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Using Satellite Imagery in Predicting
Kansas Farmland Values

Heather D. Nivens, Terry L. Kastens,
Kevin C. Dhuyvetter, and Allen M. Featherstone

Can remotely sensed imagery improve hedonic land price models? A remotely sensed
variable was added to a hedonic farmland value model as a proxy for land produc-
tivity. Land cover data were used to obtain urban and recreational effects as well.
The urban and recreational effects were statistically significant but economically
small. The remotely sensed productivity variable was statistically significant and
economically large, indicating that knowing the “greenness” of the land increased the
explanatory power of the hedonic price model. Thus, depending upon the cost of this
information, including remotely sensed imagery in traditional hedonic land price
models is economically beneficial.
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Introduction

Nearly 75% of agricultural assets are in land (U.S. Department of Agriculture/Economic
Research Service). Because profitability in production agriculture is capitalized into land
values, changes in land values are important indicators of economic well-being of the agri-
cultural sector. Conceptually, land values are determined by the capitalized expected
future returns to land, which are often related to historical and current returns, which
in turn depend on agricultural production, but also on government program payments.

Remotely sensed satellite imagery provides information that is potentially useful for
predicting crop production levels before harvest. Such data have been used worldwide
to predict crop yields (Das, Mishra, and Kalra; Groten; Maselli et al.; Rasmussen). In the
United States, such data have been used to predict corn yields (Hayes and Decker; Lee)
and wheat yields in the Midwest (Doraiswamy and Cook; D. L. Kastens et al.; J. H.
Kastens et al.; Rudorff and Batista). The existence of a relationship between agricul-
tural production (crop and forage yields) and land values indicates remote sensing might
be useful in determining agricultural land values by assessing both crop and pasture
productivity and the interaction of rainfall, irrigation, and water-holding capacity. How-
ever, remotely sensed imagery would not be expected to improve current hedonic land
models if productivity were known and included in predictive models. Unfortunately,
parcel-level production data are not readily available to policy makers and researchers.
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Consequently, using remotely sensed imagery as a proxy for production might be useful
in estimating land values.

A common method of estimating land values has been to use hedonic pricing models.
Rosen stated, “Hedonic prices are defined as the implicit prices of attributes and are
revealed to economic agents from observed prices of differentiated products and the
specific amount of characteristics associated with them. They constitute the empirical
magnitude explained by the model” (p. 34). Therefore, the price is the market-clearing
price for that attribute and is the point where buyers and sellers agree (King and
Sinden). Although land is not a homogeneous factor of production, its attributes might
be assumed to be.

Previous research provides guidance for specifying hedonic models in two areas:
(a) attributes (land characteristics) that should be included, and () the appropriate
functional form. The land characteristics found in previous investigations often can be
broadly classified as geophysical (e.g., soil type, historical production) or socioeconomic
(e.g., distance from town, road access, population, interest rates, and other macroeco-
nomic indicators) (Downing and Gamble; Elad, Clifton, and Epperson; Pardew, Shane,
and Yanagida; Stewart and Libby; Xu, Mittelhammer, and Barkley). A hedonic land
value model is used in the present study to determine the ability of remotely sensed
data to improve the explanation of parcel-by-parcel variation in land values.

There is little theoretical justification for choosing among functional forms. Thus
previous researchers have used many different functional forms. For example, linear
(Downing and Gamble), semi-log (King and Sinden), and double-log (Featherstone et al.;
Pardew, Shane, and Yanagida) models have been employed to estimate land values.
Some analyses have used the Box-Cox functional form (Elad, Clifton, and Epperson;
Roka and Palmquist; Palmquist and Danielson). The Box-Cox functional form is a
flexible functional form as it nests all first-order Taylor-series approximations to an
unknown functional form including the three mentioned above. Therefore, our method-
ology includes a Box-Cox functional form to allow the data to determine the form of the
hedonic model.

Background

Because we examine whether remotely sensed imagery may be useful in a hedonic
model, it is helpful to define the remotely sensed data that will be used. Remote sensing
involves collecting data about an object without coming into direct contact with it.
Satellite imagery is one type of remote sensing: satellites orbit the earth, continuously
collecting information on the intensity of reflected light of various frequencies. Satellites
often collect surface data for a minimum of three frequency bands: red, green, and near-
infrared (NIR).

Remotely sensed data have been employed for over 25 years to assess and monitor veg-
etation condition (D. L. Kastens et al.). In particular, red and NIR reflectance have been
used to measure vegetation health and vigor, based on the inverse relationship between
red reflectance and chlorophyll content, and the direct relationship between leaf struc-
ture and NIR reflectance. Vegetation index values, specifically the normalized difference
vegetation index (NDVI), calculated from the red and NIR bands as [(NIR —red)/(NIR +
red)], are often referred to as greenness values because they are strong indicators of
vegetation condition and quantity (D. L. Kastens et al.).
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Time-series analysis of vegetation index data has allowed scientists to examine global-
scale phenological phenomena such as green-up (which occurs when an area’s vegetation
index breaks a 15% threshold of its historically determined range), duration of green
period, onset of senescence (which occurs immediately after the maximum vegetation
index value for the year is attained), as well as changes in biophysical variables such as
leaf area index, biomass, and net primary productivity (Eastman and Fulk; Tucker et
al.). Thus, a justification has been established for using remotely sensed data, specific-
ally the vegetation index, to estimate crop and pasture production.

Conceptual Model and Data
A reduced-form conceptual model of farmland value can be expressed as:
(1) Land Value = f(Geophysical Characteristics, Socioeconomic Characteristics),

where the geophysical characteristics include information on historical production, soil
traits, government payments, and conservation practices.’ The socioeconomic character-
istics include factors such as distance from town, road access, and recreational features.

A conceptual model of farmland value that includes remotely sensed information
could be described as:

(2) Land Value = f(Geophysical Characteristics, Socioeconomic Characteristics,
' Remotely Sensed Variables),

where the remotely sensed variables include both geophysical variables (such as a vege-
tation index as a proxy for plant production) and socioeconomic variables (such as an
urban or recreational effect).

The heuristic descriptions of land value in (1) and (2) are intentionally broad, as land
investment typically is a long-term investment, driven by factors characterized as narrow
and factors characterized as broad—both temporally and geographically. More specific-
ally, although land investment is distinctly location specific, it could be that expectations
at a broader level (e.g., regional) are more reliable indicators of the expectation for a
desired location. Consequently, we consider anumber of variables as possibly important
for explaining land value, ones with decidedly different spatial scales.

The Kansas Applied Remote Sensing (KARS) program, through the University of
Kansas, has developed a historical database of vegetation index values for the state of
Kansas from 1990 through 1999. In addition to the vegetation index, a land cover data-
base from KARS is used to add urban and recreational (i.e., lake) effects to the hedonic
model. These historical remotely sensed data are matched with land sales data.

Parcel-specific land sales data were collected by members of the Kansas Society of
Farm Managers and Rural Appraisers (KSFMRA) for the purpose of assisting its mem-
bers in appraising agricultural real estate (see Featherstone et al. for more information

!
\

! For more information on the theoretical derivation of the reduced-form equation, see Rosen. The arbitrary classification
is not particularly rigid. For example, though characteristics such as government payments might be better construed as
socioeconomic, we maintain the classification of geophysical in order to keep those features that most impact the agricultural
productivity in the same class.
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about this data set). Although these data extend from 1977-1999, the vegetation index
data set is only available from 1990-1999. Data reported by the KSFMRA include a
subjective measure of land quality,” road access, amount of cropland, whether the land
was financed with a contract, improvements, mineral rights, presence of irrigation, size
of the parcel, and location in the state. The land value data were obtained with a legal
description (township, range, and section numbers) and were converted to a geographical
coordinate system (latitude, longitude) to make the land sales data compatible with the
land cover and vegetation index data sets.?

Another important determinant of land values is the profitability of agriculture. This
factor could be proxied by including a measure of crop prices. Because Kansas has
several major crops, inclusion of only one price would not be appropriate and including
all crop prices as separate variables may lead to multicollinearity, as crop prices are
often highly correlated. Therefore, regional farm crop income is included as an explana-
tory variable for profitability. The crop income per region was obtained from various
annual issues of the USDA/Kansas Department of Agriculture’s Kansas Farm Facts, and
was converted to 1999 constant dollars using a personal consumption expenditure (PCE)
index reported by the Federal Reserve Bank of Kansas City.

Although crop income incorporates agricultural market changes into the hedonic
model, a variable was needed to capitalize the income stream into land values. The real
interest rate, an average yearly measure, was included to measure changes in the
capitalization rate and was derived from the real estate interest rates and PCE-based
inflation reported by the Federal Reserve Bank of Kansas City.

The vegetation index data set (NDVI) was created by KARS using data from the U.S.
Geological Survey’s Earth Resources Observations Systems for the years 1990-1999.
Imagery from the Advanced Very High Resolution Radiometer (AVHRR) sensor was used
because this sensor is well suited for monitoring crop response due to its temporal and
spatial resolutions, and because AVHRR data are relatively inexpensive compared to
other remotely sensed data (D. L. Kastens et al.).

Nearly cloud-free AVHRR vegetation index composites were created by saving the
highest daily vegetation index value over a two-week period. NIR and red values used
in the vegetation index, where the vegetation index is defined as [(NIR - red)/(NIR +
red)], were provided in an eight-bit unsigned integer format, meaning each can take only
integer values in the [0, 255] interval. This format would mathematically lead to a
vegetation index value in the [-1, 1] interval. Thus, to maintain minimal data storage
requirements (i.e., an eight-bit integer format), an affine transformation was adopted
which first adds 1 to the vegetation index value, then multiplies it by 100, and finally
rounds to the nearest integer. This procedure results in a final vegetation index value
residing in the [0, 200] interval. The average vegetation index for the entire calendar
year was then calculated and used for this analysis.

Figure 1 provides an image of the average vegetation index for the state of Kansas in
1999. Darker areas indicate higher vegetation index values, or “greener” land. As ex-
pected, the western region of the state, which receives less rainfall, is not as “green” as
the eastern region.

? The land quality is determined by each KSFMRA agent, and is based on an agent’s perception of the quality of land
compared to the land surrounding it. .

3 Legal descriptions were converted to latitude and longitude using the LEOQ® software system (Kansas Geological Survey).
For more information on this procedure, see appendix A.
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Note: Lighter shading indicates lower vegetation index, darker indicates higher vegetation index.

Figure 1. Average vegetation index for the state of Kansas, 1999

The land cover data were created by KARS in 1995 (Whistler et al.). The land cover
was divided into eight numeric categories: (1) Urban—Residential, (2) Urban—Commercial/
Industrial, (3) Urban—Openland, (4) Cropland, (5) Grassland, (6) Woodland, (7) Water
Bodies, and (8) Other Cover (sandbars, bare ground, etc.). Land cover is assumed to be
fixed over the short run. Therefore, the 1995 land cover data from KARS are assumed
to be representative of the entire 1990-1999 time period.

Empirical Model

The empirical model estimated is specified as follows:
3) Land, ) @, +a,Con; + a,Gov; + a;Hwy; + a,Gravel, + a Interest,

g
+ a6Incomei( )

)

+ aq.dmp, + aglrr; + agMin; + a,,Qtr2,
+a,QIr3; +a,Qtrd, + a,;Year; + aMAcresim + alsCropim
+a,HiQual; + a,,LoQual, + a.5C; + a,,EC,; + a,,NC;

+ @y NW; +ay,8C; + a,,SE; + a,,SW, + g WC; + g, Urbanim

2

+ aZ,,Reci(}") + azSENDVIi(M +

where Land, is the 1999 constant dollar price per acre for observation (or parcel) i; x*
represents the Box-Cox transformation of variable x (for more information, see Greene);
A, and A are the Box-Cox transformation parameters for the dependent variable (Land,)
and the independent variables (identified and defined in table 1), respectively; and e, is
a parcel-specific error term.
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Table 1. Definitions of Variables

Variable

Deﬁmtxon

-Land,

Price per acre for observation (or parcel) i in constant 1999 dollars

Socioeconomic Variables:

Binary variable =1 if parcel i was sold by contract

-Con;
Gou; Binary variable representing 1996 FAIR Act, =1 if year is > 1996
Gravel; Binary variable representing gravel road access (dirt road is default) for parcel i
Huwy, .Binary variable representing highway road access (dirt road is default) for parcel i
Interest; Real interest rate for the year in which parcel  was sold :
Income, Farm income/acre for the region and year in which parcel ; was sold (1999 constant $)
Imp, ‘Binary variable =1 if there were improvements made to parcel i
Irr; Binary variable =1 if any of parcel i was irrigated ‘
Min, Binary variable =1 if mineral rights were sold with parcel ; .
Qtr2; Binary variable =1 if parcel i is sold in 2nd quarter of year (1st quarter-of year is default)
Q1rs; Binary variable =1 if parcel i is sold in 3rd quarter of year (1st quarter of year is default)
Qtrd, . Binary variable =1 if parcel i is sold in 4th quarter of year (1st quarter of year is default)
Year, Year in which parcel i was sold
Geophysical Variables: -
Acres; Number of acres sold in parcel i
Crop;. Percentage of parcel i that is cropland
HiQual, Binary variable =1 if pércel i is high quality land (medium quality is default)
LoQual, Binary variable =1 if parcel i is low quality land (medium quality is default)
For thefollowing 8 regional binary variables, the northeast region is the default.
G Binary variable =1 if parcel i is located in the central region of Kansas
EC, Binary variable =1 if parcel { is located in the east central region of Kansas
NC, Binary variable =1 if parcel i is located in the north central region of Kansas
NW, Binary variable =1 if parcel i is located'in the northwest region of Kansas
SC; Binary variable =1 if parcel i is located in the south central region of Kansas
SE; Binary variable =1 if parcel i is located in the southeast region of Kansas
SW, Binary variable =1 if parcel i is located in the southwest region of Kansas
WC, Binary variable =1 if parcel i is located in the west central region of Kansas

Remotely Sensed Variables:

Urban,
Rec;

i

COVCROP,
COVPAS,
ENDVI,

NDVICROP,
NDVIPAS,;

ANDVI,,

Urban variable, defined as the percentage of land within a 10-mile radius of parcel i that
is classified as urban (categories 1-3) according to the land classification data set

Recreational variable, defined as the percentage of land within a 10-mile radius of parcel
i that is classified as water bodies according to the land classification data set

Percentage of farmland within a 10-mile radius of parcel i that is cropland
Percentage of farmland within a 10-mile radius of parcel i that is pastureland

Expected vegetation index for parcel i, for a 10-mile radius—a derived value in the
[0,200] interval

Vegetation index for cropland within a 10-mile radius for parcel ; in year ¢ in the [0, 200}
interval

Vegetation index for pastureland within a 10-mile radius for parcel i in year ¢ in the
[0, 200] interval :

"Average vegetation index for parcel i, in year ¢, for a 10-mile radius—a derived value in

the [0 200] interval
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The base model in (1) was obtained by excluding the remotely sensed variables
(Urban,;, Rec;, and ENDVI,). The expanded model (2) includes the remotely sensed vari-
ables as depicted in (3).*

Several socioeconomic variables were included in the analysis. For instance, the size
of the parcel may be important. Small parcels might be attractive to developers or non-
farmers, thus increasing the price received. On the other hand, farmers might prefer
large parcels to improve machinery utilization, although access to finance could constrain
the size of the parcels purchased. With development competing with farmers for land,
road access is important. If a parcel had highway or gravel access, a developer or indi-
vidual might be more willing to develop and the price of the land would be expected to
be higher than for land with dirt road access. Land with mineral rights is expected to
receive a higher price than land sold without mineral rights because of the potential
development opportunity. A yearly trend was included to account for changes in tech-
nology that increase crop yields and decrease operating costs.

Geophysical variables were included as well. For example, if the farmland were
improved, then it may receive a higher price than unimproved farmland. Cropland
receives a premium over pastureland; thus knowing the percentage of land designated
as cropland within the parcel should be important in explaining price. Likewise, the
quality of the land sold is important, because high quality land is expected to bring a
premium whereas low quality land will bring a discount relative to average quality land.
Region-level farm income will positively affect the price of land sold as well. Similarly,
changes in government farm programs should have an impact on land prices. Therefore,
a binary variable was included to capture the effects of the 1996 farm bill.

The empirical model (3) contains three remotely sensed variables: Urban;, Rec;, and
ENDVI,. Urban, is the urban effect, which is the percentage of the land classified as
urban (KARS land cover categories 1-3) within a defined radius encircling parcel i. This
radius was defined as 10 miles.® An example of the Urban, variable can be seen in figure
2, which is an actual land classification map for Sedgwick County, Kansas. The hypothe-
sized parcel i is denoted by a star. The Urban; value for parcel i was calculated by taking
the percentage of the total points within the circle having an urban classification. In the
example shown in figure 2, Urban; = 10.16%.

In (3), the remotely sensed variable Rec; is the recreational effect, representing the
percentage of land within a 10-mile radius encircling parcel i which is classified as
water bodies.

Because a single vegetation index value was assigned to each 1.1 square kilometers
across Kansas, using a single vegetation index value to determine the productivity of the
land parcel could lead to biased and unstable results depending on whether a parcel was
predominantly cropland or pasture. Instead, a circle containing several vegetation index
values was used. The expected vegetation index (ENDVI, ,) is the remote sensed imagery
variable defined as:

“Each land parcel (i) was sold in a specific year (¢); e.g., the land parcel was sold in 1993, 1994, or 1995, etc. If a land parcel
was sold in more than one year (e.g., sold in 1993 and sold again in 1999), each sale was treated as a separate parcel ;. The
time-series data used in this estimation (i.e., interest rates, income, etc.) are associated with the year the parcel is sold (z).
Therefore, ¢ is not noted in (3). .

® Models were estimated with radii of 4 to 15 miles (in one-mile increments). The results were robust to the increment
change.
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M Land Classified as Urban Note: Urban; =10.16%
All Other Land

Figure 2. Sample urban land cover map for Sedgwick
County, Kansas

49 ENDVI, = (ANDVI,, , + ANDVI,, , + ANDVI,, ;)/3, and

(5)  ANDVI,, = (NDVICROP,,+ COVCROP, + NDVIPAS, , x COVPAS,) » 100,

where ANDVI, , is the actual vegetation index for parcel i in the year it was sold (¢).
NDVICROP,,is the average vegetation index for cropland pixels within the defined
radius of 10 miles for parcel i in year £, and NDVIPAS,, is the average vegetation index
for pastureland pixels within the defined radius of 10 miles for parcel i in year ¢.
COVCROP; is the proportion of farmland pixels within the radius for parcel i designated
as cropland, and COVPAS; is the corresponding proportion for pastureland. COVCROP,
and COVPAS; were derived from the land cover data set. Current vegetation index
values were not used because the majority of the land was sold before the cropping
season began. In an attempt to better capture long-run productivity, a three-year
average vegetation index, rather than a two- or one-year vegetation index variable, was
used.®

The parameters obtained from (3) using the Box-Cox transformation are not readily
interpretable because they are neither derivatives nor elasticities. Furthermore, for
nonlinear functions, E[f(x)] * f[E(x)]. Thus, additional mathematics are required to
numerically derive meaningful partial effects measures. Therefore, elasticities were
calculated from the Box-Cox functional form (see appendix B) using:

¢ In the model (3), the subscript ¢ has been dropped because it is no longer needed.
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(R + DM 3601 - 2 )0 - 2AD,R + DV a,x)

6) E, -
R + DY+ 11 - 4R + DV 2

b

where x, is a continuous variable, a, is the parameter estimate associated with x,, of is
the variance of the error term from (3), A, represents the Box-Cox transformation param-
eter for the dependent variable Land,, d,, is a binary variable [referenced in equations
(7) and (8)], A represents the Box-Cox transformation parameter for the independent
variables, and R is the right-hand side of (3) evaluated at any point of interest:

2
Xy

-1
A

] *+ Ea’mdm'

Because elasticities are not particularly meaningful for binary variables in nonlinear
models, we calculate a “binary effect” instead:

N R=a0+2ak[
%

(UA)-2 2
oe
(1A)-2 2
oe

(ARlg o+ 1)+ 34{1 -2 AR, L 1)

B S R N e

which is the percentage change in land value expected from activating a binary variable
while holding all else constant.

Results

Summary statistics for the variables used to estimate (3) are reported in table 2. The
average price per acre of land sold in constant 1999 dollars was $568/acre, with a range
of $19 to $5,575/acre. The parcel size averaged 196 acres and ranged from 10 to 8,960
acres. On average, 67% of the land sold was cropland, and 0.82% and 0.46% of the land
within a 10-mile radius of the tract sold was classified as urban and recreational, respec-
tively. The average ENDVI value was 130, with a minimum value of 119 and a maximum
of 178.

The data are spatial in nature; therefore, spatial autocorrelation might be present in
the model. To determine if spatial autocorrelation existed, a Moran’s I statistic was
calculated using a first-power inverse distance weights matrix (for more information on
Moran’s I, see Hubert, Golledge, and Costanzo). With Moran’s I values of 0.0415 and
0.0323 (with no spatial autocorrelation, the values would be expected to be 0.0001) for
the base and expanded models, respectively, some degree of spatial autocorrelation is
found.

However, “finding” autocorrelation does not necessarily imply it is appropriate to
correct at all for spatial autocorrelation (Greene, p. 577). An autocorrelation correction
typically imposes substantial, and perhaps undesirable, structure on the causal model.
For example, completing the usual temporal autocorrelation correction means the mod-
eler views y, (dependent variable) to be a causal function of y,_ ,, and the strength of that
relationship is depicted by exactly the estimated autocorrelation parameter (the usual
rho-hat). Additional predetermined impacts of lagged independent variables are also
implied by the correction. Specifying and testing such rigid structure is often possible
(see McGuirk and Spanos for additional insight), but would be especially cumbersome
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Table 2. Summary Statistics for 8,178 Land Parcels, 1993-1999

Standard
Variable Mean Deviation Minimum Maximum
Land ($/acre)® 567.50 348.71 19.00 5,575.00
Socioeconomic Variables:
Con 0.03 0.18 0.00 1.00
Gov 0.60 0.49 0.00 1.00
Huwy 0.14 0.35 0.00 1.00
Gravel 0.57 0.50 0.00 1.00
Dirt 0.29 0.46 0.00 1.00
Interest (%) 7.25 0.56 6.07 8.01
Income ($/acre)*® 173.65 122.63 92.16 1,957.01
Imp 0.10 0.30 0.00 1.00
Irr 0.07 0.25 0.00 1.00
Min 0.75 0.44 0.00 1.00
Qirl 0.32 0.47 0.00 1.00
Qtr2 0.31 0.46 0.00 1.00
Qr3 0.19 0.39 0.00 1.00
Qtrd 0.18 0.39 0.00 1.00
Year 1996.06 1.97 1993.00 1999.00
Geophysical Variables:
Acres 196.23 248.90 10.00 8,960.00
Crop (%) 66.56 34.60 0.00 100.00
HiQual 0.19 0.39 0.00 1.00
MedQual 0.75 0.43 0.00 1.00
LoQual 0.06 0.25 0.00 1.00
C 0.18 0.39 0.00 1.00
EC 0.07 0.25 0.00 1.00
NC 0.16 0.36 0.00 1.00
NE 0.06 0.23 0.00 1.00
NW 0.10 0.30 0.00 1.00
SC 0.22 0.41 0.00 1.00
SE 0.07 0.26 0.00 1.00
SwW . 0.08 0.28 0.00 1.00
wcC 0.06 0.23 0.00 1.00
Remotely Sensed Variables:
Urban (%) 0.82 3.15 0.00 66.67
Rec (%) 0.46 2.14 0.00 50.00
ENDVI 129.86 4.69 119.30 177.56

® Dollar values are in constant 1999 dollars.

in the case of spatial autocorrelation correction, where numerous lagged variables
require specific coefficient values. Thus, given the degree of spatial autocorrelation
detected in the estimated models, autocorrelation correction was deemed inappropriate
in these models.
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Estimated parameters for the base and expanded models are reported in table 3, as
well as the elasticities (continuous variables) and the binary effects (binary variables)
calculated at the means of other variables. The models were estimated in SAS (SAS
Institute, Inc.) using full information maximum likelihood. The elasticity and binary
effect standard errors were calculated using the delta method (Greene, p. 278). The base
model (with the remotely sensed variables Urban,, Rec,, and ENDVI, excluded) explained
31% of the in-sample variation in land prices, and the expanded model explained 33%.”
The Box-Cox transformation shows the dependent variable is nearly transformed to a
log form for both the base (-0.031) and expanded (-0.029) models. However, the inde-
pendent variable transformation, at 0.296 and 0.493 for the base and expanded models,
respectively, does not indicate a log or a linear transformation.

As observed from table 3, in the base model, all of the coefficients were statistically
significant at the 5% level except quarter of the year the parcel was sold, parcels sold
by contract, and interest rate. In the expanded model (Urban,, Rec;, and ENDVI,
included), all of the coefficients were statistically significant at the 5% level except
quarter of the year the parcel was sold, parcels sold by contract, and the government
payments variable. Of course, the statistical significance of the majority of the variables
could be due to the large number of observations (8,178).

For the base model, land sold with mineral rights (Min) received a price premium of
6.8% compared to land sold without mineral rights. The time trend (Year) indicates a
6.1% increase in real land values per year after accounting for other effects. The 1996
farm bill (Gov) resulted in a decrease in land price of 5.5% compared to the previous
government program regime. Land parcels with paved and gravel road access received
a price premium of 17.7% and 6.9%, respectively, compared to those with only dirt road
access. Land scored as high quality received a price premium of 27.5%, whereas poor
quality land received a discount of 25% relative to average quality land. The quarter of
the year in which the land was sold had no statistically significant impact on the price
received. The interest rate effect was negative, reflecting the tendency for land prices
to decrease as real interest rates increase; however, this variable was not statistically
significant in the base model. The northeast region (default region) received the highest
price per acre of all land sold, which is not surprising given the northeast region borders
the western corn belt. Land sold in the western regions had the largest price discounts
compared to the northeast, an expected result given the lower rainfall in those areas of
the state.

For the expanded hedonic model, the urban and recreational effects are both positive
and statistically significant. However, a one percentage point increase in the urban
effect increased the price per acre of land sold by only 0.084%. Holding other variables
at their means, the model-predicted land price for Urban; = 0.82% (mean value) is
$550.09/acre, and the model-predicted land price for the figure 2 (Sedgwick County)
Urban; = 10.16% is $650.96/acre. The resulting change in land price from the Urban,
mean value of 0.82% to the figure 2 Urban, value of 10.16% is approximately 18.34%.

The variable used to proxy the productivity of the land (ENDVI,) is positive and
statistically significant. Comparing a model prediction of land price when ENDVI, = 130
(which has a model-predicted land price of $550.09/acre) with one using ENDVI, = 134

" The R® values were calculated as the squared correlation between the predicted and actual land values per acre.
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Table 3. Base and Expanded Regression Model Results for 8,178 Land Parcels,
1993-1999

Base Model Expanded Model
Elasticity/ Elasticity/
Parameter Binary Standard Parameter Binary Standard

Variable Estimate Effect Error Estimate Effect Error
Intercept -91.613* -43.652*

Socioeconomic Variables:

Con 0.030 0.038 0.029 0.030 0.036 0.030
Gov -0.046* -0.055* 0.018 -0.014 -0.017 0.018
Huwy 0.134* 0.177* 0.017 0.118* 0.153* 0.017
Gravel 0.055* 0.069* 0.012 0.042* 0.052% 0.012
Interest -0.074 -0.162 0.087 0.056* 0.179* 0.087
Income 0.009* 0.052* 0.015 0.002* 0.031* 0.012
Imp 0.204* 0.282* 0.019 0.211* 0.290* 0.018
Irr 0.319* 0.478* 0.024 0.315% 0.463* 0.023
Min 0.054* 0.068* 0.012 0.049* 0.061* 0.012
Qr2 0.003 0.004 0.011 -0.002 -0.002 0.011
Qtr3 -0.016 -0.019 0.013 -0.021* -0.025* 0.012
Qird -0.008 -0.010 0.013 -0.012 -0.015 0.013
Year 0.049* 0.061* 0.005 0.023* 0.028* 0.004
Geophysical Variables:

Acres -0.034* -0.197* 0.006 -0.009* -0.144* 0.006
Crop 0.024* 0.100* 0.006 0.017* 0.157* 0.007
HiQual 0.199* 0.275% 0.016 0.188* 0.255* 0.015
LoQual -0.238* -0.250%* 0.012 -0.222* -0.234* 0.012
C -0.228* -0.241* 0.018 -0.212% -0.225% 0.018
EC -0.065* -0.076* 0.023 -0.085* -0.097* 0.022
NC -0.259* -0.269* 0.017 -0.232% -0.242% 0.018
NwW -0.319* -0.321* 0.018 -0.246* -0.255% 0.020
SC -0.228* -0.242* 0.017 -0.229* -0.240* 0.017
SE -0.131* -0.145* 0.023 -0.163* -0.177* 0.021
Sw -0.424* -0.401* 0.016 -0.358% -0.348* 0.018
wcC -0.402* -0.385* 0.018 -0.315* -0.314%* 0.020
Remotely Sensed Variables:

Urban 0.031* 0.034* 0.002
Rec 0.008* 0.006* 0.002
ENDVI 0.169* 2.247* 0.113
A 0.296* 0.493*

Ay -0.031* -0.029*

R? 0.305 0.329

Notes: A single asterisk (*) denotes parameter estimate is significantly different from zero at the 5% level. The
reported standard errors are elasticity and binary effect standard errors, not parameter standard errors.
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(with a model-predicted land price of $590.33/acre) suggests a one standard deviation
increase (table 2) in the NDVI-based vegetation index would cause land price to increase
by 7.31%.2

The parameter estimates of the expanded model had the same signs as the base model
except for the real interest rate and Q¢r2. Interest rate is positive and statistically
significant, a surprising result given it is expected to be negative. However, with only
seven unique (annual) interest rate observations, the unexpected result is likely a small
sample issue that is hard to disentangle without parcel-specific interest rate informa-
tion. Interestingly, the real annual growth in land values expected by the expanded
model (Year) was 2.8%, which seems more appropriate than the 6.1% predicted by the
base model given Kansas land values and inflation rates over the 1990s. Of course, real
growth (Year) is typically due to change in productivity or nonagricultural demand. In
that regard, including proxies for nonagricultural demand for agricultural land should
provide an improved description of real growth. Thus, if agricultural productivity and
nonagricultural demand have been increasing throughout the 1990s, then it should not
be surprising to find the expanded model has a reduced estimate for growth relative to
the base model.

The magnitude of the region effects decreased in the expanded model relative to the
base model. This finding is probably explained by the likelihood that regional effects are
due to weather and productivity differences, and the remotely sensed data captured and
quantified this impact in the expanded model. A Lagrange multiplier (LM) test was
calculated to determine if, collectively, the expected vegetation index and the urban and
recreational effects were statistically different from zero. The calculated LM-test statistic
value was 401.46 and had a p-value of less than 0.0001. Therefore, remotely sensed and
land cover data add to the explanatory power of this hedonic land value model.

In addition to the expanded hedonic model, several other models were estimated to
determine if remotely sensed imagery might be capturing and quantifying information
closely related to other variables. The expanded model in (3) was estimated without the
regional variables, resulting in an ENDVI elasticity of 3.03 and an R? of 0.30. This model
was similar in explanatory power to the base model reported in table 2, again indicating
remotely sensed imagery information might substitute for regional binary variables. The
expanded model in (3) was also estimated without the land quality variables. The
ENDVI elasticity was 2.32 and the R® was 0.29, suggesting land quality could not be
entirely proxied with remote sensing imagery.

Conclusions

Hedonic land value models have been used since the 1920s. However, the best estimator
of agricultural land price variation is probably the underlying productivity of the land
parcel sold. Unfortunately, reliable productivity data are not always readily available
toresearchers and policy makers. Therefore, a proxy ofland productivity was developed.
Because remotely sensed images have been successfully used to estimate corn and

¥ We found no remote sensing studies that quantified the relationship between vegetation index and crop yields. The
studies only reported the correlation between vegetation index and yield. Nonetheless, the literature routinely documents
substantial positive correlations between vegetation index and yield, implying our results are qualitatively consistent with
the literature.
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wheat production in the Midwest, it follows that these images might be useful for
predicting land productivity. A remotely sensed variable obtained from the Kansas
Applied Remote Sensing (KARS) program was added to a hedonic land pricing model to
examine the change in the estimation power of the hedonic model. In addition, land
cover data from KARS were used to estimate an urban effect and a recreational effect.
The urban effect variable was the percentage of land within a radius of 10 miles of
the parcel which was classified for urban use. The recreational effect variable was
the percentage of land within a radius of 10 miles of the parcel which was classified
as water bodies.

Two models—a base hedonic model with no remotely sensed variables and an expanded
hedonic model, which included the remotely sensed productivity variable and urban and
recreational effects—were estimated using Kansas land value data. Except for interest
rate in the base model, which was insignificant, in both models, all variables with the
exception of a few binary variables statistically affected the price per acre of land at the
5% significance level. In the expanded hedonic model, the urban and recreational effects
were statistically significant but economically small when compared to the data means
and standard deviations. Consequently, these characteristics typically would not have
a large impact on the price per acre on most land sold in Kansas. The remotely sensed
productivity variable was significant and large, indicating that knowing the “greenness”
of the land increased the estimation power of the hedonic pricing model. Therefore,
remotely sensed data do add information to hedonic pricing models for agricultural land
in Kansas.

While remotely sensed data add information to a hedonic pricing model, the question
arises as to whether the costs associated with working with remotely sensed data are
worth the benefits of the information added to the model. Working with remotely sensed
data requires extensive time and computing capabilities (see appendix A). Based on the
results, the benefits of using remotely sensed data are marginal: a gain of only 2% in
accuracy (R? change from 31% to 83%), if only the model fit is considered. However, the
skills learned can easily be applied in other research where the benefits might be larger.
Therefore, the potential benefits of including remotely sensed data information will likely
vary depending on the particular situation.

[Received September 2001, final revision received September 2002.]
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Appendix A:
Geo-Referencing Data Sets

Initially the three data sets used in this analysis (land value, land cover, and vegetation index) were
not analytically compatible because they had different spatial references. The land value data were
spatially referenced by legal descriptions. The land cover data were spatially referenced by latitude/
longitude and had a centroid value every 1.1 km across the state of Kansas (approximately 10 million
observations). The vegetation index data also were referenced by latitude/longitude with a centroid
value every 1.1 km, only these centroid points did not match those of the land cover data. Further, the
vegetation index data set had unique values for each of 10 years, though vegetation index centroid
locations were constant across time.

To mitigate these differences, several steps were taken to allow the three data sets to be used in the
empirical models. First, the legal descriptions of the land value data were converted to a centroid
latitude/longitude using the LEO® software system, developed by the Kansas Geological Survey. This
procedure had the effect of mapping each land parcel (approximately 9,000 observations) to a single
unique point in space (with a latitude value and a longitude value), allowing this data set to serve as
the reference data with each observation uniquely numbered.

Using MATLAB® (The Math Works), for each point in the reference data set, a numerical search
routine was performed on the land cover and vegetation index data sets in turn. Specifically, the
distance to each point in these data sets (from the reference point) was first calculated, followed by
trapping all points where distances were less than or equal to some assigned radius of interest R (here,
10 miles). As an example, text figure 2 depicts the location and the associated land cover classification
value for land cover points within a 10-mile search radius of a single point in the reference data set.

Values of trapped land cover data were then paired to the nearest trapped vegetation index value.
The land cover values and their associated vegetation index values were then aggregated for use in the
final estimation. In the data set used, each reference point had eight land use percentages (one for each
land use type), and eight vegetation index values (one associated with each land use) for 1990-1999.

Appendix B:
Derivation of Elasticities and Binary Effects

Elasticities are derived by first taking the expectation of the function and by then taking the derivative.
In most cases, however, taking the expectation eliminates the error term. When the dependent variable
is nonlinear, this is not the case, and thus the elasticities cannot be calculated directly from text equation
(3)because E( y)"1 +E(y My, Therefore, a different approach must be taken to derive the elasticities. Text
equation (3) can be rewritten generally as:

2
-1
[(ao +;ak(xk}L ] +Eamdm+e] +1] *Ay

1,

(A1) Land =

i
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where x;, represents a continuous variable, d,, represents a dummy variable, a,, a,, a,,, A, and A, are
parameters to be estimated, and e is an error term. The first step in deriving the elasticities is to take

the expectation. This yields:
Ui,
[ +Eak( ]+Ead +e]*kl+1] .

Equation (A2) can be rewritten as:

(A2) E{Land) =E

(A3) E[L(an] = E[(A‘l(R + e) * l)lelL

where

(A4) = +Eak[x _1] +z:amdm'

m

Considering the term within the expectation operator in the right-hand side of (A3) to be a function of
e, f(e), we consider a second-order Taylor-series expansion of f(e) around 0. This results in:

a4 A
(A5) ElLand) = E|(M,R + 1) + (R + 1] e + El(xi - 1] (AR + 1f % 2],
1
which, after noting that E(e) = 0, can be reduced to:
) ElLand] = (LR + 1™ « 161 -4, )(A,R + 1)22,

where af is the variance of the error term from (Al).
The next step is to obtain the derivative of the expected value of Land with respect to x,,, which is
calculated as:

(AT) dE[é;znd] - dE[ggnd] Z_Z - (().IR . 1)(1/11)71 +1/2(1 —)»1)(1 _oa )(A R+ 1)(1/AI) 3 Z)*akxkl_l'

Equation (A5) can then be used to derive the elasticity of the expected value of Land with respect to
%, as follows:

(1/2)-1 ()-8 2

dElLand] , % _ (Bt -a)(1 - oa) (LR < 100 ra ) .
dx, E[Land] (AIR R l)ml . 1/2(1 ~ M)(MR R 1)(1/11) 22

e

(A8) E, =

Since the derivatives of the dependent variable Land with respect to the binary variables do not
exist, it is necessary to determine the effect of these variables on y in a different framework, i.e., by
obtaining a binary effect. The binary effect is (Land, — Land,)/Land,, where Land, and Land,, are the
model-predicted values of the Land when the binary variable of interest is equal to one and zero,
respectively. The binary effects are obtained by using (A6). The binary effect of the binary d,, on Land,
or g,,, is specified as:

(MRl + 1)L - 1)) W, RY, L, - 1)

(49) Em = 1A=z 2 1.

(MRl o+ 1) 0 38{1 - (MR Lo + 1

where R -1 is (A4) whend,, =1, and R)| 4,0 is (A4) when d,, = 0. Finally, elasticities and binary effects
represented by (A8) or (A9) might be evaluated at each observation, at the means, or at any other point
of interest.



