.028*     

             

RBOB MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.082* 0.020* 0.013* -0.0004 -0.014* -0.022* -0.037*     

             

SOY WEEKLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
0.033** 0.422* 0.313* -0.015 -0.313* -0.433* -0.730*     

             

SOY MONTHLY 0.01 0.05 0.10 0.50 0.90 0.95 0.99     
2.850* 0.565* 0.355* -0.006 -0.433* -0.586* -0.960*     

Source: Research results.           
 


