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1. Introduction

The global need for improving efficiency in the agricultural sector has been recognized in the

United Nation’s 2030 Agenda for Sustainable Development. In particular, the Sustainable Develop-

ment Goal (SDG) #2 aims to end hunger and improve the agricultural productivity and incomes of

small-scale farmers while promoting resilient agricultural practices and sustainable food production

systems. A growing number of governments, development organizations, and agencies are imple-

menting programs targeting this goal. Many of these programs work at the scale of smallholder

farm households. They generally imply either public investments, such as agricultural education

and training or access to R&D, or price interventions, such as subsidies, affecting production prices

(see, e.g. de Janvry et al., 2017, for a review).

However, participation in these programs often occurs voluntarily, which may lead to Selection

Bias. Farmers who choose to participate (i.e., who self-select into the program) may share specific

characteristics that distinguish them from non-participants. For instance, the participants’ culti-

vated land may suffer more from erosion, and as a consequence, they may be less efficient than

non-participants. If selection bias is not controlled for, one would conclude that the program is not

effective because the agricultural efficiency of those who participate is lower than those who do not.

Moreover, Stochastic Frontier Analysis is a popular method to assess agricultural efficiency as the

production potential of the agricultural sector. However, selection bias is particularly challenging

to address within this framework.

The problem of selection bias in stochastic frontier model has been previously tackled in the

literature from a methodological point of view. Greene (2010) formulates a selectivity corrected

stochastic frontier model estimated using maximum simulated likelihood. The central assumption

in this paper is that the unobservables in the selection equation are correlated with those in the

production (or cost) equation, but uncorrelated with the inefficiency term. This approach is further

extended by Bravo-Ureta et al. (2012) by using propensity score matching techniques to control

for biases arising from observable variables and then controlling for selection bias stemming from

unobservable characteristics following Greene (2010).

Kumbhakar et al. (2009) consider a framework similar to Greene (2010) but assuming that the

selection mechanism operates through the efficiency term instead. In particular, this paper takes
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into account the endogeneity of technology choice (conventional or organic farming) by jointly esti-

mating technology and technology choice using a single-step maximum likelihood method. However,

to the best of our knowledge, there does not exist a maximum likelihood framework which allows

one to control for potential correlation between program participation and both unobservable char-

acteristics of participants and their stochastic inefficiency. Chen et al. (2020) study a general model

with binary endogenous treatment and mediator, that are potentially correlated with the composite

error term, but their approach boils down to a propensity score assumption.

In this paper, we contribute to this literature by providing a model that allows one to control

for endogeneity coming from both sources, i.e., the correlation between program participation and

the stochastic inefficiency and unobservable characteristics. Our empirical strategy is to employ

instrumental variables to construct an auxiliary assignment mechanism for program participation.

We then propose a maximum likelihood estimation framework in which we jointly model the density

of the first stage error and the density of the composite error term common to stochastic production

frontier. We derive the maximum likelihood function in closed form, which allows us to use standard

estimation and inference procedure, making the model rather straightforward to estimate and in-

terpret. Our model is similar to the one proposed by Chen et al. (2020) as we impose distributional

assumptions on both the inefficiency term and the stochastic component. However, our approach

is based on a one-step maximum likelihood estimator, which is straightforward to implement and

allows one to obtain an estimator of technical efficiency, which is not provided in Chen et al. (2020).

The ability to estimate technical efficiency is an essential feature of stochastic frontier models, as it

allows comparisons across different observations (Farrell, 1957; Jondrow et al., 1982).

We apply the proposed method to smallholder farm household data from El Salvador. The

data consist of a sample of participants in an Environmental program promoting soil conservation

practices, and a control group of non-participant farmers. In this example, standard stochastic

frontier estimation does not show any effect of the policy, either on the production level or on farmers’

technical efficiency. By contrast, our approach reveals that program participation does not only

generate an upward shift on the frontier but also significantly improves technical efficiency. These

results further highlight the need to control for endogeneity when evaluating such interventions, as

this may substantially change the conclusions regarding their effectiveness.
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The paper is structured as follows. In Section 2, we described the econometric model and our

maximum likelihood estimator. Section 3 contains a description of the sample, and outlines our

empirical results. Finally, Section 4 concludes.

2. Binary Treatment in Stochastic Production Frontier

2.1. Model. In economic theory, the production frontier is defined as the quantity of output pro-

duced for a given input mix. In practice, producers can fail to produce exactly at the frontier and

may fall below it. Similarly, the output may be measured with an error, or there may be other

sources of variation in the outcome not observed by the econometrician that result in a further

stochastic component.

All these elements are usually combined in a stochastic frontier regression model of the type

Y =m(X,Z,β) + V −U, (1)

where Y is the logarithm of output, m(X,Z,β) is the logarithm of the production function, which

depends on some unknown parameter β, some production inputs, X, and other environmental

factors, Z, and ε = V −U is an error term. This error term is divided into two parts: V is a stochastic

component with mean equal to 0; and U ≥ 0 is an inefficiency term that captures the shortfall of the

producer from the frontier. The latter may depend on other observed characteristics of producers

(for instance, their managerial decisions) that are often introduced as a scale factor affecting the

distribution of U (Simar et al., 1994; Alvarez et al., 2006). Thus, we write U = U0g(Z, δ), where

g(⋅, ⋅) is the so-called scale function which is specified by the econometrician and depends on some

unknown parameter δ. In our setting, we can interpret Z as the dummy for participation in the

program fostering soil-conservation. This variable can therefore affect both the production frontier

and the inefficiency of the producer. This is a binary treatment variable that takes value 1 if the

producer participates in the program and 0 otherwise. To simplify the discussion that follows, we

assume that the participation dummy is the only environmental factor, so that Z is univariate.

This specific model can be easily generalized when Z includes also other exogenous environmental

factors.
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As Z is binary, we can write the production frontier as follows

m(X,Z,β) =m0(X,β0) +Zm1(X,β1),

in a way that the frontier shifts from m0 to m0 +m1 as the treatment variable changes from 0 to 1.

Therefore, our model in (1) becomes

Y =m0(X,β0) +Zm1(X,β1) + V −U.

For instance, in the prevalent case in which the logarithm of the production function is linear

(i.e., Cobb-Douglas), this modeling strategy leads to include in the production frontier the dummy

variable for the treatment and the interaction between the treatment dummy and each one of the

inputs (or a subset of these regressors). Note that we propose a general framework in which the

endogenous participation variable is included as both frontier shifter and efficiency determinant. Our

estimation strategy also applies to the less general but more common case in which participation is

only included as environmental factor affecting the inefficiency.

Maximum likelihood estimation is a popular approach to obtain estimators of the parameter (β, δ)

in a stochastic frontier framework (Kumbhakar and Lovell, 2003). Although heavily parametrized,

the likelihood specification allows one to obtain an estimator of the variance of the inefficiency term

and thus understand how far from the frontier each producer is.

These maximum likelihood estimators can be based on a variety of assumptions about the distri-

butions of V and U0. However, the most popular model assumes that V follows a normal distribution

and that U0 follows a half-normal distribution (Aigner et al., 1977). Moreover, one usually assumes

that V is independent of U0 and that (X,Z) are fully independent of (V,U0).

In our framework, the treatment cannot be taken to be independent of the joint error term

(V,U0). Volunteering for the treatment can depend both on the inefficiency of the producer, and

on other preferences that are unobserved to the econometrician. This implies that the treatment

is endogenous. In this case, the normal-half-normal stochastic frontier model would lead to an
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inconsistent estimator of (β, δ).1 Our goal is to construct a maximum likelihood estimator, which

generalizes the normal-half-normal stochastic frontier model when the treatment is allowed to be

endogenous.

In econometrics, instrumental variables are a popular method to deal with endogeneity. That is,

we assume there exists a vector of instruments, W , of dimension q ≥ 1, which is correlated with Z,

but independent of (V,U0). In practice, it may be appealing to use a simple instrumental variable

model, which ignores the binary nature of Z. This can be written as

Y =m(X,Z,β) + V −U0g(Z, δ) (2)

Z =W̃γ + η, (3)

where W̃ = (W,X) and η is an error term, with W ∈ Rq, and q ≥ 1. In this construction, we are

effectively splitting Z into two parts: W̃γ, which is independent of (V,U0); and η, which instead

captures the correlation between Z and (V,U0) (Wooldridge, 2010). Z enters the second-stage

equation nonlinearly, so the usual approach used in linear instrumental variable models to obtain

the predicted values of Z from the first stage and use them in a second stage maximum likelihood

estimation instead on Z would not lead to a consistent estimation of (β, δ) (Wooldridge, 2015;

Amsler et al., 2016). An alternative approach consists in noticing that all the correlation between

Z and (V,U0) is captured by η. The latter can be considered an omitted variable in the second

stage. The so-called control function approach consists in first obtaining an estimator of the first

stage error and then plugging it in the second stage, effectively solving the omitted variable bias

(Wooldridge, 2015).

While this approach might work, it also has some drawbacks. First of all, it is not obvious how

an estimator of η should be plugged into the second stage. Shall we plug it in the production

function, m(X,Z,β)? Or shall we plug it in the scaling function, g(Z, δ)? Moreover, starting

from the heuristic model in Equation (2), we cannot construct a maximum likelihood estimator,

which generalizes the normal-half-normal model. Such an estimator would require us to specify the

1Production inputs can also be correlated with the composite error term (Mundlak, 1961; Schmidt and Sickles, 1984).
However, we focus here on the endogeneity of the treatment. Constructing an estimator which is also robust to
endogeneity in the inputs is possible, although we do not tackle it in this paper (see Centorrino and Pérez-Urdiales,
2020).
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distribution of η, in a way that η is independent of W̃ . However, it is known that the error term in

the linear probability models is heteroskedastic by construction so that its variance depends on W̃ .

If we acknowledge the binary nature of Z, we can instead use a Probit specification to model the

treatment assignment (i.e., the first stage equation). In particular, we have that

P (Z = 1∣W̃ ) = 1 −Φ (−W̃γ) ,

where Φ (⋅) is the cdf of a standard normal distribution.2 The main assumptions of the Probit

model are that η ∼ N(0,1) and that W̃ is independent of η. As above, we also impose that all

the correlation between Z and (V,U0) has to happen through η. This implies that once we control

for η, the dependence between Z and (V,U0) disappears (Newey et al., 1999; Imbens and Newey,

2009).

A maximum likelihood model requires to specify further the dependence between η and (V,U0).

More formally, this is done by modeling the conditional density of (V,U0) given η. In parallel with

the standard stochastic production frontier, we assume that, if there is any dependence between V

and U0, this has to happen through η. When there is no endogeneity, this assumption is equivalent

to the full independence between V and U0 usually imposed in stochastic frontier models. More

specifically, we assume that V ∣η ∼ N(ρV σV η, σ
2
V ) and that U0∣η ∼ FN(ρUσUη, σ

2
U), where σV and

σU are the scale parameters of the conditional distributions of V and U0 given η, respectively; ρV

and ρU capture the dependence between (V,U0) and η, respectively; and FN stands for a folded

normal distribution, whose conditional pdf is given by the following expression

fU0∣η(u∣η) =
1

√
2π(1 − ρ2

U)σ
2
U

{exp(−
(u − ρUσUη)

2

2(1 − ρ2
U)σ

2
U

) + exp(−
(u + ρUσUη)

2

2(1 − ρ2
U)σ

2
U

)} . (4)

Centorrino and Pérez-Urdiales (2020) have shown that this specification of the conditional density

of U0 provides a generalization with endogeneity to the normal half-normal stochastic frontier model

(Aigner et al., 1977). We can appreciate how the pdf in Equation (4) reduces to the half-normal

distribution when ρU = 0. That is, when the treatment is assigned independently of the efficiency

2One can think about the first stage equation in terms of a latent variable Z∗ = W̃γ + η such that Z takes value 1 if
Z∗ ≥ 0 and 0 otherwise.
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of the producer. In the following, we refer to ρU as a correlation parameter, with a slight abuse of

terminology.

Maximum likelihood estimation in stochastic frontier models is usually based on the density of

the composite error term ε = V −U . In this endogenous case, our maximum likelihood estimator is

based on the joint density of (ε, η), which can be decomposed into the product of the conditional

density of ε given η, and the marginal density of η which, in our case, is a standard normal density.

From Centorrino and Pérez-Urdiales (2020), we know that the conditional density of ε given η is

equal to

fε∣η(ε∣η) =∫ fV ∣η(ε + u∣η) (g(Z, δ))
−1 fU0∣η((g(Z, δ))

−1 u∣η)du

=
1

√
2πσ(Z)

{Φ(
λ(Z)ρV σV η

σ(Z)
+
ρUσU(Z)η

λ(Z)σ(Z)
−
λ(Z)ε

σ(Z)
) exp(−

(ε − ρV σV η + ρUσU(Z)η)2

2σ2(Z)
)

+ Φ(
λ(Z)ρV σV η

σ(Z)
−
ρUσU(Z)η

λ(Z)σ(Z)
−
λ(Z)ε

σ(Z)
) exp(−

(ε − ρV σV η − ρUσU(Z)η)2

2σ2(Z)
)} ,

where

σ2
U(Z) =σ2

U (g (Z, δ))2 ,

σ̃2
U(Z) =(1 − ρ2

U)σ
2
U(Z)

σ̃2
V =(1 − ρ2

V )σ2
V

σ2
(Z) =σ̃2

U(Z) + σ̃2
V ,

λ(Z) =
σ̃U(Z)

σ̃V
.

Using our assumption that η follows a standard normal distribution, the joint density of (ε, η)

can be written as

fε,η(ε, η) =
1

2πσ
{Φ(

λ(Z)ρV σV η

σ
+
ρUσU(Z)η

λ(Z)σ
−
λ(Z)ε

σ
) exp(−

(ε − ρV σV η + ρUσU(Z)η)2

2σ2
−
η2

2
)

+ Φ(
λ(Z)ρV σV η

σ
−
ρUσU(Z)η

λ(Z)σ
−
λ(Z)ε

σ
) exp(−

(ε − ρV σV η − ρUσU(Z)η)2

2σ2
−
η2

2
)} .

Let θ = (β′, δ′, γ′, σ2
U , σ

2
V , ρV , ρU)

′ be the parameter of interest. When Z is continuous, at least for

identification purposes, we can assume that η is observed and thus define the likelihood using the

8



joint density of ε and η obtained above (Centorrino and Pérez-Urdiales, 2020). When Z is binary,

this is not possible, as the first stage error term η cannot be directly estimated from the data, and

thus we need to define the joint likelihood differently.

In similar frameworks (e.g., Probit and Logit models), the observable random variable is discrete,

and we usually express the likelihood (conditional on exogenous covariates), as the cdf of a latent

error term which follows a known distribution. In our case, we have two observable endogenous

variables (Y,Z), and the likelihood is obtained by their density, conditional on the exogenous

components, W̃ . We aim at rewriting this density in terms of the error components (ε, η). Therefore,

as η is latent, the likelihood is written with respect to its cdf. In particular, we aim at writing the

likelihood as the product between the cdf of η conditional on ε and the pdf of ε.

To this end, we first consider the following joint probability of the observable endogenous variables.

For Z = 0, we have

P (Y ≤ y,Z = 0∣W̃ ) =P (m(x,Z, β) + ε ≤ y,Z = 0∣W̃ )

=P (ε ≤ y −m(X,Z,β), η ≤ −W̃γ) = Fε,η (y −m(X,Z,β),−W̃γ) ,
(5)

where the second line follows from the assumption of independence between (ε, η) and W̃ . A similar

derivation holds when Z = 1.

If we take the derivative of the joint probability in Equation (5) with respect to its first argument,

we obtain a function, which is a pdf with respect to ε and a cdf with respect to η. In particular, we

have

∂1Fε,η (y −m(X,Z,β),−W̃γ) = fε∣η≤−W̃γ(y −m(X,Z,β)∣η ≤ −W̃γ) (1 −Φ(W̃γ)) ,

where ∂1 denotes the derivative with respect to the first argument of the function. Finally, we can

write

fε∣η≤−W̃γ(y −m(X,Z,β)∣η ≤ −W̃γ) =∫
−W̃γ

−∞

fε,η∣η≤−W̃γ(y −m(X,Z,β), η∣η ≤ −W̃γ)dη

=∫

−W̃γ

−∞

fε∣η(y −m(X,Z,β)∣η)fη∣η≤−W̃γ(η∣η ≤ −W̃γ)dη

=
1

1 −Φ(W̃γ)
∫

−W̃γ

−∞

fε∣η(y −m(X,Z,β)∣η)φ(η)dη,
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where the second line follows from the conditional independence of Z and ε given η, and the third

line follows from the fact that, conditionally on η ≤ −W̃γ, η follows a normal distribution which is

truncated above by −W̃γ, and φ is the pdf of a standard normal distribution. We finally have that

∂1Fε,η (y −m(X,Z,β),−W̃γ) = ∫
−W̃γ

−∞

fε∣η(y −m(X,Z,β)∣η)φ(η)dη.

The likelihood function can thus be obtained as

L(θ) = (∫

∞

−W̃γ
fε∣η(y −m(X,Z,β)∣η)φ(η)dη)

Z

(∫

−W̃γ

−∞

fε∣η(y −m(X,Z,β)∣η)φ(η)dη)

1−Z

, (6)

where the parameter θ = (β, γ, δ, ρU , ρV , σU , σV ).

The integrals appearing in the likelihood function can be solved analytically. A detailed derivation

is provided in the Appendix. Here, we just summarize the main findings. We obtain that the

conditional cdf of η is a mixture of two conditional skew normal distributions (Azzalini and Dalla

Valle, 1996; Azzalini, 2013). When the correlation parameters ρV and ρU are equal to 0, this

likelihood reduces to the product of the pdf of a skew normal distribution (the pdf of ε), and the cdf

of a normal distribution (the cdf of η), which would be the likelihood function if the composite error

term is independent of Z. This would be the standard approach in Stochastic Frontier Analysis

(Kumbhakar and Lovell, 2003).

We thus have

θ0 = arg max
θ∈Θ

L(θ).

An important identification issue that arises in our framework is that only the magnitude of the

parameter ρU is identified, but not its sign (see Centorrino and Pérez-Urdiales, 2020, for a detailed

discussion). This implies that, while we can determine whether there is any dependence between

the treatment assignment and inefficiency, we are not able to capture the sign of this dependence.

As the parameter ρU is only identified up to a sign, the parameter θ0 is not uniquely identified in the

unrestricted parameter space Θ. However, we can still obtain local identification of θ0 by properly

restricting the parameter space (Sundberg, 1974). This lack of identification does not seem to be

a crucial issue, and as shown in Centorrino and Pérez-Urdiales (2020), it does not have any major

implications for estimation. It is however important when conducting inference in this setting, as

discussed in their paper.
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2.2. Estimation. For estimation, we consider an iid sample from the joint distribution of (Y,X,Z,W ),

which we denote {(Yi,Xi, Zi,Wi), i = 1, . . . , n}, where each observation obeys to the model in (1).

Let `n(θ) = log (Ln(θ)), with

Ln(θ) =
n

∏
i=1

(∫

∞

−W̃iγ
fε∣η(εi∣η)φ(η)dη)

Zi

(∫

−W̃iγ

−∞

fε∣η(εi∣η)φ(η)dη)

1−Zi

,

where εi = Yi −m(Xi, Zi, β). Estimation is relatively straightforward, with the maximum likelihood

estimator of the parameter θ given by

θ̂ = arg max
θ∈Θ

`n(θ),

The likelihood function cannot be maximized analytically, and numerical optimization is required.

This is usually achieved using Newton-Rapson iterations from a given starting value.

2.3. Technical Efficiency. A further step to complete our framework is to obtain a feasible es-

timator of technical efficiency, TEi = exp(−Ui). Researchers are often interested in obtaining the

technical efficiency for each producer. Amsler et al. (2017) and Centorrino and Pérez-Urdiales (2020)

obtain an estimator of this quantity from the conditional distribution of U given ε and η. However,

as η is not observed in our case, we have to follow the standard approach and obtain the estimator

of technical inefficiency from the conditional distribution of U given ε. The latter distribution can

be derived as

fU ∣ε(u∣ε) = ∫ fU ∣ε,η(u∣ε, η)fη∣ε(η∣ε)dη.

Details about the exact computations of this density are given in Appendix. We let

σ1⋆ =
σ̃V σ̃U(Z)

σ(Z)

¿
Á
ÁÀ1 +

q2
1(Z)σ2(Z)

σ2(Z) + ρ2
1(Z)

σ2⋆ =
σ̃V σ̃U(Z)

σ(Z)

¿
Á
ÁÀ1 +

q2
2(Z)σ2(Z)

σ2(Z) + ρ2
2(Z)

µ1⋆ = −
σ̃V σ̃U(Z)

σ(Z)
ε(
λ(Z)

σ(Z)
−

q1(Z)ρ1(Z)

σ2(Z) + ρ2
1(Z)

)

µ2⋆ = −
σ̃V σ̃U(Z)

σ(Z)
ε(
λ(Z)

σ(Z)
−

q2(Z)ρ2(Z)

σ2(Z) + ρ2
2(Z)

) ,
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where the definition of the other parameters is given in the Appendix, and the dependence on the

variable Z has been removed for simplicity.

We obtain that

E [exp(−U)∣ε] =ω1(ε) exp(−µ1⋆ +
σ2

1⋆

2
)

1 −Φ (−
µ1⋆
σ1⋆ + σ1⋆)

Φ (τ1(Z)ε)

+ ω2(ε) exp(−µ2⋆ +
σ2

2⋆

2
)

1 −Φ (−
µ2⋆
σ2⋆ + σ2⋆)

Φ (τ2(Z)ε)
, (7)

where ωl(ε), with l = 1,2 are weights, such that ω1(ε) + ω2(ε) = 1. Finally, the mean technical

efficiency (Lee and Tyler, 1978) can be obtained as

E [exp(−U)] = E [E [exp(−U)∣ε]] ,

by the law of iterated expectations.

3. Soil Conservation in El Salvador

3.1. Data and Model Specification. We consider data from an Environmental Program promot-

ing crop diversification and soil conservation practices in El Salvador (PAES). The data set consists

of a sample of PAES participants and a control group of non-participating farmers.

The target population of this program was farmers with incomes below the poverty line and

producing mostly staple crops, such as corn and beans, in hillside plots with slopes of at least

15%. The program consisted in promoting soil conservation technologies among participants. The

initial fieldwork took place in 2002, and a random sample of participants was re-surveyed in 2005,

along with a sample of farmers who never received PAES benefits. Figure 1 shows the cantons

(administrative divisions in El Salvador) where participants and non-participants are located (in

black). For more detail on the program and data collection, see Bravo-Ureta et al. (2006).

For this application, we consider cross-sectional data focusing on the survey conducted in 2005.

In a first instance, we estimate the following model

Yi =Xiβ1 +Z1iβ2 + Vi −U0i exp(Ziδ), for i = 1, . . . , n, (8)
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Figure 1. El Salvador - Location of cantons

where Yi is the log of the total value of Production (measured in dollars); Xi is a vector of

inputs including a constant term, the log of Labour (number of hired and household laborers),

the log of Land (total area cultivated in manzana=0.7 Has), the log of Fertilizers (measured in

dollars), the log of Pesticides (measured in dollars) and the log of Seeds (measured in dollars).

Zi = (Z1i, Z2i) is a random vector of environmental factors, which is decomposed into two sub-

vectors: Z1i can act both as a frontier shifter and as inefficiency determinant, while Z2i only

contains inefficiency determinants. Following Solis et al. (2009), among the frontier shifters, Z1i, we

consider the dummy variable Slope (dummy variable taking value 1 if the slope ≥15%, 0 otherwise)

to control for differences in land quality, and Participation (dummy variable taking value 1 if the

farmer is participating in PAES, 0 otherwise). Z2i, instead, includes Organization (dummy variable

equal to 1 if the farmer participates in a social organization, 0 otherwise), Tenure (percentage

of land owned by the farmer over the total cultivated land), Education (measured in years), Off-

farm income (measured in dollars), Distance (distance from the farmer’s home to the closest plot,

measured in km), Risk div (continuous index equal to 1 if the farmer cultivates only one crop, and

therefore, not diversifying risks; or lower values if the farmer cultivates more crops).3 Slope and

Participation are also included as efficiency determinants, with the latter variable also interacted

3Following Centorrino and Pérez-Urdiales (2020), is constructed as follows:

Risk div =
⎧⎪⎪⎨⎪⎪⎩

∑C
j=1 s

2
j−1/C

1−1/C for C > 1

1 for C = 1,

where sj is the proportion of land devoted to crop j, and C is the total number of crops cultivated by each farmer.
Our indicator ranges from 0 to 1.
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with Education. Vi is the idiosyncratic error and U0i is the stochastic inefficiency term. Our goal is

to estimate the parameters {α,β, δ, σ2
V , σ

2
U , ρU , ρV }. The total sample size is equal to n = 443.

In this application, Participation is an endogenous binary treatment variable. As instruments,

we use Distance_city (distance from the farmer’s home to the closest city, measured in km),

Distance_city2 (square of the previous variable), Electricity (proportion of families in the farmer’s

canton with access to electricity), Wage Canton (the average hourly wage in the canton where the

farmer is located), the interaction of the last two variables with Distance_city, and the interaction

between Organization and Education with Distance_city. Descriptive statistics of the variables

considered in the analysis are reported in Table 5 in Appendix.

We test the specification of the first stage regression (the regression of the treatment variable on

all the other exogenous regressors) as a Probit model using the test proposed by Wilde (2008). We

are not able to reject the null hypothesis that the error term follows a normal distribution at any

standard significance level, which points out that our assignment mechanism is not misspecified.

Moreover, to assess the relevance of the instruments, we construct a likelihood ratio test which

compares the unrestricted Probit model, with a Probit model where all coefficients associated to

the instruments are set to zero. The null hypothesis of the test is that the instruments do not jointly

have a significant effect on treatment assignment. The value of the likelihood ratio statistic is 31.33

which leads to a rejection of the null hypothesis with a p-value equal to 0.0003. The estimated

coefficients of the first-stage Probit estimation are given in the Appendix.

3.2. Results. Table 1 reports results for our empirical example. The first pair of columns shows

the estimation results assuming exogeneity. That is, when we ignore the potential selection issue

associated with Participation. In this case, we find that the standard stochastic frontier model does

not detect any inefficiency, and the exogenous model reduces to the standard linear regression with

normal errors. Moreover, the Hessian matrix for the stochastic frontier model is singular (see Lee,

1993), estimates and standard errors for the estimator of the variance of the inefficiency term σ2
U ,

and the parameter δ cannot be obtained. For the rest of the coefficients related to the production

function and σ2
V , one obtains standard errors using a Gaussian likelihood function.
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The estimation results controlling for endogeneity are reported in the second pair of columns. We

find that there is significant inefficiency when we control for the potential selection bias associated

with Participation.

Recall that in this model, the parameters ρV and ρU capture the dependence between program

participation and the unobserved components of the stochastic frontier model. We notice that both

parameters are significantly different from 0 at standard significance levels. Thus, our model suggests

a strong dependence between participation and unobservables. Moreover, the estimated value of ρV

is negative, which suggests that the idiosyncratic components of production are negatively correlated

with participation.

The estimated coefficients for Labor and Land are significant with the expected positive sign.

However, the remaining inputs, Fertilizers, Pesticides and Seeds do not seem to have a significant

effect. In terms of the frontier shifters, the coefficient for Slope is negative but not significant,

indicating that there exist no differences in terms of land quality, but Participation is positive and

significant, i.e., participating in the soil conservation program generates a significant upward shift

in the frontier.

Regarding the efficiency determinants, the coefficient for tenure is positive and significant, which

indicates that a higher proportion of owned land by the farmer has a negative impact on the

efficiency (as it increases inefficiency). One possible explanation for this effect is that owning

higher proportion of land implies lower flexibility to adapt to changing conditions. The variable

Risk div also has a negative impact on the efficiency, since its estimated coefficient is positive and

significant. That is, the greater the risk diversification(i.e., the more crops cultivated by the farmer),

the lower the level of efficiency, likely related to the lower levels of specialization and economies of

scale that can be achieved. Surprisingly, the estimated coefficient for Organization is positive and

significant, which implies that farmers belonging to an organization show lower levels of efficiency.

The coefficient of our variable of interest in this study, Participation, is negative and significant,

while the one of the interaction between this variable and Education is positive. This indicates

that while participating in the soil conservation program improves efficiency (reduces inefficiency),

the effect of program participation on efficiency decreases as the farmer’s education increases. One
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possible explanation for this result is that more educated farmers may have already implemented

some of the soil conservation measures proposed by the program before participating in it.

Using standard inference based on asymptotic normality, one may conclude that the estimator

of the variance of the inefficiency in the endogenous model is not significantly different from 0.

However, as the sample size is not large, the asymptotic approximation may not be very precise.

To overcome this issue, we compute the 95% profile likelihood confidence interval for σ2
U (Cox

and Hinkley, 1979). We find that the profile-likelihood confidence interval for the variance of the

inefficiency term σ2
U (multiplied by 1000 for ease of reading) CI(σ2

U) = [0.0141,0.0496], which shows

that the confidence interval is much tighter than the standard errors computed from the inverse

numerical Hessian would suggest. As the likelihood function cannot be maximized analytically,

and numerical evaluation of the first and second derivative is necessary, a larger sample size may

be required for obtaining smaller standard errors. A similar result holds for other parameters

in the model, although we do not report their confidence intervals. This suggests that, in this

context, profile-likelihood confidence intervals may provide a better tool for determining parameter

uncertainty. This observation is in line with the small sample findings of Centorrino and Pérez-

Urdiales (2020), who have shown that the likelihood ratio test performs better than the Wald test

in this setting.

Last, technical efficiency is estimated for each farmer using Equation (7). The mean technical

efficiency is reported at the bottom in Table 1, and Figure 2 provides the kernel density estimators

of this measure for both the stochastic frontier model assuming exogeneity (dashed line) and the

stochastic frontier model controlling for endogeneity (black line). The mean technical efficiency for

the model controlling for endogeneity is equal to 0.8697. However, estimates of technical efficiency

vary considerably across farmers, with the majority of farmers being highly efficient, and very few

farmers being relatively inefficient.

4. Conclusions

In the current need for increasing agricultural efficiency, Stochastic Production Frontier Models

can shed light on the effectiveness of programs targeting this goal. However, controlling for potential

endogeneity associated to voluntary program participation is crucial to obtain an accurate estimate
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Exogeneity Endogeneity
Estimate Std. Err. Estimate Std. Err.

β0 3.8953 0.1732 6.7913 0.5221
βLand 0.3872 0.0397 0.3501 0.0501
βLabour 0.6071 0.0417 0.5652 0.0539
βFertilizer 0.0224 0.0216 0.0247 0.0255
βPesticides -0.0111 0.0185 -0.0171 0.0217
βSeeds 0.0574 0.0197 0.0386 0.0239
βSlope 0.0779 0.0424 -0.0344 0.0540
βParticipation -0.0654 0.0421 0.4937 0.0703
δOrganization 2.9861 1.2126
δEduc -0.2322 0.3914
δTenure 1.5870 0.9701
δOff−farmincome -0.2032 0.1527
δDistance -0.3920 0.3010
δSlope -0.1999 0.5445
δDiv 2.6483 1.1016
δEduc×Participation 2.0022 1.0438
δParticipation -6.3459 3.1446
ρU,η -0.8696 0.0266
ρV,η -0.8297 0.1542
σ2
U 0 0.0000 0.0001
σ2
V 0.1813 0.0116 0.2582 0.0266

Mean TE 0.9952 0.8697

Table 1. Estimation of the efficiency frontier with and without accounting for treat-
ment endogeneity.

0.2 0.4 0.6 0.8 1.0

0
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10
15

20
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Figure 2. Estimation of technical efficiency.

of the impact of the project. In this paper, we propose a method to control for a binary endogenous

treatment in Stochastic Production Frontier Models. In particular, we construct a simple closed-

form maximum likelihood estimator based on distributional assumptions about the first and second-

stage error terms. This estimator is in line with a more traditional approach to Stochastic Frontier

Estimation, where one is usually interested in estimating the technical efficiency for each producer.
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In the empirical application, we estimate Stochastic Production Frontiers for a sample of farmers

in El Salvador participating in a soil conservation program and a control group of non-participant

farmers. Our results show that the models assuming exogeneity of program participation either do

not detect inefficiency or do not find a significant effect of the program on the level of production

and efficiency. However, when we implement the method proposed we find substantial production

potential (as we detect a significant level of technical inefficiency) and that participation in the

soil conservation program generated an upward shift on the frontier and a reduction in the level of

technical inefficiency.

The main policy implication of our study is that policymakers wishing to perform program evalu-

ation in a Stochastic Frontier Model context should adequately control for endogeneity issues arising

from voluntary program participation. This is especially important in guiding future evidence-based

policy-making in which the best possible use should be made of scarce resources.
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Appendix

A. Technical derivations

A.1. Derivation of the likelihood function. We provide here the main steps for the calculation

of the conditional distribution of η given ε. Recall that the joint density of (ε, η) is given by

fε,η(ε, η) =
1

2πσ(Z)
{Φ(

λ(Z)ρV σV η

σ(Z)
+
ρUσU(Z)η

λ(Z)σ(Z)
−
λ(Z)ε

σ(Z)
) exp(−

(ε − ρV σV η + ρUσU(Z)η)2

2σ2(Z)
−
η2

2
)

+ Φ(
λ(Z)ρV σV η

σ(Z)
−
ρUσU(Z)η

λ(Z)σ(Z)
−
λ(Z)ε

σ(Z)
) exp(−

(ε − ρV σV η − ρUσU(Z)η)2

2σ2(Z)
−
η2

2
)} .

We analyze the kernel of the two components of this distribution separately.

(i) Let ρ1(Z) = ρV σV − ρUσU(Z). The kernel of the first component is equal to

1

σ2(Z)
(ε2
− 2ρ1(Z)εη + (σ2

(Z) + ρ2
1(Z))η2) =

σ2 + ρ2
1(Z)

2σ2(Z)
(η2
− 2

ρ1(Z)εη

σ2(Z) + ρ2
1(Z)

+
ε2

σ2(Z) + ρ2
1(Z)

)

=
σ2(Z) + ρ2

1(Z)

2σ2(Z)
(η −

ρ1(Z)

σ2(Z) + ρ2
1(Z)

ε)

2

+
ε2

2(σ2(Z) + ρ2
1(Z))

.

(ii) Let ρ2(Z) = ρV σV +ρUσU(Z). The kernel of the second component can be similarly written

as

1

2σ(Z)2
(ε2
− 2ρ2(Z)εη + (σ2

(Z) + ρ2
2(Z))η2)

=
σ2(Z) + ρ2

2(Z)

2σ2(Z)
(η −

ρ2(Z)

σ2(Z) + ρ2
2(Z)

ε)

2

+
ε2

2(σ2(Z) + ρ2
2(Z))

.

Therefore, we have that

fε,η(ε, η) =
1

2πσ(Z)
{Φ(

λ(Z)ρV σV η

σ(Z)
+
ρUσU(Z)η

λ(Z)σ(Z)
−
λ(Z)ε

σ(Z)
)×

exp
⎛

⎝
−
σ2(Z) + ρ2

1(Z)

2σ2(Z)
(η −

ρ1(Z)

σ2(Z) + ρ2
1(Z)

ε)

2

−
ε2

2(σ2(Z) + ρ2
1(Z))

⎞

⎠

+Φ(
λ(Z)ρV σV η

σ(Z)
−
ρUσU(Z)η

λ(Z)σ(Z)
−
λ(Z)ε

σ(Z)
)×

exp
⎛

⎝
−
σ2(Z) + ρ2

2(Z)

2σ2(Z)
(η −

ρ2(Z)

σ2(Z) + ρ2
2(Z)

ε)

2

−
ε2

2(σ2(Z) + ρ2
2(Z))

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

.
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We would like to integrate out the random variable η. To do so, we rearrange the terms above

as follows

fε,η(ε, η) ={Φ(q1(Z)η −
λ(Z)ε

σ(Z)
) ×

¿
Á
ÁÀσ2(Z) + ρ2

1(Z)

2πσ2(Z)
exp

⎛

⎝
−
σ2(Z) + ρ2

1(Z)

2σ2(Z)
(η −

ρ1(Z)

σ2(Z) + ρ2
1(Z)

ε)

2
⎞

⎠
×

1
√

2π(σ2(Z) + ρ2
1(Z))

exp(−
ε2

2(σ2(Z) + ρ2
1(Z))

)

+Φ(q2(Z)η −
λ(Z)ε

σ(Z)
)×

¿
Á
ÁÀσ2(Z) + ρ2

2(Z)

2πσ2(Z)
exp

⎛

⎝
−
σ2(Z) + ρ2

2(Z)

2σ2(Z)
(η −

ρ2(Z)

σ2(Z) + ρ2
2(Z)

ε)

2
⎞

⎠
×

1
√

2π(σ2(Z) + ρ2
2(Z))

exp(−
ε2

2(σ2(Z) + ρ2
2(Z))

)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Φ (q1(Z)η −
λ(Z)ε
σ(Z) )

Φ (τ1(Z)ε)
×

¿
Á
ÁÀσ2(Z) + ρ2

1(Z)

2πσ2(Z)
exp

⎛

⎝
−
σ2(Z) + ρ2

1(Z)

2σ2(Z)
(η −

ρ1(Z)

σ2(Z) + ρ2
1(Z)

ε)

2
⎞

⎠
×

2
√

2π(σ2(Z) + ρ2
1(Z))

Φ (τ1(Z)ε) exp(−
ε2

2(σ2(Z) + ρ2
1(Z))

)

+
Φ (q2(Z)η −

λ(Z)ε
σ(Z) )

Φ (τ2(Z)ε)
×

¿
Á
ÁÀσ2(Z) + ρ2

2(Z)

2πσ2(Z)
exp

⎛

⎝
−
σ2(Z) + ρ2

2(Z)

2σ2(Z)
(η −

ρ2(Z)

σ2(Z) + ρ2
2(Z)

ε)

2
⎞

⎠
×

2
√

2π(σ2(Z) + ρ2
2(Z))

Φ (τ2(Z)ε) exp(−
ε2

2(σ2(Z) + ρ2
2(Z))

)

⎫⎪⎪
⎬
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=
1

2
{fε,η,1 (ε, η) + fε,η,2 (ε, η)} ,

where

q1(Z) =
λ(Z)ρV σV
σ(Z)

+
ρUσU(Z)

λ(Z)σ(Z)
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q2(Z) =
λ(Z)ρV σV
σ(Z)

−
ρUσU(Z)

λ(Z)σ(Z)

τ1(Z) =

ρ1(Z)

σ2(Z)+ρ21(Z)
q1(Z) −

λ(Z)
σ(Z)

√

1 +
q21(Z)σ

2(Z)

σ2(Z)+ρ21(Z)

τ2(Z) =

ρ2(Z)

σ2(Z)+ρ22(Z)
q2(Z) −

λ(Z)
σ(Z)

√

1 +
q22(Z)σ

2(Z)

σ2(Z)+ρ22(Z)

,

Each component of this density can be interpreted as the pdf of a bivariate skew normal distribution,

properly rearranged into the product of a conditional and a marginal density (Azzalini and Dalla

Valle, 1996). Therefore, the full joint density is a mixture of two skew normal distribution with equal

weights, 0.5. To obtain the conditional cdf of η given ε, we need to integrate the above expression

appropriately. The following integral

Ij =∫

bj

aj
Φ(qj(Z)η −

λ(Z)ε

σ(Z)
)×

¿
Á
ÁÀσ2(Z) + ρ2

j(Z)

2πσ2(Z)
exp

⎛
⎜
⎝
−
σ2(Z) + ρ2

j(Z)

2σ2(Z)

⎛

⎝
η −

ρj(Z)

σ2(Z) + ρ2
j(Z)

ε
⎞

⎠

2
⎞
⎟
⎠
dη,

for j = 1,2, cannot be computed in closed form. However, using the properties of the skew normal

distribution, it can be expressed as the cdf of a bivariate normal distribution.

With a slight abuse of notations, let us define the fictitious random variables (ηj , εj , κj), for

j = 1,2, such that the conditional distribution of (κj , ηj) given εj is a bivariate normal distribution

with mean and variance given by

µj(Z) =

⎛
⎜
⎜
⎝

τj(Z)εj
ρj(Z)

σ2(Z)+ρ2j(Z)
εj

⎞
⎟
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⎟
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Therefore, we have that

Ij =Φ2

⎛
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⎛
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for j = 1,2, where Φ2 is the cdf of a bivariate normal distribution, with mean 0 and covariance matrix

Ω. Ultimately, these integrals only involve numerical integration of a bivariate normal distribution,

which is readily available in any standard statistical software.

To conclude, we notice that, when there is no endogeneity issue in this model, the likelihood

function written above collapses to the product of two independent densities, so that the model as

written here provides a natural generalization of standard stochastic frontier analysis (Centorrino

and Pérez-Urdiales, 2020).

A.2. Algorithm and properties of the maximum likelihood estimator. Let θ̂
(0)
n =

(β̂
(0)
n , γ̂

(0)
n , δ̂

(0)
n , ρ̂

(0
U,n, ρ̂

(0)
V,n, σ̂

(0)
U,n, σ̂

(0)
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This is used to construct the residual

ε̂
(0)
i = Yi −m(Xi, Zi, β̂

(0)
n ).

These are then plugged into the likelihood function along with θ̂
(0)
n , to obtain the value of

the function at the point θ̂(0)n and its numerical first and second derivatives. The direction of

the search for a maximum is then chosen using a Quasi-Newton algorithm (such as the Broy-

den–Fletcher–Goldfarb–Shanno, BFGS, algorithm, see e.g. Fletcher, 1987, among others). The

search continues until the distance between consecutive iterations is smaller than a fixed tolerance

level. In order to be robust with respect to the choice of the initial condition, we restart the

optimization process from several different points.

If the true value of the parameter, θ0 is in the interior of a proper partition of the parameter

space, and the likelihood function is at least twice differentiable in a neighborhood of the true value,

we have that
√
n (θ̂n − θ0)

d
Ð→ N (0, I−1

(θ0)) ,

where I (θ0) is the Fisher’s information matrix at the true value of θ.

A.3. Conditional density of U given ε. From Centorrino and Pérez-Urdiales (2020), we have

that
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which implies

fε(ε) = 0.5 (fε,1 (ε) + fε,2 (ε)) .

Using these notations, we can rewrite

fη∣ε(η∣ε) =
f1 (ε)
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(9)

We multiply Equation (9) by the conditional density of U given (ε, η) to get

fU,η∣ε(u, η∣ε) = fU ∣ε,η(u∣ε, η)fη∣ε(η∣ε).

These computations give
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Now, we let
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in a way that the expression above can be rewritten as
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By integrating this joint conditional density with respect to η, we finally obtain
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(10)

which is a mixture of two half-normal densities, with weights given by fε,1 (ε) /(2fε (ε)) and

fε,2 (ε) /(2fε (ε)).

Hence
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The final expression in (7) follows by the properties of the cdf of the univariate normal distribution.

B. Simulations

We replicate a similar simulation scheme as in Amsler et al. (2017) and Centorrino and Pérez-

Urdiales (2020). We consider the following model

Yi = β0 +X1iβ1 +X2iβ1 + Vi −U0i exp (Z1iδ1 +Z2iδ2) ,

with β0 = 0 and β1 = β2 = 0.66074, δ1 = 0.05 and δ2 = −0.2 and where the random variables

(X1i,X2i, Z1i) are exogenous (i.e. fully independent of the composite error term), and Z2i is our

endogenous treatment variable. We consider one continuous instrument Wi, also fully independent

of the error term, and such that

Z2i = 1 (γ (X1i +X2i +Z1i +Wi) + η ≥ 0) ,

where 1 (⋅) is the indicator function, and γ = 0.31623.

The exogenous variables are generated independently from a normal distribution with means

equal to 0 and variances equal to 1. These variables are equicorrelated, with correlation parameter

equal to 0.5.

We generate the pair (V, η) from the following normal distribution

⎛
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1 0.5

0.5 1
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⎥
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⎥
⎦

⎞
⎟
⎠
,

so that ρV = 0.5.

The stochastic inefficiency term is generated as follows

U0 = σU ∣ρUη +
√

1 − ρ2
U ε∣,

where ε is a standard normal random variable.

We consider two simulation schemes that differ because of the value of the parameter ρU . In

setting 1, we take U0 to be uncorrelated with η. In setting 2, we take ρU = 0.5. We take increasing

sample sizes n = {250,500,1000}, and run R = 1000 replications for each scenario.
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Our estimation procedure is based on the maximization of the full likelihood in Equation (6).

There are two main issues for practical implementation. First, the parameter space is often very

large. In simulations, we maximize the log-likelihood function with respect to the full vector of

parameters. To reduce the dimensionality of the optimization problem, one can estimate the vector

of parameters γ by OLS. For a given γ, one can then maximize the full likelihood with respect to

the other parameters. One can use the estimator obtained in this fashion as a starting value for

maximization of the full likelihood. Standard errors are obtained by evaluating numerically the

Hessian matrix of the full likelihood.

We report results of these simulations in Tables 2 and 3 below.

N = 250 N = 500 N = 1000

TRUE Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
β0 0.0000 -0.0985 0.3077 -0.0492 0.1993 -0.0182 0.1169
β1 0.6607 0.6715 0.1103 0.6618 0.0749 0.6647 0.0557
β2 0.6607 0.6674 0.1157 0.6712 0.0788 0.6657 0.0550
δ1 0.0000 -0.0018 0.1289 -0.0027 0.0671 -0.0023 0.0365
δ2 0.0000 0.1544 1.0573 0.0637 0.5509 0.0294 0.1216
γ0 0.3162 -0.0043 0.0957 0.0024 0.0662 -0.0041 0.0447
γ1 0.3162 0.3197 0.1213 0.3212 0.0858 0.3181 0.0582
γ2 0.3162 0.3219 0.1227 0.3243 0.0851 0.3226 0.0572
γ3 0.3162 0.3271 0.1206 0.3168 0.0830 0.3182 0.0555
γ4 0.3162 0.3235 0.1204 0.3218 0.0836 0.3188 0.0573
σ2
U 2.7519 2.3698 1.1683 2.5371 0.8235 2.6265 0.5484
σ2
V 1.0000 1.1145 0.3893 1.0618 0.2552 1.0273 0.1615
ρU,η 0.0000 0.0009 0.3552 0.0131 0.2672 -0.0034 0.2202
ρV,η 0.5000 0.5383 0.1838 0.5178 0.1187 0.5170 0.0823

Table 2. Mean and Standard Errors of Estimators for simulation scheme 1

N = 250 N = 500 N = 1000

TRUE Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
β0 0.0000 -0.0938 0.3075 -0.0457 0.1873 -0.0116 0.1158
β1 0.6607 0.6611 0.1116 0.6608 0.0734 0.6606 0.0546
β2 0.6607 0.6605 0.1163 0.6676 0.0790 0.6643 0.0554
δ1 0.0000 -0.0028 0.1135 -0.0025 0.0707 -0.0011 0.0370
δ2 0.0000 0.0346 1.1139 0.0507 0.4546 0.0146 0.1489
γ0 0.3162 -0.0033 0.0961 0.0034 0.0660 -0.0031 0.0444
γ1 0.3162 0.3193 0.1208 0.3200 0.0851 0.3182 0.0581
γ2 0.3162 0.3218 0.1210 0.3239 0.0852 0.3224 0.0571
γ3 0.3162 0.3271 0.1213 0.3165 0.0827 0.3185 0.0564
γ4 0.3162 0.3264 0.1200 0.3232 0.0839 0.3193 0.0581
σ2
U 2.7519 2.5362 1.2892 2.6001 0.9123 2.7050 0.6287
σ2
V 1.0000 1.1028 0.4287 1.0687 0.2891 1.0155 0.1719
ρU,η 0.5000 0.4474 0.5394 0.4702 0.5196 0.4804 0.5028
ρV,η 0.5000 0.4934 0.2306 0.5047 0.1432 0.5059 0.0996

Table 3. Mean and Standard Errors of Estimators for simulation scheme 2
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Finally, we report summary statistics for our estimators of technical efficiency using the Battese-

Coelli formula provided in Equation 7. To give a reference point to the reader, in both simulation

schemes the mean technical efficiency is equal to

E [exp(−U)] = 0.3848.

We can appreciate how our estimator gives a plausible interval for the values of technical efficiency.

N = 250 N = 500 N = 1000

ρU = 0 ρU = 0.5 ρU = 0 ρU = 0.5 ρU = 0 ρU = 0.5

Min. 0.001 0.000 0.001 0.000 0.001 0.000
1st Qu. 0.280 0.277 0.267 0.267 0.258 0.255
Median 0.439 0.441 0.417 0.418 0.404 0.405
Mean 0.428 0.425 0.402 0.401 0.391 0.390
3rd Qu. 0.566 0.570 0.540 0.541 0.529 0.529
Max. 1.000 1.000 1.000 1.000 1.000 0.828

Table 4. Summary measures for the estimator of technical efficiency

C. Additional material for empirical application

In this section, we provide some additional information about the empirical application.

Table 5 contains descriptive statistics from the main variables used in the analysis. The variables

are divided by category for convenience of the reader.

Table 6 contains the results of the first-stage Probit regression.

Finally, we report here the results for the model where the production frontier does not s

The mean technical efficiency is reported at the bottom in Table 7, and Figure ?? provides the

kernel density estimators of this measure for both the stochastic frontier model assuming exogeneity

(dashed line) and the stochastic frontier model controlling for endogeneity (black line). The mean

technical efficiency for the model controlling for endogeneity is low (0.61). However, estimates of

technical efficiency vary considerably across farmers. Figure ?? shows that the distribution of the

technical efficiency scores is bi-modal, with a group of farmers with high scores and the remaining

farmers with low scores. As noted by Vo Hung Son et al. (1993), one potential explanation for

this level of dispersion is that the assumption of common technology across farmers is violated. In

particular, we observe that farmers participating in the soil conservation program tend to show high

technical efficiency, whereas non-participants generally have low efficiency scores (see Table 8).
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Mean St.Dev. Min Max
Output 1192.884 974.302 100.000 8468.200

Inputs
Land 1.741 1.867 0.250 28.000
Labor 76.510 56.851 7.000 566.000

Fertilizers 206.485 160.995 0.000 1945.500
Pesticides 110.762 113.665 0.000 1116.600
Seeds 62.364 57.717 0.000 750.000
Slope 0.585 0.493 0.000 1.000

Environmental variables
Organization 0.339 0.474 0.000 1.000
Education 2.058 0.994 0.000 4.706
Gender 0.932 0.252 0.000 1.000
Tenure 0.724 0.415 0.000 1.000

Off-Farm Income 2.151 3.129 0.000 8.666
Distance to plot (km) 0.791 1.015 0.000 7.570

Risk div 0.204 0.343 0.000 1.000
Participation

Instruments 0.465 0.499 0.000 1.000
Distance to closest city (km) 1.056 0.838 0.050 5.100

Prop of families with electricity in canton 0.824 0.223 0.000 1.000
Average daily wage in canton 4.208 0.594 3.000 6.000

Table 5. Descriptive Statistics
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Estimate Std. Error z value Pr(>|z|)
γ0 -4.569 1.799 -2.540 0.011
γLand 0.364 0.153 2.381 0.017
γLabour -0.317 0.160 -1.984 0.047
γFertilizer 0.169 0.110 1.532 0.125
γPesticides -0.022 0.048 -0.469 0.639
γSeeds 0.099 0.065 1.508 0.132
γOrganization 1.310 0.171 7.671 0.000
γEduc 0.121 0.074 1.625 0.104
γTenure 0.430 0.170 2.538 0.011
γOff−farmincome -0.001 0.022 -0.039 0.969
γDistance -0.040 0.063 -0.633 0.527
γSlope 0.416 0.142 2.930 0.003
γDiv -0.257 0.230 -1.117 0.264
γDistCity -1.469 0.715 -2.055 0.040
γDistCity2 0.132 0.065 2.025 0.043
γFamElect 4.031 2.029 1.986 0.047
γFamElect×DistCity 1.003 0.381 2.632 0.008
γDailyWage 0.585 0.374 1.566 0.117
γDailyWage×FamElect -0.712 0.471 -1.513 0.130
γDailyWage×DistCity 0.305 0.156 1.962 0.050
γOrganization×DistCity 0.638 0.225 2.842 0.004
γEduc×DistCity -0.280 0.115 -2.430 0.015

Table 6. First Stage Probit Regression

Exogeneity Endogeneity
Estimate Std. Err. Estimate Std. Err.

β0 3.8502 0.1748 6.1286 0.2749
βLand 0.368 0.0398 0.3767 0.0447
βLabour 0.6161 0.0421 0.5628 0.0471
βFertilizer 0.0247 0.0218 0.0247 0.0219
βPesticides -0.0112 0.0186 -0.0137 0.0198
βSeeds 0.0531 0.0199 0.0485 0.0206
βSlope 0.0593 0.0423 0.0304 0.0639
δOrganization 0.3038 0.2086
δEduc -0.1479 0.0936
δTenure -0.1419 0.1821
δOff−farmincome 0.0026 0.0307
δDistance -0.0537 0.1183
δSlope 0.0519 0.2179
δDiv 0.3420 0.2347
δEduc×Participation 1.3127 0.8670
δParticipation -5.2898 3.2339
ρU,η -0.8121 0.0259
ρV,η -0.6375 0.1360
σ2
U 0.3053 0.2251
σ2
V 0.1846 0.012 0.2048 0.0259

Mean TE 0.0523 0.6100

Table 7. Estimation of the efficiency frontier with and without accounting for treat-
ment endogeneity.
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Estimate Std. Error T-stat P-value
Intercept 0.402 0.007 59.971 0.000
Participation 0.446 0.012 35.987 0.000
Table 8. Regression of TE on participation dummy
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