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On Choosing a Base Coverage Level
for Multiple Peril Crop

Insurance Contracts

Alan P. Ker and Keith H. Coble

For multiple peril crop insurance, the U.S. Department of Agriculture's Risk

Management Agency estimates the premium rate for a base coverage level and then

uses multiplicative adjustment factors to recover rates at other coverage levels.

Given this methodology, accurate estimation of the base coverage level is critical.

Currently under consideration is a change in the base coverage level from 65% to

50%. The purpose of this analysis was to provide some insight into whether such a

change should or should not be carried out. Not surprisingly, our findings indicate

that the higher coverage level should be maintained as the base.
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Introduction

This study seeks to analyze a potential policy change by the U.S. Department of Agricul-
ture's Risk Management Agency (RMA) in its approach to setting multiple peril crop

insurance (MPCI) premium rates. MPCI enables agricultural producers to purchase
insurance against realizations below target yield levels. These target yield levels, more
commonly termed coverage levels, are 50%, 55%, 60%, 65%, 70%, and 75% of the
expected producer yield. For example, if the expected yield for a producer of irrigated

corn is 150 bushels/acre, then a contract purchased at the 50% coverage level insures
against a realization below 75 bushels/acre (0.5 x 150 bushels/acre = 75 bushels/acre),
while a contract at the 65% coverage level insures against a realization below 97.5
bushels/acre (0.65 x 150 bushels/acre = 97.5 bushels/acre).

RMA estimates the premium rate for a base coverage level and then uses multi-
plicative adjustment factors to recover rates at other coverage levels. Currently, the 65%
coverage level is used as the base. Consider the following example. For a given producer,
assume the estimated premium rate at the 65% coverage level is 2.00% and the multi-
plicative adjustment factors for the 50% and 75% coverage levels are 0.25 and 2.00,
respectively. The premium rate for the 50% coverage level is derived as 2.00% x 0.25 =
0.50%. Had the estimated rate at the 65% coverage level been 1.00%, the premium rate

for the 50% coverage level would be 1.00% x 0.25 = 0.25%. Similarly, the rate for the

75% coverage level for the two cases would be 2.00% x 2.00 = 4.00%, and 1.00% x 2.00

= 2.00%, respectively.

Ker is an assistant professor in the Department of Agricultural and Resource Economics, University of Arizona; Coble is an

assistant professor in the Department of Agricultural Economics, Mississippi State University.
The authors thank two anonymous reviewers for their constructive and helpful comments.
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The actuarially fair premium rate for a crop insurance contract that guarantees a

percentage, say X, of the expected yield, say ye, is given as:

(1) Premium Rate = P(Y< Xye) ()ye -E(Yly < Lye))
Xye

where 0 <•X < 1, the expectation operator and probability measure are taken with respect

to the conditional yield density f(y 1 t), and t is the minimal o-field generated by the

information known at time of rating. Note that the premium rate is expressed as the

ratio of the expected indemnity to the total insurer liability. As such, it represents a
percentage of total insurer liability.

Given the methodology employed by RMA in setting MPCI rates, accurate estimation

of the base coverage level is critical.1 Currently under consideration is a change in the

base coverage level from the 65% level to the 50% level. The objective of this study is to

provide some insight into whether such a change should or should not be carried out. To

that end, we undertake the following analysis. First, the conditional yield densities are

estimated for two counties, followed by an outline of the estimation approach. From the

estimated conditional yield densities, we simulate sequences of independent or

exchangeable yields and estimate the empirical rates at both coverage levels for each

sequence. Given the empirical rate at one coverage level, we are able to derive the

associated rate for the other coverage level using the multiplicative adjustment factor.

This enables us to calculate the mean squared error at both coverage levels for both the

estimated empirical rates and the corresponding derived rates. We then provide a

discussion of the simulation approach and results, followed by the concluding section
which highlights our recommendation regarding the potential policy change and sum-

marizes the analysis.

Spatio-temporal Process of Yields

As stated above, we estimate conditional yield densities for two counties. The U.S.

Department ofAgriculture/National Agricultural Statistical Service (USDA/NASS) yield

series for all-practice corn from Shelby County in west-central Iowa and wheat from

south-central Kingman County in Kansas are chosen for the empirical example. It is felt

that these counties reflect not only a diversity of crops and regions, but also the

extremes of conditional yield densities-one severely skewed, the other approximately
symmetric. We use county-level yield data rather than farm- or unit-level yield data
because of availability. Each of the series contained observations for the 1957-96 crop

years.
Basically, yields follow a spatio-temporal process. By averaging over some spatial

region (field, farm, or county) and conditioning on the temporal process, the conditional
mean yield density for that given space at a point in time is recovered. As noted, the

spatial region of interest for our analysis is the county. The discussion in this section is

presented in two parts: (a) the spatial process of yields, and (b) the temporal process of

1 This study does not focus on the obvious problem of assuming identical scale adjustment factors for each producer-crop
combination.
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yields. The spatial process of yields is considered first because of its implications regard-
ing distributional assumptions in modeling the temporal process of yields.

Spatial Process of Yields

Consider that yields come from one of two distinct subpopulations, a catastrophic sub-
population and a noncatastrophic subpopulation. That is, in years when a catastrophic
event occurs (such as a drought, flood, freeze, etc.), yields are drawn from the cata-
strophic subpopulation. Conversely, in years when a catastrophic event does not occur,
yields are drawn from the noncatastrophic subpopulation. Thus, conditional yields may
best be modeled as a mixture of two unknown distributions where the secondary distri-
bution (from catastrophic years) lives on the lower tail of the primary distribution (from
noncatastrophic years) and has significantly less mass. The secondary distribution
would be expected to have less mass because catastrophic events are realized with far
less frequency than their complement. Also, the secondary distribution would be
expected to live on the lower tail of the primary distribution because realized yields tend
to be far less in catastrophic years.

We conjecture that yields are highly dependent across space with respect to the
subpopulation from which they are drawn. For example, if a producer experiences a
drought, it is highly likely a neighboring producer also experiences a drought. On the
other hand, given which subpopulation is realized, we would expect that yields are only
mildly dependent across space.2 Under this conjecture, counties may represent enough
land mass such that Central Limit Theorems (CLTs) for spatially dependent processes
may be appealed to.3 That is, conditional spatial dependence dies off at a sufficiently
quick rate such that CLTs for dependent processes may be invoked.4 Therefore, mean
yields for a county would be a mixture of two Gaussians where the secondary Gaussian
(catastrophic subpopulation) lives on the lower tail of the primary Gaussian (noncata-
strophic subpopulation) and has significantly less mass.

There is empirical evidence to suggest conditional yield densities may be modeled as
a mixture of two Gaussians. Ker (1996) tests normality in the set of Iowa counties for
all-practice corn. At a 5% significance level, normality is rejected in 31% of the counties.
However, if catastrophic yield realizations are purged, normality is rejected in only 7%
of the counties. Thus, conditional yields appear to be Gaussian in noncatastrophic years,
suggesting land mass in most Iowa counties is sufficient for conditional spatial depen-
dence to die off and CLTs for dependent processes to apply. Unfortunately, there are
insufficient catastrophic yield realizations per county (< 5) to test normality of the
secondary distribution (catastrophic subpopulation). With such limited realizations,
testing normality against reasonable alternatives has very low power. Therefore,
although conditional spatial dependence dies off sufficiently quickly in noncatastrophic
years, there is no evidence to suggest this is or is not the case in catastrophic years.

In addition to the above evidence, visual inspection of kernel estimates of numerous
yield densities suggests they may be represented by restrictions on the parameter space

2 See Ker and Goodwin (1998a) for evidence supporting this conjecture.
3 For a thorough review of CLTs for dependent processes including m-dependence, mixing, and Martingale differences as

well as the functional CLT, the reader is directed to either Davidson or Hendry.
4 Conditional spatial dependence refers to the spatial dependence given which subpopulation is realized.
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of a mixture of two Gaussians. The Gaussian mixture as conjectured necessarily leads
to a negatively skewed and possibly bimodal density. Thus, the Gaussian mixture is con-
sistent with the overwhelming empirical evidence of negative skewness for all-practice
corn yield data.

In empirical applications, most researchers have used the beta distribution rather
than a mixture distribution (Babcock and Hennessy; Coble et al.; Lee, Harwood, and
Somwaru; Borges and Thurman; Kenkel, Busby, and Skees; Nelson; Nelson and
Preckel). Ker and Coble discourage the use of the beta distribution for modeling yields.
Some researchers have assumed yields follow other distributional families. Gallagher
used a gamma distribution, while Moss and Shonkwiler employed an inverse hyperbolic
sine transformation to model yields. Ker (1997) used a mixture of two Gaussians.

Temporal Process of Yields

The temporal process of yields is governed by two main factors: the current state of
technology and the weather. Many ananalysts have used a stochastic trend to model the
changing state of technology for good reason. Moss and Shonkwiler point out that
technological innovations and the adoption of those technical innovations are random
events. Technological innovations may be considered a Poisson process where each
innovation has a distribution surrounding the magnitude of its effect on crop yields. The
adoption of such technologies is neither instantaneous nor necessarily complete in the
sense that many technologies are never 100% adopted because of newer innovations.

Myers and Jayne provide a very interesting regime shift-diffusion model to estimate
yield trend for maize yields in Zimbabwe. Not surprisingly, it was necessary to specify
a priori the shape of the diffusion path and constrain that path to be identical across
innovations. Moss and Shonkwiler used a Kalman filter model which nests a deter-
ministic trend model inside a stochastic trend model. Many others have used either IMA
(1, q) models or the error correction form of those models (Goodwin and Ker; Ker and
Goodwin 1998b; Ker 1997; Bessler). One problem with the above models is that the
estimated trend does not belong to the class of nondecreasing functions. If we are
attempting to estimate the current state of technology, and technology is a non-
decreasing set, then the true function would, in most situations, belong to the class of
nondecreasing functions.5

Many of the above approaches minimized the L 2 norm.6 Only Ker (1997), Borges and
Thurman, and Moss and Shonkwiler employed likelihood methods which explicitly dealt
with nonnormality. Moss and Shonkwiler used an inverse hyperbolic sine transforma-
tion to account for differences between third and fourth Gaussian population moments
and the third and fourth sample moments. Although their model does not allow for
bimodality, given their more aggregate data (U.S. corn yields), this is not of great
concern. Spatial aggregation should be sufficient such that there is enough mixing
between the catastrophic subpopulation and the noncatastrophic population. 7 However,

5 Clearly, there exist circumstances where the function should not be restricted to the nondecreasing class. One need only
consider peanut and tobacco yields.

6 See Goodwin and Ker for justification of minimizing the L2 norm for the insurance application despite nonnormality.
7As posited above, consider that yields come from one of two subpopulations. As spatial area increases, the variance of each

subpopulation must necessarily decrease (assuming spatial correlation is not perfect), causing a greater tendency for
bimodality. However, a secondary and more important implication of increasing spatial aggregation is mixing between the
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for county yield data, bimodality is a possibility. Borges and Thurman used the beta
distribution. This also does not allow for bimodality.

Finally, Ker (1997) used a mixture of two Gaussians to model county yields for all-
practice corn in crop yields. In that study, yields were modeled using semi-nonpara-
metric maximum likelihood methods (Hermite series expansions) with a Gaussian
mixture for the innovations. Although this allows for bimodality, and although CLTs for
spatially dependent processes suggest a Gaussian for the primary or noncatastrophic
distribution, there is little evidence to suggest or condemn a Gaussian for the secondary
or catastrophic distribution. Note that accurate estimation of the secondary distribution
is crucial for rating contracts. Recall, an insurance contract truncates the lower tail of
the conditional yield density. The premium rate for that contract is derived from the
truncated tail. The majority of mass in the truncated tail is from the secondary distri-
bution, and thus the majority of the rate is derived from the secondary distribution.
Therefore, it is crucial to estimate the secondary distribution with a high level of
confidence.

A major concern with the beta, gamma, and hyperbolic sine distributions is that they
do not allow bimodality. Concern also arises with the Gaussian mixture in that there
is little empirical evidence to either support or condemn its use. Given the above
problems associated with the parametric forms, we do not feel comfortable specifying
a likelihood. A viable alternative is nonparametric regression. The nonparametric
approach has many advantages for our analysis. First and foremost, we do not assume
the conditional yield distribution is a restriction on the parameter space of a known
(with probability one) distributional family. Second, the nonparametric approach
allows for the randomness of technological innovations and their adoption without
constraints.8

Nonparametric Regression-The Isotonic
Robust Super Smoother

In this section, we introduce a new approach to estimating the technology component
of yields. There are many types of smoothing or nonparametric regression methods (e.g.,
kernel smoothing, local regression, splines, super smoothing). A kernel smoother was
not used because of the nonstationarity of the yield data. Essentially, the kernel-
smoothed estimate of the dependent variable at a given value for the independent
variable, say X0 , is the weighted mean of all dependent realizations with weights
decreasing as the distance between X0 and the other values of the independent variable
increase. Thus, if the data are nonstationary in that there exists a positive trend
component, then predictions will tend to be negatively biased and lag behind. This may
be fixed by smoothing with a trend line rather than the kernel smoother. Locally

subpopulations. Mixing between the two subpopulations will decrease the tendency toward bimodality. If the spatial process
of yields is a-mixing, then CLTs for dependent processes suggest the mixing between the two subpopulations will begin to
dominate, leading to a unimodal density and eventually a single Gaussian density. Clearly, the results of Moss and
Shonkwiler suggest that the U.S. is not sufficiently large for the spatial mixing between the two subpopulations to result in
a Gaussian density.

8 Of course, we cannot recover the adoption cycle as do Myers and Jayne.

Ker and Coble
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weighted regression smoothing estimates a different regression line at each realization

(yt, xt). The predicted value (yO) is recovered using weighted least squares within a
neighborhood of xO. Again, the weights are defined as a decreasing function of distance

between X0 and the other values of the explanatory variables which belong to the

predetermined neighborhood. The size of the neighborhood is determined by cross-

validation methods. Keeping the size of the neighborhood constant across all reali-

zations is not optimal if the error variance or the curvature of the underlying function

varies over the range of the independent variable (Cleveland). An increase in the

variance requires a larger neighborhood, whereas an increase in the curvature requires

a smaller neighborhood. Local cross-validation, employed to recover the size of the

neighborhood, avoids this problem by choosing a different size neighborhood for each

value of the independent variable x, based on local cross-validation. Using local cross-

validation to determine the neighborhood at each value of the independent variable is

termed "super smoothing."
As with locally weighted least squares, the super smoother minimizes, locally, a

weighted least squares criterion. However, given that yields are not believed to be

Gaussian, even locally, we have not overcome our distributional problems. As such, we

augment the super smoother by using robust techniques, specifically an m-estimator.

Although m-estimators are susceptible to high leverage points (outliers in the inde-

pendent variable), they are robust to outliers in the dependent variable. Given the

independent variable is time (consequently we are assured of no outliers), m-estimators

are a viable option for our application. 9 If one considers the secondary or catastrophic
distribution as contaminating the primary distribution, and assumes the CLTs for

dependent processes result in the primary distribution being Gaussian, then the m-

estimators should model yields very well. This type of situation is what m-estimators

were designed to accommodate: a Gaussian distribution with a contaminant.

Unlike standard super smoothing, using an m-estimator inside the super smoother

is not a canned procedure in the S-PLUS computer program. After considering various

weighting functions for m-estimators (Andrews, Huber, and bisquare), we found no

reason to deviate from the default S-PLUS m-estimator for robust regression. Thus, we

employ the Huber m-estimator until convergence and then perform two iterations of the

bisquare. We use this m-estimator not just in the final estimates, but in the local cross-

validation as well.
We wish to isotonize or constrain the smoothed estimate to belong to the class of non-

decreasing functions. Therefore, we isotonize it using the pool-adjacent-violators (PAV)

algorithm in Hanson, Pledger, and Wright. Hildenbrand and Hildenbrand employed this
approach in nonparametric estimation of Engel curves. The isotonic robust super

smoother is fully delineated in Appendix A.10

The resulting estimates of the temporal processes of yields for Shelby County corn

and Kingman County wheat are illustrated in figures 1 and 2, respectively. The raw

yield data also are plotted. Not surprisingly, the figures support the assertions of Ker

and Goodwin (1998b); Goodwin and Ker; Myers and Jayne; and Moss and Shonkwiler

that yield trend is erratic and lumpy.

9See Hardle for a kernel m-smoother using the Fast Fourier Transform, and Cleveland using robust techniques with locally
weighted regression techniques.

10 The SAS-IML code for the isotonic robust super smoother is available from the lead author by request.
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Figure 1. Isotonic robust super smoother: Shelby County,
Iowa, all-practice corn
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Year
Figure 2. Isotonic robust super smoother: Kingman County,
Kansas, wheat
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Heteroskedasticity Considerations

Using time-series data to estimate the conditional yield densities is complicated by the

possibility that crop yield variance has changed over time. For example, yield variance

may increase with yield levels, suggesting yields have a constant coefficient of variation.

Many tests for heteroskedasticity are available. However, most assume normality. Thus,

we employ the Goldfeld-Quandt nonparametric peak test for heteroskedasticity. Since
rank or count type tests only exploit the ordinal properties of the data, they are more
generally applicable but less powerful.

The Goldfeld-Quandt nonparametric peak test is no exception. Under the null of
homoskedasticity, thep-value for the unstandardized innovations (e) for Shelby corn is

16.67%, while the p-value for the standardized innovations (e/9) is 50%. For Kingman
wheat, thep-value for the unstandardized innovations is 4.167%, while the p-value for
the standardized innovations is 50%. As a result, we construct a sequence of identically

distributed exchangeable yields from the unknown density f(y 1 t) for each county using
the standardized innovations rather than the unstandardized innovations. Therefore,
the sequence is:

(2) Y97,t = X Y97 +997 V t =1,2,...,40,
' t)

where y97 is the predicted value for 1997, e^ is the unstandardized innovation at reali-

zation t, and 9t is the fitted value at realization t. The predicted value 997 is recovered

using the parameter estimates from the robust super smoother at the final realization.

Consequently, we obtain an exchangeable realization from f(y 1\ ) for each standardized
innovation.

Estimation of Conditional Yield Distributions

We employ nonparametric kernel methods to estimate the conditional yield densities.
Nonparametric kernel methods have been sparingly used in the agricultural economics
literature (see Ker and Goodwin 1998b; Goodwin and Ker; and Turvey and Zhao).
Univariate kernel density estimation is very intuitive. A required input of the kernel

density estimator is a set (Y1, y2 , ... , YT) of exchangeable or independent realizations
from the unknown density of interest fy. Oversimplifying, the kernel density estimator
places a bump or individual kernel at each realization. The estimate of the density at

any given point in the support is simply the sum of the individual kernels at that point.
We use an adaptive kernel estimator to recover the conditional yield densities. Appendix

B details the methodology.
Figures 3 and 4 illustrate the estimates of the conditional yield densities for Shelby

corn and Kingman wheat, respectively. The conditional yield density for Shelby corn
appears to be a negatively skewed, possibly bimodal density. In contrast, the conditional

yield density for Kingman wheat is mildly skewed and unimodal.
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Simulation Analysis

The objective of this section is to evaluate the two strategies currently under consider-
ation by the RMA. Recall that the agency currently is considering changing the base

coverage from the 65% level to the 50% level. We evaluate the two strategies by
simulating sequences of exchangeable yields from the estimated conditional yield
densities for Shelby County corn and Kingman County wheat. As noted earlier, data
availability made it necessary to use the less variable county yield data rather than
farm or unit yield data. Therefore, we use 65% and 85% county-level premium rates to
represent the 50% and 65% farm-level rates.1 1 For each sequence, we estimate the
empirical rates at the 65% and 85% coverage levels. In turn, we derive rates for one

coverage level assuming the other is the base. Finally, we consider the mean squared
error of the estimated and derived rates at both coverage levels.

By simulating from the estimated conditional yield densities, we are treating these
as the population or true densities. As such, we are able to numerically integrate and
recover the true premium rates. For Shelby corn, the true rate at the 65% coverage level
is 0.3631, while for the 85% coverage level it is 3.5093. Therefore, when the 65% cover-

age level is used as the base, the derived rate at the 85% coverage level is 9.6649 x er65,

where er65 is the estimated empirical rate at the 65% coverage level, and the scale
factor is calculated as the ratio of the true rate at the 85% coverage level to the true rate
at the 65% coverage level (9.6649 = 3.5903 - 0.3631). Conversely, when the 85% cover-

age level is used as the base, the derived rate at the 65% coverage level is 0.1035 x er85,

where er85 is the estimated empirical rate at the 85% coverage level, and the scale

factor is calculated as the ratio of the true rate at the 65% coverage level to the true rate
at the 85% coverage level (0.1035 = 0.3631 - 3.5903).

For Kingman wheat, the true rate at the 65% coverage level is 0.3218, while for the
85% coverage level it is 0.8174. Therefore, when the 65% coverage level is used as the
base, the derived rate at the 85% coverage level is 2.5401 x er65, where er65 is the
estimated empirical rate at the 65% coverage level, and the scale factor is calculated as
the ratio of the true rate at the 85% coverage level to the true rate at the 65% coverage
level (2.5401 = 0.8174 ÷ 0.3218). Conversely, when the 85% coverage level is used as the

base, the derived rate at the 65% coverage level is 0.3937 x er85, where er85 is the

estimated empirical rate at the 85% coverage level, and the scale factor is calculated as
the ratio of the true rate at the 65% coverage level to the true rate at the 85% coverage

level (0.3937 = 0.3218 ÷ 0.8174).
From each density, we simulate 10,000 sequences of exchangeable yields. Each

sequence is of length 10. At first glance, this may appear to be an extremely small
number of yields sampled for each simulation. However, 10 years of yield data more
closely represent the maximum rather than average number of yields from which MPCI
rates are estimated. Rather than use the 10 simulated yields to estimate a parametric
or nonparametric density from which a rate may be recovered, we follow MPCI
procedures and calculate the empirical rate at the 65% and 85% coverage levels. The
simulation results are summarized in table 1.

1 Since the county density is significantly less disperse than the individual farm density, the empirical rate at the 50%
coverage level for the county is equal to zero with probability very close to one. This is not true at the 50% coverage level for
the individual farm. Therefore, we used the 65% and 85% county-level premium rates to represent the 50% and 65% farm-
level rates.
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Table 1. Simulation Results for Conditional Yield Densities

MPCI Base Premium Rate

Description 65%.Coverage Level 85% Coverage Level

Shelby County, Iowa-CORN

True Rate 0.3631 3.5093

Empirical Rate:
Mean 0.1659 3.7883
Standard Deviation 0.3310 2.6432

· Mean Squared Error 0.1485 7.0646

Derived Rate:
* Mean 0.3920 1.6037
* Standard Deviation 0.2735 3.1991
· Mean Squared Error 0.0756 13.8656

Kingman County, Kansas-WHEAT

True Rate 0.3218 0.8174

Empirical Rate:
* Mean 0.3437 0.7893
· Standard Deviation 0.5234 0.9280
· Mean Squared Error 0.2744 0.8620

Derived Rate:
Mean 0.3107 0.8730

* Standard Deviation 0.3654 1.3295
· Mean Squared Error 0.1336 1.7706

For Shelby corn, the estimated rates at the 65% coverage level have a mean squared
error of 0.1485. Note, however, if the 85% coverage level is used as a base to derive the
rates at the 65% coverage level, the mean squared error is reduced to 0.0756.
Conversely, the estimated rates at the 85% coverage level have a mean squared error

of 7.0646, while the rates derived using the 65% coverage level as the base inflate the

mean squared error to 13.8656. Clearly, this suggests that the higher rather than lower

coverage level should be used as the base.
The results for Kingman wheat parallel those for Shelby corn. The estimated rates

at the 65% coverage level have a mean squared error of 0.2744, whereas if the 85%
coverage level is used as a base to derive the rates at the 65% coverage level, the mean
squared error is reduced to 0.1336. In contrast, the estimated rates at the 85% coverage
level have a mean squared error of 0.8620, while the rates derived using the 65%
coverage level as the base inflate the mean squared error to 1.7706. Simulations from

both conditional yield densities strongly suggest that the higher rather than lower
coverage level should be used as the base.

The intuition is relatively simple if one considers a nonparametric estimator. As the
coverage level is increased (Lt ), the truncation or conditioning point (Aye) moves away

from the lower tail of the conditional density f(y 1 Yt) toward its center (ye). Thus, more

of the realizations are used to estimate both the probability of a loss and the density

Ker and Coble
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conditional on a loss occurring. As a result, the estimated premium rate at the higher
coverage level is relatively more accurate. Although less intuitive, this holds true for
most parametric distributions; tail probabilities tend to be relatively more sensitive to
changes in the parameters indexing the distribution than non-tail probabilities.

Conclusions

Given the methodology employed by RMA in setting MPCI rates, accurate estimation
of the base coverage level is critical. Currently under consideration by the RMA is a
change in the base coverage level for MPCI from the 65% coverage level to the 50%
coverage level. Our objective was to provide some insight into whether such a change
should or should not be carried out. To that end, we undertook the following simulation
analysis.

From two estimated conditional yield densities, we simulated sequences of exchange-
able yields and estimated the empirical rates at both coverage levels for each sequence.
Given the empirical rate at one coverage level, we derived the associated rate for the
other coverage level using the initial level as the base. This enabled us to calculate the
mean squared error at both coverage levels for both the estimated empirical rates and
the corresponding derived rates. Not surprisingly, our findings suggest that the higher
coverage level should be maintained as the base. Therefore, we recommend that the
USDA Risk Management Agency not change its base coverage level from the 65% to the
50% coverage level.

[Received October 1997; final revision received August 1998.]
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Appendix A:
The Isotonic Robust Super Smoother

For completeness, we start by outlining locally weighted regression smoothing. For any predictor value,
say Xo, locally weighted regression smoothing is calculated as follows:

i. For any given point, say Xo, find the k nearest neighbors of x. We define the set of
k nearest neighbors of x as a neighborhood Nk(xo). The span is defined as the ratio
of the cardinality of the neighborhood set to the cardinality of the entire sample.
For our purposes, it is simpler just to consider the span as the number of points
in the neighborhood, k.

ii. Define dmax(x0 ) = maxN^(o)( Ix0 - xi ), and assign the following weights,

w O - xil( dmax(xo)

where

(Al) W(u) (1- )3 forO <u<1
0 otherwise.

iii. Calculate the weighted least squares for the neighborhood Nk(Xo) only.

Generally k, or the span, is determined using cross-validation methods. Cross-validation methods,
using the "leave-one-out" approach, choose the span which minimizes the following sum:

(A2) [Yi - yy]2
i-=1

where y^() is the weighted least squares estimate ofyi after excluding (yi, xi) using span k. As noted in
the main text, a constant span across the sample is not optimal if the error variance or the curvature
of the underlying function varies over the range of x. An increase in the variance requires an increase
in the span, whereas an increase in the curvature requires a decrease. Local cross-validation avoids this
problem by choosing a span for the predictor values xO based only on the neighborhood N,(xo). That is,
for each predictor value xO, the span is chosen according to the following sum:

(A3) [Yi )]2,
N,(xo)

where 9y^ is the weighted least squares estimate ofy, after excluding (yi, xi) with span k. Note that the
sum is only over N((xo) rather than over the entire sample. This is repeated for each realized value of
the explanatory variable (xi), thus leading to a separate span (ki) for each. Note that an overall span
must be specified to define the N,(Xo) to undertake the local cross-validation. Also note that the local
span need not be bounded above by the overall span. The overall span simply dictates the neighborhood
for the summation so as to recover the local cross-validation sum of squares.

As stated in the main text, the super smoother minimizes, locally, a weighted least squares criterion.
However, given yields are not believed to be Gaussian, even locally, we have not overcome our
distributional problems. Thus we augment the super smoother by incorporating robust techniques,
specifically an m-estimator. After considering various weighting functions for m-estimators (Andrews,
Huber, and bisquare), we found no reason to deviate from the default S-PLUS m-estimator for robust
regression-i.e., the Huber m-estimator iterated until convergence and then followed by two iterations
of the bisquare. We use the m-estimator not in just the final estimates, but in the local cross-validation
as well. The procedure for the m-estimator, which uses iterative reweighted least squares, is as outlined
below:
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i. Given W, N,(xo), and k, estimate p using weighted least squares.

ii. Given the estimated residuals, calculate the mean absolute deviation (MAD) esti-
mator and divide the vector of residuals by the MAD. Define ui as the absolute
value of residual i divided by MAD.

iii. Recover the Huber weights, Q, where Q is defined as:

1 for u < 1.345,
(A4) Q(u)= 1.345 otherwise.

- otherwise.
u

iv. Go to step (i) using new weights QW until convergence is obtained.

v. After convergence, use the estimated residuals to define the bisquare weights, T,
where T is defined as:

(A5) ¥(u) = (- 4.685) u4.685

0 otherwise.

vi. Using weights TW, calculate weighted least squares estimates. Iterate step (v)
once.

Note that the above procedure must be undertaken at each point for all possible spans. The overall
span which defines the neighborhood for the local cross-validations must be chosen. In our case, we use
an overall span of 15 observations. We use the pool-adjacent-violators (PAV) algorithm to isotonize the
robust super smoother. The PAV algorithm is outlined as follows:

i. Starting with yi, move right until (yi, 9i+l) violates the monotonicity constraint.
Pool (y^, y^i) and replace with their average, 9y = = (9i + ^i)/2.

ii. Check that 9i-1 < y^. If not, pool (9i-1 i, 9i+1) and average. Continue to the left
until monotonicity is satisfied. Then proceed to the right.

The estimated isotonized robust super smoothers for Shelby County corn and Kingman County wheat
are graphed in text figures 1 and 2, respectively.

Appendix B:
Kernel Density Estimation Methodology

Consider estimating the unknown yield density fy based on a set (Y1, y2, ..., YT) of exchangeable or
independent realizations from fy. The nonparametric kernel estimate of f at a given point, say yo, is
defined as:

K( YO - Yi)
(A6) fy(Yo) = E

i=1 Th

where h is the smoothing parameter and K(.) is the kernel function. Thus, we have two decisions that
must be made: (a) choice of the kernel function, and (b) choice of the smoothing parameter. The logical
criterion on which to base these choices is MISE, which is the function space analogue to MSE and is
defined as:
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(A7) MISE(f) = E (f(y) -f(y)) 2dy

= f( (f) (y)) 2 dy

= f (E(y) - f(y))2 dy + f varf(y) dy.

Thus, MISE is the sum of the integrated squared bias and the integrated variance.
We first consider the kernel function and then proceed with a discussion of the smoothing parameter.

Any function that integrates to one may be used as the kernel (nonnegativity is not a necessary
condition). Epanechnikov derived the optimal nonnegative kernel function with respect to minimizing
MISE of the estimated density. Subsequently, Rosenblatt showed that choice of a suboptimal kernel,
such as the standard Gaussian, results in only a moderate loss in the asymptotic MISE. In practice, a
standard Gaussian kernel is generally used. For our analysis, we employ the standard Gaussian kernel.
In practice, however, a truncated Gaussian must be used since the estimated density is evaluated over
real closed sets with finite Lebesgue measure, while the support for the Gaussian density is the entire
real line. We evaluate the densities over a range of plus and minus 10 standard deviations from the
mean.

The selection of the smoothing parameter requires two distinct decisions. The first decision is the
choice of the smoothing parameter itself. The second is whether this smoothing parameter should be
global or local. Optimally, the chosen smoothing parameter would minimize MISE. Recall, MISE is
composed of two parts: the integrated squared bias and the integrated variance. With manipulation,

(A8) MISE(f) = -h4 k2 f"(y2dy + - f(y) K dt,
4 J- Th) 2

where k2 = f_ t 2K(t) dt , O. With the standard Gaussian kernel, k2 =1. Note that the smoothing param-
eter h is inversely related to the variance but directly related to the bias. If one attempts to reduce bias
by choosing a small h, the variance increases. Conversely, if a large h is chosen to reduce variance, bias
increases. Unfortunately, the optimal h is a function of the unknown density. Thus, we choose the
smoothing parameter according to Silverman's rule of thumb:

(A9) h = 0.9 x standard deviation, interquartile range x T-1/5
1.34 J

This has been found to yield a mean integrated squared error within 10% of the optimum for t-distri-
butions, for log-normal distributions with skewness up to about 1.8, and a Gaussian mixture with
separation up to three standard deviations. Visual inspection of the estimated densities suggests that
our densities belong to the above defined class.

The second decision is the choice between a local or global smoothing parameter. A global smoothing
parameter smooths the data equally. It is sometimes the case where the chosen smoothing parameter
will yield too much spurious detail in the tails of the distribution in attempts to identify detail in the
main area of the distribution. Undersmoothing in the tail is particularly problematic in long-tailed
densities such as conditional yield densities. Given the high dependence of the derived premium rates
on the extreme lower tail of the conditional yield density, a global smoothing parameter is particularly
problematic. Thus, we employ adaptive kernel methods.

Recall the kernel estimator is the sum of individual kernels centered at each realization. The
adaptive kernel estimator simply allows the smoothing parameter to vary with each realization. That
is, we use a vector of smoothing parameters with dimension equal to the data rather than a single
smoothing parameter. Given that we are concerned with undersmoothing in the tails, we desire our
smoothing parameters to be inversely related to the denseness of the data. Thus, a tail realization would
have its individual kernel significantly flatter than a non-tail realization.
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Given the smoothing parameter based on Silverman's rule of thumb, we adapt or adjust it for each
individual kernel. The first problem is to decide whether a realization belongs to a relatively dense or
a sparse region. If the true density were known, we could compare the realization to the true density
and make a decision regarding the necessary smoothness for its individual kernel. Clearly, we do not
know the true density. Thus, a pilot estimate of the density needs to be used. For the pilot, we employ
the simple kernel estimate. Denoting the pilot estimate f, the local scale Xi is defined as:

(A10) Xi= (fii)

where log(g) = 1T Elogf(yi), and a e [0, 1] is the sensitivity parameter. Now consider estimatingthe
unknown yield density fy based on a set (Y1, y2 ..., yT) of exchangeable or independent realizations
from fy with a vector of smoothing parameters. The adaptive kernel estimate offy at a given point, say
Y0, is defined as:

KYo - Yi

(All) f(y) = E - )Y
i=1 TX h

where sih is the smoothing parameter for realization i, and K(-) is the kernel function. Silverman
reviews thmethis odology and notes that the adaptive estimate is relatively insensitive to the pilot
estimate. The smoothing parameter vector depends on the power of the pilot density. The larger a is,
the more sensitive the method will be to variations in the pilot density, and the more difference there
will be between the smoothing parameters. Obviously, setting a = 0 reduces the adaptive method to the
simple kernel estimate. We set a = 1/2 for theoretical reasons outlined by Abramson. Although the
adaptive kernel estimator increases the computational complexity of our Bayesian nonparametric
kernel estimator, it is not without reward, particularly so when tail estimation is crucial.

An unfortunate problem with using kernel estimators is that the estimated density does not
necessarily have its moments equal to the sample moments. Clearly, the consistency of these estimators
indicates this is a finite sample problem. However, in our sample sizes for estimating conditional yield
densities, this can be disconcerting. Consider the first two moments of the estimated density using
adaptive kernel methods. With respect to the first sample moment, if the kernel is symmetric, the
estimated density has a mean equal to the sample mean. Intuitively, the symmetric kernel ensures that
the mean of the individual kernel, independent of its smoothing parameter, is the point on which the
individual kernel is centered. Given each kernel is equally weighted (they all have equal mass), the
mean of the adaptive kernel estimate is equal to the sample mean. Thus, our estimated densities will
have means equal to their respective sample means.

With respect to the second sample moment, the estimated density will have variance greater than
or equal to the sample variance almost surely. The additional variance of the kernel estimate is rather
intuitive. Since the mass (1/T) at each realization is being smoothed or spread out, variance must
necessarily increase. This is an undesirable property given the sample variance is an unbiased
estimator of the population variance. For our application, this is particularly problematic because the
additional variance is large in small samples, while tail probabilities, and thus derived rates, are quite
sensitive to changes in variance. In fact, the additional variance is (Op(T -7/5)), which may be nontrivial
in samples of our size (T = 40).

Ker and Goodwin (1998b) derive the variance of the estimated density for the adaptive kernel esti-
mator. The variance is:

T

h X2h2 XiH
(A12) var(y) = i-- + - s2,

T T

where y fy, and s2 is the sample variance of the set of exchangeable or independent realizations from
fy. We adjust our adaptive kernel estimates by taking a scale transformation of the support. That is,
we multiply the support by the following:

Ker and Coble



Journal of Agricultural and Resource Economics444 December 1998

(A13)

In doing this, we force the estimated density to have variance equal to the sample variance. Ker and

Goodwin (1998b) prove the transformation. Beirens undertakes a different approach which yields the

same result. Rather than taking a scale transformation of the resulting kernel estimate, the data are
scaled prior to entering the kernel.

.


