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water and soil practices as well as crop rotation technique. The findings reveal that CSA may be an
effective strategy to improve the rural populations' well-being for farm households with access to
capital, strong social networks and access to integrated food markets. The climate scenario
simulations indicate that farmers adopting CSA fare better than non-adopters, although CSA
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Highlights:

e Climate smart agriculture engages soil and water conservation for climate adaptation.
e \We developed and calibrated an ABM to study the CSA adoption rate and its effects.
e CSA adopters have higher food security than non-adopters under climate projections.
e Food security outcomes are also affected by social networks and market integration.

e CSA may not counteract severe climate change and further mitigation policy is needed.

Abstract: The study proposes an agent-based model to investigate how adoption of climate smart
agriculture (CSA) affects food security. The analysis investigates the role of social and ecological
pressures (i.e. community network, climate change and environmental externalities) on the adoption
of physical water and soil practices as well as crop rotation technique. The findings reveal that CSA
may be an effective strategy to improve the rural populations' well-being for farm households with
access to capital, strong social networks and access to integrated food markets. The climate scenario
simulations indicate that farmers adopting CSA fare better than non-adopters, although CSA adoption
does not fully counterbalance the severe climate pressures. In addition, farmers with poor connections

to food markets benefit less from CSA due to stronger price oscillations. These results call for an active



role for policy makers in encouraging adaptation through CSA adoption by increasing access to capital,

improving food market integration and building social networks.



1. Introduction

As the world grapples with the potential problems created by global climate change a great deal of
analysis has turned toward considering adaptation possibilities, especially for farmers in poor
countries. One such adaptation which has shown promise in the developing world and garnered a lot
of recent academic interest is climate smart agriculture (CSA) (Amadu et al., 2020; Marenya et al.,
2020; Tesfaye et al., 2020). Climate smart agriculture is a package of micro-level soil and water
conservation improvements such as planting and agroforestry techniques that can help farmers adapt
to climate change. A number of recent papers have shown the current effectiveness and in some cases
willingness of farmers to adopt CSA techniques in such places as Ethiopia, Peru, and Malawi (Amadu
et al., 2020; Marenya et al., 2020; Tesfaye et al., 2020). While this literature shows CSA adoption
under current circumstances, understanding longer term adaptation to climate change requires
understanding the dynamics and effectiveness of this adaptation strategy over time and into the future.
Specifically, the literature on technology adoption has shown the importance of learning by doing and
learning from neighbours (Bramoullé and Kranton, 2016; Conley and Udry, 2010), and the potential
failure of some technologies as the current climate changes. An accurate assessment of the ability of
CSA techniques to help developing country farmers adapt to climate change requires modelling both
adoption paths and future climate dynamics. How will the future dynamics of climate and farmer social

interactions determine climate smart agriculture’s success or failure in improving food security?

Answering such a guestion requires moving beyond current econometric approaches, which take past
data as the guide to future farmer adaptation behavior. While this provides well identified answers for
the current state of knowledge and climate, projecting into the future from such work requires strong
assumptions on the static nature of adaptation, farmer behavior, and farmer networks. Our work
innovates on the adaptation literature by using an agent-based modelling (ABM) approach to
understand farmer adoption of CSA techniques in rural Ethiopia while facing current and future

climate change. Such a forward-looking modelling exercise allows us to generate an understanding of



future adaptation dynamics, in which the agents themselves learn, choose, and adapt to a changing

climate.

To contextualise the analysis, we initialize the model to the adoption rate of climate smart
agriculture practices and soil fertility derived from farm survey data in the lowland and valley
fragmented agroecosystem of Ethiopia’s Choke mountain watershed (Simane et al., 2013). We choose
this region because it is characterised by the capability to register surplus agricultural production, but
also suffers from land and water resource degradation which may produce food shortage (Zaitchik et
al., 2012; Teferi et al., 2013). With both its climate and agricultural variability up and down the slope
of the watershed, the Choke mountain watershed provides an optimal laboratory to test adaptation to

future climate change.

This work brings a novel modeling approach to the study of CSA adoption and farmer climate
adaptation. Agent based models (ABM) develop a computational approach able to study complex
socio-economic systems characterised by different degrees of organisation and to interpret the
interaction between heterogeneous agents who can have complex and non-linear behaviours. ABMs
allow us to model agents that may have different information sets and behave according to rules
derived from empirical data or laboratory experiments thereby enhancing the realism of the analysis
(Tesfatsion and Judd, 2006; Branch and Evans, 2006). Adopting an iterative bottom-up approach and
agents’ adaptive learning process (Delli Gatti et al., 2011), ABMs allow us to investigate system
dynamics endogenously generated within the model while taking into account the possible
redistributive implications. This bottom up approach with endogenously determined system dynamics
allows for a more comprehensive policy assessment. Like the standard micro-econometric approach
to CSA adoption, ABMs focus on the behavior of individual actors faced with economic and
information incentives. Unlike micro-econometric approaches, the ABM allows us to simulate future
scenarios and endogenous interactions between individuals, which is vital for understanding adaptation

to future climate change.



Our ABM incorporates agent interactions in peer-to-peer networks, recognizing that human cognition
and management ability is itself a scarce resource and depends on environmental and cultural context,
incentives, and past experiences (Conlisk,1996; Duffy, 2006). The agents in our ABM represent a
range of autonomous farmers who have dynamic behaviours and heterogeneous characteristics
(Heckbert et al., 2010; An, 2012; Dobbie et al., 2018). Agents interact with each other according to
social and ecological pressures, resulting in emergent macro-scale outcomes that can be used to study
the whole system through scenario analyses (Smajgl et al., 2011; Bazzana et al., 2021). According to
Adesina and Zinnah (1993) and Ngwira et al. (2014), CSA practices adoption is affected by the
farmer’s perceptions of these technologies, as much as the characteristics of the technologies
themselves. Smallholder farmers have subjective preferences for characteristics of CSA techniques
which may also be affected by their social context. For these reasons, we take into account farmers’
neighbours adoption, their social interactions, and their impact on the rate of adoption of different
types of CSA techniques. We also distinguish between short and long-term practices, which can have

different dynamics.

Our objective of this study is to investigate whether CSA adoption dynamics positively affect the food
security of households. In line with the Food and Agriculture Organization of the United Nations
(FAO, 2002), we address the multidimensional definition of the food security accounting for: food
availability, food self-sufficiency, food instability, and food insecurity severity. All four dimensions

are important in analysing the effectiveness of CSA adoption and adaptation to future climate change.

In order to provide input to how policy makers might influence the climate adaptation process, the
ABM allows us to explicitly investigate multiple channels that can impact the adoption and food
security impacts of CSA. The variations in channels of impact we investigate are social networks,
market integration, and drastic climate change. The ABM explicitly models the role of social networks
(participation in community activities) in changing the adoption of CSA strategies that reduce farmers'
food insecurity. More precisely, we compare the system dynamics of the baseline scenario with two
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scenarios with higher and lower social network participation rates. In addition, we extend the analysis
by exploring the adaptive responses to the surrounding market integration characteristics (William et
al., 2020) by altering the price transmission mechanism, i.e., varying market conditions generated by
geography and remoteness, which affects the market price dynamics of the food commaodities and local
wealth. A final enquiry expands the analysis by comparing the baseline scenario to a case in which
climate change is more dramatic. The aim of this analysis is to investigate from a food security
perspective, whether CSA is an effective mitigation strategy for drastic climate change that increases

the vulnerability of farmers to production risk.

Our agent-based modelling of CSA adoption investigates the importance of key policy relevant
parameters for adaptation to climate change: social networks, the workings of food markets in price
transmission, and the severity of future climate change to farmers’ abilities to adapt and their
concomitant food security outcomes. It provides a proof of concept for how researchers and policy
makers can think about and analyze farmer adaptation to future climate change. In particular, it
demonstrates how common features of micro-econometric models, networks and adoption dynamics,
can be modeled in a future oriented ABM to show how policy makers can leverage these features to
affect future farmer adaptation to climate change. The big advantage of an ABM for future policy

analysis is that the scenarios allow the individual farmers to choose their own adaptation paths.

The remainder of the paper is structured as follows: Section 2 presents the methodological approach;
Section 3 describes the simulation results; Sections 4 and 5 close with policy suggestions and

concluding remarks.

2. Methodological approach
The basic structure of the agent based modelling system we analyze considers a population of

households (j = 1, ...,J) characterized according to age, social network participation, land size (H),



and economic endowment (M). The household sector consists of farmers who may work in their own
fields or supply labour to the other farmers within the village border. Farmers have limitations in their
ability to process new information, based on differences in human, physical, and social capital, i.e,.
they are not perfectly rational and heterogeneous management abilities. Specifically, they differ in
available land and land productivity, financial resources, family size and age of the household head,

participation in social gathering and short/long term CSA techniques adoption.

In each period (t = 1, ..., T), the households perform the following activities: 1) decide whether to
adopt long and/or short term CSA practices, 2) cultivate land using production input as farmers, 3)
supply labour to the market, 4) consume food commaodities (i = 1, ..., I), and 5) exchange agricultural
products on the market (Figure 1). We assume that farmers have information processing limitations
and live in an incomplete and asymmetric information context; thus, they are boundedly rational and

follow simple rules of behaviour.
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Figure 1. Flow chart of the methodology.

This flowchart shows the major components and how they are linked in our agent-based model. The model simulates
farmers’ decision-making on technology adoption of CSA practices, adapting both, either or none of the two general
categories of WSA and CP. Their decisions are affected by participating in social networks, affecting farm productions
and the subsequent household consumption. Households also have access to markets for selling and purchasing food
products, which affects their available economic resources and food consumption. The model outcomes are measured by
four food security metrics, including availability, self-sufficiency, instability, and food insecurity severity (see Section
2.6). The model is run under scenarios that differ in network information diffusion extents, food price dynamics in
integrated or non-integrate markets, and climate conditions.

2.1 Climate Smart Agriculture practices adoption
The CSA practices include two main types: physical water and soil management actions (WSA), which
have high costs and are a long time-pay back investment; and conservation practices, such as no or
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minimum tillage, crop residue management, and crop rotation (Howden et al., 2017), which affect the

crop yields in the short term.

The propensity to apply short/long term CSA practices is driven by two main farmer attributes: social
network memberships and the farmer’s age (Di Falco et al., 2011; Ahmed, 2014; Tefera and Larra,
2016). The membership to the community network is assumed to create a higher exchange of
information on the best practices or mitigation strategies to external climate shocks. Therefore, it can
affect the farmer’s beliefs on the benefits of different CSA practices: it reduces the expectation on the
CP impact on soil productivity and subsequently the adoption rate, whereas it has a positive effect on
the belief about the benefits due to WSA on crop yields and would increase its adoption rate. In line
with empirical studies from Ethiopia, Simane et al. (2013) and Wossen et al. (2013), the choice of crop
rotation is negatively affected by farmer age whereas soil and water management actions do not depend

on her age.

Farmer adoption depends on her belief (bf) of CSA adoption’s effect on soil productivity as follows:
bfj,x,t = bf}',x,t—l + Ax,Age + Ax,Network; 1

where A, 4ge aNd Ay verwork are Negative when x = CP, whereas when x = WSA they are zero and
positive, respectively. If farmer j has positive beliefs about the benefits, bf; ., = 0, the farmer is
willing to adopt the x-th CSA practice (WSA and CP) in period t, whereas in the opposite case the
farmer does not adopt it. We parameterize the A's using data derived from the Simane et al. (2013)

farm level survey of CSA adoption.

At the beginning of each year, the farmer decides whether to implement soil and water conservation
practices. Given that WSA are long-term actions, it lasts for five periods, the farmer computes and
compares the expected present value (U) of the economic return of the production types with and

without the WSA implementation:



5
Ux,t = Z a" (Bx,t!x,t - Tx,t) . 2

=1

S

In equation (2), o is the discount factor of the future economic returns; z, , is a fixed adoption cost
when x = WSA (equal to zero in case of non-adoption, i.e., x = NWSA); Dxt and Y, . are the average
price and production over three food commodities (cereal, vegetable and fruits, and animal-based
products) with/without soil and water management practices adoption at the time period t. The
adoption of WSA increases crop yields but has a cost, 54, Whereas if the farmer does not adopt
WSA there is no gain in crop productivity and no adoption cost. Then, following standard adoption

models if Uyysa¢ = Uywsa e, the farmer adopts WSA.

Farmers have heterogeneous expectations (E) on yields and climate variables, which evolve according

to the following path dependent heuristic:
Ef,t—l(vj,t) =9V t-1; 3

with g; > 0 representing a farmer-specific bias coefficient and v acting as the reference variable. The
behavioural assumption is that farmers form their expectations on future climate variables using the
last observed levels, and then adjusted with some bias factor (see Conlisk, 1996; Duffy, 2006; Nolan
et al., 2009; Groeneveld et al., 2017). Farmers are optimistic (or pessimistic) about the reference
variables if g; > 1 (or g; < 1), whereas if g; = 1 the agents form their expectations only using the

last observed level.

Once the farmer has decided on the adoption of WSA, she allocates the available land to the food
production. The farmer population can be divided in four different behaviour types: double adopters,
WSA adopters, CP adopters and non-adopters. In line with Bazzana et al. (2021), farmers

implementing crop rotation process cultivate the h-th plot as follows:

hit =hiz1e-1 V hite1 = higae-2 V' hye # hyp_y; 4
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where i=1:3 represents the three food productions. We assume this type of crop rotation because it is

necessary in highland Ethiopia in order to preserve soil productivity.

In contrast, farmers not adopting crop rotation primarily plant plots according to a “business as usual”
rule with a market driven correction, i.e., they plant the same crop as the previous period, changing the
allocation of land between crop types based on relative prices in the market. These farmers reallocate
a share (6) of the land from the lowest economic return crop in the previous period to the crop with

the highest past economic return:

Pit-1Yjit-1

Riiv = ——— 2
j,0Lt—1 Kj,i,t—l
In equation (5), R; ;-1 is the economic return of the i-th agricultural production for the j-th farmer in
the last period; p;¢—1,Yji:—1 and K;; ., are the price, the production and the land planted with the i-

th commodity. To capture key features of subsistence farming, the available land for food crops that
is not affected by the market driven mechanism will be cultivated as usual, i.e., with the same crop as

in the past (h; ¢ = h; ¢—1).
The decisions on land use and CSA practices will affect the plot fertility (4 .):

Ape =+ K+ 10 +1g)Ant-1; 6
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where k represents a discount (degradation) rate and 7 is the WSA effect on soil fertility. Hence, plot
fertility for the j-th farmer is determined by her short and long-term agriculture practice choices
(Holden et al., 2004). Continuous cropping reduces the plot productivity over time (x; < 0) whereas
crop rotation is able to maintain the plot productivity (x; = 0). Moreover, land productivity is
positively affected by the adoption of soil and water management practices by both the landowner

(n; = 0) and the farmers in the neighbouring plots (n4 = 0, positive externality).

2.2 Farmer’s production

Based on their available income for productive purposes (M; ._1), the farmers hire labour and purchase
production inputs (fertilizers and seeds), and use irrigation water if they have access to an irrigation
scheme, to produce the i-th food commodity in each plot (h). The agricultural food production function
(Qn,¢) is defined according to a Leontief production functions with no substitution possibilities among

the inputs:

Line Si,h,t) _ .

int = min ,
Ql,h,t (ai,L ai,S
where L; . and S; . represent labour quantities and the other representative production inputs,

whereas a; and ag are the positive technologically determined parameters.

In making decisions on how to optimize the production process, the farmer is bounded by the following

budget constraint:
Weline + PseSine = S Mji—1;
3
M, 1= [Z Tije1 +Welj1 + (1 =M 5] ;

i=1

where w, and p; . are the price of labour and the other input; ¢ is the marginal propensity to save and

¢ M;,_1 represents the available monetary resources from the previous periods which are the sum of
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past profits (z; ;1) from the production of the i-th commodity, labour income and savings.! The
farmer hires outside workers if the optimal amount of labour required by the agricultural production
process is higher than the farmer’s household labour supply. In the opposite case, the household applies

excess labour time to the other farmers generating income.

In line with the empirical literature (Lobell and Burke, 2010), the actual crop yield (Y} ) depends on
both the soil productivity (4, .) and the effects of available water (rainfall and irrigation) and air

temperature (p):

Yt = PeAntQnt;

where 0 < p, < 1 represents the water stress parameter. Following the analysis and parameterization
in Block et al. (2008), p; = 1 means that yields are not limited by water stress, although limitations by
other factors such as soil fertility or management skills are still possible, while p, = 0 implies crop
destroying drought stress. The parameter p; is computed for the study zone using a process-based soil-
water balance model as described in Zhang et al. (2020). The model simulates soil moisture variation
and crop growth in gridded soil columns using daily climate variables (rainfall and air temperature),
irrigation if any, water holding capacities of the soil, and crop-specific characteristics (such as crop
calendars and drought resistant features), and computes a yield factor (i.e., the water stress parameter

p.) Tor the entire growing period.

2.3 Households basic needs satisfaction

According to the family size, the total food requirements (C; ; .) are defined as follows:

Ciit = 0iZj 4. 8
In equation (8), O; represents the basic food requirements per capita for the reference good and z is the

household’s size. Hence farmers harvest their agricultural production and engage in market exchange

L In line with the current state of credit markets in Ethiopia we assume farmers have to finance investments based on their
available savings.
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if the production exceeds or falls behind the basic food requirements of the farmer’s household. We
assume a preference order in the consumption choice: first, farmers try to satisfy the cereals demand,
then the vegetables need and finally the demand for animal-based food. To compensate for a potential

food deficit, expenditure will be subject to the following budget constraint:

l

3
[Pie(Yiie — ciie)| ¥ welje + (A =My = M. 9
=

At the end of the period, the households become one period older, except for those who die, and the

population size evolves according to the differential between the birth rate and the death rate.

2.4 Aggregated variable dynamics

In this section we define the laws of motion for prices, wages, and population. In our baseline model
which follows the assumptions of Bakker et al. (2018) and Sankaranarayanan et al. (2020), we assume
the existence of a village food market which is not developed enough to endogenously change the
commaodity prices. Hence, the farmers are price takers and the agricultural commodity prices on the

market evolve according to an autoregressive process:
Pit = WitDie—1 T Ees 10
where @;, is an exogenous price evolution coefficient and ¢;, is a shock following a normal

distribution.? For labour cost, we assume that the wage level in the economy is equal across farmers

and evolves as follows:

2 In Section 3, we relax this assumption developing a scenario in which the constraints generated by geography and
remoteness affect the price transmission endogenizing its evolution as follows:

Cit

Boic +v[pic(1+@ir)] where i, =f <—

Yi,t) if Cie > Yy

Dit =

Yie. _
B + V[Pi,t(l - (Pi,t)] where Pir = f <é_t> if Y > Cit
1,
Where ¢, is increasing and ¢; (1) = 0. According to the new price definition, the food commodity price (p;.) in the
interested area depends both by the exogenous price trend and by the actual production in the period in the area: if the
production (Yi,t) is higher than the local demand (C; ), the households observe a reduction in the food commodities price,
whereas if there is a shortage in the food commodity, its price increases.
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Wi = Wy W + & 11

In the baseline scenario, we assume that agents supply their labour to the other farmers within the

village border to endogenously generate labour market dynamics and potential unemployment.

Finally, since the model considers rural villages, it is reasonable that the prices of the agricultural
production inputs (ps.) also evolve according to an exogenous autoregressive process, which is

comparable to equation (10) because farmers are price takers:

Pst = WstPst—1 T Ests 12

where @y , is an exogenous trend component and ¢ . is a shock following a normal distribution.
2.5 Sequence

The economy is an iterative system where agents repeat the same group of actions at each time step.
First of all, agents decide whether to adopt CSA practices. Farmers who are members of a social
network may randomly meet another community member, if the farmers meet, they modify

positively/negatively their WSA/CP adoption probability based on the new information.

Based on the expectation on climate variables, productivity and farmer’s type (degree of
innovativeness), farmers set their land use and desired production inputs. Output depends on farmers’
financial constraints, rainfall during the production period, and neighbour’s soil and water practices

(positive or negative externalities).

According to the household’s composition, the farmer computes its food security requirement. If
production is higher than self-consumption demand, the farm household consumes their own food
commodities and sells on the market the surplus. In the opposite case, households access the market

to satisfy their household food requirements.

At the end of the period, the household members become one period older, except for those who die.

Hence, the household’s size evolves according to the difference between mortality and birth rate.

15



Births are distributed among households according to a uniform distribution whereas, to define the j-
th household member who dies, we use a death probability drawn from a uniform distribution [0,1]. If
this probability is lower than the household cohort death probability,® the farmer dies. In the opposite

case, she survives. According to this mechanism, older agents have a higher probability of dying.
2.6 Scenarios and simulations

In the following sections, we run the model to investigate whether CSA adoption dynamics positively
affect the food security of the households. We design several representative scenarios (Table 1) to
expand the analysis exploring: 1) how improving or reducing the extension services and community
social network participation, which may change the information diffusion, affect the well-being of the
farmers (Scenario A/Baseline, B, and C; Table 1); 2) how development policies (e.g., road and railway
construction) affecting price transmission can change adoption dynamics and food security (Scenario
D); 3) whether the adoption of the CSA practices is an effective strategy to handle drastic climate

change (Scenario E).

Scenario Food Price Dynamics Network Representative Concentration Pathway*
A (Baseline) | Exogenous 60% 4.5
B Exogenous 5% 4.5
C Exogenous 45% 4.5
D Endogenous 60% 4.5
E Exogenous 60% 8.5

Table 1: Scenario parameters settings.

3 See the Ethiopian life table for the cohort death probability (World Health Organization, 2018).

* Representative Concentration Pathway (RCP) is a trajectory of greenhouse gas concentration into the future decades
adopted by the climate modeling and research community. RCP is labeled using a range of radiative forcings in the year
2100. RCP 4.5 falls in the mid-range, representing an intermediate climate change scenario, while RCP 8.5 represents the
worst-case scenario with high levels of greenhouse concentrations.
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In all the scenarios we have defined a representative Ethiopian rural village composed of 100
households (see Table 2). Farmers participation in community social networks affect their CSA
adoption rates. Following data collected by Simane et al. (2013) the community network involves 60%
of the households under the reference Scenario A. We assume a growing population with a birth rate
of 31.26 per 1000 people and a death rate of 6.67 per 1000 people (in line with Ethiopian data; United
Nations, 2019). In line with the data for highland Ethiopia, the average initial family size is 5 people,
but it evolves endogenously over time, affecting the total basic requirements and the households’ well-

being.

We assume a standardised African starch-based diet in line with the average value for Sub-Saharan
Countries (FAO, 1997; 2008) as follows: 0.52 cereals, 0.27 vegetables and fruits, and 0.21 animal-
based food products (diary and meat). In relation with these dietary needs, we define four indicators:
food availability, food self-sufficiency, food instability, and food insecurity severity. Food availability
is the ratio between actual food consumption and total food requirements, whereas self-sufficiency is
defined as the ratio between self-production and total food requirement. Food instability is measured
using the cereal import dependency ratio (FAO, 2011) which, in the case of a household, is the ratio
of cereal net purchases over cereal consumption. The higher a household is dependent on cereal
purchases, the lower the household’s food stability is. Following Devereux (2006), we define severely

food insecure households as those with food availability lower than 70%.

We model the effects of climate on agricultural production using a water stress measure calibrated to
14 climate models®, which the literature finds perform the best for our study zone in Ethiopia (Eggen
et al. 2019). In our case, we calculate the water stress parameter p based on daily data simulated by

the 14 climate models with representative concentration pathways (RCP) 4.5 and 8.5 over 2006-2095

5 The 14 selected climate models are CanESM2, CESM1-BGC, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-
ESM2G, GFDL-ESM2M, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MPI-ESM-LR, MPI-ES-MR, MRI-CGCM3,
and NorESM1-M.
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(90 periods). Data variables including daily minimum and maximum temperature, daily rainfall, and
solar radiation are extracted from each of the 14 climate models in order to calculate the associated
water stress parameter. The 14 climate models are selected from 20 models in the Coupled Model
Intercomparison Project, Fifth generation (CMIP5; Taylor et al., 2012) and the data are obtained from
the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP; Thrasher et al., 2012).
In addition, the data are bias-corrected through comparing the model simulations to data observations
in the contemporary climate regimes, including the application of Climate Hazard Group InfraRed
Precipitation with Stations (CHIRPS) product (Funk et al., 2015) and the Global Data Assimilation
System (GDAS) (Derber et al., 1991) over 1980-2009. As the rainfall amount during the main raining
and growing season in the study region has been shown to be highly correlated with the phases of the
El Nifio—Southern Oscillation (ENSO) (e.g., Gissila et al. 2004; Zhang et al. 2016), the model selection
criteria are based on whether the model is able to well represent ENSO and the rainfall characteristics

over this climatic region (Eggen et al., 2019).

Simulations of the ABM were run with a Monte Carlo process repeated 100 times for a period of 90
years for each climate model. The Monte Carlo runs differ by the actual distribution/allocation of
births, deaths, wealth, and CSA adopters among the households in each period. The initial parameters
on the farmer and household characteristics such as the average family size, average available land,
CSA adoption rates as well as impact of ageing and network on CSA adoption are derived from the
survey data described in Simane et al. (2013). The data also align closely with parameters in another
published work that describes survey data from highland Ethiopia (Gebreyes et al., 2020). Table 2

shows the average parameter values among the simulations over time and initial conditions.®

Meaning Value

J Number of households 100

® See Table A2 in the appendix for the references of the main parameters of the model.
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H Maximum number of plots 20

o Discount factor 0.9
1) Share of land affected by market driven mechanism 0.25
S Share of income invested in the production process 0.95
g Bias coefficient 1
z Average family size 5
Awsaage Ageing impact on WSA adoption propensity 0
Acp.age Ageing impact on CP adoption propensity -0.012
Awsa Network Network impact on WSA adoption propensity +0.65
Acp Network Network impact on CP adoption propensity -0.45

Initial Condition

A Soil fertility -0.05; +0.05
Irrigation service extension 30%
WSA adoption rate 78%
CP adoption rate 32%

Table 2: Parameters value and initial condition.

3. Results

The following subsections present the simulation results of food security and CSA adoption starting
from the baseline scenario. Then, we investigate the role of community networks in the implementation
of mitigation strategies showing the possible impact of farmer’s wealth on the food security dynamics.
In subsection 3.3 we change the food price transmission mechanism addressing the crucial role of
market integration and actual food market access to the satisfaction of food basic needs. Finally, the
system is hit by a severe climate change shock aiming to explore the effectiveness of CSA adoption as

a mitigation and adaptation strategy for severe climate change.
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3.1 Individual decision and aggregated effects of climate smart agriculture adoption

Looking at the ABM simulation results for aggregate dynamics of Scenario A (i.e., the baseline),
Figure 2 shows the climate smart agricultural adoption rate and the multidimensional aspects of food
security: availability, self-sufficiency, instability, and food insecurity severity. Figures 2a and 2b show
the adoption rates of CP and WSA techniques. Being costless, conservation practices exhibit a growing
trend in their adoption in earlier periods, which reduces over time as the opportunity to share
information on best practices among farmers increases. The community relationship explains, on the
other hand, the growing trend in figure 2b because it positively affects the WSA adoption, which
generates a cascade effect through the physical water and soil management practices and their positive
externalities on neighbours. Figure 2c¢ represents the ratio between food consumption and total food
requirements, highlighting the capability of farmers to reach the food security level by self-production
and by market exchanges. Figure 2d represents the level of food security reached through self-
production. The gap between food availability and self-sufficiency shows the crucial role played by
market access in satisfying food basic needs. Indeed, in spite of the growing adoption of the soil and
water management actions (Figure 2a), the food self-sufficiency level oscillates around 28.96% during
the simulated period. Figure 2e shows the dependence of household cereal consumption on cereals
coming from the market, as a measure of instability. In the study area, the average percentage of
purchased cereals over domestic supply of cereals is 44.89%. This index indicates the extent of
vulnerability households are exposed to for cereal consumption, a main source of staples, when the
access to market is disrupted or when the market price is volatile. Figure 2f exhibits the number of
households with severe food insecurity, i.e. households that are not able to reach a food availability

level higher than 70%.
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Figure 2: CSA adoption and evolution of the food security dimensions.

This figure shows the results from running 100 Monte Carlo simulations of the ABM using scenario A with our baseline
information in a village of 100 households over a 90-year period. Figure 2a and b show the average share of adopters in
the farmers population, who adopt the Climate Smart Agriculture technology, crop rotation or water and soil management
action, respectively. Figure 2c, d and e show the average level of the respective food security metric - availability, self-
sufficiency, and instability, whereas Figure 2f shows the average number of households as defined in food insecurity
severity.

As shown by Figure 3, starting from a situation where there is an almost equal land allocation among
the three agricultural productions (cereals, vegetables and fruits, and pasture for animal-based food
products), the ABM modeling shows that land allocated to cereals and pasture increases (final level
around 80% of total land). This redistribution of land among the crops favours the production of goods
with higher economic returns (animal-based food) or that are more demanded by the households’
starch-based diet (cereals). With higher earnings, the farmers try to satisfy the demand for other food
commodities on the market. Allocating more land to the food commodity at the base of their diet, the
farmers are able to reach higher levels of self-sufficiency. However, the growth in level of satisfaction
through self-sufficiency is bounded by physical constraints of the agricultural sector with concave

yields and by population growth.
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Figure 3: Average land allocation among agricultural productions.

This figure shows the average results from running 100 Monte Carlo simulations of the ABM using scenario A with our
baseline information in a village of 100 households over a 90-year period. The y-axis is the share of total available land
allocated to cereals (blue bars), vegetables and fruits (red bars), and pasture for animal-based food products (yellow bars).
(For interpretation of the references to colour in this figure, the reader is referred to the web version of the article.)

Figure 4 shows the results of the ABM simulations for food availability, i.e., the ratio between food
consumption and total food requirement. We divide the population in four groups according to climate
smart agricultural practice adoption: non-adopters, farmers who adopt only WSA, adopters of CP but
not WSA, and double adopters. Looking at the evolution of the food security indicators, all the four
groups register an increasing trend in the average level of food availability, but farmers who adopt
both CSA practices are able to reach the highest food security level. Moreover, comparing the
dynamics of the four trends, we find that water and soil practices have a more stable impact on food

availability than crop rotation in general, and a stronger positive impact in the long-run.
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Figure 4: Food availability evolution by CSA adoption.

This figure shows the average results from running 100 Monte Carlo simulations of the ABM using scenario A with our
baseline information in a village of 100 households over a 90-year period. The y-axis is the average level of food availability
for the four types of farmers: double adopters (dotted line), WSA adopters (solid line), CP adopters (crossed line), non
adopters (dashed line).

In summary, our analysis of the baseline scenario indicates that climate smart agriculture practice
adoption is an effective strategy to improve the well-being of farmers by increasing their food
availability. Their food availability increases come through a combination of higher food production
and market purchases given increases in income from selling agricultural production on the market.
However, the positive number of severely food insecure farm households highlights how heterogeneity
in wealth, in terms of economic resources and available land, plays a crucial role which may be lost
looking only at the average effects.

3.2 The impact of social network in the climate smart adoption practices

This section uses the ABM to perform a comparative analysis on the role of social networks on the
farmers’ ability to reach adequate food security. The aim is to understand whether community social
networks significantly increase the adaptive capacity of farmers through the sharing of best practices
and mitigation strategies reducing their vulnerability in terms of food security. More precisely, we

compare the system dynamics of the baseline scenario with two scenarios with altered social network
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participation rates. In Scenario B, the community network is wider with 75% of the farmers in the area

participating in each period, whereas in Scenario C the share of participants reduces to 45%.

Figure 5 shows the results of the ABM simulations in Scenarios A, B and C on three dimensions of
food security: availability, self-sufficiency, and instability. Each plot exhibits the distribution of a food

security indicator level in the population for the three scenarios in one of the four demonstrated

periods.’

7 We do not represent food insecurity severity in Figure 5 because it is graphically less readable. The share of farmers in
severe food insecure conditions already become close to zero in the second plot (from period 30) for all the scenarios.
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Figure 5: Distribution of effects across households within a village.

This figure shows the histogram of the food security indicators from running 100 Monte Carlo simulations of the ABM in
a village of 100 households over a 90 year period using scenario A (social network extension 60%), scenario B (social
network extension 75%), and scenario C (social network extension 45%). The y-axis is the number of households that fall
into each of the bins defined in x-axis based on the level of the respective food security indicator. The first row represents
food availability, the second row is self-sufficiency, and the third row shows food instability.

Looking at food availability in Figure 5, we see that initially (t = 2) the levels are comparable across
scenarios. At t = 30, almost all households in Scenario A and B reach the highest categorical level of
food availability, while in Scenario C, where the social network is associated with a lower share of
farmers, a few more households are left behind in the second to the highest food availability category.
The lower social network participation reduces the possibility to share experiences among peers,
negatively affecting the adoption of the water and soil management actions and reducing the farmers

who gave up crop rotation practices as shown in Figure 6. Interesting, it seems that for food availability

26



an income effect emerges. Indeed, although both the CSA practices positively affect agricultural
yields, only the adoption of WSA requires strong investments whereas CP does not need additional
production costs leaving unaffected economic resources that the farmers can use to purchase food
commaodities on the market. A wider community network is beneficial if we look at the food security
level achievable by self-production. Increasing the possibility to exchange information and learn best
practices from neighbours, the adoption rate of WSA is higher (Figure 6), which strengthens the
resilience of farmers to adverse and unexpected conditions, e.g., reduced yield under climate impact
and loss of market access due to physical constraints. Investing in these practices, the households are
able to increase their yields positively affecting the food security achievable without market transaction
and to reduce their dependence on cereals from other areas (i.e., higher food self-sufficiency and
stability as shown in Figure 5).  This suggests the crucial role of social networks, the market price

dynamics of the food commodities, and population wealth played in food security.
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Figure 6: CSA adoption rate in the three scenarios.

This figure shows the average results from running 100 Monte Carlo simulations of the ABM in a village of 100 households
over a 90 year period using scenario A (social network extension 60%), scenario B (social network extension 75%), and
scenario C (social network extension 45%). The y-axis is the share of adopters in the farmers population. The solid line is
the baseline scenario (A), the dashed line represents scenario B whereas the dotted line shows scenario C.

3.3 The role of market access on food demand satisfaction

As shown in Section 3.2, market integration is important for food demand satisfaction when self-
production is not able to achieve total household food demand. For this reason, in this section we test
the ABM with a scenario (Scenario D) where the transportation infrastructures are not as well
developed, and the constraints generated by geography and remoteness affect price transmission. In
this case the frictions in the food market endogenizes the evolution of prices, making them partially a

function of local production and sales levels.
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Reducing the market integration of the simulated village produces a growth in the price volatility of
the food commaodities, as shown in Figure 7 (solid line). The price of vegetables and fruits, and animal-
based food given limited market access are higher than the price when households do not have
constraints on the market access (respectively +1.36% and +5.56% on average) whereas, thanks to its
higher local supply, cereals have a lower average price (-6.12%). Apart from the average levels, it is
worth noting that the prices of the commodities show higher volatility in less integrated markets, which
decreases food availability and increases food instability and insecurity severity. Indeed, farmers living
in remote areas or districts with less transportation infrastructure are more vulnerable to unexpected
drops in yields because these directly affect the food available for supply and demand in the local

market and the price of the food commodities on the market.
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Figure 7: Market price of food commodities.
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This figure shows the average results from running 100 Monte Carlo simulations of the ABM in a village of 100 households
over a 90 year period using scenario A (exogenous price formation) and scenario D (endogenous price formation). The
figures represent price for cereals (first), vegetables and fruits (second), and animal-based food (third). The dotted line
represents the price level if markets are integrated and prices are independent of local production and demand levels
(Scenario A/Baseline), whereas the solid line is the price in non-integrated markets (Scenario D).

Figure 8 shows the difference in food security levels reached by households in the ABM simulations
between Scenario D and Scenario A/Baseline. In Scenario A, where the area is with higher market
integration (i.e., better connected with transport infrastructures), the farmers are more resilient to the
food shortage in their own district because we do not observe strong price oscillations which can reduce
their ability to satisfy food demand by purchasing commaodities on the market (see food availability;
Figure 8a). The higher average price levels farmers face in the market when purchasing food, the fewer
economic resources remain to be invested in agricultural production. Even if the scenarios show
comparable CSA adoption rates (the difference in adoption between scenarios D and A is less than
0.5%), the reduction in the economic endowment has a direct effect on agricultural productivity given
that the farmers have more binding budget constraints for production input expenditures. This effect
is even more severe for the farmers with less available resources, both in terms of land and economic
assets, and it is translated into a wider share of population registering severe food insecurity in Scenario

D than A, an absolute change of +27.14% (Figure 8d).
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Figure 8: Difference in food security levels in Scenario D compared to Scenario A.

This figure represents the difference in the food security indicators in Scenario D compared to Scenario A (blue solid line),
and the indifference level (red dashed line). For each scenario the average results from running 100 Monte Carlo
simulations of the ABM in a village of 100 households over a 90-year period is computed, and the difference between the
scenarios is calculated.

3.4 Can climate smart agriculture practices manage drastic climate change?

This section expands the analysis by comparing Scenario E with climate projections under RCP8.5to
Scenario A under RCP4.5. The aim of this analysis is to investigate whether, from a food security
perspective, CSA practice adoption is an effective mitigation strategy to different pathways of climate

projections.

As shown in Table 3, at the beginning of the simulations the farmers in Scenario E are worse off than
in scenario A exhibiting a lower adoption rate of CP practices and a higher implementation of WSA
techniques. However, the results are reversed in the last two decades of the time horizon. Over time,
the crop rotation adoption becomes higher in the Scenario E (+0.57pp®) whereas the WSA adoption
comes to be lower (-2.08pp). These inversions in the CSA implementation rates mean that farmers

prefer sustaining the soil fertility adopting costless practices to improve the self-sufficiency (+0.83pp),

8 pp - percentage points
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exploiting the positive effects of the WSA adoption (i.e. positive externalities in the neighbourhood)
acting as a free-rider. This behaviour allows the farmer to spend the new savings from non-adopting
WSA in the market food to reach a higher food availability level (+0.01pp). The stronger role of the

food market access is also represented by the deterioration in the food stability.

Scenario E minus Scenario A first twenty years last twenty years
Crop rotation adoption rate -0.68pp +0.57pp
WSA adoption rate +2.01pp -2.08pp
Food availability -0.51pp +0.01pp
Food self-sufficiency -0.85pp +0.83pp
Food instability +0.78pp +1.41pp
Food insecurity severity +7.78pp -0.00pp

Table 3: Difference in CSA adaptation rates and food security indicators in Scenario E
compared to Scenario A

This table shows the difference in the results from running 100 Monte Carlo simulations using scenario E (with 14 climate
models under RCP 8.5) compared to Scenario A (with the same 14 climate models but under RCP 4.5). pp means percentage
points.

The reason why the results in the two scenarios are not extremely different is shown in Figure 9. Figure
9 exhibits the average water stress parameter dynamics (p;) among the 14 climate models in the
Scenario A and Scenario E. Interestingly, in the reference geographic area, the representative
concentration pathway 8.5 is coupled with a lower average water stress parameter (it is 0.4789 in
Scenario E and 0.4679 in Scenario A) positively affecting the crop yields and the food security metrics,

especially in the last twenty simulated periods.
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Figure 9: Water stress parameter dynamics in the two scenarios

This figure shows the average water stress parameter among 14 climate models using RCP 4.5 (Scenario A) and RCP 8.5
(Scenario E).

In the first twenty years, Scenario E leads to higher water stress on average and the variation of
climate impacts on crops is also higher, and therefore farmers register a drastic reduction in the food
self-sufficiency level coupled with slightly lower food availability, compared to Scenario A. The
increase  of WSA adopters in the farmer population in Scenario E  with respect to Scenario A
indicates that WSA is chosen by the farmers as a better adaptation strategy to severer climate impacts,
although the strategy cannot fully counteract the adverse climate impact.  In the last twenty years,
crops in Scenario E are projected to endure less water stress than Scenario A, and therefore the food
self-sufficiency in Scenario E is higher than Scenario A while food instability is higher indicating
households rely on market purchases for cereal consumption more heavily in Scenario E than in

Scenario A. Overall, the analysis suggests that farmers adopting CSA actions fare better than the non-
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adopters, in which the effect of water and soil management practices on households well-being is the

strongest in the scenario with more severe climate impacts.®

4. Policy implications

This work provides a proof of concept for how an ABM can help understand the future dynamics of
farmer adaptation to climate change through climate smart agriculture. In providing a forward looking
model with endogenous interactions among agents, this modelling exercise, carefully calibrated to
survey data from highland Ethiopia, develops new insights for policy makers beyond the micro-
econometric work that has so far developed in the literature (Di Falco et al., 2011; Asfaw et al. 2012).
Specifically, it identifies multiple interlinked policy efforts that will be needed to maintain food

security for Ethiopian households in the face of climate change.

The model results show the importance of farmer networks in CSA adoption, market infrastructure in
maintaining farmer wealth and food security, the importance of the economic endowment of farmers
especially in the case of costly long-term investments. Policy makers would do well to develop
extension models for the roll out of CSA that take advantage of farmer networks for spreading
information. Our model does, however, have a warning for policy makers, which is that where CSA
techniques are not especially profitable in the short-term, these social networks can severely reduce
adoption of a long-term potentially profitable technology. This suggests the potential need for policy

makers to lessen the short-term economic burdens of climate adaptation through CSA adoption.

Policy makers also need to be aware that farmer willingness to adopt CSA does not guarantee food
security for all farm households. Rather the model suggests that in zones with inadequate transport
infrastructure we see volatility in endogenous local food prices that significantly reduces the ability of

farmers to mitigate climate change through CSA adoption. This suggests that along with promoting

9 See Figure A2 in Appendix for the percentage difference in food availability level between the two scenarios in the
first (last) twenty simulated periods.
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climate smart agriculture, policy makers in Africa and elsewhere should seek to activate food markets

and supply chains as a complementary climate adaptation policy.

Similarly, even when most farmers adopt CSA, our model also demonstrates significant heterogeneity
in the food security benefits of CSA adoption. Up to a quarter of farmers, even with adaptation to
climate change through CSA adoption, will still not reach adequate levels of food security for their
households. Policy makers will need to develop additional policies to mitigate the effects of climate

change to help this sector of the population.

Finally, the modelling in this paper shows that climate adaptation through CSA adoption is useful but
does not guarantee food security, especially with the strongest climate change scenarios. This suggests
that policies to combat climate change are necessary complements to adaptation innovations. Policy
makers cannot just hope that farmers can adapt their way out of climate change, they need to be focused
on lessening the effects of climate change, especially the probability of the most drastic levels of

climate change.

5. Conclusions

We develop an Agent Based Model to investigate whether the Climate Smart Agriculture adoption
dynamics positively affects food security of developing country farmers in a model calibrated to
Ethiopian highland farmers. We do so using a multidimensional definition of the food security
(availability, self-sufficiency, stability, and food insecurity severity) and incorporating social and
ecological pressures (i.e., community network, environmental externalities and climate change) to
understand farmer adoption of short- and long-term CSA techniques in rural Ethiopia. The analysis
shows that CSA adoption is an effective strategy to improve the well-being of farmers through
increases in crop yields and the economic returns from agricultural production. However, a high

investment strategy such as WSA is not always suitable for farmers who aim to reach higher food
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availability in a relatively short time frame. The food security response to the strategy also depends on
farmers’ investment capacity and the remaining economic resources for market purchases to satisfy
consumption needs. In coping with climate change, the model findings suggest that farmers adopting
CSA fare better than non-adopters, although the CSA practices adoption is not able to fully

counterbalance the severe climate pressures.

Investigating explicitly the role of the social network, the analysis demonstrates the importance of
community relationships to exchange information and best practices to increase the adoption rate of
climate smart agriculture techniques. However, our output suggests that an equally crucial role in the
adoption rate is played by the economic environment, i.e., by both the market price dynamics of the
food commaodities and the population wealth for food security. Farmers living in more remote areas
are more vulnerable to food shortage in their own district. Having worse connection to the food
markets, these farmers face stronger price oscillations which negatively affect their well-being. This
outcome is even more severe for the poorer farmers, both in terms of available land and economic

assets.

Methodologically this work adds to the literature on climate adaptation by demonstrating how agent-
based model simulations that take into account neighbourhood learning dynamics can provide
additional understanding to how farmers might adapt to climate change in the future. The farmers in
this model are not passive recipients of climate change, but active learners who learn from their
neighbours, past experiences, past climate, and market opportunities. The work shows how to move
beyond backward looking models of climate smart agriculture to estimating adaptation possibilities in
a complex socio-economic environment. Having demonstrated how an agent-based model can
simulate farmer adaptation with climate smart agriculture, we see many future research avenues for
use of this and similar agent-based models. These include calibrating the model to other locations in
Africa and beyond, analysing other CSA-type interventions, and testing how market and supply chain
interventions might inform policy makers of the ability of households to adapt to future climate change.
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APPENDIX A

Parameter Value Source
Maximum number of plots per household 20 Headey et al., 2014; Gebreyes et al.
2020
Discount factor 0.9 Duflo et al. 2011
Share of land affected by market driven 0.25 Gebreyes et al. 2020; Bazzana et al.
mechanisms (ie cash crops) 2021
Share of income re-invested in the production 0.95 World Bank (2013)
process
Bias coefficient 1 Gebreyes et al. 2020; Bazzana et al.
2021
Average family size 5 Headey et al., 2014; Gebreyes et al.
2020
Impact of age on WSA adoption propensity 0 Simane et al. 2013; Wossen et al.,
2013
Impact of age on CP adoption propensity -0.012 Simane et al. 2013; Wossen et al.,
2013
Network impact on WSA adoption propensity | +0.65 Simane et al. 2013

41




Network impact on CP adoption propensity -0.45 Simane et al. 2013
Participation in social networks 60% Di Falco et al., 2011; Simane et al.
2013
Percentage of farms with irrigation 30% Simane et al. 2013; Gebreyes et al.
2020
Initial WSA adoption rate 78% Simane et al. 2013
Initial CP adoption rate 32% | Asfaw et al., 2012; Simane et al. 2013
Population birth rate 31.26%0 United Nations, 2019
Population death rate 6.67%o United Nations, 2019

Table Al: Sources of the main parameters of the model.
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Figure A2: Difference in Food availability according to the farmer type inScenario E compared to
Scenario A

This figure presents the percentage difference in the food availability in Scenario E compared to Scenario A for the four
adopter types. For each scenario the average results from running 100 Monte Carlo simulations of the ABM in a village of
100 households over a 90-year period are computed, and the difference between the scenarios is calculated. The solid line
represents the percentage difference in the first twenty periods, whereas the dashed line represents the percentage difference
in the last twenty periods.
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