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Minimum variance hedging: Levels versus first differences 

Abstract 

Nowadays it is widely accepted to estimate minimum variance hedge ratio regressions in first 

differences. There are both statistical and economic reasons for a first difference approach. 

However, no study has ever analyzed whether the first difference approach is also consistent 

with the theory of minimum variance hedging. In this paper we show, on the basis of a 

simulation study, that the first difference model with intercept does not provide hedge ratio 

estimates that are in line with the theory of minimum variance hedging. Only a linear 

regression model in levels provides theoretically consistent results. 

Keywords: Minimum variance hedging, level regression, first differences, hedge ratio. 

JEL classifications: Q11, Q13. 

1. Introduction

Nowadays, minimum variance hedging (Johnson, 1960; Stein, 1961) is probably one of the 

best-known concepts in the literature on agricultural futures markets. Less well known, 

however, is probably that it took more than twelve years for the approach to become 

established in the literature. The approach only became a standard after Heifner (1972) 

showed that the minimum variance hedge ratio (i.e., the hedge ratio that minimizes the cash 

price risk for a hedger) can also be obtained from a linear regression model. One would only 

have to regress the cash price of a commodity on its futures price, and the slope parameter 

would then correspond to the minimum variance hedge ratio originally derived by Johnson 

(1960). 

The exact formula of the minimum variance hedge ratio is: 

𝜌𝜌𝑐𝑐𝑐𝑐 ∗  
𝜎𝜎𝑐𝑐
𝜎𝜎𝑓𝑓

where 𝜌𝜌𝑐𝑐𝑐𝑐 defines the correlation coefficient of the cash and futures price; and, 𝜎𝜎𝑐𝑐 and 𝜎𝜎𝑓𝑓 the 

corresponding standard deviations of the cash and futures price. 
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Although, the minimum variance hedge ratio regression was initially also estimated in levels 

(e.g., Ederington, 1979; Berck, 1981; Dale, 1981), this changed quite quickly. Nowadays it is 

common practice to estimate the minimum variance hedge ratio regression in first differences 

(e.g., Park and Antonovitz, 1990; Brorsen et al., 1998; Brinker et al., 2009). There are both 

statistical and economic reasons for a first difference approach. For instance, first differences 

help to exclude the possibility of a spurious regression (Brown, 1985), and leading 

agricultural economists (Working, 1953; Peck, 1975) argued that hedgers (i.e., grain 

merchants or farmers) are more interested in the correlation of price changes than price 

levels. 

However, no study has ever analyzed whether the first difference approach is also compatible 

with the theory of minimum variance hedging (Johnson, 1960; Stein, 1961). In this paper, 

however, we want to show on the basis of a simulation study that the last point is quite 

important, since the first difference model with intercept does not provide hedge ratio 

estimates that are consistent1 with the theory of minimum variance hedging. As our results 

will show, only a linear regression model in levels provides hedge ratio estimates that are in 

line with the theory of minimum variance hedging. 

In the following we will further analyze the last point. We will use a simple simulation study 

to show that only a linear regression model in levels provides hedge ratio estimates that are 

consistent with the theory of minimum variance hedging. Finally, we will conclude. 

 

2. Levels versus first differences 

For the sake of simplicity, we have limited our simulation study to a single futures contract. 

We decided to focus on an inverse market2, as Johnson (1960) did in his original article. 

However, our results also apply to a carry market. 

                                                           
1 When we talk about consistent in the following, we always mean consistent from a theoretical point of view 

and not from a statistical point of view. 
2 The term inverse market refers to a market situation in which the cash price is higher than the futures price. 

Inverse markets are known for discounting storage. In fact, short hedgers (i.e. those with a short position on the 

futures market) would suffer a hedging loss on an inverse market. The opposite of an inverse market is a carry 

market. Carry markets renumerate storage (Hieronymus, 1977). 



For the simulation study, we first created a single cash price series of length 21. We assumed 

that the cash price would follow a random walk with a mean of 94.75 and a variance of 0.05. 

We also assumed a drift of 0.25. We repeated the last procedure 100,000 times. In the end, 

we received 100,000 randomized cash price series. We used a similar approach to construct 

the basis3 series. We assumed that the basis would follow a random walk with drift, where 

the mean is -5.25 and the variance is 0.0025. The drift is again 0.25. Again, we repeated the 

procedure 100,000 times to obtain 100,000 randomized basis series. The final step was to 

create the futures price series. Here we always added a cash price series with a basis series to 

get 100,000 futures price series. See Appendix A for the program code. 

To have a reference point, we first calculated the minimum variance hedge ratio using the 

above formula of Johnson (1960). The average minimum variance hedge ratio for all 100,000 

simulations is 0.4982. As expected, this result is exactly the same as the result of a minimum 

variance hedge ratio regression in levels, see Table 1.4  

 

Table 1 

Comparison level versus first difference regression (algebraic solution = 0.4982) 

 Levels First differences 

with intercept 

   

MVHR 0.4982 0.9521 

Gross profit -0.0308 -4.5206 

   

Notes: Calculated averages for 100,000 simulations. MVHR is the abbreviation for minimum 

variance hedge ratio. 

 

                                                           
3 Technically, the basis corresponds exactly to the difference between the cash price and the futures price (i.e., 

basis = cash price – futures price). If the cash price is relatively low compared to the futures price, the basis is 

called weak. In the opposite case, the basis is described as strong. 
4 Simulation results for a random walk without drift are shown in Appendix B. 



More interesting, however, are the results for the first difference model. As Table 1 shows, 

the average minimum variance hedge ratio for the first difference model with intercept 

(column 3) is 0.9521. This value obviously not only differs significantly from the algebraic 

solution (the level regression) with 0.4982, but also comes (very) close to a full hedge.5 In 

fact, if we had not assumed a random walk with drift for the basis but a deterministic trend, 

we would have obtained a value of one, i.e. a full hedge.  

However, a full hedge only minimizes the cash price risk and not the basis risk (Hieronymus, 

1977). The basis risk, however, was the main reason why Johnson (1960) originally 

developed the minimum variance hedge approach. In the 1950s, the New York coffee market, 

which was mainly investigated by Johnson (1957a,b), was chronically inverse6, and the 

majority of the New York coffee importers complained about the seasonally weakening basis, 

which gave them regular hedging losses as short hedgers; because of the weakening basis, the 

coffee importers could not hedge without having to buy coffee in Brazil for a stronger basis 

and resell it in New York for a weaker basis (Gray, 1960a). On the other hand, the coffee 

importers could not do without hedging either, since the U.S. banks always required a hedge 

as security for the interim financing of a forward transaction (Gray, 1960b). Johnson's main 

concern, therefore, was to develop a new hedging approach to minimize not only the cash 

price risk but also the basis risk causing the hedging losses. 

As Table 1 shows, the first difference model with intercept is in clear contradiction to 

Johnson’s efforts to also minimize the basis risk and thus the hedging losses. If anything, the 

model only minimizes parts of the basis risk, but not the entire basis risk. In fact, in the 

concrete example, the New York coffee importers would still make an average hedging loss 

of -4.5206 (column 3) due to the only partially hedged basis risk.7 Consequently, we can 

conclude (at least on the basis of the simulation results) that the first difference model with 

intercept is not consistent with the theory of minimum variance hedging. 

                                                           
5 In fact, hedge ratios in the literature are usually close to one when first differences are used (Brown, 1985). 

The general rule is that the higher the correlation between the cash price and the futures price, the closer the 

hedge ratio is to one. 
6 Only once between 1950 and 1957 was the New York coffee market not inverse, compare Figure 2 in Gray 

(1960b). 
7 For comparison, the full hedge would have caused a hedging loss of -5. 



The last point, however, can also be further substantiated econometrically. When two prices 

(such as the cash price and the futures price) converge8, the drift between the two prices is 

known to be captured by the intercept in a first difference model (Enders, 2014). In the 

concrete example, however, the drift corresponds to the basis, more precisely to the average 

change in the basis (a proof of this can be found in Appendix C). However, if the non-

random, deterministic part of the basis risk (i.e., the average basis change) is already captured 

by the intercept, the slope parameter of the first difference model only provides a hedge ratio 

that minimizes the cash price risk and the random basis risk, but not the deterministic basis 

risk. Johnson’s main concern, however, was never to minimize only the random basis risk but 

also the deterministic basis risk (i.e., the chance in the basis), especially since the 

deterministic basis risk was primarily responsible for the hedging losses the New York coffee 

importers experienced in the 1950s. 

As it turns out, the only approach that is consistent with Johnson’s theory of minimum 

variance hedging, is the minimum variance hedge ratio regression in levels. Only the level 

regression minimizes the total basis risk and thus the hedging losses (see Table 1, column 2), 

which were the main problem of the New York coffee importers in the 1950s (Gray, 

1960a,b).9 

However, we have so far left out one important point, namely the measurement of hedging 

effectiveness. In the literature it is common practice to use the adjusted R-squared to measure 

hedging effectiveness (Ederington, 1979). According to Ederington, the R-squared measures 

the percentage of the cash price risk that is offset by a minimum variance hedge. For instance, 

in the concrete example, the level regression would offset 98.93 percent of the cash price risk, 

whereas the first difference model with intercept would only offset 94.70 percent, see Table 

2. 

 

 

                                                           
8 If the cash and futures price did not converge at contract maturity, arbitrageurs could make a risk-free profit. 

They could buy on the market with the lower price and sell on the market with the higher price (Hieronymus, 

1977). 
9 In order to avoid a spurious regression, we recommend always testing for cointegration in advance. If the latter 

is given, there should be no statistical problems with a level regression. The slope parameter should measure the 

long-run minimum variance hedge ratio. 



Table 2 

Comparison hedging effectiveness cash price risk versus basis risk 

Hedging effectiveness 

cash price risk 

Hedging effectiveness 

basis risk 

Levels First differences 

with intercept 

Levels First differences 

with intercept 

    

98.93 % 94.70 % 99.38 % 9.59 % 

    

Notes: Calculated averages for 100,000 simulations. 

 

Instead of the R-squared, we would propose an alternative measure for measuring the 

hedging effectiveness. We would propose to focus on the basis risk rather than the cash price 

risk. The basis risk had been the main problem of the New York coffee importers, and 

unfortunately the R-squared does not provide specific information on how much of the basis 

risk is offset by the respective minimum variance hedge regression. Alternatively, we would 

propose following measure of hedging effectiveness: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Our approach takes advantage of the fact that there is a one-to-one relationship between the 

basis risk and the gross profit of a hedge. For instance, it is known that a full hedge only 

minimizes the cash price risk, but not the basis risk (Hieronymus, 1977). Therefore, the gross 

profit of the full hedge can be directly attributed to the unhedged basis risk. Similarly, the 

gross profit of the first difference model can be attributed to the unhedged non-random, 

deterministic basis risk (see above). In the way the measure is constructed, the numerator 

always corresponds to the hedged basis risk, and the denominator to the total basis risk (i.e., 

the random and deterministic basis risk). 

In contrast to the R-squared, our measure measures how much of the basis risk is offset by 

the respective minimum variance hedge regression. For example, the level regression offsets 

99.38 percent of the basis risk, whereas the first difference model with intercept only offsets 

9.59 percent of the basis risk, see Table 2. Unlike the R-squared, our new measure clearly 



shows what the main problem of the first difference model is: The first difference model only 

partially minimizes the basis risk, which is in clear contradiction to Johnson’s theory of 

minimum variance hedging. 

The previous results are quite interesting, as they challenge the common practice of 

estimating minimum variance hedge ratio regressions in first differences (e.g., Brorsen et al., 

1998; Brinker et al., 2009). As we have shown above, first differences are clearly in 

contradiction with the theory of minimum variance hedging. If minimum variance hedge 

ratios are really of interest, then there is no other way than to estimate the minimum variance 

hedge ratio regression in levels.10 First differences would not provide hedge ratio estimates 

that are consistent with the theory of minimum variance hedging. 

Our results, however, should not be misunderstood. We do not deny that there may be 

situations in which hedgers want to minimize only the random basis risk, but not the 

deterministic basis risk. In these situations, the first difference approach is clearly the right 

choice. Our point is, when the first difference approach is used for hedging, it should not be 

called a minimum variance hedge, which it clearly is not, but a random basis risk hedge. In 

particular, potential users of the hedge should be made aware that they are still exposed to a 

significant basis risk that may or may not work out in their favor.   

 

3. Conclusions 

In this paper we have investigated whether it is theory conform to estimate the minimum 

variance hedge ratio regression in first differences, as it is common in the literature. 

Interestingly, we were able to show that the first difference model with intercept does not 

provide hedge ratio estimates that are compatible with the theory of minimum variance 

hedging (Johnson, 1960). The first difference model minimizes only the random basis risk, 

but not the total basis risk. The total basis risk, however, was actually the original reason for 

Johnson to develop the minimum variance hedge approach. The only approach that provides 

hedge ratio estimates consistent with the theory of minimum variance hedging is a linear 

regression model in levels. 

                                                           
10 Note that to estimate the minimum variance hedge ratio consistently, it is necessary to use spread-adjusted 

data (i.e., spread-adjusted continuous futures and cash prices). Non-adjusted data would deliver inconsistent 

estimates (Prehn, 2020).  
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Appendix A 

 

We used the software R for our simulation study. 

 

### Simulation study ### 
 
set.seed(123) 
 
 
### Specify random walk function ### 
 
RW <- function(N, x0, mu, variance) { 
 
  z <- cumsum(rnorm(n = N, mean = 0, sd = sqrt(variance))) 
  t <- 1:N 
  x <- x0 + t * mu + z 
  return(x) 
  } 
 
 
### Construction of vector ### 
 
n <- 100000 
 
vec_full_hedge_profit <- rep(NA, n) 
 
vec_mvhr <- rep(NA, n) 
 
vec_coef_levels <- rep(NA, n) 
vec_levels_adj_r2 <- rep(NA, n) 
vec_levels_profit <- rep(NA, n) 
 
vec_coef_differences_with <- rep(NA, n) 
vec_differences_with_adj_r2 <- rep(NA, n) 
vec_differences_with_profit <- rep(NA, n) 
 
 
### For loop ### 
 
for(i in 1:n){ 
 
 ### construction futures price ### 
 
 drift <- 0.25 
 cash_price <- RW(21, 94.75, drift, 0.05) 
 
 ### construction basis ### 
 
 basis <- RW(21, -5.25, 0.25, 0.0025) 
 
 ### construction cash price ### 



 
 futures_price <- cash_price + basis 
 
 ### Calculating profit full hedge ### 
 
 vec_full_hedge_profit[i] <- -(cash_price[1] - futures_price[1]) + (cash_price[21] - futures_price[21])
  
 
 ### Calculating MVHR algebraically ### 
 
 vec_mvhr[i] <- cor(cash_price, futures_price) * (sd(cash_price)/sd(futures_price)) 
 
 ### level regression ### 
 
 fit_levels <- lm(cash_price ~ futures_price) 
 vec_coef_levels[i] <- coef(fit_levels)[2] 
 vec_levels_adj_r2[i] <- summary(fit_levels)$adj.r.squared  
 
 ### profit level regression ### 
 
 fit_aux <- lm(I(diff(cash_price) - (coef(fit_levels)[2] * diff(futures_price))) ~ 1) 
 vec_levels_profit[i] <- coef(fit_aux)[1] * 20 
 
 ### first difference regression, with intercept ### 
 
 fit_differences_with <- lm(diff(cash_price) ~ diff(futures_price)) 
 vec_coef_differences_with[i] <- coef(fit_differences_with)[2] 
 vec_differences_with_adj_r2[i] <- summary(fit_differences_with)$adj.r.squared 
 
 ### profit first difference regression, with intercept ### 
 
 vec_differences_with_profit[i] <- coef(fit_differences_with)[1] * 20 
} 
 
 
### Calculating average values ### 
 
### profits ### 
 
mean(vec_levels_profit) 
mean(vec_differences_with_profit) 
mean(vec_full_hedge_profit) 
 
 
### MVHRs ### 
 
mean(vec_coef_levels) 
mean(vec_coef_differences_with) 
 
 
### Adjusted R2 ### 
 
mean(vec_levels_adj_r2) 
mean(vec_differences_with_adj_r2) 
 
 



### Hedging effectiveness basis risk ### 
 
mean( (vec_full_hedge_profit - vec_levels_profit)/vec_full_hedge_profit ) 
mean( (vec_full_hedge_profit - vec_differences_with_profit)/vec_full_hedge_profit ) 
 
 

 

Appendix B 

 

Table B1 

Comparison level versus first difference regression (algebraic solution = -0.0129) 

 Levels First differences 

with intercept 

   

MVHR -0.0129 0.9520 

Gross profit -0.1423 -4.7603 

   

Notes: Calculated averages for 100,000 simulations. MVHR is the abbreviation for minimum 

variance hedge ratio. 

 

Appendix C 

In principle it is quite easy to prove that the intercept parameter of the first difference model 

captures the average change in the basis. For this purpose, first look at the definition of the 

intercept parameter estimator 𝛼𝛼�: 

𝛼𝛼� =  ∆𝑝𝑝����𝑐𝑐,𝑡𝑡 −  𝛽̂𝛽 ∆𝑝𝑝����𝑓𝑓,𝑡𝑡, 

where ∆𝑝𝑝����𝑐𝑐 and ∆𝑝𝑝����𝑓𝑓 correspond to the mean value of the cash price and the futures price in 

first differences. 𝛽̂𝛽 is the estimator of the slope parameter. And, the index t = 1, …, n, where 

n is the number of observations.  

This definition can be further simplified by assuming that 𝛽̂𝛽 = 1 and the definitions of the 

differenced cash and futures price are included. The definition of 𝛼𝛼� then is   

𝛼𝛼� =  𝑝̅𝑝𝑐𝑐,𝑡𝑡  −  𝑝̅𝑝𝑐𝑐,𝑡𝑡−1  − � 𝑝̅𝑝𝑓𝑓,𝑡𝑡  −  𝑝̅𝑝𝑓𝑓,𝑡𝑡−1 �. 



Furthermore, if one considers the definition of the basis, 𝑏𝑏 =  𝑝𝑝𝑐𝑐 −  𝑝𝑝𝑓𝑓, and rearranges the 

former definition, then 

𝛼𝛼� =  𝑝̅𝑝𝑐𝑐,𝑡𝑡 −  𝑝̅𝑝𝑓𝑓,𝑡𝑡 − � 𝑝̅𝑝𝑐𝑐,𝑡𝑡−1 −  𝑝̅𝑝𝑓𝑓,𝑡𝑡−1 � =  ∆𝑏𝑏����𝑡𝑡. 

According to this definition, the intercept parameter 𝛼𝛼 captures the average change of the 

basis over the time period of the hedge. 

 


