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Adoption of Precision Technologies and
Perceived Improvements in Cotton Quality

Sofia Kotsiri, Roderick M. Rejesus, Michele C. Marra, and Sherry L. Larkin

This paper examines whether adoption of precision technologies, farm and farmer
characteristics influence perceived improvements in cotton quality. Using data from
cotton producers in twelve U.S. Southeastern states and discrete choice models, we find
that the use of soil sampling, maps, participating in agricultural easement programs, farm
size, university publications, and expected profitability of precision agriculture are
positively associated with the probability that farmers experienced improved cotton
quality. This implies that farmers should also consider the potential cotton quality
benefits from these technologies, in addition to potential yield and environmental
improvements, when deciding whether or not to adopt precision technologies.

Key words: cotton quality, mapping, multinomial probit, perceptions, precision
technologies, soil sampling

Cotton quality is associated with seed and fiber properties that affect processing into yamn
and textile products (Chee et al., 2005a). Better cotton quality 1s usually perceived as
cleaner and whiter cotton, which is less damaged and stained from insect pests such as
bollworms (Kambhampati et al., 2005). Since 95% of the value of cotton crop is in the
fiber, cotton quality is what we usually refer to as fiber quality (May, 2002). The USDA
has established 38 grades for cotton based on measurable attributes of its value, such as:
color (there are 25 official color grades of American upland cotton), /eaf grade (scale 1
through 7), fiber length (ranging from 23 to 31 mm), length uniformity (1.e., the ratio
between the mean length and the upper half mean length), and strength (ranging from
weak of 80 tppsi to very strong of 99 tppsi, where tppsi stands for total postoperative pain
severity index).

The literature on precision agriculture to date has mainly focused on the effect of
precision technology adoption on cotton yields rather than cotton quality, although cotton
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quality has been listed as an important issue that needs to be addressed in precision
farming research (McBratney, Whelan and Ancev, 2005). One reason for the limited
studies is that automated fiber quality mapping technologies (i.e., fiber quality sensors)
on cotton harvesters are not yet commercially available (Ge, Thomasson and Sui, 2012).
Direct mapping of within-field variation of cotton quality characteristics is historically
done by manually taking cotton samples from various locations across the field (Ge et al.,
2008). This manual field sampling approach requires a great deal of time and labor; and
the resulting fiber quality maps still tend to have problems matching the USDA classing
office data (Calhoun et al., 1996). However, research to develop real-time fiber quality
sensors is on-going (Schielack et al., 2010; Sui et al., 2008; Sui, Thomasson, and Ge,
2012) and crop quality sensing is considered a likely future trend in precision agriculture
(Stewart, McBratney, and Skerritt, 2002, Stafford, 2000).

[t is important to recognize that for cotton producers to achieve optimum profitability
they should succeed not only in increasing crop yields but also in properly managing
cotton quality (Schielack et al., 2010; Ge et al. 201 1).! Given the role of quality
premiums (and discounts) on cotton prices received by producers, Britt, Ramirez and
Carpio (2002) indicate that quality considerations have important implications on the
optimal profit-maximizing input levels that farmers need to apply. Hence, precision
technologies that can provide information about within-field variability of fiber quality
has the potential to both optimize input/management decisions and further enhance
profits.

For example, a fiber quality mapping technology that can accurately identify low fiber
quality versus high fiber quality areas in the field can be used to spatially vary farming
inputs (such as water and fertilizer) based on both lint yield and fiber quality. Another
strategy is to make use of existing fiber quality variability by segregating the crop into
categories as it is harvested. Often there is a portion of the crop that is of higher quality
than the rest, and its value is usually averaged with that of the rest of the crop. If the high-
quality portion could be segregated, it could be sold at a higher price, while the rest of the
crop could be sold at its current value. But for cotton farmers to implement either the
variable rate application or segregation-harvesting strategy, the primary ingredient that is
still lacking is an efficient and accurate site-specific mapping technology for measuring
fiber quality in the field. Therefore, the effect of adopting this type of precision

' Schielack et al. (2010) attributed 80% of cotton profitability to yield and 20% to quality. Based on two cotton
fields in Texas, Ge et al. (2011) indicated that fiber quality variation is about 31% as important as the yield
vanation in determining total cotton revenue variation, especially when interaction between yields and quality
are considered. Therefore, if cotton quality is improved through adoption of precision technologies (see the
proceeding discussion after this paragraph), then farm profitability has the potential to be enhanced because
cotton quality determines a significant proportion of revenues (assuming the benefits from quality
improvements are larger than the variable costs associated with adoption of the precision technology).
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technology on cotton quality, yields, and profit cannot yet be fully evaluated because it is
not widely available to cotton farmers.

Nevertheless, it is still important to examine whether adoption of existing
commercially available precision farming technologies affect cotton quality. The use of
existing precision technologies can still have cotton quality effects since many studies
have shown that cotton quality characteristics are strongly correlated to soil properties,
such as sand/clay content, pH, relative elevation, slope, and soil moisture content (Elms,
Green and Johnson, 2001; Johnson et al., 2002; Ping et al., 2004). For example, Ge, Sui
and Thomasson (2006b) reported that soil moisture content was strongly correlated to
fiber length, strength, and length uniformity in the irrigated Texas field they studied. In
another study, Ge et al. (2008) found that electrical conductivity and soil water holding
capacity have strong spatial correlations with most fiber quality measures. Since spatial
patterns of these different soil characteristics are already being collected through current
precision technologies (e.g., specifically through site-specific information gathering
technologies like soil sampling and digitized mapping), farmers could have utilized this
spatial soil information to properly manage fiber quality because it is known that these
properties correlate well with fiber quality attributes (Stewart, Boydell and McBratney,
2005). For example, farmers could have identified the low quality areas through electrical
conductivity maps collected using current technologies, and then managed these zones to
improve quality characteristics. This is evidence that information from existing precision
technologies could have been used to improve fiber quality attributes in farmers’ yields.

In this study, we investigate whether farmers perceive any improvements in cotton
quality when they adopt currently available precision farming technologies. Other factors
that may affect perceptions about cotton quality are examined as well. The significant
premiums and discounts for lint quality in cotton markets necessitate a better, more
quantitative understanding of the determinants of cotton quality (Britt, Ramirez and
Carpio, 2002), including the effect of existing precision technologies. Producers with
limited information about the quality implications of different input and technology
choices are more likely to make incorrect management decisions (Ethridge and Hudson,
1998). This study makes a contribution because to the best of our knowledge it may be
the first to quantitatively investigate the relationship between adoption of currently
available precision technology and cotton quality (based on actual farmer survey data
rather than from experimental fields). However, we use “perceived” cotton quality
improvements rather than direct measures of quality due to data constraints.
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Conceptual Framework

Following the study of Britt, Ramirez and Carpio (2002), we use a simple production
function model that evaluates the impact of management decisions (in our case precision
farming technologies) on yields and quality. We assume that cotton lint yield Yis a
function of a variable input (say, fertilizer) X, and fiber quality attribute Q also depends
on the same variable input X, such that:

Y=7(X)
() PR = PR(O)
o=1(Xx) -

where PR stands for quality premium and depends on the quality attribute. Profits /7 are

then defined as: -
1= (P+PRY-WX-FC
@

where P is the price per unit of yield, ¥ the variable input price (e.g., fertilizer price) and

FC the fixed cost. The first order conditions (FOC) for profit maximization are:

a_H:P£+wQY+PR£_W=O
3) oX oX dX oX oxX

or in terms of marginal products:

mp=Zpapr)+ O By

4) dx oX

The above conditions indicate that profits are affected by how inputs affect quality.
Since inputs may affect quality, as well as quantity, the existence of quality
premiums/discounts alter the amount of inputs that optimize profits. In addition, adoption
of precision technologies (vs. conventional technologies) influence how these inputs
affect cotton yields and quality (i.e., through the function f{ - ). Farmers who use existing
precision farming technologies may be better informed about the fiber quality variability
in their fields (i.e., due to the strong correlation between soil properties and fiber quality),
thus they are more likely to have managed this within field quality variability properly
with proper input applications, such that overall cotton quality of all fields is enhanced.
Therefore, it is empirically important to determine whether farmers who adopt precision
agriculture technologies perceive cotton quality improvements.



Kotsiri, Rejesus, Marra, and Larkin Precision Farming and Perceived Cotton Quality 5

Survey and Data Description

Data for this study was collected from a survey sent to cotton producers in 12 states:
Alabama (AL), Arkansas (AR), Florida (FL), Georgia (GA), Louisiana (LA), Mississippi
(MS), Missouri (MO), North Carolina (NC), South Carolina (SC), Tennessee (TN}, Texas
(TX) and Virginia (VA). The Cotton Board in Memphis, Tennessee provided a mailing
list of 13,579 potential cotton farmers for the 2007-2008 crop seasons. Following
Dillman's (2000) general mail survey procedures, the questionnaire, a postage-paid return
envelope, and a cover letter explaining the purpose of the survey were sent to each
producer in February and March of 2009. The response rate was 12.5%.

The questionnaire asked farmers who indicated that they had adopted at least one
precision farming technology whether they had experienced any improvement in cotton
quality in their fields. Among the respondents of this question, 1148 in total, 159 farmers
(13.8%) replied that they had observed improvements, 442 farmers (38.5%) did not
perceive any improvement and 547 answered “do not know” (47.6%). On the other hand,
883 were identified as adopters of precision technologies either currently or at some point
in the past.> This means that either some no adopters answered the question about
subsequent cotton quality, or some farmers who use (or have used) the technology did not
identify themselves as precision farming users in previous questions

The farm and farmer characteristics of the survey respondents are comparable to those
reported in the 2007 Census (U.S. Department of Agriculture). The number of cotton
farmers surveyed, as well as farmer distribution across states, is similar to the ones
reported in the 2007 Census (16,742 versus 13,579 in our survey). Mooney et al. (2010)
compared the geographical distribution of the survey responses by county with the
number of cotton producers reported in the 2007 Census, and found that they correspond
closely. The majority of cotton farmers who answered our survey are aged 45 to 64
(59%), which is a similar proportion to the 2007 Census (55%). Farmers aged 65 and
above represented only 24% of respondents in our survey, which is also consistent with
the 24% found in of the 2007 Census data. In terms of acres, the proportion of farms
above 500 acres in our survey was larger (58%) compared to the 2007 Census (38%). For
farmers with cotton acreage below 249, we have a lower share of surveyed farms (24%)
compared to the Census (42%). But the proportion of farms between 250 and 499 acres
was the same for both our survey and the Census (18%). Thus, based on all these figures,
we believe that our sample is representative of the population of cotton farmers (as
characterized in the 2007 Census).

* We also inctuded farmers who used the technology but abandoned it afier several years of use, in the sense
that a potential “no quality improvement”™ might have resulted from abandoning use of precision agnculture
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Whether the farmer reported that she/he observed improvements in cotton quality
through the use of precision technologies is used as the dependent variable (COTTON
QUAL) in this study (i.e., both in the binary probit model, as well as the multinomial
probit model, discussed below). Different precision technologies adopted, along with
farm and farmer characteristics, were used as explanatory variables. Regarding the
explanatory variables, we believe that characteristics that affect perceptions about
improvements in environmental quality would also impact perceptions about cotton
quality improvements. Thus we followed the work of Larkin et al. (2005), as well as
Larson and Roberts (2004), who explored how the use of precision technologies
influences perceived yield variability. Farm characteristics such as total acreage, average
yields, farm location and participation in agricultural easement programs were assumed
to be important determinants of perceived improvement in cotton quality. These farm
characteristic variables are described in more detail as follows: (1) The total acreage
(FARM SIZE) is the sum of rented and owned acres for dry-land (and when it is not
available, we used the total acreage of irrigated land) for the 2007 crop season. We would
expect a positive sign for farm size, in the sense that the more the acres the higher the
possibility of observing cotton quality improvement as compared to a small farm. (2)
Similarly, higher average cotton lint yields (YJELDS) may indicate greater probability of
observing cotton quality improvement, since the yields also reflect land quality. (3)
Location was captured by 11 dummies (i.e., AL, AR, FL, GA, LA, MS, MO, NC, SC, TN,
VA4) that tested whether farmers in these states had higher or lower probabilities to
observe cotton quality improvement relative to farmers in Texas, which is used as the
benchmark state due to its high number of farmers. The signs of the states variables
cannot be hypothesized a priori. (4) Easement programs are legal agreements designed to
protect agricultural land by restricting the development of its residential or commercial
use (Schear and Blaine, 1998). If a farmer has participated in an agricultural easement
program (either voluntarily or received some payment), she/he will probably care for
cotton quality more, thus AG EASEMENT is expected to have a positive influence on the
probability of experiencing improvements in cotton quality.

Several farmer characteristics were hypothesized to affect the probability that a
farmer would perceive cotton quality improvements. These farmer characteristics are
discussed as follows: (1) More educated (EDUC) farmers will more likely possess the
knowledge on quality requirements, fiber properties and production practices that
improve cotton quality. (2) Similarly, farmers who use a computer in their farm
management (COMPUTER) are typically more innovative and eager to improve their
practices, thus more likely to attribute any potential improvements in quality following
the use of technology. (3)-(4) Younger farmers (4GE) have, in general, longer planning
horizons (PLAN), thus we would expect that they are more likely to perceive
improvements in cotton quality, implying negative sign for AGE and positive sign for
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PLAN. However, younger farmers may have also less experience in farming, so there is a
small probability that they have observed quality benefits. Therefore, the sign of AGE
cannot be hypothesized in advance. (5) On the contrary, producers with more experience
in farming (EXPERIENCE) may have more likely experienced improvements in cotton
quality over the years through the use of precision technologies. University sources, such
as Extension or publications, provide information about the precision agriculture and its
benefits on environment, quality and yields. (6) Therefore, we would expect a positive
impact of PUBLICATION on perceptions about cotton quality improvement. (7) Studies
have shown that organic material may improve soil fertility (MacDonald, , et al., 2009)
and especially the use of manure, which is a great source of nitrogen, phosphorus, and
potassium, can yield higher soil benefits than inorganic fertilizers (Risse, et al., 2006).
Vories, Glover, and Bryant (1999) found that poultry litter can significantly reduce the
total runoff and sediment losses in cotton fields relatively to commercial fertilizers.
Hence, we would expect manure application (MANURE) to positively affect the
perceptions about increased cotton quality. (8) Farmers whose income comes mainly
from farming (F4RM INCOME) would more likely invest in strategies that improve
cotton quality, so they would more likely indicate cotton quality improvements from the
subsequent use of precision technologies. (9-10) The literature on precision agriculture
has showed that farmers who foresee that precision technologies will be important in the
future (EXP IMPORTA) and those who expect that precision agriculture will be profitable
in five years from the time of the survey (EXP PROFIT) had higher probabilities of
adoption (Banerjee et al., 2008, Torbet et al., 2007, Roberts et al., 2004). Larkin et al.
(2005) found that these expectations about future profit and importance indicate higher
probability of reporting environmental quality improvements through the use of PF. We
use the (11) perceived improvement in environmental benefits (ENVIRON_BEN) as an
independent variable in our estimation as well. Quality and environmental benefits can be
interrelated in the eyes of producers, thus, we would expect a positive impact of these
variable on perceived cotton quality improvement.

In this study, we can distinguish between the following types of precision
technologies: the site specific information gathering technologies (SSIG) and the variable
rate input application (VRT). The first group, can be divided into: (1) yield monitors with
and/or without GPS denoted as MONITORS, (2) grid and/or zone soil sampling denoted
as SAMPLING, (3) aerial photos and/or satellite images denoted as SATELLITE, (4) soil
survey maps, COTMAN plant mapping and/or digitized mapping denoted as MAPS, and
(5) OTHER includes the less used technologies such as Handheld GPS/PDA and/or
Electrical conductivity. The role of existing site specific information gathering
technologies is to identify variation in physical and chemical properties of the field and
give farmers the opportunity to apply their inputs based on location-specific needs. Given
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the strong correlation between soil properties and fiber quality, we would expect that, in
general, the use of SSIG technologies would increase the probability that a producer
would observe improvement in cotton quality, relative to those who did not adopt the
technology. However, which types of SSIG technologies indicate higher or lower
probability of perceived improvement in cotion quality cannot be determined a priori.
Regarding the second group, we consider variable rate application of the following
inputs: drainage, fertility or lime, seeding, growth regulator, harvest aids, fungicide,
herbicide, insecticide, and irrigation. Potassium and K-fertilizer applications improve
significantly the fiber quality mostly in terms of length uniformity and strength
(Oosterhuis et al., 1990). However, the very small number of responses does not allow
the use of the VRT observations for the nine inputs as nine explanatory variables, and
thus we had to restrict our analysis only to the impact of SSIG technologies on perceived
cotton quality improvement. The descriptions of the variables used in the study are
summarized in Table 1.

Empirical Approach
Binary Probit Model

Actual cotton quality improvements are a function of observed characteristics X; (such as
adoption of SSIG technologies and demographics) and unobserved characteristics ¢;.
Assuming a linear additive relationship (Verbeek, 2008), we can specify a quality
equation as Y= X;'B + &, where g, are normally distributed and homoskedastic £~N(0,1).
However, actual cotton quality is an unobservable variable in our case (i.e., Y, is a latent
variable). Given this, the surveyed farmers report perceived improvements in cotton
quality if the latent variable ¥;" exceeds a certain threshold level, which can be set to zero.
Consequently, Y;= 1 (¥;>0) if the farmer experienced improvement in cotton quality
through the use of PF technologies, or ¥;= 0 (¥; <0) if the farmer either did not
experience any improvement in cotton quality through the use of PF technologies or did
not know whether he did. The binary variable (Y,) is observable in our data such that a
binary probit regression model can be estimated (i.e., ¥;= X8 + ¢&,).
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‘Table 1: Description of dependent and independent variables

Variables Description
Dependent Variable
COTTON QUAL (Probir) Farmer expenenced improvement n cotton quahity (ves=1:no or don’t know=0)

(MNL/AMNP) Farmer expenenced tmprovement in cotton quality {(ves=1: no=0 and don’t know=2}

Independent Variables

MONITORS Fasmer used yteld momtors (with or w/o GP'S) to access the yield variability (yes=1. no=0})

SAMPLING Farmer used soil sampling (@id or zong) ta access the yield variability (yes=1; no=0)

SATELLITE Farmer used acrial photos or satellite images to access the yiclkl variability (yes=1; no=0)

MAPS Farmer used maps (soil survey maps, COTM AN plant mapping or digitized mapping) to access the yield vanability (yes=1,
no=0}

OTHER Farmer used other technologics (handheld GPS/PDA or clectrical conductivity ) to access the yick! variability (ycs=1; no=0)

FARM SIZE Total acreage of dry land (sum of sented and owned actes) for the 2007 crop season

YIELDS Esumate of average cotton hnt yield per acre for 2007 crop season

EDUC Years of Formal Education Excluding Kindergarien

AGE Age of the farm operator (as of the 2009 survey year)

EXPERIENCE Number of Yews farming

EXP_IMPORTA Farmer perceived that precision farming would be important in five years from now (yes=1, no=0)

EXP_PROFIT Farmer perceived that precision farmung would be profitable to usc in the future (yes~ |, no=0)

FARM_INCOME Pescentage (%) of 2007 taxable household income coming anly from farming sources

COMPUTER Farmer uses computer for farm management (yes=1, no=0)

MANURE Farmer applied manure on his/her fields (yes=1; no=0)

PUBLICATION Farmer used Univetsity publications to obtain precision farming intormation (yes=1, no=0)

PLAN Years to plan farming in the future

AG_EASEMENT The farm currently has agneultural casement (ves=1. no or don’t know=0}

ENVIRON_BEN The perceived mprovements i environmental quality through the use of precision famung (s es= 1. no or don’t know=0)

Dimmies for Farm Locaton

AL Farm located i Alsbama (yes=1, no=0)

AR Farm located i Arkansas (yes=1, no=0)

FL Farm located 1n Flonda (yes=1; no=0)

GA Farm located in Georga (yes=1, no=l))

LA Farm located tn Lowstana (yes=1, no=0)

MS Farm located in Mississippy (yes=1, no=0))

MO Farm located n Missouri (yes=1_ no=(})

NC Farm located 1n North Carohina (yes=1, no=0)

SC Farm located i South Carelina (yes=1_ no=0)

™ Farm located in Tennessee (yes=1. no=0)

Y Farm located in Texas (yes=1, no=0)

V4 Farm located in Virgnia (yes=1, no=(})

OTHER was dropped duning estimation to avoid the dummy vanable trap

The probability that the individual i perceives Y;= 1 can be derived from the latent
variable and the decision rule, 1.e.,

P{Y =1|X}=P{Y >0| X} =P{X,B+&>0| X} =
. Ple,> X, I X} =1=F(=X, )= F(X, )

where F denotes the distribution function of ¢; (the standard normal in our case). The
likelihood function is given by:
N N
LogL(B) =" Y,log F(X; )+ ) (1-Y,)log(l- F(X,B))
(6) il il

and the coefficients are estimated with maximum likelihood.
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Contrary to the linear regression model, the parameters (fs) cannot be directly
interpreted as the marginal effects on the dependent variable Y. Thus, for the binary
probit model, the marginal effects are defined as:

PE(Y|X) aP(Y,=1X)
ox,,  ax,

The binary probit empirical model is then specified as follows:

%) =F(X,B)B,

(8) COTTON QUAL=By+B,MONITORS+ B, SAMPLING+B3SATELLITE
+ BMAPS+ BsFARM_SIZE+ B¢YIELDS+ B,EDUC
+ Ped GE+ BoEXPERIENCE+ BoEXP_IMPORTA
+PB1EXP_PROFIT+ By ,FARM INCOME
+ B1;COMPUTER+ B,y MANURE-+ B,sPUBLICATION
+ ByPLAN+ B7AG EASEMENT+ P\sENVIRON BEN
+ B1oL OCATION DUMMIES* €,

Multinomial Probit Model

To evaluate whether the substantial number of the “do not know™ answers (n=547) has an
impact on the probability of perceived cotton quality improvement, we also estimated a
Multinomial Probit Model (MNP). For an individual i we assume a random utility model
Y,= X,'8, + u, associated with the following alternatives: j=0, if the farmer did not
experlence any improvements in cotton quality after the use of precision technologies,
=1 1f she/he perceived improvements in cotton quahty and /=2 if she’he “did not know”
whether there was an improvement. Again, .X;' reflects the set of observed characteristics,
B the vector of parameters to be estimated and 1, the stochastic error term. In the MNP
model the error follows a multivariate normal distribution with covariance matrix X'
where X 1s not restricted to be diagonal matrix.
Assuming that the disturbances of the different combinations are correlated across

choices (Greene 1997):

wull MND(0,©)
©) 0=1,8%

Z=E(uu)

Thus the probability to choose category j can be written as:
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P(Y, = j1X)= PO, > Yl> Y, Y > Y Yy > V)

(10) = P((u, —u,) > X8 =3, ) (it =t 4)) > X,f(ﬂu_,) -8,
(":j _“i(j+l)) > ‘\,;(B(jﬂ) —,Bj )""’(uij _”m) > ‘\,:.('B.\I _,Bj ))

which holds for every subset of eligible combinations including M and /. To ensure
identification, f; is set to zero for one of the categories, and coefficients are then
interpreted with respect to that category, called the base category (Cameron and Trivedi,
2009). The maximum likelihood procedure is again applied to estimate the model.

Results and Discussion

The estimated parameters of the binary probit model along with the average marginal
effects, their delta standard errors and p-values are presented in Table 3.°

The likelihood ratio test was 173.68 and statistically significant at the 99% level,
indicating an overall good fit of the model. Furthermore the Wald chi-squared test shows
that the coefficients of the MNP model are all statistically different from zero, when
considered jointly. Multicollinearity diagnostics (Ender, 2003) indicated a mean VIF
(Variance Inflation Factor) of 1.37 and Tolerance levels between 0.74 and 0.94. The only
correlation coelficients that did not follow the condition indices were 4GE and
EXPERIENCE, both of which were not statistically significant.
Only the statistically significant average marginal effects (AME) are interpreted here and
they all had the hypothesized signs. A marginal effect is calculated for each observation,
and then each computed effect is averaged.* Use of soil sampling, maps, participating in
agricultural easement, total acres planted, expected future profitability of precision
technologies and perceived improvements in environmental quality, all positively
affected the probability that a farmer perceived improved cotton quality after the adoption
of SSIG technologies. A 10 fold increase in SAMPLING increases the probability of
perceived cotton quality improvement by 0.59, whereas a 10 fold increase in MAPS
increases the probability of perceived cotton quality improvement by 0.72. The effect of
the other two SSIG technologies (MONITORS and SATELLITE) is also positive but not
statistically significant. These results are consistent with the fact that soil sampling along
with mapping technologies have been used for a longer period of time compared to yield
monitors and satellite technologies. Soil sampling, in particular, has the lower

* Estimates of location dummies are not statistically significant and are not presented in the tables, but are
available upon request.

* The multinomial probit coefficients are interpreted based on comparison with the base category, which is
“Yes, | have perceived improvements in cotton quality following the use of precision technologies.”
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Table 2: Summary Statistics

Journal of Agribusiness

Variables Mean St. Dev Min Max
Dependent Variable
COTTON QUAL 0.138 0.345 !
1.091 0.924 0 2
Independent Variables
MONITORS 0.058 0234 0 1
SAMPLING 0.194 0.395 0 1
SATELLITE 0.047 0.213 0 1
MAPS 0.056 0.231 0 1
OTHER 0.033 0.18 0 1
FARM SIZE 854.78 1012.98 5 18425
YIELDS 1134.43 62891 1 3600
EDUC 14.16 2521 0 25
AGE 56.09 12.699 23 95
EXPERIENCE 31.637 13.521 0 79
EXP_IMPORTA 0.697 036 0 1
EXP_PROFIT 0.534 0.498 0 1
FARM _INCOME 72.248 29.453 0 100
COMPUTER 0.537 0.498 0 1
MANURE 0.181 0.385 0 1
PUBLICATION 0.348 0.476 0 1
PLAN 3.749 1553 1 5
AG_EASEMENT 0.085 0.279 0 1
ENVIRON_BEN 0.264 0.441 0 1
Location Dummies
AL 0.063 0.244 0 1
AR 0.041 0.199 0 1
FL 0016 0.126 0 1
G4 0.099 0.299 0 1
L4 0.044 0206 0 1
MS 0.072 0.259 0 1
MO 0.022 0.149 0 1
NC 0.095 0.294 0 1
Yol 0.03 0.172 0 1
N 0.056 0.23 0 1
TX 0.445 0.497 0 1
14 0.011 0.107 0
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Table 3: Maximum Likelihood Estimates and Average Marginal Effects (AME) of the
Probit Model (N=783)

Variable Estimate St.E P-Value AME SLE P-Value
CONSTANT -1.619 ** 0.706 0.022 N/A N/A N/A
MONITORS 0.102 0.220 0.643 0.015 0.033 0.643
SAMPLING 0.388 ** 0.159 0.015 0.059 ** 0.024 0.015
SATELLITE 0.108 0.234 0.645 0.016 0.035 0.645
MAPS 0.472 ** 0.216 0.029 0.072 ** 0.032 0.028
FARM SIZE 0.0001 * 0.00007 0.080 0.00002 *  0.00001 0.079
YIELDS 0.00009 0.0001 0.450 0.00001 0.00001 0.449
PUBLICATION 0.17 0.153 0.265 0.026 0.023 0.265
COMPUTER -0.156 0.165 0.343 -0.023 0.025 0.343
EXP _IMPORTA -0.218 0.308 0479 -0.033 0.047 0.479
EXP _PROFIT 0441 ** 0.199 0.027 0.067 ** 0.03 0.027
FARM_INCOME -0.0003 0.002 0.894 -0.00005 0.0004 0.894
AG_FASEMENT 0.385* 0.212 0.070 0.058 * 0.032 0.069
PLAN -0.011 0.047 0.816 -0.001 0.007 0.816
MANURE 0.086 0.169 0.608 0.013 0.025 0.608
EXPERIENCE 0.002 0.011 0.808 0.0004 0.001 0.808
ENVIRON_BEN 1.357 *#** 0.151 0.000 0.207 *** 0.02 0.000
AGE 0.003 0.011 0.750 0.0005 0.001 0.750
EDUC -0.048 0.029 0.101 -0.007 0.004 0.100

Prob >chi2 = 0.0000

Pseudo R=0.2831

LR chi2 (28) = 173.68

Notes: Single, double, and triple asterisks (*,** ***) denote that p< 0.10, p<0.05 and
p<001, respectively

abandonment rate with only 0.05% rate of discontinuing its technology use. Hence,
cotton producers have possibly sufficient time to evaluate its costs and benefits (Walton
et al., 2008), which in turn may also have allowed them to see its potential effects on
quality. In addition, sampling and digital mapping technologies give information about
within-field variability of soil properties that are correlated with fiber quality. It is
possible that producers who adopted sampling and digitized mapping techniques are the
ones who took advantage of the quality information implied from these technologies, and
consequently optimized input/management decisions to improve overall fiber quality for
their fields. Hence, these producers are the ones that recognize cotton quality
improvements.
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Farmers who have received payment to use and develop the land for agricultural
purposes only, will more likely care more about cotton quality than profits. Therefore a
10-fold increase in the probability of participating in agricultural easement programs will
more likely increase the perceived quality improvement by 0.59. Operators of larger
farmers are more likely to be well informed about the benefits of precision technologies
thus more likely to observe improvements in cotton quality. Regarding the positive
coefficient of environmental perceptions, farmers have experience in weather and soil
conditions that affect environmental and cotton quality. Hence, improved environmental
conditions will more possible imply improved cotton quality.

The performed multinomial probit (MNP) relaxes the Independence of Irrelevant
Alternatives Assumption (I1A). The IIA assumption implies that adding or deleting
alternative outcome categories does not affect the odds among the remaining outcomes.
The binary probit estimates are robust with both the MNP regression estimates, presented
in Table 4.

Table 4: Estimates of Average Marginal Effects (AME) of the Multinomial Probit Model (N=783)

Y=0:; No Y=2, Don't Know Y=I: Yes
Variable AME St.E P-Value AME St.E P-Value  AME St E P-Value
MONITORS -0.005 0069 0.933 -0.011 0.070 0.871 0.017 0033 0.609
SAMPLING 0023 0041 0575 -0082* 0042 0.052  0.059** 0024 0.015
SATELLITE -0.029 0070 0.678 0.013 0.072 0.857 0.016 0.035 0.655
MAPS -0.039 0067 0.558 -0.031 0.068 0.640  0.071 ** 0032 0.030
FARM SIZE 4.79E-06  0.000 0.834  -0.00002 0.00002 0.277 0.00002* 0.00001 0087
YIELDS -0.00005 * 0.00003 0.054 000004 000003 0.156 0.00001  0.00001 0.448
PUBLICATION -0.1 ** 0.037 0.007 0.074* 0.038 0.055 0.026 0.023 0.260
COMPUTER -0.026 0.038 0.500 0.05 0.040 0.210 -0.024 0.025 0330
EXP IMPORTA  -0.121**  0.058 0.039 0.159**  0.063 0.012 -0.038 0.046 0416
EXP PROFIT -0.074 * 0.040 0.068 0.008 0.043 0.847 0.066**  0.030 0.028

FARM_INCOME  0.0009 0.0006 0.129  -0.0009  0.0006 0.161  -0.00004 0.0004 0924
AG_EASEMENT -0.059 0.062 0.341 -0.001 0.062 0.986 0.06 * 0.032 0.064

PLAN 0.008 0.011 0.442 -0.006 0.011 0.565 -0.001 0.007 0.789
MANURE 0.006 0.043 0.885 -0.019 0.044 0.657 0.013 0.025 0.598
EXPERIENCE -0.002 0.002 0.249 0.002 0.002 0.346 0.0003 0.001 0813
ENVIRON_BEN -0.068 0.045 0.135 -0.138 *** 0.046 0.003  0.206 ***  0.020 0.000
AGE 0.002 0.002 0.266 -0.003 0.002 0.200 0.0005 0.001 0.744
EDUC 0.015 ** 0.007 0.032 -0.008 0.007 0.268 -0.007 0.004 0.106

Prob >chi2 = 0.0000
Wald chi2 (58) = 188.20
Notes: Single, double, and triple asterisks (*,**,***) denote that p< 0.10, p<0.05 and p<0.01, respectively

As far as those who did not perceive cotton quality benefits, farmers who did not
obtain information about PF from University publications (PUBLICATION), have lower
yields (YIELDS) do not expect that PF will be important (EXP_IMPORTA) or profitable
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(EXP_PROFIT) in the near future, and had a higher educational attainment (EDUC) will
more likely report that they did not observe cotton quality benefits from the PF use.
Farmers, who do not read University publications (PUBLICATION) may not understand
the site-specific management practices that can possibly improve cotton quality in the
production system, thus are less likely to experience cotton quality improvements.
Likewise, lower average yields (Y/ELDS) are related to either lower or unimproved
quality outcomes. The impact of perceptions regarding the future of precision
technologies (in our case profitability and importance of precision agriculture) is
important because farmers could make predictions based on the experience they have
obtained from cotton farming. Therefore producers, who do not believe that PF will be
important or profitable, will more likely not observe improvements in crop quality. Last,
with respect to educational level, farmers with more years in formal education will more
likely make decisions based on profit criteria (Kotsiri et al., 2013). Hence more educated
farmers will more likely value yields than quality so they will less likely observe
improvements in cotton quality following precision farming adoption.

Conclusions

This paper examines whether adoption of precision technologies and other production
factors influence perceived improvements in cotton quality. Global positioning systems
(GPS), geographical information systems (GIS), computers and management practices
are technologies that influence cotton quality. Hence, understanding how precision
farming technologies affect cotton quality may be important in helping guide optimal
profit-maximizing management decisions in the future.

Using data from farmers in the Southeastern United States and through discrete
choice models, we find that use of soil sampling, mapping technologies, participating in
agricultural easement, total acres planted, university publications, and expected future
profitability of precision technologies all positively affected the probability that a farmer
perceived improvements in cotton quality. Most previous studies focus on the yield
improvements and environmental benefits from precision farming (i.e., water quality),
but our results suggest that the adoption of precision farming technologies may also
benefit farmers in terms of increased cotton quality. This is important information for
farmers contemplating adoption or continued use of this technology because it shows
another potential benefit for utilizing precision technologies in their farms.

Results of our study provide an important insight that could be of use to researchers,
technology manufacturers, and dealers. Since our results suggest that precision farming
can potentially influence cotton quality, researchers can build on this insight and collect
data on more objective measures of quality to further discern whether existing precision
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technologies have effects on actual quality attributes, like fiber length and strength. More
comprehensive economic models akin to the study of Britt, Ramirez, and Carpio (2002)
can be developed to further understand how precision agriculture technologies change
optimal input use that maximizes profits. The precision technology impacts on quality
should also lead manufacturers and dealers to further develop and improve precision
farming tools that can directly sense cotton quality and improve production efficiency (as
discussed in the introductory section). Extension educators may also utilize information
in this study to further inform their constituents about the potential cotton quality
improvements from precision technology use. Hence, precision technologies that will
directly encompass both lint yields and cotton quality may be the important next step to
further improve cotton production efficiency in the future.

A challenge would be to further develop and improve precision technologies and their
sensor systems in order to integrate mulitiple crop data and provide more detailed
information about cotton lint yields, fiber quality and their interactions. This would allow
researchers to have more data needed for further analysis of the relationship between
precision technologies and quality. Another challenge is the enhancement of the data
quality algorithms and the communication of the data quality to the end users. This stage
is very critical because errors in the data could cause wrong managerial decisions that
would lead to inefficient resource use and environmental risks (Thessler et al., 2011).
Lastly, issues of applications compatibility and maintenance need also to be taken into
consideration in the future.
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