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A Complete Characterization of the
Linear, Log-Linear, and Semi-Log
Incomplete Demand System Models

Roger H. von Haefen

This study extends LaFrance’s (1985, 1986, 1990) previous research by deriving the
necessary parameter restrictions for two additional classes of incomplete demand
system models to be integrable. In contrast to LaFrance’s earlier work, this analysis
considers models that treat expenditures and expenditure shares as the dependent
variables in the specified incomplete demand systems. With environmental
economists increasingly turning to demand system approaches to value changes in
environmental quality, these new results significantly expand the menu of empirical
specifications which can be used to fit a given data set. Moreover, the alternative
specifications considered in this study, in combination with LaFrance’s original
work, represent a complete characterization of the linear, log-linear, and semi-log
incomplete demand system models.
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Introduction

With increasing regularity, environmental economists are turning to demand system
models to value changes in environmental quality with revealed preference data (e.g.,
Phaneuf; Phaneuf, Kling, and Herriges; Shonkwiler; Englin, Boxall, and Watson; and
von Haefen and Phaneuf). Relative to discrete-choice random utility maximization
(RUM) approaches (e.g., Train), demand system approaches are appealing because they
fully integrate the extensive commodity selection and intensive derived demand choices
within a coherent and consistent model of consumer behavior.

Within the demand system framework, the incomplete demand system structure, orig-
inally proposed by Epstein and authoritatively analyzed by LaFrance and Hanemann,
is an appealing framework for modeling consumer choice in environmental applications
that focus on a subset of goods entering consumer preferences. Without resorting to
restrictive aggregation and/or separability assumptions, the incomplete demand system
structure represents a consistent strategy for modeling the demand for n goods as a
function of n +m prices (m >1).

Linear, log-linear, and semi-log incomplete demand structures are frequently used
in applied demand analysis. In a series of papers, LaFrance (1985, 1986, 1990) considers
the necessary parameter restrictions for these specifications to be integrable, i.e.,
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consistent with a rational preference ordering. A necessary restriction for integrability
is that the n xn Slutsky matrix must be symmetric in a local neighborhood of observed
prices and income. As LaFrance demonstrates, Slutsky symmetry implies relatively
strong restrictions on price and income effects for the eight empirical specifications he
examines.

At present, the stock of incomplete demand system structures that can be used in
applied work has been limited to the eight structures considered by LaFrance. The
current study attempts to expand this relative paucity by examining the integrability
of sixteen additional incomplete demand system models. In contrast to the specifications
considered by LaFrance, these structures treat the individual’s expenditures and
expenditure shares on the goods of interest as the dependent variables. The necessary
parameter restrictions are derived for the linear, log-linear, and six variations of the
semi-log expenditure and expenditure share models to have symmetric Slutsky matrices
in alocal neighborhood of observed prices and income. When closed-form solutions exist,
the quasi-indirect utility functions for the restricted demand models are also derived.
In combination with LaFrance’s original work, the results presented here represent a
complete characterization of the linear, log-linear, and semi-log incomplete demand
system models.

Incomplete Demand Systems

Applied researchers are often interested in modeling the demand for a subset of goods
(e.g., recreation sites) entering an individual’s preference ordering. To consistently model
consumption for these goods within the demand system framework, the analyst may
employ one of three sets of assumptions. One approach assumes the goods of interest
enter consumer preferences through a weakly separable subfunction. In this case, the
analyst models consumption for the goods of interest conditional on total expenditures
allocated to them. Alternatively, the analyst may assume the other goods’ prices vary
proportionately across individuals and/or time. In this situation, the other goods can be
aggregated into a single Hicksian composite good, and the analyst models the demand
for the goods of interest as functions of their prices, total income, and the composite
good’s price index. A third, and in many ways less restrictive, approach involves the
specification of a demand system for the goods of interest as functions of their own
prices, total income, and the other goods’ prices which are assumed quasi-fixed. This
final strategy falls under the rubric of incomplete demand system approaches and has
been systematically investigated by Epstein, and by LaFrance and Hanemann.

The incomplete demand system framework assumes that consumer demand for a set
of n goods can be represented by the following system of Marshallian demand functions:

W x, =x(p,qy, B, i=1,..,n,

where x; is the Marshallian consumer’s demand for good (site) i, p is a vector of prices
for the n goods in (1), q is a vector of prices for m other goods (perhaps other sites) whose
demands are not explicitly specified, y is the consumer’s income, and f is a vector of
structural parameters.

To avoid confusion and unnecessary notation, (1) does not explicitly depend on the
quality attributes of the n + m goods. However, using either the simple repackaging (e.g.,
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Griliches) or the cross-product repackaging (Willig) frameworks, it is straightforward
to introduce quality in a parsimonious manner consistent with the intuitively appealing
notion of weak complementarity (Miler). Following LaFrance (1985, 1986, 1990), p, q,
and y are all normalized by m(q), a homogeneous-of-degree-one price index for the m
other goods, to ensure the demand equations are homogeneous of degree zero in prices
and income. Because the analyst models the demand for the 7 goods in x as functions
of all n +m prices and income, the demand specification in (1) is incomplete.

In principle, the analyst can generate (1) by either: () specifying an indirect utility
function and using Roy’s Identity, or (b) specifying a system of incomplete demand
equations directly. With either approach, a significant question for the analyst attempt-
ing to use (1) to generate consistent Hicksian welfare measures for a set of price changes
is whether the system is consistent with a rational individual maximizing her utility
subject to a linear budget constraint. This is the classic integrability problem.

As noted by LaFrance and Hanemann, there are at least three distinct concepts of
integrability in the incomplete demand system framework. This analysis employs
LaFrance and Hanemann’s concept of weak integrability. This concept implies that
within a local neighborhood of price and income values, there exists a continuous and
increasing preference ordering which both gives rise to and is quasi-concave in X and z,
where z is defined as total expenditures on the m other goods, i.e., z =y - Eil p;x;. Com-
pared to other concepts of integrability in the incomplete demand system framework,
weak integrability represents the minimal set of assumptions allowing the analyst
to construct exact welfare measures for changes in p conditional on quasi-fixed values
of q.

Theorem 2 in LaFrance and Hanemann states that an incomplete demand system is
weakly integrable if the following four conditions are satisfied: (a) x is homogeneous of
degree zero in all prices and income; (b) X is nonnegative, i.e., x > 0; (¢) expenditures on
the n goods included in the incomplete demand system are strictly less than income,
i.e., Ir., p,x, <y; and (d) the Slutsky substitution matrix—i.e., the n x n matrix whose
elements consist of

where dx,/0p; and dx,/dy are partial derivatives of the Marshallian demand functions
with respect to price and income, respectively—is symmetric and negative semidefinite.
Symmetry implies that for each pair of goods i,j € 1,...,n, i #J, S~ij = S’ﬁ ,whereas negative
semidefiniteness requires that the eigenvalues of the Slutsky matrix are nonpositive.
The normalization of prices and income by the price index, n(q), implies the first condi-
tion is satisfied, and the second and third conditions are innocuous in many applied
situations and assumed to hold in an open neighborhood of prices and income. Thus, the
necessary conditions for weak integrability which imply added structure for (1) are the
symmetry and negative semidefiniteness of the Slutsky matrix.

In a series of papers, LaFrance derives the necessary parameter restrictions for the
Slutsky matrix to be symmetric for eight incomplete demand system specifications—the
linear model (1985), the log-linear or constant elasticity model (1986), and six alternative
semi-log models (1990). These models or their logarithmic transformations share a
common linear-in-parameters structure and are additive in their arguments.
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Table 1. Incomplete Demand System Models

Model Demand Specification Model Demand Specification
x1) x;=alq)+ 1:21 BuDy * Y,y Vi (x5) «x,= oci(q)exp{g B Dy + yiy}, Vi
(x2) x,=o(q)+ Ig Bap, +v;In(y), Vi (x6) «x;= ai(q)exp{g; ﬁikpk}y“, Vi
(x3) x;=a,(q)+ g Byln(p,) +v,y, Vi x7) x;=0/(q) {,stik} exp(y;y), Vi
(x4) x;=0,(q)+ g B In(p,) +v,In(y), Vi x8) «x,=alq {:llp,g“'}y”, Vi

Notes: The (x1) model is considered by LaFrance (1985); the (x2)~(x7) models are considered by LaFrance (1990) and
correspond with his models (m3), (m1), (m2), (m4), (m6), and (m5), respectively; and the (x8) model is examined in
LaFrance (1986).

Table 1 lists the eight demand specifications examined by LaFrance. His results are
extended here by deriving the implications of Slutsky symmetry for two additional classes
of incomplete demand system models. Sixteen additional specifications are considered
that treat either expenditures (¢; = p,x;, e; > 0), expenditure shares (s, = p,x,/y, 0 <s,< 1),
or their logarithmic transformations as the dependent variables.

Since Stone’s (1954a,b) pioneering work, it has been common in applied demand
analysis for expenditures, expenditure shares, or their transformations to be specified
as the dependent variables in the estimated system of equations.’ For specification of
incomplete demand systems, however, analysts have eschewed these possibilities to date.
Tables 2 and 3 list the expenditure and expenditure share specifications considered in
this analysis.

In addition to expanding the menu of specifications from which analysts can choose,
these models may be of particular interest to environmental economists for at least two
reasons. Demand system models estimated within the count data framework are becoming
increasingly popular for the analysis of disaggregate consumption data for commodity
groups such as recreation sites. These models require that all consumer demands be
strictly positive values, and thus the (e5)-(e8) (table 2) and (s5)-(s8) (table 3) specifica-
tions are potentially appealing alternatives to the (x5)—(x8) specifications (table 1) which
have been used in the literature.

The results presented here also can be used by analysts wishing to estimate micro-
level dual representations of continuous demand system models (Bockstael, Hanemann,
and Strand). At present, empirical specification of these models proposed by Lee and
Pitt, and recently implemented by Phaneuf, only consider complete or weakly separable
demand systems, but these models can also be estimated within the incomplete demand
system framework. The empirical implementation of the dual models proposed by Lee
and Pitt depends critically on the existence of closed-form solutions for the implied virtual
price functions, i.e., the prices that would drive the consumer’s demand for the non-
consumed goods to zero (Neary and Roberts). Because LaFrance’s (x1)~(x4) specifications

! Three of the most widely used empirical specifications, the linear expenditure system (Klein and Rubin), the indirect
translog (Christensen, Jorgenson, and Lau), and the almost ideal demand system (Deaton and Muellbauer), treat expendi-
tures or expenditure shares as the system’s dependent variables.
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Table 2. Incomplete Expenditure System Models

Model © Expenditure Specification

Model Expenditure Specification

(el) e, =alq)+ E Biby + 1,5, Vi
k=1

(e2) e;=a(@) + )Y B,p, +v,In(y), Vi
k=1

(e3) e =a(q) +) Byln(p,) +v,y, Vi
k=1

(e4) e;=a(q)+ ) B,ln(p,) +v,In(y), Vi
s

(e5) e; = oci(q)exp{z B,-kpk + Yiy}’ Vi
Bl
(e6) e = oci(q)exp{z Bikpk}y‘“‘, Vi
k=1
(7 e, =alq) {Hp,f”’}exp(yiy), vi
-1

(e8P e, =a,-(q){Hp£"“}y“, Vi
k=1

* Note the equivalence between this specification and (x7) (table 1) if the following parametric transformations are

made: B7=pE"+1, Vi,

® Note the equivalence between this specification and (x8) (table 1) if the following parametric transformations are

made: B¢ = pE® + 1, vi.

Table 3. Incomplete Expenditure Share System Models

Model Expenditure Share Specification

Model Expenditure Share Specification

(s1) 5, =a(q)+ Z Bup, vy, Vi
b1

(s2) s;=a(@)+Y Bup, +v,In(y), Vi
ko1

(s3) §; = ai(q) + Z Bikln(pk) +Y,y, Vi
B=1

(s4) s,=a,(q)+ E B, In(p,) + v,In(y), Vi
E=1

(s5) s;= oci(q)exp{ Y Bupy+ Y,—y}, Vi
k=1
(s6)* s, = oci(q)exp{z By pk} Y, Vi
k=1
(s s;=a(q) {pr‘*} exp(y,;y), Vi
k=1 ’

(s8)P s, =ai(q){Hp,f“‘}yY", Vi
oty

* Note the equivalence between this specification and (e6) (table 2) if the following parametric transformations are

made: yﬁse)= yﬁee) -1, Vi.

® Note the equivalence between this specification and (e8) (table 2) if the following parametric transformations are
made: y*% = yﬁ‘s) - 1, ¥i. Note also the equivalence between this specification and (x8) (table 1) if the following para-

i

metric transformations are made: y'™® = y*¥ - 1; BB = g+ 1, Vi,

B

and the (e1)~(e4) and (s1)~(s4) structures allow for corner solutions and have p entering
linearly or log-linearly, they can in principle be inverted to solve for the implied virtual

price functions.

For any pair of goods i,j € i, ..., n; i # j, the Slutsky symmetry restrictions require that
in an open neighborhood of prices and income, the following conditions must hold for the
demand, expenditure, and expenditure share equations, respectively:

op; oy
(3) 1 |% %,
p;p; | 9p; Ay

ox; ox;
—_— xj’
p; 9y

1 | Oe; de,
— | =Pt ¢
D;p; | 9p; dy
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asj s; asj 0s; s, Os;
—p; * —+—ysi p:t {— + —yS;
p; y oy 4 d Y%

p; y oy
where all derivatives are with respect to the Marshallian demands, expenditures, and
expenditure shares, respectively. The specific structure of these equalities for each of
the specifications included in tables 1, 2, and 3 can be found in the technical appendix
at the end of this article.

In addition to ascertaining the necessary parameter restrictions implied by Slutsky
symmetry, determining whether the restricted demand systems can be linked to closed-
form representations of preferences may be of interest to applied researchers. For
example, virtually every recently proposed method for linking multiple intensive and
extensive margins of consumer choice in a behaviorally consistent framework (e.g.,
Cameron; Eom and Smith) assumes consumer preferences can be represented by a util-
ity function with a closed-form solution. Without the closed form, these strategies would
not be econometrically viable.

Asnoted by LaFrance and Hanemann, a difficulty with the incomplete demand system
framework is that one cannot recover the complete structure of preferences with respect
to all n +m goods from an n-good demand system which satisfies the conditions for weak
integrability. However, what Hausman has called the quasi-indirect utility function can
be recovered by solving a series of partial differential equations. For the demand, expen-
diture, and expenditure share models, this can be accomplished sequentially by first
solving one of the following partial differential equations:

—

(4) N i
b, p;

b;p;

2

EC) - x\(p, q, EC), B),
ap,
OE(")

= ,E ') By
dln(p,) “1(: &, £O, )
OnE(")
- - ) ,E s ’
dln(p,) s1(p, a4, 5O, B)

where E(-)is the expenditure function evaluated at the baseline utility, U, and good 1 is
chosen arbitrarily with no loss in generality.

In some cases, the techniques of differential calculus can be used to derive closed-form
solutions for E(-) [or In E(-)] up to a constant of integration, K,(U, p, q), where p'isthe
price vector for the n - 1 remaining goods in the specified incomplete demand system.
Because the constant of integration depends on the 7 - 1 other prices, additional infor-
mation can be recovered about the structure of the expenditure function by sequentially
solving the following differential equations for i = 2, ..., n:

oE() . oK; ,()
op; ap;
OE() , 9K;i,0)
dmE() , K, 0)
dln(p,) dln(p,)

= xi(p9 q, E()7 B)y

1]

e,(p, q, EC), B),

si(p$ q, E()’ ﬁ),
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where K ,() is the constant of integration arising from the evaluation of the first i - 1
partial differential equations, and E(-)is the identified component of the individual’s
expenditure function (i.e., that portion of the expenditure function excluding the constant
of integration).

When the analyst has solved all n differential equations, the individual’s expenditure
function is identified up to the constant of integration, K, (U, q), which is independent
of p. The constant of integration is a function of the baseline utility as well as the
other m goods’ prices, suggesting the analyst cannot identify the full structure of the
expenditure function with respect to all n + m goods from an incomplete demand system.
However, the quasi-indirect utility function can be obtained by treating K,(U, q) as the
quasi-baseline utility and inverting, i.e.:

[j = Kn(U’ q) = d)(P, q,y, B)

LaFrance and Hanemann formally prove that ¢(p, q, v, ) can be used to consistently
evaluate the welfare implications of one or several price changes for the n goods.

Necessary Parameter Restrictions,
the Structure of the Restricted Demand Systems,
and the Quasi-Indirect Utility Functions

Tables 4, 5, and 6 report all possible combinations of parameter restrictions that satisfy
Slutsky symmetry for the demand, expenditure, and share specifications reported
in tables 1, 2, and 3, respectively.” The results in table 4 were reported originally in
LaFrance (1985, 1986, 1990) and are presented here mainly for completeness.? For
expositional purposes, these tables employ simplifying notation developed by LaFrance.
LetJ, K, and N denote index sets satisfying 0 cJ c K< N ={1,2, ...,n}, and let ~ denote
set differences, e.g., N~J = {i € N; i ¢ J}. Further assume that if J =0, 1€, or if K+ 0,
leK.

The derivation of these results follows the logic laid out in LaFrance (1985, 1986). For
each specification, three mutually exclusive and exhaustive types of income effects for
goods i and j are considered: (@) no income effects, i.e., y;=v;=0; (b) both goods having
income effects, i.e., y;# 0, y; # 0; and (c) only one good having income effects, i.e., v, * 0,
v;=0. For each of these possibilities, the necessary parameter restrictions for Slutsky
symmetry to hold in an open neighborhood of relevant prices and income were derived.
The derivative properties of the Slutsky symmetry conditions were used extensively to
identify these parameter restrictions. Because equations (2), (3), and (4) are assumed
to hold over a range of price and income values, they are identities which can be
differentiated to generate additional restrictions that may clarify the structure of the
parameter restrictions.

2 A technical appendix with the derivations for the expenditure and expenditure share parameter restrictions is provided
at the end of this article. The appendix also contains derivations for LaFrance’s (x2)~(x7) models, and the interested reader
can consult LaFrance (1985, 1986) for the derivations of the (x1) and (x8) specifications.

3 A review of the results reported in LaFrance (1990) uncovered minor extensions for the (x5) and (x6) specifications as well
as a few typographical errors for the remaining specifications. The results reported in text table 4 and appendix tables A1
and A4 incorporate these extensions and correct for the errors.
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Table 4. Slutsky Symmetry Restrictions for Incomplete Demand System Models

x1®* la. B;=P; i,jeN Ze. sgn(y,) =sgnly) =0, ied
1b. v;=0, ieN 2d. B;=0,icN~dJ,jeN
. . 2e. v,=0,ieN~J
2a. oai(q)=L al(q)+&1-—P—lf ,ied Y )
Y1 Y1 Y; 2f. ai(q) = —Bli/YL >0,ieN~dJ

2b. B, =(/v)By, i€d, jeN

(x2) la. B;=P; i,jeN 2a. a(q) =(y,/y)e,(q), ieN

Ib. y;=0,ieN 2b. B, =, v;/YDBy, injeN
2c. sgn(y;) =sgn(y,) =0, ieN

(x3) la. By=0,i,jeN,izj 2a. B;=0,i,jeN

& 1b. v,=0,ieN 2b. eq) =(y,/y e, (@), icN

(x4) 2¢. sgn(y;) =sgn(y,) =0, ieN

x5)* la. o/q)=(B,/B; e (@>0, ied 1d. B,=0,ied, jeK~d;icK~d, jeK, iz},
1b. v,=v,, icK ieN~K,jeN
le. By=By ijed le. y,=0,ieN~K

1f. olq)=-B,;/y,>0,ieN~K

(x6) 1la. e«lq) =(B,/B e, (@>0,icd 2b. y;=v,,i€K
1b. y;=v,;, ieN 2e. B;=By ijed
le. By;=B; ijed 2d. B,=0,ied, jeK~d; icK~d, jeK,i+j;
1d. B;=0,ied,jeN~d; ieN~dJ,jeN,izj ieN~K,jeN
2a. o,(q) =(B,;/B,;Pa@>0, icd 2e. v,=1,ieN~K
of. alq)=pf;>0,icN~K
&I 1a. ai(q)=a1(q){_1_+_ﬁi}>0,ieJ le. B;=0,icd, jeK~J; icK~J, jeK,i+j;
By ieN-K,jeN,i*j
1b. B,=1+B; ijed, ixj 1f. y,=0,ieN~K
le. B;=Py, icK,jeN~K 1lg. B;=-1,ieN~K
1d. y;,=v,,ieK l1h. efq)=-B,/v,>0,icN-K
a 1+B; . .
(=8 1la. ai(q)=a1(q){W}>0,zeJ 2¢. eo@)=8,;>0,ieN~K
1 2d. v,=0, ieK
1b. By=1+Py, ijed, izj %e. 4,1, ieN-K
le. ¥i=vy, ieN of P,=By, icK,jeN~K

1d. Bij=0,ieJ,jelN-';J;ieN~J,jeN,i¢j % B --1,icN-K
+ 3.,

2a. ai(q)=a1(q){1 ”}>0,ieJ 2h. B;=0,ied, jeK~J;icK~J, jeK, izj;
+

n ieN~K, jeN,izj
2b. By=1+Py, ijed, ivj

® LaFrance (1985) notes that an additional restriction arising from the negative semidefiniteness of the Slutsky matrix
assumption is B, + y,x, < 0 for the J subset.

*Note that the N ~ K subset is empty if v, = 0.

°For the (x5-1) and (x6-2) restricted models, LaFrance (1990) further partitions the X ~ J subset into one set with f,, =0 and
another with B, # 0. Similarly, for the (x6-1) restricted model, LaFrance decomposes the N ~J/ subset into one set with §,,
= 0 and another with B, # 0.

4For the (x7-1) and (x8-2) restricted models, LaFrance (1990) further partitions the K ~J subset into one set with B, =-1
and another with B, # - 1. Similarly, for the (x8-1) restricted model, LaFrance decomposes the N ~ J subset into one set with
B = -1 and another with B,, » -1.
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Table 5. Slutsky Symmetry Restrictions for Incomplete Expenditure System

Models
(el) la. B;=0, i jeN, i#j 2h. y,=0,ieN~K
1b. v;=0, ieN 2i. o,q) =0, icN~K
2a. v;=1,ied 2. B;=-By,/v,>0,ieN~K
2b. B,=0,ied 3a. y,=1
2c. oq) =y, /v o), ieK 3b. v,=0,i¢N,i=1
2d. v;#0,1,icK~J 3c. B;=0,i,jeN,i=1,j=i1
Ze. B;=v;P;/(y;~- 1), ieK, jeK~J 3d. B;=-By;, ieN, i=#1
2f By =(v/Y)PBy, i,jEeK, keN, k=i,] 3e. a(q)=0,ieN,i=1
2g. B;=0,ieN~K, jeN, i+j
(e2) 1la. B;=0,i,jeN,izj 2a. B;=0,i,jeN
Ib. v,=0,ieN 2b. a;(q) = (y;/y)e(q), ieN
2¢c. sgnly,)=sgn(y;)#0, ieN
(€3) la. B,=P,, i.jeN 2d. y,=0, ieN~J
1b. v;=0,ieN %. (@ =—Y—i{oc1(q) _E1_i +Eil}, e
2a. pij=(Yi/Y1)B1jr i,jed Y1 i i
2b. B;=0,ieN~J, jeN 2 ol@ = PBy/v,>0, icN-J
2c. sgn(y)#0, ied
(e4) 1la. PB;=P,;, i,jeN 2a. o) =(y,/y)e(q), ieN
1b. v,=0,ieN 2b. By=Cry,/¥DBy, ini€N
2c. sgnly;)=sgn(y;) =0, ieN
(eb) la. B;=0,i,jeN,i=j
& 1b. y,=7,,ieN
(e6)
(7" la. olq =(B;/Ble(@>0, icd le. B,;=0, ied, jeK~J; icK~d, jeK, ij
1b. =By, ijed ieN~K, jeN
le. B;=B,; icK, jeN~K 1f. y,=0,ieN~-K
1d. y;=v,, icK 1g. o(q) = -py;/y,>0,ieN~K
(€8 1la. alq) =(B;/B,)al@)>0,icd 2¢c. o/(q)=p,,>0,icN~K
1b. B, =B, i,jed 2d. v;=0,ieK
le. y;=v,, ieN 2e. v,=1,ieN-K
1d. B;=0,ied, jeN~d;ieN~dJ, jeN, i=j 2f. B,=By, i€K, jeN~K
2a. o;(qQ) = (B;/Py)oy(@ >0, ied 28 B;=0,ied, jeK~dJ; icK~dJ, jeK, i+};
2b. B;=B; ijed ieN-~K, jeN

*Note that the N ~ K subset is empty if y, = 0.
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Table 6. Slutsky Symmetry Restrictions for Incomplete Expenditure Share
System Models
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Theorem 2 in LaFrance and Hanemann identifies the following two equalities:

aS. aS..

—L =Y iikel,. .. n;i+],
op,, op,

aS. aS..

—L =_Y  jjel,.,n;i=*j.
oy oy

It should be noted, however, that these equalities are only a subset of the restrictions
which can be generated by differentiating the Slutsky symmetry identities. In principle,
one can multiply and/or add the same functions of market prices and income to both
sides of the Slutsky symmetry conditions and still preserve the identity relationship.
These modified Slutsky identities can then be differentiated to generate additional equal-
ities that may help to identify the necessary parameter restrictions. Once the parameter
restrictions were identified for the three distinct income relationships, consistent combin-
ations of the three sets of parameter restrictions were then determined, and the results
are reported in tables 4, 5, and 6.

To help clarify the implications of the parameter restrictions reported in tables 4, 5,
and 6, the structure of the restricted incomplete demand systems is presented in appendix
tables Al, A2, and A3. Not all cross-equation restrictions within sets of goods can be
represented in the restricted demand specifications, so these tables should only be inter-
preted as suggestive of the general structure. Appendix tables A4, A5, and A6 also present
the structure of the quasi-indirect utility functions for all restricted models with closed-
form solutions. These tables suggest roughly one-half of the restricted models can be
linked to closed-form representation of consumer preferences.

Collectively, the results reported in text tables 4-6 and appendix tables A1-A6 imply
that none of the 24 structures considered in this study allow for both flexible income and
Marshallian cross-price effects, and some do not allow for either. Perhaps the most
general specifications are the (s3-1) and (s4-1) models which allow for general cross-
price effects but restrictively assume all consumer demand equations are homothetic
in income. The overall findings of this analysis suggest that strong, and in many cases
implausible, assumptions about the structure of consumer preferences are required for
analysts employing linear, semi-log, and log-linear incomplete demand system models.

Discussion

This study has extended LaFrance’s earlier research by identifying the necessary
parameter restrictions for systems of linear-in-parameters incomplete expenditure and
expenditure share equations to satisfy the integrability condition of Slutsky symmetry.
Although Slutsky symmetry is a necessary condition for the existence of a rational under-
lying preference ordering, it is not sufficient. As noted above, integrability also requires
that the Slutsky matrix must be negative semidefinite, i.e., the matrix’s eigenvalues must
be nonpositive over the full range of relevant price and income values for the welfare
scenarios under consideration. Imposing this latter condition is difficult in practice
because the elements of the Slutsky matrix are in general nonlinear functions of prices,
income, and the demand system’s structural parameters. As a result, the Slutsky matrix
may only be negative semidefinite over a subregion of the relevant range.
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Existing approaches to imposing curvature restrictions on systems of equations can
be grouped into two broad categories: (a) those that impose negative semidefiniteness
of the Slutsky matrix at a single point (such as each individual’s observed prices and
income, or the sample average of these values); and (b) those that impose negative semi-
definiteness globally over the full range of relevant price and income values through
parameter restrictions (see Pitt and Millimet, and Diewert and Wales for discussions
of existing approaches). Although the latter approach is similar in spirit to the strategy
for insuring Slutsky symmetry described in this study, the former suggests a con-
ceptually different strategy. In principle, the analyst could treat the Slutsky symmetry
conditions as binding nonlinear constraints evaluated at the observed market price and
income values when estimating the structural parameters of the demand equations.

Although estimation of a system of equations subject to side constraints can be compu-
tationally burdensome, the approach has some precedent in the existing literature
(LaFrance 1991) and has both advantages and drawbacks. On the one hand, the results
presented in the previous sections strongly suggest that imposing Slutsky symmetry on
linear-in-parameters demand, expenditure, and expenditure share systems greatly limits
the analyst’s ability to allow for flexible income and Marshallian cross-price effects.
Imposing symmetry on the Slutsky matrix at a single point, however, allows the analyst
to incorporate these effects while preserving some degree of theoretical consistency.

On the other hand, economists interested in using the estimated system of equations
to evaluate the welfare implications of nonmarginal price changes may find it troubling
that the model is capable of generating only approximate Hicksian values. Moreover,
because symmetry of the Slutsky matrix is not preserved over the entire range of the
relevant price changes, the approximate welfare measures are not independent of the
ordering of the price changes. (For a possible resolution to this problem, see LaFrance
1991.) Although these factors suggest that imposing Slutsky symmetry at a single point
does not strictly dominate the approach pursued in this analysis, it may be preferable
in some applications.

[Received May 2002; final revision received September 2002.]
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Technical Appendix

Auxiliary Tables A1-A6

The structure of the restricted incomplete demand systems is presented in auxiliary appendix tables
Al, A2, and A3 below. Tables A4, A5, and A6 then present the structure of the quasi-indirect utility
functions for all restricted models with closed-form solutions.
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Table Al. Restricted Incomplete Demand System Models
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Table A2. Restricted Incomplete Expenditure System Models
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Table A3. Restricted Incomplete Expenditure Share System Models
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Table A4. Quasi-Indirect Utility Functions for Restricted Incomplete Demand
System Models
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Table A4. Continued
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Note: The results reported here correct for typographical errors found in LaFrance (1990).

Table A5. Quasi-Indirect Utility Functions for Restricted Incomplete Expenditure
System Models
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Table A6. Quasi-Indirect Utility Functions for Restricted Incomplete Expenditure
Share System Models
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Derivation of the Parameter Restrictions for the Twenty-Four Models

This appendix section derives the necessary parameter restrictions for Slutsky symmetry to hold in an
open neighborhood around observed prices and income. The approach employed is similar to LaFrance
(1985, 1986). For each of the 24 models, three mutually exclusive and exhaustive cases with alternative
income effects for goods i and j (i # j) are considered: (¢) no income effects, i.e., y, = ¥; = 0; (b) both goods
having income effects, i.e., y, # 0, ¥; #* 0; and (c) only one good having income effects, i.e., y; = 0, y;=0.

For each of these possibilities, the necessary parameter restrictions for Slutsky symmetry to hold
regardless of prices and income were derived. Restrictions implied by the derivative properties of the
Slutsky summetry conditions were used extensively for this task. Once the parameter restrictions were
identified for the three distinct income relationships, consistent combinations of the three sets of
parameter restrictions were then determined. Tables A7, A8, and A9 summarize the conditions for
Slutsky symmetry to hold.

Table A7. Slutsky Symmetry Conditions for Incomplete Demand System Models
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Table A8. Slutsky Symmetry Conditions for Incomplete Expenditure System Models

(el)

(e2)

(e3)

(ed)

(eb)

(e6)

e

(e8)

L{ﬁ.l'ipi'wyjei} = pi{ﬁijpj*"viej}, Vi, j

b;p; ; Pj
—L{B’ipi+ ﬁei} = L{Bijpj-" li'ej}’ vi,j
b;p; y p;p; Yy
1 1 .
- ﬁ"+Y'ei = —_ ﬁi‘+Y;‘e' ’ VZ,J
plpj{ Ji J plpj{ ty J}
__1_{ﬁﬁ+ ﬁei} = ._l_{ﬁy+ li.ej}, Vi,j
b;p; Yy b;p; y

1 1 ..
—{Bipie;+ vjeie;) = —{Bypie v vieie;), Vi
p;p;

£ i
.L {ﬁjipiej + ﬁeiej} = _1_ {Bijpjei + ﬁeiej} s Vl,]
b;p; Yy b;p; y

1 1 ..
—{Bjiej+yjeief} ) E{ﬁijei +'Yieiej}, Vi, Jj

(2] £y
L{ﬂﬁej*’ ﬁeiej} = —I_{szez + ﬁeiej}’ Vi’j
b;p; y b;p; Yy

Table A9. Slutsky Symmetry Conditions for Incomplete Expenditure Share System

Models

(s1) ‘L{Bjspi+(3j+ij)si} = L{ﬁifpj"(si”/iy)sj}’ Vi, j
b;p; bp;p;

(s2) L {Bpi+ (50 15} = = {Bypy+ (s + )5}, ViiJ
b;p; b;p;

(s3) . ﬁ,i+(s.+y.y)si = ﬁi'+(si+Yiy)s‘ , Vi, j
pipj{ g T\ T } Pin{ ij J}

(s4) L{pji+(sj+y‘j)si} = L{Bij"(si*Y;‘)sj}’ Vi, J
p;p; P;p;

(s5) 2 B.ps; +(L+y.y)s;8.) = x Byps; +(L+y, )88}, Vi, j
pipj{J ] j u} pipj{lJJ J}

(s6) - Bip;s;+(L+y)s;s;) = 2 B.ps;+ (X +y,)s;s.), Vi, j
pipj{ i35 J J} pipj{ ij 5 J}

(sT 2 Bys, +(1L+vy.y)s;s:} = > Bys, + (L +vy,ps;8.}, Vi,j
pipj{ 75 b J} pipj{ if /% J}

(s8)

X B.,sA+(1+y.)s.s. =2 [}“s.+(1+y.)s.s, , Vi, j
p,PJ{ nJ JoTr J} p‘pj{ T 13 J}
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The Twenty-Four Models

1. The (x1) Model

Consider the (x1) unrestricted model specification:

(x1) x; = olq) + g Bppy + vy, Vi.
The implied Slutsky symmetry conditions for goods i and j (i = j) are:
(x1-1) Bi + v;% = By + 1%,

Refer to LaFrance (1985) for the derivation of the necessary parameter restrictions.

2. The (x2) Model

Consider the (x2) unrestricted model specification:

(x2) . = a,(q) + g B.p, + yiin(y), vi.
The implied Slutsky symmetry conditions for goods i and j (i = j) are:

¥;

(x2-1) +=Lx =By —x;.

Ji
The derivative of (x2-1) with respect to p,, & =1, ..., N, implies the following restriction:
(x2-2) Yjﬁik =Y; ﬁjk‘

The derivative of (x2-1) with respect to y implies the following restriction:

(x2-3) Yi%; = Y%

CASEL v, = ¥;=0
®  Expression (x2-1) implies:

(x2-4) B = By

CASEIL v, +0;y;+0

®  Expression (x2-2) implies:

(x2-5) B = (/¥ By, VE.

m  Expressions (x2-3) and (x2-5) together imply:

(x2-6) o, (@) = (v,/v;)e, (@)

®  Plugging (x2-5) and (x2-6) into (x2-1) and simplifying implies:
(x2-7) B, = By

®  One can combine (x2-5) and (x2-7) as:
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(x2-8) By = (Y:¥;/ Vi B V-

m  Expressions (x2-6) and (x2-8) jointly imply that:

(x2-9) sgn(y;) = sgaly;) = 0.

8 Thus, (x2-6), (x2-8), and (x2-9) are the necessary parameter restrictions.
CasgIIl. y;#0;v;=0

®  Expression (x2-3) implies this case is only possible if y; = 0, a contradiction.

The restricted model specification takes the following form:

L x =0+, Byp, icN
keN

Y1

2. x; = ﬁ{“l(q) P Y vip+ Ylln(y)}, icN
Y1 keN

3. The (x3) Model
Consider the (x3) unrestricted model specification:
(x3) x; = o(q) + gn; BIn(p,) + vy, Vi.
The implied Slutsky symmetry conditions for goods i and j (i = j) are:
(x3-1) & Y = & * Y,

p; p;

The derivative of (x3-1) with respect to p; implies:

(x3-2) Bij(Yj * 1/pj) = YLB_Z’

CAsEl vy;=y;=0
®  Expressions (x3-1) and (x3-2) are only satisfied if:

(x3-3) p;=8;=0.

CASEIL v;#0;v;#0

»  Expression (x3-2) holds in general only if:

(x3-4) B =By =0, V&
m  Expressions (x3-4) and (x3-1) imply:

(x3-5) (@) = (v;/y;)e,(a),
which further implies:

(x3-6) sgn(y;) = sgn(y,) 0.
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CASEIIL v, » 0; Y; =0

®  Expression (x3-2) implies the restriction in (x3-4), which with (x3-1) implies v, = 0, a contradiction.

The restricted model specification takes the following form:

L x =alq +B;In(p), ieN
2. x = (v/y)e ) +v,), ieN

4. The (x4) Model

Consider the (x4) unrestricted model specification:

(x4) x; = o(q) + E By In(p,) + v,In(y), Vi.

k=1

The implied Slutsky symmetry conditions for goods ; and j (i * J)are:

(x4-1) & + ﬁxi = & + ﬁxj.
b; y P
The derivative of (x4-1) with respect to y implies:

(x4-2) Yi%; = ;%

CASEL v, = Y; =0
= Expression (x4-1) is satisfied only if:

(x4-3) ﬁ;] = ﬁji =0.

CASElIL v, =+ 0; Y;*0

®  Plugging x; = (v;/¥;)x; from (x4-2)into (x4-1) implies (x4-3). Expressions (x4-3) and (x4-2), along with
the structure of (x4), imply the following three restrictions:

(x4-4) Bik = ﬁjk =0, V&,
(x4-5) alq) = (v;/v,)e(q),
(x4-6) sgn(y;) = sgn(y;) 0.

CAselIll v, = 0; Y;=0

= Expression (x4-2) implies y, = 0, a contradiction.

The restricted model specification takes the following form:

L x= o(q) + 5,~,-1n(p,-), ieN
2. x; = (y/y )@ + v,In(y)), ieN
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5. The (x5) Model

Consider the (x5) unrestricted model specification:

x5) % - a,-<q>exp{ki1 Bupe * wy}, vi.
The implied Slutsky symmetry conditions for goods i and j (i # j) are:
(x5-1) ﬁjixj * Y X = By, + V% %5
The derivative of (x5-1) with respect to y implies:

(x5-2) .8, = v;S;-

The derivative of (x5-1) with respect to p,, £ = 1,...,N, implies:

(x5-3) B4(S; - v;x: %) = Bu(S; - vix. %))

CasEl v, =y;=0

= Expression (x5-1) implies B x; = B;%;, which is satisfied only if:

(x5-4) By=B;=0,

or
(x5-5) By = By = By VE
(x5-6) (@) = (B;/Beiq) > 0.

CASEIL v, = 0; y;*0

s Expression (x5-2) implies y; = v;, and this case collapses into Case [ above.

CASIIl. y;+0;v;=0
= Expression (x5-2) implies S, = 0; (x5-1) implies that:

(x5-7) x; = ~Bylv;-

The restricted model specification takes the following form:

Bii .
L ox=— oc1(q)exp{Z Buelet X Buby+ Yly}, ied
Bys ket keN-K

X; = oci(q)exp{ﬁiip,- * E Bu;pk * Y1y}y icK~d
keN~K
x; = -By;/v,, ieN~K

(Note that the subset N~K is empty if y, = 0.)
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6. The (x6) Model

Consider the (x6) unrestricted model specification:

(x6) x; = ai(q)exp{Z B.p, }y“, vi.
fl

The implied Slutsky symmetry conditions for goods i and j (i = j) are:

Y; Y;
(%6-1) FER jxixj = ngz + ;‘-xixj.

The derivative of (x6-1) with respect to y implies:

(x6-2) VS, - % x,/y) = v(8; - %%, 9).

CASEL v,=v;=0

= Expression (x6-1) simplifies to B, x; = B;;x;. As with the (x5) model, this condition is satisfied only if:

it

(x6-3) sz = Bj' =0,

or
(x6-4) By = ﬁjk =B Yk,
(x6-5) Oti(q) = (B”/ﬁ”)aj(q) > 0.

CASEIL v;=0; Y, =0

m  Expression (x6-2) implies v, = y; or Sij = Sﬁ =x;x,;/y; however, the latter condition is only satisfied if
Y; = Y; = 1, and B; = B; = 0. Thus, the following condition must hold:

(x6-6) Y =Y

®  Expression (x6-6) implies Bj;x; = B;;x;, and thus either the conditions in (x6-3) or (x6-4) and (x6-5)
must be satisfied.

CASEINL. y;#0;v,=0
u  Expression (x6-2) implies that gij =x,x;/y, which when plugged back into (x6-1) implies:

(x6-T) x, = Byy.

The restricted model specification takes the following form:

1. x= E’i al(q)exp{z Bkkpk}y“, icd
Bia ked

x; = o (@exp(B;p)y™, ieN~J

By .
2. x;= “1(q)exP{E Bulit X ﬁugpk}, ied
ﬁ11 ked keN~K

x; = oci(q)exp{ﬁiipi ) Blkpk}, iceK~J
3

eN-K
x, = By, ieN~K

i
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7. The (x7) Model

Consider the (x7) unrestricted model specification:

&7 ;= o, (q) { pr""} exp(y,y), Vi.
B<1
The implied Slutsky symmetry conditions for goods i and j (i =) are:
x7-1) &xj + Y = Ey_xl Y XX
i ]

The derivative of (x7-1) with respect to ¥ implies:
(x7-2) ij~ij = yl.S~ﬁ.

The derivative of (x7-1) with respect to p,, & # i, j,implies:

(x7-3) ﬁjk(gji = Y% xj) = Bik(gij - ijixj)'

CASEL v,=v;=0
m  Expression (x7-1) simplifies to B p;x; = B;p; x;, which is satisfied if:
(x7-4) B, =B;=0.

m Tt can also be shown that (x7-1) is satisfied if:

x7-5) B =1+By k=ij; l=ij; k=l

(x7-6) Bjk = Bik’ VR k#i,j,
1+

&7-7) olq) = a(q) > 0.
1+

CASEIL ;=0 ¥;*0

= Expression (x7-2) implies that y; = v;, and with this restriction the case collapses into Case I above.

CASEIIL y;#0;v,=0
m  Expression (x7-2) implies s; = 0, which is satisfied only if:

(x7-8) x; = _(BU/Yi)/pj'

The restricted model specification takes the following form:

1+B. R .
1 x; = aq) Sl p{‘{l'[pk1 D""}{ I1 p,f“}eXP(Yly), ied
1+ Bu ked keN-K
- i g].k >
x; = a,(qQp; { H Dy }exp(yly), ieK~J
keN-K

x; = -(By,/v)p; Y, ieN~K

1

(Note that the N~K set must be empty if y, = 0.)
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8. The (x8) Model

Consider the (x8) unrestricted model specification:

(x8) x; = ai(q){]_[p,?""}y“, Yi.
el

The implied Slutsky symmetry conditions for goods i and j (i = j) are:

(x8-1) &xj + ﬁxixj = —B—Ex + ﬁxx .
b; y b;

See LaFrance (1986) for the derivation of the necessary parameter restrictions.

9. The (el) Model

Consider the (el) unrestricted model specification:
n

(el) e = 0@ + 3 Bypy + v, Vi
Bl

The implied Slutsky symmetry conditions for goods i and j (i = j) are:

1 1

(el-1) — {pjipi * Yjei} s {pijpj * Yiej}'
i j R 7y

The derivative of (e1-1) with respect to p, implies:

(e1-2) Bily; -1 = v,B;

The derivative of (e1-1) with respect to p,, & * i, j, implies:

(e1-3) ¥iBix = ¥:Bj-

CasEl v, = ¥;=0
= Expressions (el-1) and (e1-2) imply:

(e1-4) B; =B, =0.

Casell. v, +0; Y;#0

®  Expression (e1-3) implies:

(el-5) By = (yi/yj)[ij , Vk; k=i,j.
m  For (el-2) to hold, it must be the case that:

(el-6) B;=0if vy, =1,

(el-7) B. =

Yjpii
J .

v, -1

1

if v, # 1.

Thus, (e1-5), (e1-6), and (e1-7) are the necessary parameter restrictions.
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CaseIll. v;#0;v;=0

& Expression (el-1) simplifies to e; = -(B,./v,)p; + (B,/¥,)p,. Two possibilities are implied by this
J ! Vil Jit Vb

structure:
(e1-8) v, =1 and Bﬂ = _ﬁij = €; = ‘Bijpj + ﬁﬁpp
(el-9) Y;#1 and B; =0 = ¢;=~(B,/v,)p;

The restricted model specification takes the following form:

1 e =0aq +P;p, ieN

2. g =aq+ E Bupy + E Bupy, +y, ted
keK,iek EEN-K

Y; Yi .
e, =—ey(@+ Y Bypr— Y Buptv,y, icK~J
Y1 keK Yy keN~-K
e, = ~(By;/Y,)p;, ie N~K
3. ep=aq)+ Y Bup+y
keN

e, = Bypy - Byup;, PN, i1

10. The (e2) Model

Consider the (e2) unrestricted model specification:
n

(e2) e; = o,(@ + Y Byp + v, I, Vi.
Bl

The implied Slutsky symmetry conditions for goods i and j (i * j) are:

R Y
(e2-1) “L{Bﬁpi + ﬁei} = '1_{Bijpj * _ej}'
b;p; ¥y b;p; Yy

The derivative of (e2-1) with respect to p; implies:
(e2-2) Yjﬁij/y = Bij * Yiﬁjj/y'
The derivative of (e2-1) with respect to p,, k # i, j, implies:

(e2-3) ¥iBi = YiPu-

CASEL v,=v;,=0
m  Expression (e2-2) implies:

(e2-4) B, =By =0.

CASEIL v, = 0; Y;*0

m  Expression (e2-2) implies (e2-4) must hold. Expressions (e2-1), (e2-2), and (e2-4) imply:
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(e2-5) (@) = (y,/v,)e;(q),
(62-6) ﬁik = ﬁjk = 0, Vk;
(e2-7) sgn(y,) = sgn(y;) * 0.

CasgIll. v;+0;v,=0

m  Expression (e2-1)implies e, = (y/ ¥;)(B;p; - B;p,), which is inconsistent with the structure of the (e2)
model.

The restricted model specification takes the following form:

1. e =a(q +B;p, ieN
2. e =(y;//y)(e@ +v,In(y), ieN

11. The (e3) Model

Consider the (e3) unrestricted model specification:

(e3) e; = a,lq) + E By In(p,) N Y.y, Vi.

k=1

The implied Slutsky symmetry conditions for goods i and j (i = j) are:

(e3-1) ?lg {ﬁj * Yjei} = ;Jl—lp_J {ﬁu * Yiej}‘

The derivative of (e3-1) with respect to p,, k =1,..., N, implies:

(e3-2) Yjﬂik = Yiﬁjks Vi, Jj, k.

Casel vy,=y;=0
m  Expression (e3-1) implies:

(e3-3) B = By-

CASEIL v, = 0; Y;* 0

m  Expression (e3-2) implies:
Y;

(e3-4) By =— e Yk
Y;

¥ Plugging (e3-4) back into (e3-1) implies the following restriction:

(e3-5) Bii - By + ;o) - v;05(q) = 0.



310 December 2002 Journal of Agricultural and Resource Economics

CASEIIL vy;#0;v;=0
= Expression (e3-1) simplifies to e; = B,,/y; - B;;/;. To be consistent with (e3), it must be the case that:
(e3-6) By =0, VE,

(e3-7) eq) = -B,/v;> 0.

F The restricted model specification takes the following form:

L e =eo(q + Y Byln(p,), ieN
keN

2. =t {aq) ST Y Buln(py) + yyyy, ied
Yl Yi Yi keN

e, = PB./v,, teN~J

12. The (e4) Model

Consider the (e4) unrestricted model specification:

(ed) e; = a,(@) + Y ByIn(p,) + v,In(y), Vi.
Bl

The implied Slutsky symmetry conditions for goods i and j (i * j) are:

(e4-1) —L{ijﬁei} =i{ it }—iej}.
bP;p; Yy P, p; y

The derivative of (e4-1) with respect to y implies:

(e4-2) Y€ = Yjé;-

The derivative of (e4-1) with respect to p,, k =1,...,N, implies:

(e4-3) ;B = Y;Pu» VE.

CASEL v;=v;=0
m  Expression (e4-1) implies:

(ed-4) 8; = By-

CASEIL v;#0;v;#0

s Plugging (e4-2) into (e4-1) and simplifying implies (e4-4). Expressions (e4-4) and (e4-3) together
imply:

Y;Y;

(ed-5) B,J = _1_2] Brns VEs
Ye

(e4-6) sgn(y;) = sgn(y;) # 0.
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®  Plugging (e4-5) back into (e4-2) then implies:

(e4-7) (@ = 2 a(q).
¥;

CaselIll. v, = 0; Y; =0

®  Expression (e4-2) implies this case is not possible.

The restricted model specification takes the following form:

1 e=a(q+Y B,ln(p,), icN
keN

2. ¢-= L a(q) + b E Ykln(Pk) + vy, In(y)}, ieN
Yl Yl keN

13. The (e5) Model

Consider the (e5) unrestricted model specification:

(e5) e = oci(q)exp{z B..D, * yiy}, Vi.
k1
The implied Slutsky symmetry conditions for goods i and j (i = J) are:

(e5-1) {ﬁjipiej + Yjeiej} -1 {Bijpjei + Yieiej}'

p;p; b;p;
The derivative of (e5-1) with respect to y implies:

(e5-2) v;S; = 1,5,

CasEl. y;=v;=0
®  Expression (e5-1) simplifies to B;ip;e; = B,pe;, which is not in general satisfied unless:

(e5-3) B, =B, = 0.

Ji

CAsell v, » 0; Y; =0
= Expression (e5-2) implies:

(e5-4) Y = ;-

®  Expression (e5-4) implies that (e5-1) simplifies to B p;e; = B;p;e;; and thus (e5-3) must also be
satisfied.

CasglIll. v, = 0; ¥;=0

®  Expression (e5-2) implies this case is not possible.

The restricted model specification takes the following form:

1 e =elqlexp(B;p, +v,), ieN
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14. The (e6) Model

Consider the (e6) unrestricted model specification:

(e6) e, = ai(q)exp{z B0, }y“‘, vi.
=t

The implied Slutsky symmetry conditions for goods i and j (i = j) are:

1 B N Y; _ 1 B R Yi
—— 1 {B;ipe; + ~ee;r = ——Bype; + —ee;r.
P, p; y P:p; y

(e6-1)

The derivative of (e6-1) with respect to y implies:

~ e.e. ~ e.e;
(e6-2) Yj{Sﬁ" i } =Yi{Sij_—J_l'}‘
b;p;y b;p;y

CaSEL v, =v;=0

®  Expression (e6-1) simplifies to f3; pe;=B;pe;, which is not in general satisfied unless:

(e6-3) B = By-

CASEIL vy;#0;y;+0
m  Expression (e6-1) is not in general satisfied unless (€6-3) and the following condition are satisfied:

(e6-4) Y =¥

CASEINL y;=0;v;=0

= Expression (e6-2) implies Sij =ee,/(p;p; y). This restriction, along with (e6-1), implies ¢; =B p,y,
which is inconsistent with the structure of the (e6) model.

The restricted model specification takes the following form:

1 € = “i(Q)eXP(ﬁ,-iP,-)y“, ieN

15. The (e7) Model

Consider the (e7) unrestricted model specification:

(e7) e = ai(q){l]i[lpf’*}EXp(Yiy), vi.

The implied Slutsky symmetry conditions for goods i and j (i # j) are:

(€7-1) L {Bae,  veie)} = = {Bye, + viewe ).
i b;p;

This model is observationally equivalent to the (x7) model up to a parametric transformation. See the
(x7) model section for the derivation of the necessary parameter restrictions.



von Haefen Incomplete Demand System Specifications 313

16. The (e8) Model

Consider the (e8) unrestricted model specification:

(e8) e, = oci(q){Hp,f"'}yY*', Vi.
b1
The implied Slutsky symmetry conditions for goods i and j (i # j) are:
(e8-1) 1 {Bﬁej + -Yleiej} = —L{Bijei W eiej}.
b;p; y p;p; Yy

This model is observationally equivalent to the (x8) model up to a parametric transformation. See
LaFrance (1986) for the derivation of the necessary parameter restrictions.
17. The (s1) Model
Consider the (s1) unrestricted model specification:
(s1) s =o0,(@ + Y Bup, + v, Vi
k-1

The implied Slutsky symmetry conditions for goods i and j (i # j) are:

(s1-1) 2 {B'ipi +(sj + ij)si} =2 {f’ypj +(s; + Yiy)sj}'
bp;p; bp;p;
CASEl. v;=%;=0
®m  Expression (s1-1) simplifies in this case to B;:p; = B;p;, which is satistied only if:

(51-2) B, =B, =0.

CASEIL v;#0;v;#0

m  Expression (s1-1) simplifies to B;p; + v;s; = B,p; + v, ys; which, when differentiated with respect to
¥y, implies y;s, = v;s;, and when differentiated with respect to p; implies B, (1 -y,;y) = -v; yB,;- These
two conditions hold in general only if:

(s1-3) By =By =0, YE,
(s1-4) e () = (v,/v))ea),
(s1-5) sgn(y;) = sgn(y;) = 0.

CASEIIIL. y;#0;v;,=0

= Expression (s1-1) in this case simplifies to s; = (B;p; - B;p;}/(y;y), which is inconsistent with the
structure of (s1).

The restricted model specification takes the following form:

L s-= o‘i(q) + Biipi; ieN
2. 5 =(y,/y)Noy(@ +v,9), ieN
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18. The (s2) Model

Consider the (s2) unrestricted model specification:
(s2) 8; = 0@ + ) Byp, + v, In(y), Vi.
Bl

The implied Slutsky symmetry conditions for goods i and j (i = j) are:

(s2-1) - Byp; +(s: + v.)s, [ = A B.p; + (s, + v,)s; -
p': J{ J J } plpj{ yey [ t J}
CAsEl v, = Y;=0

B Expression (s2-1) simplifies in this case to p;p; = p;; pj,which is satisfied only if:

(s2-2) B, = B; = 0.

CAsgll. v;#0;v;#0

»  Expression (s2-1) simplifies to B;p, + v;s; = B;p; + v;8;, whose derivative with respect to p; is
B;(y; - 1) = ¥,;B;;, and whose derivative withrespectto py, & #i,J, is v,B;; = v,B;. For these conditions
to hold in general, either:

(s2-3) Yi = 1,
(s2-4) Bii =0,
(s2-5) Bik = pjk/ij Y k; k ;hi’j’
or
(s2-6) Y, * 1
v.B.
s2-7 o=
(s2-7) e
(s2-8) By = (Yi/Yj)ﬁjk’ Vk,k*i,j.

CAsIll. vy;+0;y;=0

m Expression (s2-1) in this case simplifies to s; = (B;;p, - B;;p,)/v;. To be consistent with (s2), this con-
dition requires that either:

(s2-9) v, =1,
or
(s2-10) B, =0,

A

(82-11) By = -B;/v,> 0.
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The restricted model specification takes the following form:

1. s =aMq)+B,p, icN

2. s;=a@+ Y Bup+ Y Byp, +In(y), ied
keK,i+k keN~K

5= ﬁal(q) +Y Bupy + Y Y Bupy*vIn(y), ieK~J
1 keK Y1 keN-K
8; = ~(By/y)p;, ieN~-K
8. s =aq@+Y. Byp, + In(y)
keN

§;= Bpy ~Bypyy i€N,i#1

19. The (s3) Model

Consider the (s3) unrestricted model specification:

(s3) s; = o (@) + Y Byln(p,) + v,y, Vi.
P
The implied Slutsky symmetry conditions for goods i and j (i + j) are:
(e3-1) — {ﬁ'i s+ ij)si} - {Bij s+ Yiy)sj}'
b:p; P;p;

CASEL v,=7;=0
®m  Expression (s3-1) implies:

(s3-2) By = Bj-

CASEIL. v;#0;v;+0

®  The derivative of (s3-1) with respect to Dy, k=1,...,N, implies:
Y

(s3-3) Bie = — By
Y;
®  Plugging (s3-3) into (s3-1) implies:
(s3-4) e, (q) = % o{q),
J
(s3-5) By = By
= Expressions (s3-3) and (s3-5) can be combined as follows:
(s3-6) B, = VB, Wk
2
Yz

= Thus, (s3-4) and (s3-6) are the necessary restrictions for this case.

CASEINL v, = 0; Y;=0

®»  Expression (s3-1) simplifies to s;=(B; - B;)/(y; ), which is inconsistent with the structure of the (s3)
model.
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The restricted model specification takes the following form:

1. s =00+ Y Byln(p,), ieN
keN

2. 5= X o q) + Py Y v,In(p) + v,¥t, ieN
Y1 Y1 keN

20. The (s4) Model

Consider the (s4) unrestricted model specification:

n

(s4) s, = (@) + Y By In(p,) + v,In(y), Vi.

The implied Slutsky symmetry conditions for goods i and j i # j) are:

(s4-1) ;3/.’; {BL + (sj + yj)si} = %pj {BU +(s; + ‘yi)sj}.

CAsel. v;=v;=0
s Expression (s4-1) implies:

(s4-2) B, =B,

CASEIL. y;#0; v;#0

m  The derivative of (s4-1) with respect to p,, £ =1,...,N, implies:

(s4-3) B = 2By V.
Y
8 Plugging (s4-3) into (s4-1) implies:
(s4-4) a(q) = ﬁ{aj(q) - E’i + &}
Y; i Y

CASEINL. y;+#0;v;=0
®  FExpression (s4-1) simplifies to 8;=(B; - B;)/v;, but the structure of (s4) requires that:

(s4-5) B, = 0.

The restricted model specification takes the following form:

L s =a@+ Y Byln(p), ieN
keN

2. si=—i{ﬁ—&5 +oc1(q)+Zﬁmln(pk)wlln(y)}, ied

Yi Yi keN
s, = -By; /v, ieN~J
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21. The (s5) Model

Consider the (s5) unrestricted model specification:

(s5) §; = oci(q)exp{z Bps + yiy} , VYi.
ko1

The implied Slutsky symmetry conditions for goods i and j (i # j) are:

it g

(s5-1) pL {5ﬁpisj +(1 + yjy)sis}.} . {ﬁijpjsi +(1 + yiy)sisj}.
The derivative of (s5-1) with respect to y implies:

(s5-2) Wy +v)S; = Uy + 1,))S;;.

CASEl v, = ¥;=0
m  Expression (s5-1) simplifies to B;ip;s; = Byp;s;s which holds in general only if:

(s5-3) p’ij =p;=0.

CASEIL v, +0; Y, #0
®  Expressions (s5-1) and (s5-2) imply that:
(s5-4) Y =¥

" Given (s5-4), expression (s5-1) simplifies to B, p;s; = B;p;s;. As a result, (s5-3) must also hold.

CASEIIL v, + 0; ¥;=0

m  Expression (s5-2) requires that y, = 0,a contradiction.

The restricted model specification takes the following form:

1 s = o(@exp(B;p, +v,¥), ieN

22. The (s6) Model

Consider the (s6) unrestricted model specification:

(s6) s, = oci(q)exp{z Bikpk}yy", Vi,
Pt
The implied Slutsky symmetry conditions for goods i and j (i = j) are:
(s6-1) A {B'ipisj +(L + yj)sisj} =Y {ﬁijpjsi +(1+ Yi)sisj}.
b;p; i Fj

This model is observationally equivalent to the (e6) model up to a parametric transformation. See the
(e6) model section for the derivation of the necessary parameter restrictions.
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23. The (s7) Model

Consider the (s7) unrestricted model specification:

(s7) s; = a;(q) { ;ﬁl p,f‘*} exp(y;y), Vi.
The implied Slutsky symmetry conditions for goods i and j (i * j) are:

(s7-1) Y Bis, +(1+y,9)s;8,1 = - B.s; + (L +v,38;5;.
o.p { 75 J J} P-P-{ i J}

(2] iEj

The derivative of (s7-1) with respect to y implies:

(s7-2) (I/y + Yj)gﬁ = (1/_’}’ * Yi)S~ij'

CAsElL v,=v;=0

®  Expression (s7-1) simplifies to p;s; = B;s;, which in general holds either if:

(s7-3) Btj = ﬁﬁ =0,
or
(s7-4) By =By VE,
_ By
(s7-5) o(q) = — (@) > 0.
B,

CASEIL v;#0;y;#0
m  Expression (s7-2) implies:
(s7-6) Y =)

= With (s7-6), expression (s7-1) simplifies to B; 8;= Bijsi, which implies either (s7-3) or (s7-4) and (s7-5)
must also hold.

CASEINL. v;#0;v;=0

m  Expression (s7-2) implies y, = 0, a contradiction.

The restricted model specification takes the following form:

L s, = (B;/By)o () { Hp,sk”} exp(y,y), ied
ked

s; = ai(q)piﬁ‘iexp(Yly), ieN~J
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24, The (s8) Model

Consider the (s8) unrestricted model specification:
n B
(s8) s; = o,(q) { Hp,,"’}y“, vi.
k=1
The implied Slutsky symmetry conditions for goods i and j (i = j) are:
(s8-1) LBy, + (L + y)s;s;} = 2= 1Bys; + (L + v,)s;5, ]
s ), )

This model is observationally equivalent to either the (x8) or (€8) model up to a parametric transforma-
tion. See LaFrance (1986) for the derivation of the necessary parameter restrictions.



