
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Journal ofAgricultural and Resource Economics 23(1):206-224
Copyright 1998 Western Agricultural Economics Association

The Effect of Stochastic Irrigation
Demands and Surface Water Supplies

on On-Farm Water Management

David B. Willis and Norman K. Whittlesey

This study presents a procedure for simultaneously addressing stochastic input
demands and resource supplies for irrigated agriculture within a linear modeling
framework. Specifically, the effect of stochastic crop net irrigation requirements and
streamflow supplies on irrigation water management is examined. Irrigators pay a
self-protection cost, in terms of water management decisions, to increase the
probability that stochastic crop water demand is satisfied and anticipated water
supply is available. Self-protection cost is lower when increasing the probability that
anticipated water supplies are delivered, ceteris paribus, than when increasing the
probability that the crop receives full net irrigation requirement in the study region.

Key words: irrigation efficiency, risk, stochastic input demand, stochastic resource
supply

Introduction

Water management policy must be sensitive to factors that motivate agricultural water
use. Willis found that agricultural diversions (both ground and surface water) exceeded
the quantity required to satisfy expected net irrigation requirement (NIR) for the
irrigation systems and management levels employed in an irrigated river basin.1 He also
found that groundwater pumping capacity considerably exceeded the capacity required
to satisfy crop NIR under average weather conditions, median streamflow supplies, and
expected irrigation efficiencies. The perceived overapplication of irrigation water and
excess pumping capacity is attributable to uncertain water demand and supply
conditions confronting irrigated agriculture.

It is well known that a risk-averse individual will use a greater quantity of a risk-
reducing input than a risk-neutral individual (Anderson, Dillon, and Hardaker; Pope
and Kramer; Loehman and Nelson). Thus, it is likely risk-averse irrigators will develop
water management plans that prescribe water applications exceeding the quantity
required to satisfy expected NIR to protect against crop water stress and reduce yield
variability. However, concavity of the utility function is not required to provide a
rational explanation for the perceived overuse of irrigation water. Antle has shown that
when dealing with dynamic models, production uncertainty affects productivity and
expected income, which in turn affect optimal input levels whether a farmer is risk
neutral or risk averse. More recently, Babcock reports that when yields have a linear
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response and plateau functional form, with a stochastic yield plateau, it can be profit-
able for a risk-neutral farmer to apply fertilizer above the optimal level applied under
production certainty. Babcock shows that under specific price and marginal productivity
relationships for fertilizer, expected profits are greater if the farmer applies fertilizer
above production certainty levels to make fertilizer nonlimiting when stochastic weather
conditions are ideal for maximum crop yield. Letey, Vaux, and Feinerman found that
at low water prices optimal irrigation application rates are 50% to 100% greater under
application uncertainty than they are with application certainty when yield is a concave
function of crop water use. Thus, production uncertainty in combination with a concave
production technology can affect factor input levels regardless of the decision maker's
risk preference.

The two water-related sources of uncertainty confronting irrigated agriculture are
uncertain input demand and uncertain resource supply. Uncertain input demand
consists of stochastic crop NIR and the potential for stressing the crop and affecting crop
yield or quality, and thus profitability. NIR is influenced by temperature, precipitation,
and the rate of crop development. In many years, an ex post evaluation of water use for
a given irrigation technology would conclude that irrigated agriculture is inefficient in
its use of water. However, the excess water applied ex ante is designed to assure at an
acceptable risk level that the crop is not stressed between irrigations. This manage-
ment strategy is especially likely in regions with unsophisticated irrigation technologies
where system labor costs and irrigation setup times reduce management flexibility and
constrain irrigation schedules to fixed time intervals.

Stochastic surface water supply is the resource supply risk confronting irrigated
agriculture. Kramer, McSweeny, and Starvos report that risk-averse farmers alter their
planned use of resource supplies when supplies are uncertain. Given that low stream-
flows can prevent irrigators from diverting their entire surface right, it is likely that the
streamflow probability distribution influences cropping and water management
decisions. Water supply variability is reduced when dependable groundwater is substi-
tuted for less reliable surface diversions, and can be driven to zero if sufficient well
capacity exists to adequately irrigate all acreage. Hence, a risk-averse farmer may
knowingly underestimate expected surface supplies to guarantee that anticipated
surface diversions are available at an acceptable risk (probability) level.

Management decisions which reduce the probability of crop water stress have an
economic cost commonly referred to as a self-protection cost (Heibert). Self-protection
cost is a function of individual risk preferences and the cost of the actions taken to
satisfy NIR at the specified risk level. Management options include a variety of actions
such as increasing groundwater use, increasing irrigation efficiency through manage-
ment and/or technology, adopting less water-intensive crops, and reducing irrigated
acreage.

This study focuses on the influence of stochastic water demands and supplies on farm-
level water allocation decisions. The modeling approach incorporates Wicks and Guise's
minimization of total absolute deviations (MOTAD) with risky input-output coefficients
(RINOCO) procedure within a linear chance constrained programming (CCP) modeling
framework for dealing with right-hand-side (RHS) resource supply uncertainty (Charnes
and Cooper). By defining risk in terms of stochastic crop NIR and surface water supply
availability, uncertainty appears in the technical coefficients and RHS resource supply
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parameters. The stochastic analysis is limited to the constraint set parameters to focus
on those risk aspects most relevant to on-farm water use.

Study Area and Data

The Walla Walla River Basin, located in southeastern Washington State (73% of basin)
and northeastern Oregon (27% of basin), provides the empirical setting. Precipitation
ranges from seven inches near the basin's western edge to over 40 inches in the Blue
Mountains to the east. Irrigated agriculture is concentrated along the valley floor where
annual precipitation averages less than 20 inches. Twenty-two irrigated crops are
grown, with alfalfa seed, alfalfa hay, and wheat accounting for nearly 71% of the 61,819
irrigated acres in 1989 [U.S. Department of Agriculture (USDA)]. The remaining
irrigated acreage includes a wide variety of vegetable crops, most notably onions and
beans, tree fruits, and pasture.

Two aquifer systems underlie the basin. A basalt aquifer ranging in depth from 125
to 2,000 feet below the surface underlies the entire basin. An unconfined gravel aquifer
overlays the basalt system on the central basin valley floor. This aquifer is primarily
recharged by precipitation, irrigation return flows, and seepage from streams and
irrigation canals, and has a storage capacity offive million acre-feet and an economically
manageable reserve capacity of one million acre-feet (MacNish, Myers, and Barker).
Rainfall and snowpack from the Blue Mountains is the primary source of streamflow.
Monthly streamflows fluctuate dramatically between years. Flows are generally greatest
in early spring, while dry stream beds regularly occur in late summer due to low
precipitation and high irrigation demands (Willis).

In 1989, 49% of all irrigation water came from surface diversions, with groundwater
accounting for the remaining 51% (Willis). Seventy-seven percent of all groundwater
was diverted from the shallow gravel aquifer. Sprinkler irrigation covers 97% of
irrigated acreage with gravity systems being limited to irrigated pasture (Willis). Side-
roll and handline systems account for 95% of sprinkler acreage. USDA Agricultural
Stabilization and Conservation Service (ASCS) personnel, local commodity groups, and
farmers considered the 1989 irrigated crop mix and acreage to be representative of long-
run basin cropping practices. Average monthly temperatures, precipitation, and stream-
flow supplies were also near long-run averages in 1989.

Prior research linked an economic optimization model, incorporating 20 farming
regions, to a detailed hydrology model that monitored monthly surface flow levels for
193 basin stream reaches, and regional and basinwide groundwater fluxes (Willis).
Hydrologic characteristics, irrigation practices, and irrigated and dryland acreage were
used to identify each region. The model was calibrated for a detailed 1989 data set.
Monthly water diversion locations were identified to the nearest tenth of a mile. Each
of the 1,745 diversion locations was identified as either a surface, gravel aquifer, or
basalt aquifer diversion.2

A modified Blaney-Criddle approach was used to estimate monthly NIR for each crop
grown in the basin for the 42-year period spanning October 1948 through September
1989 (James et al.; Willis). The NIR estimates were derived assuming that each crop

2 A detailed discussion of all irrigated and dryland crop acreage and yields, irrigation systems and efficiencies, monthly
diversions by region and water source, weather and hydrologic data, and the procedure used to link and calibrate the spatially
and temporally disaggregated economic and hydrologic models is contained in Willis.
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fully uses effective growing and dormant season precipitation. The monthly precipi-
tation and temperature data required to estimate NIR were collected from National
Oceanic and Atmospheric Administration historical records for nine basin weather
stations. Forty-two years of data (1948-89) on monthly streamflows entering the basin
were obtained from seven U.S. Geological Survey (USGS) gage stations.

This integrated planning model is used here to simulate 42 years of monthly surface
flows available to one downstream region for agricultural diversion under the condition
that the upstream regions, who hold senior water rights, divert their full appropriative
surface right each month of the irrigation season. The downstream region has a diverse
crop mix, practices conjunctive ground-surface water management, diverts 30% of its
irrigation water from surface sources under median flow conditions, and has a surface
water right junior to all upstream users.

Alfalfa hay, winter wheat, and alfalfa seed account for 69% of the 2,053 irrigated
acres in the region, with the remainder in asparagus, green beans, onions, orchards, and
pasture. The soils are a mix of silt loam and sandy loam. Average annual precipitation
is 17 inches in the region, slightly less than the basin average of 20 inches. All irrigated
acreage is under handline or side-roll sprinkler technology except for 65 acres of fruit
trees using solid set sprinkler systems and 250 acres of flood irrigated pasture. All
sprinkler systems are capable of achieving a 65% irrigation efficiency, and gravity
systems have an irrigation efficiency of 45% (Hooker). Pump lifts for wells diverting
from the gravel aquifer average 50 feet, and basalt aquifer lifts average 150 feet (Willis).
Crop budget data are contained in Willis.

Chance Constrained Programming

Chance constrained programming (CCP) can be viewed as using the probability of
satisfying stochastic constraints to provide appropriate safety margins (Sengupta). A
typical CCP constraint must satisfy the following inequality:

n

(1) ProbE aijXj < bi\> ai

where Prob is probability, ai is a probability measure, ali are technical coefficients, bi is
resource availability, and Xj are the decision variables (Charnes and Cooper). A chance
constraint explicitly accepts that feasibility is not always assured and restricts the prob-
ability of infeasibility while optimizing other policy goals. If we assume 0 < ai < 1, then
it is permissible to violate the probabilistic constraint with, at most, probability (1 - a)
for any choices of the Xj decision variables. The next three subsections review how CCP
programming can be used to control for the uncertainty of stochastic resource supplies
and input demands, individually and jointly, in the context of water resource modeling.

Stochastic Resource Supply

When resource supply is the sole stochastic parameter, the appropriate value for bi
is the maximum value that allows the Prob(E aijxj < bi ) > ci to be true. This max-
imum value, b, is the deterministic equivalent value that converts the stochastic
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programming problem into a deterministic programming problem and allows the
constraint to be respecified as:

n

(2) aijxj < bi .
j=1

When the resource supply parameter is normally distributed, b; can be parameterized
as b --zai, where gi is mean resource supply, ao is the standard deviation of
resource supply, and z is the standard normal deviate that assures a percent of the
supply outcomes are greater than b*. Thus, when bi is normally distributed, (2) can be
respecified in the parametric form:

n

(3) aijxj < -
j=l

The higher the a percentage, the greater the downward safety margin adjustment
(-z2oi)to mean resource supply (p,). When resource supply is certain, a farmer will
develop a farm plan where resource demands do not exceed resource supplies (the
deterministic LP solution), and will set the critical z' value to zero. In contrast, when
resource supply is uncertain, a farmer wishing to satisfy the constraint with a high
degree of confidence (say 95% of the time) will set the critical z' value to 1.645. In
irrigated agriculture, this could require that water demand be no greater than expected
surface water supplies modified by a marginal downward risk adjustment for surface
flow uncertainty, assuming no groundwater is available.

Stochastic Input Demand

Stochastic input demand can be accommodated within the linear CCP framework by
using the procedure developed by Wicks and Guise. Their technique allows specifying
a stochastic constraint with uncertain monthly NIR and known monthly surface
diversion supplies as:

(4) x
l' 10' Xj + (z i < bi,j=1 EFFIs

where pi is mean per acre NIR for crop j in month i, Xj denotes acres in crop j, oi is the
standard deviation of the quantity of applied water needed in month i to satisfy the
selected crop mix NIR under the available irrigation technologies, za is the standard
normal deviate that assures month i crop mix NIR is satisfied a percent of the time,
EFFj, is irrigation efficiency of system s in crop j, and bi is assumed known monthly
surface diversion. Dividing each pi by its respective irrigation efficiency converts the
NIR measures into applied water measures, a unit commensurate with the assumed
known surface diversion (bi) value. A farmer would upwardly adjust the quantity of
irrigation water applied to the selected crop mix by specifying the appropriate z value
to satisfy monthly NIR at a given risk level. The adjustment is analogous to that
involving stochastic resource supplies except the adjustment is upward and not
downward.

A mean absolute deviation (MAD) procedure is used to derive endogenously an
unbiased estimate of ai and preserve the linearity of the constraint set. The MAD
procedure does not require individual crop NIR to be independent within a month, but
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does require that the monthly quantity of water applied to meet the NIR of the selected
crop mix be normally distributed when standard normal variables are used to satisfy the
monthly chance constraints at a specific probability level. The normality assumption is
statistically tested in a subsequent section.

In maintaining linearity of the constraint set, a measure of statistical efficiency is
sacrificed (Hazell and Norton). From a computational perspective, Boisvert and McCarl
consider this to be an acceptable tradeoff because nonlinear algorithms often fail to
achieve a global optimum in large models with more than a few nonlinear constraints.
Such models arise in any realistic water policy analysis. Moreover, the ability to
endogenously estimate the standard deviation of monthly water demand allows the
deterministic equivalent value to be parameterized using fractiles from the Z distri-
bution for alternative probability levels.

Stochastic Supply and Demand

Simultaneous satisfaction of input demand uncertainty and resource supply uncertainty
at a specific probability level within a constraint transforms the problem into a
nonlinear joint chance constrained programming (JCCP) problem. Nonlinearities also
arise if two or more linear chance constraints are controlled at a joint probability level.
However, linear CCP techniques can be used to approximate these nonlinear joint
constraints when the stochastic parameters have a specific correlation structure.
Consider the following stylized stochastic constraint set for a three-crop, two-month
growing season in which all parameters are stochastic:

(5) a1 lX1 + a1 2 X2 + a13 X3 + Zl1 _ b,

6 a aC b6
(6) a2 1 X 1 + X + a2 X2 + a23X + z a2 < b2,

where

ai = median crop j NIR per acre in month i divided by crop j irrigation efficiency
(applied water requirement for cropj in month i),

6
bi = maximum month i water supply which is available 6 percent of the time,
zi = the standard normal variable for month i which assures the quantity of water

applied in month i satisfies crop NIR a percent of the time,
oi = the endogenous month i standard deviation estimate of required irrigation

water for the optimal crop mix, and
Xj = irrigated acreage of cropj (decision variables).

Four correlation patterns are of interest: (a) crop NIRs within a month, (b) NIRs among
months, (c) streamflow supply and NIR within months, and (d) streamflow supplies
among months.

Focusing on the input demand coefficients, crop water demands are likely to be
positively correlated within a month. If crop 1 NIR is above (below) average, it is likely
to be above (below) average for crop 2 and crop 3.3 The linear MAD procedure used to

3 Statistical tests on the 42-year data set of monthly crop NIRs found that individual crop NIRs are positively correlated
within a month.
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estimate ai can accommodate this positive correlation because independence of the
technical coefficients is not required.

Statistical tests found crop NIR to be independent among months and independent
of the streamflow level within a month. NIR is determined primarily by weather
patterns and crop biomass in a given month, whereas monthly streamflow levels are
primarily a function of dormant season precipitation (including snowpack). Monthly
streamflow levels were found to be positively autocorrelated. Given these correlations,
the impact of both sources of risk on ex ante water allocation can individually and
jointly be accommodated within a linear CCP framework.

Independence of monthly crop NIR and streamflow supplies allows a conservative
lower bound to be established that jointly controls both risk sources at or above a
specified probability level in a month. For example, monthly stochastic NIR and surface
water supply can be jointly controlled at the 0.95 probability level by satisfying each risk
source at the 0.975 probability level, or any other combination of probabilities, such that
the product of the probabilities equals 0.95. Given that individual probability levels
must be specified a priori for each risk source, this approach lacks the flexibility ofJCCP
where the optimal probability levels needed to satisfy the joint probabilistic constraint
are endogenously determined for each risk source.

Because crop input demands are independent across months, a similar approach can
be used to assure all stochastic input demands are met over the entire growing season
at a joint probability level. Under independence, the monthly NIR for a given crop mix
can be jointly satisfied at the 0.95 probability level over a hypothetical two-month
growing season by satisfying each monthly demand constraint at the 0.975 probability
level, since (0.975)2 roughly equals 0.95. This involves setting the 4z value in (4) equal
to 1.96 for each month of the irrigation season.

When monthly resource supplies are independent, a similar procedure can be used
to establish ajoint probability level that anticipated monthly surface water supplies are
delivered over the entire irrigation season. If monthly water supplies are not indepen-
dent, as in our case, the Bonferroni inequality can be used to develop a conservative
lower bound on the joint probability that anticipated surface diversions will be available
for all months.4 When resource supplies are positively correlated and distributed multi-
variate normal, the Slepian inequality can be used to improve the accuracy of the
Bonferroni lower-bound approximation (Bawa). Even though these approximation
techniques require the a priori specification of the individual monthly probabilities, they
are a valuable alternative to JCCP because when the stochastic parameters are not
independently distributed, calculating the joint probability level is often exceedingly
difficult. If multivariate normality is assumed, enormous computational difficulties can
still arise if the solution requires evaluating multivariate probability integrals (Balintfy;
Jagannathan).

Each of the linear approximations to a joint chance constraint specification reduces
the dimension of the feasible solution space from the situation where the constraints are

4 The Bonferroni inequality states that the Prob(b > B1, b >B2 ...,bp > B)> Prob(bB) +Prob(b >B) + ... + Prob(bP > Bp) -
(p - 1), where bi is a random outcome and B, is some arbitrary value (Mittelhammer); that is, the probability that all p
constraints are satisfied simultaneously is greater than or equal to the sum of the probabilities that each constraint is satis-
fied individually less the number of stochastic constraints minus one. Hence, a lower bound on the probability of simultane-
ously satisfying all p constraints at probability a can be derived by equating Prob(b1 >B1) + ... +Prob(bp >Bp) -(p -1) to a by
appropriately selecting the Bi values. Selecting the Bi values in this manner (the deterministic equivalent values for each
monthly streamflow level) guarantees that thep stochastic constraints are jointly satisfied at least at the a probability level.
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treated individually, ceteris paribus, and hence increases the magnitude of on-farm self-
protection cost at each probability level when the constraints are binding. Thus, the
additional security provided by satisfying either all of the chance constraints or a subset
of the constraints at a specified joint probability level comes at an additional cost.

Empirical Model

The CCP model used to analyze the effect of stochastic monthly NIRs and/or streamflow
supplies on irrigation efficiency and crop selection is specified as follows:

10 5 10 12 5

(7) max NR = E E CjXj + DR *Ad - E E E SECs *AWji
j=l s=l j=l i=l s=l

2 12

- E GWCp* GWQpi
p=l i=l

s.t.:

(8) Xjs ACj, j=1,...,10; s1,...,5;

9 5

(9) Xjs + Ad TA;
j=l s=l

(10) iX - EFFjsAWji 0, j =1,..., 10; i = 1,... 12; s = 1,..., 5;

10 5 2

(11) EAW -is GWQpi + (i SD i= 1 ... , 12;
j=l s=l p=l

(12) GWQpi CAP, p= 1, 2; i = 1,...,12;

12 12

(13) G GWQ,,i - R * GWQ2, 0;
i=l i=1

10

(14) DAWisyXjs - NDEViy , i= 1,..., 12; s =1,...,5; y = 1,...,42;
j=1

42

(15) E NDEVy - TNDi = i= 1,...12;
y=l

(16) ATNDi - i =0, i = 1,...,12;

(17) Xj, Ad, GWQ, ,AWjis, NDEVi, TNDi, , > 0,

where
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NR = net revenue;

Xj, = the number of acres planted to irrigated crop j under a given irrigation

system s;

Cjs = the per acre return from activity Xj, excluding irrigation energy cost;

DR = per acre dryland return from a winter wheat-fallow rotation;

Ad = acres in dryland rotation;
SEC8 = the acre-inch energy cost to irrigate under system s;

AWjis = acre-inches of water applied to crop j in month i under irrigation system

s;

GWCp = the cost of pumping an acre-inch of groundwater from the gravel aquifer

(p = 1) or the basalt aquifer (p = 2);

GWQpi = the quantity of water (acre-inches) pumped from the gravel aquifer (p =

1) or the basalt aquifer (p = 2) in month i;

ACj = baseline acreage in irrigated cropj;
TA = total irrigated acreage under the baseline less irrigated pasture acreage;

= mean NIR for cropj in month i;
EFFjS = risk-neutral irrigation efficiency for crop j under irrigation system s;

zq = the standard normal deviate for month i, the value of which is dependent

on the selected a probability level;

ai = the standard deviation of the quantity of water applied to satisfy the crop

mix NIR in month i;
SD. = the deterministic equivalent value for the stream diversion level which

is realized 6 percent of the time in month i;

CAPp = monthly pumping capacity of all wells pumping from the gravel aquifer

(p = 1) and the basalt aquifer (p = 2);
R = a ratio parameter that assures seasonal water use from the gravel aquifer

to that of the basalt aquifer does not exceed the calibrated baseline level;

DAWjisy = the signed deviation of the per acre quantity of applied water under

irrigation system s required to satisfy crop j NIR in month i and year y

from the mean application rate for crop j in month i under system s;

NDEViy = the negative deviation of the quantity of applied water required to satisfy

the crop mix NIR in month i and year y from mean applied quantity in

month i;
TNDi = the sum of all negative deviations for the quantity of water applied to

satisfy the selected crop mix NIR in month i; and

A = a constant equal to [2Tc/(n(n - 1))]-° 5.5

The objective function (7) computes expected regional net returns to land irrigated

under the baseline condition at alternative probability levels of controlling each source
of production risk. Equation (8) limits the number of irrigated acres in each crop. A

dryland winter wheat-fallow rotation can be substituted for baseline irrigated acreage

5 As presented in Boisvert and McCarl, the relationship between the standard deviation estimate (a) and mean absolute
deviation (MAD) for the normal distribution was established by R. A. Fisher. Fisher showed that for a sample of size n, a can
be approximated by the MAD multiplied by the constant F 05. F is generally referred to as Fisher's F, and equals (cn)/
(2(n - 1)). Since the MAD is computed as total absolute deviations (TAD) divided by n, (MAD = TAD/n), and the sum of the
positive deviations equals the sum of the negative deviations, Fisher's relationship can be rewritten as o a F '5 (2TND).
Solving this relationship for TND results in TND - Ao, where A = [(2n)/(n(n - 1))]-°' 5.
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as the probability of satisfying NIR and/or receiving a given surface diversion in any
month is increased from risk-neutral levels. The degree to which a dryland rotation can
be substituted for irrigated acreage is modeled by (9). Dryland crops cannot be
substituted for irrigated pasture because irrigated pasture is found only on marginal,
irregularly shaped fields with little potential to be profitably farmed without irrigation.
Equation (10) requires crop NIR to be satisfied under average conditions and specified
irrigation system efficiency for each cropj in month i. Equation (11) is the probabilistic
monthly water balance constraint that jointly satisfies NIR and surface water supply
availability at the various probability levels. Groundwater supplies can be used to
supplement surface diversions and/or irrigate to higher ex ante NIR. The standard
normal distribution is not used to parameterize the monthly surface supply deter-
ministic equivalent values, SD6, because nonparametric statistical tests found the
simulated flow levels to be gamma distributed. The empirical distribution was used to
provide the SDJ values.

Equation (12) constrains monthly groundwater use to current pumping capacity.
Equation (13) assures the annual ratio of gravel aquifer use to basalt aquifer use does
not exceed the baseline ratio, and prevents the model from exhausting gravel aquifer
supplies before pumping from the deeper basalt aquifer. Not all farms in the region have
access to both groundwater sources, and this constraint maintains the spatial integrity
of the farm region without sacrificing overall model flexibility.

The negative deviation of the quantity of applied water needed to satisfy crop mix
NIR in month i and yeary is computed in (14). Equation (15) sums all month i negative
deviations into a total negative deviation (TND) estimate. Fisher's constant, F, is used
to translate the TND estimate into the monthly standard deviation estimate, oi, in (16).
The ai value is transferred into the appropriate monthly water balance equation, where
it influences the optimal irrigated crop mix and/or causes additional groundwater use
when the z' value in (11) is nonzero and the constraint is binding. The endogenous oi
estimate provides the programming model with the ability to optimally trade off the
marginal benefit of maintaining the current crop mix versus the cost of satisfying NIR
at higher probability levels.

Risk-Free Baseline

In order to estimate the impact of water supply and demand uncertainty on water
application rates and crop selection, a risk-free baseline situation was established by
optimizing the CCP model for the baseline crop mix under average monthly NIRs,
median monthly surface diversion levels, and expected irrigation efficiency for each crop
and irrigation system. With complete certainty, regional net return over variable cost
is $653,481 and average irrigation efficiency is 60%.

MAD Estimator of NIR Standard Deviation

Information on the accuracy of using the MAD estimator to linearize the standard
deviation estimate for monthly NIR is presented in table 1 for the baseline crop mix.
Given that fractiles from the standard normal distribution are used to establish the

Willis and Whittlesey
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probability the crop mix receives its full NIR, statistical tests of the normality assump-
tion also are presented in table 1.

Column 2 reports the mean NIR for each month of the irrigation season. NIR is
greatest in the months of June, July, and August, accounting for 69% of all crop
demand. The linearized monthly standard deviation estimates are compared with
monthly estimates derived from the conventional estimation procedure in columns 3
and 4. The conventional standard deviation estimates were calculated outside the
programming model using crop acreage data provided by the programming model in
combination with the calculated monthly crop NIR values for 1948-89. The standard
deviation estimates of monthly NIR provided by each technique are approximately
equal over the six months that account for 98% of all water use (April through
September), never differing by more than %, and by less than 2.5% in three months-
providing empirical support for the accuracy of using the linearized standard deviation
estimator.

Normality of the monthly crop mix NIR is tested using two nonparametric statistical
tests: the Shapiro-Wilk test and the Lilliefors test. Monte Carlo studies have found the
Shapiro-Wilk test is more sensitive to departures from normality in the tails of the
distribution, whereas the Lilliefors test is more sensitive to normality departures over
the entire distribution (Stephens). The well-known central limit theorem states that
a random sample mean from a nonnormal population tends to be normally distributed
(Mittelhammer). Therefore, even though individual monthly crop NIR is not normally
distributed, it does not follow that the monthly NIR for a given crop mix is nonnormally
distributed. As reported in table 1, both statistical tests support normality of the crop
mix NIR in those months when crop consumptive demand is greatest, April through
September. Normality is rejected only in the first and last months of the irrigation
season (March and October) when minimal irrigation occurs. Thus there is strong
empirical evidence that crop mix NIR is normally distributed in the months that crop
water demand is greatest, which validates using the Z distribution to establish the
chance constraint probability levels.

Risk Analysis

With complete certainty, average regional irrigation efficiency is 60%, higher than the
documented 55% efficiency derived from historical records for the baseline condition.
The documented lower average efficiency level is consistent with the irrigation systems
and schedules used in the region. The side-roll, handline, and gravity technologies
employed restrict irrigators from irrigating on a scientifically based cumulative
Levapotranspiration schedule, and result in most crops being irrigated on a fixed
schedule. Moreover, labor and setup time requirements for sprinkler systems prevent
irrigators from adding additional irrigations in drought periods. Thus, irrigators irrigate
to levels in excess of average NIR to minimize the likelihood the crop is stressed
between irrigations. The excess monthly groundwater pumping capacity within the
region is also consistent with profit maximization. Surface delivery uncertainty is
reduced when dependable groundwater supplies are substituted for less certain surface
supplies. In the two sections that follow, we analyze the consequences of stochastic NIR
and streamflow supplies on water management decisions for two scenarios.
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Scenario 1: Unrestricted Groundwater Use

Scenario 1 releases the monthly groundwater capacity constraint to allow a farmer the
option of pumping sufficient groundwater to satisfy monthly NIR on all baseline acreage
at each probability level when the marginal value of water exceeds the additional
energy cost. The additional fixed cost incurred in increasing regional groundwater
capacity beyond the current level is ignored in order to determine maximum application
rates. When the pumping constraint is not released, irrigated acreage must be reduced
to satisfy the stochastic constraints at higher probability levels. Scenario 2 (discussed
in the next section) constrains monthly groundwater use to current capacity. Results for
both scenarios are reported for four selected probability levels which satisfy the chance
constraints as nonjoint events: 0.50, 0.70, 0.90, and 0.95.

The self-protection costs reported in table 2 for Scenario 1 were derived by paramet-
rically varying the probability of satisfying crop NIR over the probability levels, holding
the surface delivery probability constant. This process was repeated four times, once for
each surface probability level, yielding the 16 reported estimates. It is more costly to
increase the probability that monthly NIR is satisfied while maintaining anticipated
surface diversions at median supply levels than to increase the probability that
anticipated monthly surface diversions are delivered and irrigating to average NIR. For
example, self-protection cost is $20,066 when satisfying NIR at the 0.95 probability level
and streamflow supplies at the 0.50 probability level. This is over five times larger than
the $3,725 cost of assuring that anticipated streamflow supplies are available at the
0.95 level and irrigating to average NIR.

Self-protection cost is lower when dealing with stochastic streamflows because the
quantity of water applied remains constant over the irrigation season as dependable
groundwater is substituted for unreliable surface diversions'to increase the probability
that anticipated surface supplies are delivered. Thus, the sole cost incurred in reducing
surface supply variability is the energy cost associated with pumping additional
groundwater. Self-protection cost is greater when satisfying NIR at higher probability
levels because water use increases, affecting cost in two ways. First, energy cost for all
nongravity irrigation technologies increases in response to higher water application
levels. Second, groundwater energy cost also increases if groundwater use rises above
baseline levels, which is always the case in this region.

Self-protection cost is $23,791 when controlling both sources of risk at the 0.95
probability level. This cost is the sum of individually controlling each risk source at the
0.95 level ($3,725 plus $20,066) because irrigated acreage is unchanged from the risk-
neutral baseline level.6 Self-protection cost is minimized by increasing groundwater use
in this region, instead of substituting a dryland rotation for low-value irrigated acreage,
due to low groundwater pump lifts and relatively low energy cost. Irrigators pay a
modest self-insurance cost, in terms of higher irrigation energy costs, to irrigate to
above-average NIR and reduce water supply variability. In other settings, higher pump
lifts and/or higher energy prices would increase self-protection cost and could potentially
force low-value irrigated acreage out of production.

6 Recall that each source of risk is independently controlled for in this example. To jointly control both sources of risk at
the 0.95 level in any month, higher individual probabilities must be specified such that the product of the individual
probabilities equals 0.95, given the independence of streamflow supplies and NIR.
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Surface supply uncertainty does not affect average irrigation efficiency in areas with
conjunctive water management capability because the quantity of water applied
remains constant as dependable groundwater is substituted for a portion of the
uncertain surface water supplies. In contrast, stochastic input demand decreases
average irrigation efficiency when monthly NIR is satisfied at higher probability levels
since additional water is applied at each irrigation to reduce the probability of water
stress between irrigations. Average irrigation efficiency decreases from 60% under
certainty to 47% under uncertainty when the stochastic monthly NIR is satisfied at the
0.95 probability level. Total water use increases by 28% and groundwater use is
increased by an even greater percentage (48%) even though average consumptive crop
requirement remains constant at all probability levels. This result indicates that water
policy analysts need to consider water input demand risk when predicting irrigation
efficiency under a given technology.

Annual surface diversions generally exceed the certain baseline level when monthly
NIR is satisfied at higher probability levels, and the probability of receiving anticipated
surface diversions is maintained at the 0.50 or 0.70 level. This occurs because March,
April, and May surface supplies exceed baseline demand requirements and are used to
minimize groundwater costs early in the irrigation season when irrigating to above-
baseline NIR. Annual surface diversions fall below the baseline level when controlling
surface supply risk above the 0.70 probability level because the deterministic equiva-
lents for late spring and summer surface supplies are reduced by a greater quantity
than is offset by the additional early spring surface diversions.

Scenario 2: Restricted Groundwater Use

Self-protection cost is up to 56% greater when monthly groundwater use is restricted
to current capacity. As reported in table 3, self-protection cost is $37,003 when both risk
sources are satisfied at the 0.95 probability level, $13,212 more than when groundwater
use is unrestricted. With limited groundwater use, self-protection cost is greater because
the stochastic constraints can only be satisfied at the higher probability levels by
reducing irrigated acreage. Thirty-one acres of irrigated wheat and 250 acres of irri-
gated pasture are taken out of production when each risk source is controlled at the 0.95
probability level. A dryland winter wheat-fallow rotation is substituted for the lost
irrigated wheat acreage to minimize self-protection cost. Similar to Scenario 1, self-
protection cost is greater when satisfying monthly NIR at higher probability levels and
maintaining anticipated monthly surface supplies at baseline levels than when
increasing the probability that anticipated monthly surface supplies will be delivered
and satisfying monthly NIR at baseline levels.

Average irrigation efficiency is generally higher when groundwater use is restricted
than in Scenario 1 because an increasing quantity of rill irrigated pasture acreage is
taken out of production to satisfy the stochastic monthly water balance constraints when
irrigating above average NIR. However, average irrigation efficiency still declines by 10
percentage points from the baseline level when each risk source is controlled at the 0.95
probability level.

Unlike Scenario 1, stochastic streamflow supplies affect average irrigation efficiency
at higher probability levels. Average irrigation efficiency increases because groundwater
use can no longer completely substitute for unreliable surface diversions and low-value
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irrigated pasture acreage is taken out of production. Rill irrigated pasture is 45%
efficient under baseline conditions, and any reduction in irrigated pasture acreage
increases average irrigation efficiency..

The empirical evidence suggests study area farmers irrigate to slightly above-average
NIR to protect against crop water stress. Observed regional water use and irrigation
efficiency values for the study region in 1989 closely parallel the situation where NIR
is satisfied at the 0.70 probability level and expected surface diversion supplies are set
to their median level. Model simulations found that, except when satisfying both sources
of risk at the 0.95 probability level, the stochastic constraints are maintained at higher
probability levels by using additional groundwater and/or taking irrigated pasture
acreage out of production. Irrigators confirmed they reduce irrigated pasture acreage
and increase groundwater use in drought periods and/or low flow years as a low-cost
buffer to shield their more valuable irrigated acreage from the impact of stochastic NIR
and/or streamflow supplies (Willis).

Summary and Conclusions

This study presents a technique for simultaneously addressing stochastic input
demands and resource supplies within a linear modeling framework. The technique is
a useful alternative to nonlinear programming for researchers developing large
programming models that contain more than a few stochastic parameters in the
constraint set. Modern nonlinear algorithms still often fail to attain a global optimum
in large models with more than a few nonlinear constraints.

The modeling procedure was used to determine how stochastic NIR and surface water
supplies affect on-farm water management under input demand and resource supply
uncertainty. Irrigators apply 28% more water when both sources of uncertainty are
controlled at the 0.95 probability level than is applied under production certainty. The
additional water application reduces average regional irrigation efficiency from 60%
under certainty to 47%. Groundwater use is 48% greater than it is under production
certainty when both risk sources are controlled at the 0.95 probability level.
Groundwater use increases for two reasons. First, groundwater is blended with
available surface supplies to irrigate to higher-than-average NIR. Second, dependable
groundwater supplies are substituted for less dependable surface water supplies in
the later months of the irrigation season to reduce the variability of monthly water
supplies.

From a water policy perspective, the ability to model the effect of stochastic water
demand and supply on on-farm water management is critical to accurately anticipating
the response by irrigated agriculture to a basinwide in-stream flow policy. A policy
designed to increase streamflows in low flow months to facilitate fish migration could
fall short of policy expectations if irrigators substitute considerably more groundwater
from an unconfined aquifer than anticipated due to production uncertainty. Ground-
water diversions in excess of the production certainty level will lower the static level of
groundwater, increase stream seepage, and/or decrease aquifer spring discharge, and
eventually cause surface flows to fall below the policy expected level.

Low water prices encourage using water as an inexpensive form of insurance. When
groundwater use is not constrained, the per acre cost of controlling each source of
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uncertainty, individually and collectively, ranged from $0.40 to $11.59, depending on
the probability level considered. Though not addressed in this study, the expected costs
of reducing production uncertainty are small relative to the potential economic losses
associated with inadequate water application. The incentive to overirrigate, on average,
could be reduced by encouraging the adoption of modern irrigation technologies that
eliminate the need to irrigate on a fixed time schedule. Older technologies inhibit
frequent irrigations because labor availability and setup time per move force irrigators
to schedule irrigations at fixed time intervals and cause irrigators to irrigate above
average NIR to reduce the likelihood of crop water stress between irrigations.

[Received March 1996; final revision received December 1997.]
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