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Abstract 

In this paper, we perform a comprehensive analysis of the impacts of climate change on winter 

wheat, one of the most widely planted crops, using data in China. We allow the climatic impacts 

to differ across seasons (growing stages) and regions with different climates in our panel data 

model. We find that heat in the fall and freezing days in the spring are the most evident drivers of 

yield reductions. We also find evidence of substantial adaptations in response to these damages. 

More importantly, our findings suggest that existing studies could have possibly overstated the 

climate change damages on winter wheat yields due to the omission of the potential benefit from 

the reduction of freezing days. For instance, our results indicate a yield reduction of 0.5% under a 

uniform 1 ºC warming scenario compared with a reduction of 3-5% found in existing studies, 

which is consistent with our results (a yield reduction of 5.5%) if the freezing effects were omitted 

in the model. The overestimation of climate change damages on winter wheat is robust to Shared 

Socioeconomic Pathway scenarios (SSPs) with which even yield gains are expected.      
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Introduction 

Climate change has been shown to impose negative effects on the economy (Burke et al., 2015; 

Dell et al., 2012), and the agricultural sector is expected to experience the most evident challenges 

(Deschênes and Greenstone, 2007; McCarl et al., 2008; Schlenker and Roberts, 2009). Better 

understandings of climate change effects on crop production are pivotal for developing suitable 

adaptation strategies (Liu et al., 2016). This is particularly relevant for emerging economies, which 

are usually characterized by a large population, a vulnerable agricultural system, and a less secure 

food supply.  

In this work, using county-level agriculture and climate data collected in China from 1981-2015, 

we conduct a comprehensive analysis of the climate change impacts on winter wheat yields, one 

of the most widely planted crops globally (Food and Agriculture Organization of the United 

Nations, 2018).  

Since winter wheat has a long growing period (generally from September to May), we first divide 

it into three seasons: fall, winter, and spring corresponding to distinct growing stages. We use 

piece-wise regressions to empirically identify the lower and upper temperature thresholds 

separately for each season (Tack et al., 2015). This allows us to construct a rich set of degree day 

variables, with which we use a panel data model with fixed effect to reveal the variations of yield 

responses to climate across seasons (growing stages) (Chen et al., 2016; Chen and Gong, 2020; 

Zhang et al., 2017). More importantly, we explicitly take into account the freezing days 

(temperatures below 0 ºC) in our model, which have mixed effects on yield development.  

We also interact the key climate variables with dummy variables representing cold/warm regions 

to examine the variation of climate impacts across regions which could shed light on possible 

adaptation effects (i.e. hot regions may be less vulnerable to warming damages because they have 

adapted to the hot climate in the long run). Finally, based on the empirical estimations, we project 

future yield consequences under a variety of climate change scenarios.  

We have three key findings. First, in terms of the variation of yield responses across seasons, we 

find that temperatures over 24 ºC in the fall and freezing days in the spring are the most evident 

drivers to yield loss with reductions of 11.4% and 11.3% per 10 degree days increase, respectively. 

We also find that heat is less harmful in regions with hot fall and freezing damages are smaller in 



regions with cold spring, which support our hypothese of adaptations. Our results pass a battery of 

robustness checks, such as with alternative growing periods, inclusion/exclusion of certain seasons, 

different temperature threshold setups, a wider geographic coverage, and statistical inference 

derived from bootstrapping.  

Second and more importantly, our yield projections suggest that existing climate change 

evaluations on winter wheat could have overstated the damages due to the overlook of potential 

benefits stemming from the reduction of freezing days. For instance, under a 1 ºC uniform warming 

scenario (relative to 1981-2015), our projection accounting for the freezing effects suggests a much 

lower yield reduction of 0.5% compared with a reduction of 3-5% found in existing crop simulation 

models and statistical analysis (Asseng et al., 2015; Liu et al., 2016; Wilcox and Makowski, 2014) 

in which the freezing effects were not explicitly modeled. Furthermore, our projection in the 

absence of freezing effects (a yield reduction of 5.5%) is quite consistent with those existing 

studies in terms of the overestimation of climate change damages. On the other hand, our 

projections with the Shared Socioeconomic Pathway scenarios (SSPs) even suggest possible yield 

gains - as we expect a yield increase of 4.5% in 2040-2060 relative to 1970-2000 under SSP126.  

Third, despite the adaptations to heat and freezing damages, yield projections performed at the 

county level show that, in terms of the overall climate change impacts, the north regions exhibit 

more damages than the south counterpart under both uniform warming scenarios and the SSP 

scenarios. Thus shifting the planting areas to such regions could be a possible direction for 

adaptation. More interestingly, for most emerging economies that have limited resources for 

climate change adaptation, lending more agricultural resources from summer crops (more prone 

to projected heat extreme increase in summer) to winter wheat (if applicable) might also be 

desirable for securing food supply in future climate.  

Our work contributes to the existing literature in four important ways. First, our analysis is based 

on statistical models and adds new evidence to the current climate change assessments on winter 

wheat which were largely derived from crop simulation models. Although crop simulation models 

are constructed to reflect the key processes governing crop growth and yield, these models are 

plagued by uncertainties associated with model parameters (Asseng et al., 2013; Lobell and Asseng, 



2017) 1 , and projections from individual crop model are unlikely to represent the real crop 

responses to climate change2.  

Statistical models using long-term and large-spatial-scale empirical data can handle inherent 

uncertainties via statistical inference and/or bootstrapping and have become increasingly common 

in recent years due to the growing availability of data on both climate and crops3. Additionally, the 

flexibility of statistical models allows them to accommodate very fine-scaled data and uncover 

important effects that might have been overlooked in crop simulation models.    

Second, the existing statistical analysis of the relationship between winter wheat and climate 

variables relies on either a mean temperature or a degree day variable (calculated based on a base 

temperature of 0 ºC) that is averaged or accumulated over the entire growing period (Asseng et al., 

2015; Lobell et al., 2011; Xiong et al., 2014; Yi et al., 2016; Zhang and Huang, 2013). As a result, 

cross-season (i.e. growing stages) variability in climate impacts would not be accounted for, which 

is especially important for winter wheat given that its growing period spans across three different 

seasons corresponding to distinct growing stages. Moreover, using average temperature may 

overlook the impacts of extreme incidences  (Lobell et al., 2011); and using a simple base 

temperature of 0 ºC for constructing degree day variables may not be appropriate because 

temperature thresholds could vary across seasons (Lesk et al., 2016; Tack et al., 2015), as we will 

empirically show in the cross-validation analysis.  

In contrast to previous studies, we leverage fine-scaled observations of hourly temperatures4 and 

the temperature thresholds are empirically estimated separately for each season using piece-wise 

regressions. Following that, we build a rich set of degree day variables (we show in the summary 

statistics that degree day variables constructed from hourly temperatures perform better than that 

 

1 In fact, most of the assessments of climate change were conducted at a few agricultural sites. In this regard, those studies are also 

questioned about their external validities. A few exceptions are (Lv et al., 2013) and (Rosenzweig et al., 2014), in which the authors 

applied the crop simulation models to high-resolution raster data. 

2 Recent studies recommend to consider the median of an ensemble of simulation models as an accurate estimate, rather than relying 

on the results of an individual model. See examples in (Asseng et al., 2015, 2013; Liu et al., 2016; Schauberger et al., 2017). 

3 The statistical analysis also has weakness. For instance, it is unable to explicitly reflect the fertilizing effects of CO2. Another 

common concern is the difficulty of distinguishing the effects of highly correlated weather variables. See (Auffhammer and 

Schlenker, 2014; Hsiang, 2016; Lobell and Asseng, 2017) for detailed reviews.  

4 In fact, we are not aware any of empirical studies in China that used hourly temperature variation to estimate the climate change 

effects, regardless of which crops were investigated.  



of daily temperatures in representing extreme incidences, particularly heat) and allow the yield 

responses to varying across seasons in our panel data model. More interestingly, we also allow the 

yield responses to varying across regions with different climates to shed light on possible 

adaptation effects. Our preferred model outperforms a suite of alternative specifications that were 

used in previous studies in terms of the out-of-sample predictions. 

Third, while the climate change impacts on crop productivity have been extensively investigated 

in developed nations (Burke and Emerick, 2016; Deschênes and Greenstone, 2007; Mendelsohn 

et al., 1994; Schlenker and Roberts, 2009), solid evidence is still rare for developing countries 

(Chen and Gong, 2020; Pironon et al., 2019; Schlenker and Lobell, 2010). Using data collected 

from China, our work attempts to inform other emerging economies with similar agricultural and 

climatic characteristics.  

More importantly, with only 7% of the world’s arable land, China feeds over 22% of the world 

population (Piao et al., 2010). Understanding the impacts of climate change on Chinese 

agricultural productivity not only matters for domestic food supply but is also critical for 

stabilizing the international market, as China has become the largest food importer in terms of 

cereals (Food and Agriculture Organization of the United Nations, 2019). 

Fourth, our work is closely related to (Tack et al., 2015) focusing on winter wheat growth in Kansas, 

a state in the United States. Our work focuses on a wider geographic area in China. We constructed 

a different model from that in (Tack et al., 2015) and we argue that our preferred specification is 

more robust from a biological stand of point. Moreover, in addition to yield projections with 

uniform warming scenarios as in (Tack et al., 2015), we also performed projections with SSP 

scenarios to depict a general picture of the climate change impacts on winter wheat.  

  



 

Winter wheat in China 

Wheat (winter wheat plus spring wheat) is the third most planted grain crop in China with 23.7 

million planted hectares and 133.6 million tons of production in 2019, following corn and rice 

(National Bureau of Statistics, 2019). Most of the wheat in China is winter wheat accounting for 

over 90% of total wheat production (Zhang et al., 2017)5. North China Plain (NCP) produces over 

71% of total winter wheat in China. The geographic coverage of NCP varies in the literature but 

normally consists of seven cities and provinces, including Beijing, Tianjin, Hebei, Henan, 

Shandong, Anhui, and Jiangsu.  

In this study, we primarily focus on a sub-region of the NCP6, which is considered the most suitable 

region for growth and produces most of the winter wheat (Zhao, 2010). It covers the south part of 

Hebei, most of Henan, the entire Shandong, and the north part of Anhui and Jiangsu (see the map 

in figure A1 in the appendix). Additionally, we chose this region based on several considerations.  

First, this region has an arguably uniform growing period and crop pattern (winter wheat + summer 

corn). Winter wheat is usually planted in later September and early October and harvested in June 

(Asseng et al., 2015; Guo et al., 2010; Zhang et al., 2015). Thus, we define the baseline growing 

period as from October to May. We also performed robustness checks with alternative growing 

seasons including September to May and September to June. 

Second, rainfall in this region is greater than the north part of NCP and we can arguably consider 

winter wheat is rain-fed in this region (Zhang and Huang, 2013; Zhao, 2010). We intend to focus 

on rain-fed winter wheat because we do not have high-quality data on irrigation, which plays an 

important role in evaluating the impacts of weather conditions on yields (Schlenker et al., 2005; 

Tack et al., 2017). If the crop is heavily irrigated, omitting the effects of irrigation could attenuate 

the estimation of the impacts of extreme incidences, particularly extreme heat (Troy et al., 2015).  

Nevertheless, we performed robustness checks with larger geographic coverage and the results are 

 

5  The National Bureau of Statistics did not provide information on the types of winter wheat (i.e. hard red, hard white, etc.) 

According to (He, 2001), most of the winter wheat in China are hard white.  

6 This sub-region is also known as the “Huang-Huai-Hai” plain.  



consistent with the baseline estimates.  

For winter wheat in China, the long growing period of Oct-May can be further divided into three 

seasons: fall (Oct-Nov), winter (Dec-Feb), and spring (March-May) coinciding with three different 

growing stages (Tan et al., 2018; Xiao et al., 2018; Zhou et al., 2018).  

The fall season represents the vegetable growth stage covering the emergence and tillering of 

winter wheat. This stage is sensitive to high temperatures which would hinder the winter wheat 

from preparing dormancy for the coming winter (Porter and Gawith, 1999).  

As temperatures decrease winter wheat enters dormancy in the winter season. (Liu et al., 2016) 

indicated that winter wheat is insensitive to weather through most of the winter season, however, 

this stage is still critical for yield development because the transformation of vegetable growth to 

reproductive growth is completed during this stage (University of Wisconsin-Extension, 2018). 

Climate extreme events could impose significant damages on crops. For instance, high 

temperatures could awake winter wheat from dormancy and thus make it susceptible to frost in 

early spring (Holman et al., 2011). 

Winter wheat resumes growth in the spring season. This growing stage (March-May) covers 

jointing, booting, and flowering thus is regarded as the most temperature-sensitive period (Dreccer 

et al., 2018; Liu et al., 2016; Šebela et al., 2020; Tan et al., 2018; Zampieri et al., 2017). Agronomy 

studies have found that freezing in early spring could be dramatically harmful to grain 

development (Xiao et al., 2018). 

  



 

The data 

In this paper, we compiled a data set consisting of county-level winter wheat yield data and fine-

scaled weather data spanning from 1981 to 2015. 

Yield data. County-level yield data (in tons/hectare) were obtained from the database of the 

Institute of Agricultural Information at the Chinese Academy of Agricultural Science (Yi et al., 

2016). To refine the yield data, we restrict to counties that have more than 10 years of yield 

observations. However, relaxing this restriction did not significantly change the regression results. 

In total, we have 352 counties and 8867 observations in our sample.  

The spatial and temporal variations of yield data are shown in figure 1 below. Yields are higher in 

the middle part of our study region (largely the eastern part of Henan and the north Anhui, and 

Jiangsu), whereas the yields in the western part (largely western Henan) are lower, presumably 

due to the shortage of rainfall. On the other hand, the average yield in our study region has steadily 

increased from 2.2 tons/ha in 1981 to 6.3 tons/ha in 2015. We also observe that there exists a huge 

jump in average yields from 2.4 tons/ha in 1989 to 3.7 tons/ha in 1990. To address this, we 

performed a robustness check with data restricted to 1990-2015. The results are consistent with 

that derived from the full sample, except that we observed smaller damages associated with heat 

and freezing days in the regression excluding the data from the 1980s. 



 

Figure 1 The spatial and temporal variation of winter wheat yield in our study region. (a) The map 

on the top shows the county-level yield averaged across 1981-2015. White areas in the map 

indicate no data (the urban areas). (b) The boxplot at the bottom depicts the trends of winter wheat 

yields. Each box is defined by the upper and lower quartile of county-level yields in the respective 

year, and the mean is depicted as the horizontal bar. The endpoints for the whiskers represent the 

respective quartile +/- 1.5 times the interquartile range, and dots indicate yield outside of the 

range.  



Weather data. We collected temperature and precipitation data from two different sources.  

The daily minimum and maximum temperature were downloaded from the China Meteorological 

Data Service Center (CMDC) affiliated with the National Meteorological Information Center of 

China (Chen and Gong, 2020). The initial data were gridded in a spatial resolution of 0.5°×0.5° 

(approximately 56km * 56km at the equator). We converted the gridded daily temperature to 

county-level by weighted-averaging over grid cells that overlap each county following 

(Auffhammer et al., 2013; Burke et al., 2018).  

Unlike most previous studies, which relied on daily or monthly average temperature, we go further 

by exploring variations in hourly temperature. An advantage of hourly temperature is that it 

performs better in representing extreme incidences (Schlenker and Roberts, 2009). For instance, 

extreme hot/cold may occur in a day with moderate mean temperature. In this case, daily 

temperature may not be able to capture such extreme events. 

To obtain hourly temperature, we interpolated the daily minimum and maximum temperatures 

using a sine function, as described in (Luedeling, 2020)7. The hourly temperatures are then used 

to construct a rich set of degree day variables based on the temperature thresholds estimated 

separately for each season. For instance, if the upper threshold for fall is estimated at 20 ºC, one 

hour of 30 ºC contributes to 30-20=10 degree “hour”. Finally, the degree day are obtained by 

dividing the degree “hour” by 24.  

In this work, we primarily employ degree day variables to estimate the relationship between 

climate and winter wheat yields, but we also perform out-of-sample cross validations with 

alternative temperature specificaitions.  

The monthly precipitation data were collected from the China Meteorological Forcing Dataset, 

developed by (He et al., 2020)8. This dataset is arguably the first high spatial-temporal resolution 

gridded near-surface meteorological dataset and is one of the most widely used climate datasets 

 

7 The manipulation of hourly temperatures was performed using the R package “chillR”. The workhorse is the “stack_hourly_temps” 

function which employs a sine curve for daytime temperatures, with nighttime cooling represented by a logarithmic decay function. 

It also should be addressed that differences in daylength between locations were accounted for by computing sunrise and sunset 

times based on geographic latitudes See technical details in (Luedeling, 2020).  

8 Unfortunately, this dataset did not provide daily minimum and maximum temperature, otherwise we would have used it to derive 

hourly temperature.  



for China. The initial monthly precipitation data were gridded in a spatial resolution of 0.5°×0.5°, 

and we converted to county-level following the same procedure for the gridded temperature data. 

In line with the literature, the county-level monthly precipitation data are aggregated over seasons 

to construct seasonal precipitation variables (Chen et al., 2016; Deschênes and Greenstone, 2007; 

Schlenker and Roberts, 2009; Zhang et al., 2017).   

Figure 2 below shows the general trends in seasonal temperature and precipitation from 1981 to 

2015. We observed obvious upward trends in all three seasonal temperatures, particularly in the 

winter and spring. Precipitation is more fluctuated, and we did not detect any significant trends.  

 

Figure 2 The trends in seasonal temperature and growing-period precipitation. 

  



 

Empirically estimating temperature thresholds for constructing 

degree day variables: what is considered too cold/hot? 

When calculating degree days for winter wheat, a large body of literature adopts a simple base 

temperature of 0 ºC, i.e. a daily temperature of 8 ºC contributes to 8-0=8 degree days (Dreccer et 

al., 2018; Yang et al., 2015; Yi et al., 2016). Also, the degree day variables are calculated over the 

entire growing period. However, this could be problematic given that different growing stages 

require distinct optimal temperature intervals (Porter and Gawith, 1999; Tack et al., 2015). 

Moreover, since extreme heat is less frequent during the winter wheat growing period compared 

with that for summer crops (e.g. corn and soybean), it is still debatable about the maximum 

temperature tolerance of winter wheat.  

Also somewhat surprisingly, most existing studies omitted the impacts of freezing (temperatures 

below 0 ºC), which are critical and can have mixed effects on winter wheat. For instance, 

agronomic studies show that freezing temperatures in spring could impose significant damages on 

winter wheat yields (Xiao et al., 2018), whereas mild freezing in the early winter could help winter 

wheat to harden the shell of the seed and thus isolate winter wheat from even lower temperatures 

during the winter season (Porter and Gawith, 1999).  

Following (Tack et al., 2015), we employed piece-wise regressions to empirically identify the 

temperature thresholds for fall, winter, and spring, respectively. We set the lower temperature 

threshold and upper temperature threshold (i.e. bracketing the optimal temperature interval) both 

above zero for the fall and spring seasons9, while the freezing degree days (temperatures below 0 

ºC) were calculated independently. That means we have four degree day variables for the fall and 

spring seasons, namely, freezing degree days (Frez), degree days between zero and the lower 

threshold (DDlow), degree days between the lower threshold and the upper threshold (DDmed), 

degree days above the upper temperature threshold (DDhigh). We hypothesize that DDmed as the 

 

9 Following (Tack et al., 2015), the lower threshold was restricted to be at least 5 ºC  below the upper threshold to ensure that the 

temperature interval is not too narrow. (Tack et al., 2015) also imposed additional restrictions such as the lower threshold to be at 

least 5 ºC above zero and 10 ºC below the maximum observed temperature and the upper threshold is restricted to be 5 ºC below 

the maximum. Our piece-wise regressions are insensitive to these additional restrictions.  



optimal interval gives the best supports for winter wheat growth, whereas Frez, DDlow, and 

DDhigh would hinder yield development. We loop over all possible threshold combinations and 

pick up the one which has the best fit (the highest r squared) in the piece-wise regressions.  

The setup for the winter season is different. Specifically, to make agronomic sense, we set the 

lower threshold slightly below zero and the upper threshold above zero. In this case, we only have 

three degree day variables, i.e. the degree days below the lower threshold (DDlow), degree days 

between the lower threshold and the upper threshold (DDmed), degree days above the upper 

temperature threshold (DDhigh). Similar to spring/fall configures, DDlow and DDhigh would be 

harmful. What’s different for the winter season is that the moderate temperature interval (DDmed), 

even when it’s partially under 0 ºC (‘freezing’), is beneficial to yield development as it supports 

the transformation from vegetable growth to reproductive growth. In other words, only the 

temperatures below the identified lower threshold are considered too cold.  

Nevertheless, we also tested an alternative setup for the winter season in which we only established 

an upper threshold above zero. In this case, we have a freezing degree day variable measuring 

temperatures below 0 ºC, a medium degree day variable reflecting temperatures above 0 ºC but 

below the upper threshold, and an upper degree day variable representing temperatures above the 

upper threshold.  

The estimated temperature thresholds are shown below in table 1. The thresholds for fall and spring 

are 17-24 ºC and 25-30 ºC, respectively. The thresholds for the winter season are -5-8 ºC. The 

temperature threshold for the alternative setup is estimated at 8 ºC. Our results are largely 

consistent with the thresholds estimated in (Tack et al., 2015) where the authors focused on winter 

wheat in the state of Kansas in the United States. The difference is that (Tack et al., 2015) adopted 

the same threshold setup for winter as for fall and spring and estimated temperature thresholds of 

5-10 ºC for the winter season.  

Table 1 The estimated temperature thresholds 

Season Thresholds (in ºC) 

Fall (Oct-Nov) 17 and 24 

Winter (Dec-Feb) -5 and 8 

Spring (March-May) 25 and 30 

 



More importantly, our estimated cutoffs are largely consistent with results from field experiments. 

In a review of temperature and the growth of winter wheat, (Porter and Gawith, 1999) concluded 

that the photosynthesis rates in winter wheat have been optimized at 25 ºC, and declining at 

temperatures lower than 15 and higher than 30 ºC. (Cao and Moss, 1989) found that the optimal 

temperature for fall (leaf emergence) ranges from 21.3 to 24.3 ºC, and temperatures higher than 

25 ºC tend to inhibit leaf appearance (Slafer and Rawson, 1995). The maximum tolerance of 

temperatures for the winter season was identified at 10-12 ºC (Halevy, 1985; Narciso et al., 1992; 

Petr, 1991).  

In addition to the baseline growing period of Oct-May, we also estimated the temperature 

thresholds with alternative periods such as Sep-May and Sep-June. The estimated thresholds are 

rather consistent with that of Oct-May (see table A1 in the appendix).  

  



 

The econometric model 

There are two approaches for empirically estimating the impacts of climate change on the 

agricultural sector (crop yields, land values, etc.): cross-sectional model (one observation per 

county) and panel data model (multiple observations across multiple years per county) with fixed 

effects. The advantages of the former are that it takes account of the long-term climate change 

adaptions (such as crop mix, crop calendar, agricultural facilities, etc.) because it directly compares 

outcomes across different climatic regions (i.e. the cross-sectional variation) at which farm 

practices have been optimized for its climate in the long run 10 . However, it is plagued by 

endogeneity issues such as omitted variable bias, i.e. soil quality and other time-invariant but 

location-specific characteristics (Deschênes and Greenstone, 2007; Hsiang, 2016; Mendelsohn et 

al., 1994; Schlenker et al., 2006).  

On the other hand, recent studies leaned towards the panel data model, which is able to alleviate 

the omitted variable bias to some extent by introducing location-specific fixed effects (Chen et al., 

2016; Dell et al., 2012; Schlenker and Roberts, 2009; Zhang et al., 2017), which control for all 

time-invariant characteristics that could confound the estimates. Nonetheless, the panel regression 

relies on short-term time-series variations, i.e. comparing yield changes across years for each 

location. In this respect, the panel data model tends to reflect the effects of weather shocks (year-

to-year weather variation) on the outcomes11. As a result, it does not fully take into account the 

long-term adaption as in the cross-sectional model (see detailed reviews in (Blanc and Schlenker, 

2017) and (Kolstad and Moore, 2020) and theoretical work in (Hsiang, 2016)), though short-term 

adaptations (i.e. fertilizer use and irrigation) can be accounted for in panel models.  

 

10 For readers who are interested in this topic, see theoretical discussions in (Hsiang, 2016). The underlying assumption is that 

agricultural activities are assumed to be optimized at the current climate. For example, colder counties have adapted to the cold 

climate in the long run and so do the warmer counties. In this spirit, within a cross-sectional framework, warmer counties provide 

references of potential outcomes for colder counties when the climate gets warmer. If we further assume the colder counties are 

able to fully employ the adaptations currently taken by warmer counties, we are able to say that the estimated climate change effects 

take account of the long-term adaptations. The readers are also encouraged to go over the reviews in (Blanc and Schlenker, 2017) 

and (Kolstad and Moore, 2020). 

11 According to (Hsiang, 2016), if the outcome is a solution to a maximization problem (such as profits) which is continuous and 

differentiable in the dimension of all adaptation strategies (which is unlikely to hold), the marginal effect of the climate is exactly 

same as the marginal effect of weather shocks.   



The baseline econometric model 

In this work, we employ a panel data framework and use the rich set of degree day variables 

constructed from the estimated temperature thresholds to identify the winter wheat yield responses 

to climate across different seasons. Our panel data model with fixed effects takes the form below.  

2

1 2 ( ; )s s

it i it it s it it

s

y t t f   = + + + + w β                                                                                         (1) 

i  and t  denote county and year, respectively. s  denotes seasons of fall, winter, and spring. ity  is 

the log of winter wheat yields. i  indicate the fixed effects that absorb all time-invariant factors 

that only differ between counties, such as soil quality and other geographic features. itt  and 2

itt  are 

the linear and quadratic terms of time trends representing the technology development over time 

(see the yield trends shown in figure 1). it  is the error terms and we cluster it at the county-level 

to take account of arbitrary serial correlations within the county. ( ; )s s

s itf w β   includes all the 

climate variables which we define below.  
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For s = fall and spring, s

itFrez , s

itDDlow , s

itDDmed , and s

itDDhigh  denote the freezing degree days, 

the degree days between zero and the lower threshold, the degree days between the lower threshold 

and the upper threshold (optimal range), and the degree days above the upper threshold, 

respectively. Degree day variables for winter are defined to be slightly different because we do not 

have an independent freezing degree day variable. The s

itDDlow  , s

itDDmed  , and s

itDDhigh  

variables in winter have similar meanings as in the fall and spring seasons. s

itPrec  and 2( )   s

itPrec

are the linear and quadratic terms of seasonal precipitations.  



The examination of possible adaptation effects 

Knowing how farmers adapt to climate is critical to understand the “actual” effects of climate 

change in the future (Burke and Emerick, 2016). However, empirical estimates of adaptation 

effects are scarce, partially because most of adaptation strategies are not directly observable/ 

measurable. Even though they can be observed, it’s difficult to enumerate and capture all feasible 

options in the model (Moore and Lobell, 2014).  

Nonetheless, the adaptation effects can be indirectly revealed by comparing the estimates from the 

cross-sectional model with that from the panel data model, i.e. the differences between these two 

are attributed to effects of adaptations (see a theoretical justification in (Dell et al., 2009)). This 

could hold only when the estimates of the cross-sectional model are not confounded by unobserved 

characteristics, which is a relatively strong assumption and difficult to empirically test.  

To relax this restriction, several hybrid approaches have been developed in the literature, such as 

the long-difference models and the multistage models (Kolstad and Moore, 2020). The long-

difference model is essentially a cross-sectional comparison of changes over time (a long period) 

in which unobserved characteristics are canceled out (Burke and Emerick, 2016; Chen and Gong, 

2020)12. The multistage method models the county-level response as a function of local climate 

(Auffhammer, 2018; Butler and Huybers, 2013; Carleton et al., 2020; Heutel et al., 2020).  

These approaches exploit cross-sectional variations and thus require a large number of counties 

(over 1000 counties in most of the applications) to obtain reliable estimates. Unfortunately, we 

only have 352 counties in our sample which are insufficient for reliable cross-sectional regression 

estimates13. Nonetheless, in this paper, we allow the yield response to climate to vary between hot 

regions and cold regions by interacting the climate variables with dummy variables (this is actually 

a special case of the multistage model).  

 

12 Moreover, findings using the long-difference method are mixed. For instance, studies on the climate effects on yields (Burke and 

Emerick, 2016) and growth (Dell et al., 2012) concluded that the long-difference approach returned almost identical results as from 

the panel data model, suggesting limited effectiveness of adaptation. On the other hand, in the agricultural productivity context, 

(Chen and Gong, 2020) indicated that long-run adaptation revealed from the long-different approach has offset 37.9% of the short-

run effects of extreme heat estimated from the panel data model. Similar adaptation effects in the agriculture sector were also 

observed in Europe (Moore and Lobell, 2015).  

13 We ran the long-difference regressions with multiple specifications. The results are sensitive to the choose of period over which 

we average the data. These results can be obtained from the authors upon request.  



The basic idea is that heat could be less harmful in hotter regions because these regions have 

adapted to the climate, so are colder regions which could be more robust to freezing damages 

(Butler and Huybers, 2013; Dell et al., 2012).  

To test these hypotheses, we interact the key climate variables with a dummy variable that 

represents hotter/colder regions. Here the key climate variables (DDhigh_fall and Frez_spring to 

be more precise) are determined based on the baseline regression results which exhibit the most 

evident damages to winter wheat yield.  

Taking the DDhigh_fall as an example, to construct the associated dummy variable, we first 

average the observation over years to obtain the mean value. The dummy variable “hot” is set to 

be 1 in counties with above-median DDhigh_fall and 0 otherwise. Similarly, we set up a dummy 

variable “cold” for freezing damages in the spring, which is 1 in counties with above-median 

Frez_spring and 0 otherwise. Formally, we have: 

1 2

4 4 4 in eq (1.a) ( * )    for s s s

s it s it s itDDhigh DDhigh hot DDhigh s fall   + =                                   (1.c) 

1 2

1 1 1 in eq (1.a) ( * )         for s s s

s it s it s itFrez Frez cold Frez s spring   + =                                        (1.d) 

Where 1 2

4 4s s +  measures the yield responses to heat at counties with hot fall and 1

4s  measures 

the impacts on counties with cold fall. Similarly, 1 2

1 1s s +  tells us the impact of freezing days in 

counties with cold spring, whereas 1

1s  indicates the effects on counties with warm spring.  

The adaptation hypotheses to be tested are:  

1 2 1

4 4 4

1 2 1

1 1 1

(0) : >          for 

(0) : >           for 

s s s s

s s s s

H s fall

H s spring

  

  

+ =

+ =
                                                                                       (2) 

In addition to “hot” and “cold” dummy variables, we also built a dummy variable of “wet” based 

on the precipitations during fall/spring. We then interact this “wet” variable with DDhigh_fall and 

Frez_spring respectively to see whether the damages differ between wet and dry regions.  

The summary statistics of key variables 

The summary statistics of key variables are shown in table 2 below. We also present the degree 

day variables constructed from daily temperatures in the table to demonstrate the superiority of 

hourly temperatures in representing extreme incidences (particularly heat). For instance, the 



maximum and mean of DDhigh_fall calculated from hourly temperatures are 2.5 and 0.5 (in the 

unit of 10 degree days) respectively, whereas they are as low as 0.9 and 0.01 if calculated from 

daily temperatures. The differences are also evident for DDhigh_spring. Furthermore, the 

variations of degree day variables calculated from hourly temperatures are much greater than that 

from daily temperatures.  

Table 2 The summary statistic of key variables across 8867 observations (year, county) 

Statistic Min Max Mean St. Dev. 

Panel one: Summary statistics of yield and precipitation variables 

Yield (in tons/ha) 0.01 9.5 4.7 1.7 

Prec_fall (in mm) 0.002 343.4 62.0 47.9 

Prec_winter (in mm) 0.002 321.5 43.5 37.2 

Prec_spring (in mm) 9.0 483.3 124.3 66.2 

Panel two: Degree day variables using hourly temperatures (in 10 degree*days) 

Frez_fall 0.0 8.6 0.4 0.7 

DDlow_fall 23.3 88.6 66.7 8.1 

DDmed_fall 0.0 12.4 4.6 1.8 

DDhigh_fall 0.0 2.5 0.4 0.5 

DDlow_winter 0.0 23.1 2.1 2.4 

DDmed_winter 20.9 45.8 32.2 3.0 

DDhigh_winter 0.001 12.4 2.7 1.8 

Frez_spring 0.0 7.9 0.3 0.5 

DDlow_spring 63.8 159.1 131.2 13.0 

DDmed_spring 0.0 5.7 2.2 1.0 

DDhigh_spring 0.0 2.2 0.3 0.3 

Panel three: Degree days variables using daily temperatures (in 10 degree*days) 

Frez_fall 0.0 6.7 0.2 0.5 

DDlow_fall 16.0 74.8 49.9 8.2 

DDmed_fall 0.0 13.2 2.9 2.2 

DDhigh_fall 0.0 0.9 0.01 0.1 



DDlow_winter 0.0 16.2 0.6 1.1 

DDmed_winter 9.0 37.6 23.2 4.4 

DDhigh_winter 0.0 7.3 0.9 1.1 

Frez_spring 0.0 6.7 0.1 0.3 

DDlow_spring 62.2 156.8 127.4 10.8 

DDmed_spring 0.0 3.2 0.4 0.5 

DDhigh_spring 0.0 0.35 0.002 0.02 

Note that: We used the same temperature thresholds as in hourly temperatures to construct degree day variables from 

daily temperatures. 

  



 

Empirical results 

We first report the regression results from our baseline model. We then show out-of-sample cross-

validations with a suite of alternative model specifications to demonstrate the performance of the 

preferred model. We also present a battery of robustness checks. Following that, we examine future 

yield consequences under various climate change scenarios. Lastly, we discuss the heterogeneity 

of climate change effects which provides us possible adaptation strategies.   

Regression results from the baseline model 

Yield responses vary across seasons 

Figure 3 below shows the regression results from the panel data model. Each bar presents the 

coefficients associated with the respective degree day variables. The tabulated results can be found 

in table A2 (column 3) in the appendix. The results are largely in line with our expectations. We 

consistently observe positive effects within the identified optimal temperature range. And we 

observe negative effects with temperatures outside of the optimal intervals, as well as negative 

effects with freezing temperatures.  

In terms of the responses across the season, heat in the fall and freezing in the spring are identified 

as the most significant drivers to yield losses. In the fall season, additional 10 degree days of 

temperatures over 24 ºC are associated with 11.4% of yield reduction. On one hand, high 

temperatures in the fall will increase the water demand for the emergence and tillering of winter 

wheat. On the other hand, excess heat would prevent wheat from altering the metabolism to adjust 

for cold temperatures in the coming winter (so-called “hardening”) (Porter and Gawith, 1999). 

Similarly, additional 10 degree days of freezing degree days in the spring tend to reduce yields by 

11.3%, which is qualitatively consistent with that in an agronomy study (Xiao et al., 2018). Finally, 

for the winter season, cold temperatures below -5 ºC and hot temperatures above 8 ºC would impact 

the dormancy and both have negative effects on yields, though the former is statistically 

insignificant.  



  

Figure 3 Winter wheat’s responses to temperatures across different seasons. Note: The x-axis 

indicates the degree day variables (expressed in the unit of 10 degree days) constructed from the 

corresponding temperature thresholds. Bars show the estimated coefficients of the respective 

degree day variables and the 95% confidence intervals using standard errors clustered at the 

county level.  

Notably, we do not observe statistically significant damages of heat in the spring, which contradicts 

findings in (Tack et al., 2015) where the authors indicated that springtime exposure above 34 ºC is 

associated with the largest yield reduction. This contradiction is probably attributable to several 

reasons. While (Tack et al., 2015) focused on the state of Kansas in the United States where they 

identified an upper threshold of 34 ºC for spring, we cover a larger geographic area and estimated 

an upper threshold of 30 ºC for spring. The degree day variable above 34 ºC was non-zero in over 

75% of the observations in (Tack et al., 2015), while this number is only 39% in our sample.  

Similar results to ours were found in (Schauberger et al., 2017) in which for US winter wheat of 

large geographic coverage, a negative response to high temperature is neither observed (in 

statistical analysis) nor simulated (in an ensemble of nine crop models) under historical conditions 

since critical temperatures are rarely exceeded during the entire growing season. 



The discussion above also leads to another important question that the evaluation of climate change 

impacts is particularly sensitive to geographic coverage. To get reliable climate change 

assessments, extra attention should be paid not only to the quality of data but to the selection of 

representative study regions. Results derived from one region cannot be directly generalized to a 

different region with distinct climatic and agricultural characteristics.  

Apart from the temperatures, precipitations exhibit an inverted U shape relationship with winter 

wheat yield in fall and spring, and the turning points were estimated to be at 134.6 mm 

(accumulated in a season) and 188.3 mm, respectively, beyond which the larger precipitation leads 

to yield reductions. Note that the mean rainfall in these two seasons in our sample is respectively 

62.0 mm and 159.1 mm, indicating a significant shortage of rainfall in fall. We do not detect 

statistically significant effects of precipitation in the winter season. These findings are quite 

consistent with farm practices. Normally, irrigation is applied after sowing in the Fall to meet the 

water demand for the emergence of winter wheat.  

Testing the adaptation hypothesis 

Results from the baseline model suggest that yield responses to climate vary significantly across 

seasons. In this section, we examine whether yield responses vary across regions with different 

climates. Particularly, we are interested in whether the adaptation hypotheses that we constructed 

in the model part hold or not.    

Table 3 below shows the results of models with dummy interactions. For brevity, we only present 

the coefficients on key climate variables and their interactions with dummy variables. Column 1 

shows the results from the baseline model (i.e. the model without interactions). Column 2-3 refers 

to the results with degree day dummies (hot_fall and cold_spring) and precipitation dummies 

(wet_fall and wet_spring), respectively. Column 4 shows the results with all interactions. The 

bottom four rows summarize the impacts of climate variables for hot and cold regions, respectively.  

We can see that the results support our hypothesis about adaptations, that is heat is less harmful in 

counties with hot fall, and freezing damage is less evident in regions with cold spring. Additional 

10 degree days above the upper threshold in the fall reduce yields by 7.6% in hot regions, while 

the reduction increases to 16.3% in cold regions. Similarly, 10 freezing days lead to a yield 

reduction of 9.8% in regions with cold spring, whereas the damage is 39.1% in regions with warm 

spring (column 2). Moreover, the differences in freezing damages between regions with cold and 



warm spring are substantially larger than the difference in heat damages found in regions with hot 

and cold fall.  

In terms of the interactions with the “wet” dummy variables, we do not detect changes in yield 

responses across wet/dry regions (column 3). The variation of yield response to hot/cold regions 

is robust to the inclusion/exclusion of the interactions with “wet” dummies (column 2 vs. column 

4).  

Table 3 Results of possible adaptation effects 

 Winter wheat yields 

 (1) (2) (3) (4) 

DDhigh_fall -0.114*** -0.163*** -0.130*** -0.167*** 
 (0.021) (0.033) (0.027) (0.036) 

Frez_spring -0.113*** -0.391*** -0.123*** -0.437*** 
 (0.019) (0.051) (0.022) (0.057) 

DDhigh_fall * Hot_fall  0.087***  0.081*** 
  (0.026)  (0.025) 

Frez_spring * Cold_spring  0.293***  0.320*** 
  (0.053)  (0.055) 

DDhigh_fall * Wet_fall   0.026 0.018 
   (0.022) (0.020) 

Frez_spring * Wet_spring   0.029 0.057* 
   (0.035) (0.031) 

County fixed effect Yes Yes Yes Yes 

Linear time trend Yes Yes Yes Yes 

Quadratic time trend Yes Yes Yes Yes 

Observations 8,867 8,867 8,867 8,867 

Adjusted R2 0.527 0.530 0.527 0.530 

Heat damages in regions with hot fall - -0.076 - -0.086 

Heat damages in regions with cold fall - -0.163 - -0.167 

Freezing damages in regions with cold spring - -0.098 - -0.117 

Freezing damages in regions with warm spring - -0.391 - -0.437 

Note: Standard errors were clustered at the county-level and are shown in the parenthesis. *p<0.1; **p<0.05; ***p<0.01.  

 

Our results suggest sizeable adaptation effects in response to the most evident drivers of yield 

reductions (heat in the fall and freezing in the spring). Possible adaptation strategies could be 



heat/cold-tolerant varieties. However, it is worth noting that the adaptation effects should be 

interpreted with caution. What we revealed is the differences in short-term responses across 

regions with different climates because the results were still derived from panel data models. The 

interpretation of long-term adaptation only holds when long-term adaptations impact (at least 

partially) the yield responses via changing the short-term responses (see the theoretical 

justification in (Hsiang, 2016)). In this regard, it’s appropriate to interpret the differences in 

responses across regions as a lower bound of adaptation.    

Model performance and robustness checks 

To examine the performance of our baseline model, we conducted out-of-sample cross validations 

for a suite of alternative model specifications.  

Specifically, we randomly chose 80% of data points from our full sample. The estimated model is 

then used to predict the yield for the rest 20% of our sample (Fan et al., 2020; Schlenker and 

Roberts, 2009). The root mean squared errors (RMSE) is calculated from the predictions and the 

process was repeated 1000 times. We compare the RMSE of our baseline model with that of four 

alternative specifications:  

(1) a model with temperature and precipitation averaged over the entire growing period;  

(2) a model with seasonal temperature and seasonal precipitation;  

(3) a model with simple freezing degree day and growing degree day (based on a single threshold 

temperature of 0 ºC), calculated over the entire growing period;  

(4) similar as in (3), except that the two degree day variables are calculated for each season (fall, 

winter, and spring) separately.  

Figure 4 shows that the baseline model has the smallest RMSE. That indicates our preferred model 

outperforms the other four alternatives in predicting yields. One of the most striking results is that 

the model with simple average temperature (“simple tavg” in figure 4) performs very well and it 

can even outperform the more “sophisticated” seasonal degree day model (“seasonal dd” in figure 

4). This highlights the fact that models using degree day variables calculated based on a single 

threshold temperature of 0 ºC, a wide practice in literature, are inappropriate for winter wheat at 

least.  



  

Figure 4 Out of sample prediction comparison for multiple model specifications. “simple tavg” 

refers to the model with average temperature and precipitation over the entire growing period; 

“seasonal tavg” refers to the model with seasonal temperature and seasonal precipitation; 

“simple dd” denotes the model with freezing degree day variable and growing degree day variable 

(based on a base temperature of 0 ºC) calculated over the entire growing period; analogously, 

“seasonal dd” indicates the model with seasonal degree day variables. The numbers in the bars 

are RMSEs calculated following the steps described in the text.  

In addition to the cross-validations with alternative model specifications, we also performed a 

variety of robustness checks.  

To address the sudden yield jump observed in 1989-1990 (see figure 1), we ran the regression with 

data restricted to 1990-2015. The results are shown in table A2 (column 1) in the appendix and are 

rather consistent with that derived from the full sample, except that fewer damages were detected 

with heat and freezing days in the former regression possibly due to adaptation overtime. 

To examine whether our results are sensitive to the selection of growing period, we ran regressions 

with Sep-May (figure A2) and Sep-June (figure A3), respectively. The results are quite consistent 



with our baseline estimates with Oct-May. One exception is that in the regressions with Sep-June, 

we observed statistically significant negative effects of temperatures over 30 ºC in the spring. This 

could possibly because we have more temperatures over 30 ºC due to the inclusion of June. It leads 

to a concern of climate change damages in the future as we are expected to experience more 

heatwaves (Hong et al., 2019). On the other hand, given winter wheat is usually harvested in June, 

we speculate that these negative effects could be attributed to the impacts of heat on labor 

productivity (Graff Zivin and Neidell, 2014; Kjellstrom et al., 2009). This speculation is further 

supported by the fact that farm operation in China is still labor-intensive because the size of the 

farm managed by individual households is relatively small, which is quite different from the United 

States where farm operations heavily rely on machinery. A recent study in China shows that a 1 ºC 

increase in the mean temperature will reduce an average rural resident’s time allocated to farm 

work by 7% (Huang et al., 2020).  

To examine whether our baseline results are sensitive to the inclusion/exclusion of certain seasons 

in the model, we performed regressions independently with each season and the results are shown 

in table A3 in the appendix. The results are consistent with our baseline estimates. One exception 

is that we observed a statistically significant negative effect of DDhigh in the model with spring 

only.  

To test the robustness of our baseline winter temperature thresholds setup (-5-8 ºC), we ran 

regressions with winter degree day variables derived from the alternative setup in which only one 

temperature threshold was established (8 ºC. See the temperature thresholds estimation part for 

more details). The results are shown in figure A4 and are consistent with our baseline estimates.  

We also relaxed the restriction on our study region to have wider geographic coverage, i.e., the 

entire seven provinces and municipalities including Hebei, Beijing, Tianjin, Henan, Shandong, 

Anhui, and Jiangsu (8856 observations vs 11893 observations). The results are shown in table A2 

(column 2) in the appendix and again are consistent with our baseline estimate. Nonetheless, as 

we discussed previously, our primary study region was narrowed down to address the concerns 

about the confounding effects of irrigation and differences in the growing seasons. 

Finally, we also performed statistical inference using pair bootstrapping with replacement to 

address the uncertainties associated with the baseline estimates. Pseudo bootstrapping samples 

were randomly drawn from the original sample with replacement. Coefficients were estimated 



with the bootstrapping sample. This was repeated by 1000 times to establish distributions of 

coefficients. Standard errors were then constructed from those distributions. The resulted 

confidence intervals are provided in table A5 in the appendix and it turned out that the clustering 

standard errors performed very well in terms of addressing the uncertainties.  

Future projection: Are the warming damages overstated? 

Climate change characterized by global warming increases the intensity and duration of heatwaves 

and could impose significant damages to crop yields. However, another consequence of climate 

change is the possible reduction of freezing days. This may not concern climate change impacts 

for summer crops but matters for winter wheat. As we have seen in figure 3, early spring freezing 

imposes significant negative effects on winter wheat yields. On the other hand, winter wheat also 

suffers from the heat in the fall. Thus, it is not immediately clear what the overall impacts of 

climate change would be for winter wheat. 

To examine which effect dominates, we project yield consequences with and without freezing 

variables under a range of uniform warming scenarios (1 to 5 ºC temperature increase in relative 

to 1981-2015) to make our results comparable with previous studies (Asseng et al., 2015; Liu et 

al., 2016; Tack et al., 2015). Specifically, we first applied uniform temperature increase to all 

counties across the entire growing period, and then we recalculated the degree days to obtain the 

changes (see table A5 in the appendix). Following that, we combined our estimates with the 

changes in degree days to project yield consequences. Additionally, we also conduct yield 

projections with Shared Socioeconomic Pathways (SSPs) scenarios to depict a general picture of 

climate change's impact on winter wheat yields.   

Yield projections with uniform warming scenarios 

The uniform warming results are shown in figure 5. In the figure, “baseline” denotes the yield 

projections derived from the baseline model with all degree day variables included. The “omit 

freezing” indicates the yield projection without the consideration of freezing variables (Frez_fall, 

DDlow_winter, and Frez_spring). 

We want to emphasize two findings here. First, the potential benefits stemming from the reduction 

of freezing days tend to largely offset the damages of excess heat. Ignoring this would dramatically 

overstate the damages of warming on winter wheat. For instance, under a 1 ºC uniform warming 



scenario, projections in the absence of the freezing effects show a yield reduction of 5.5% whereas 

projections accounting for the freezing effects show a much lower reduction in yield (0.5%). The 

overestimation of warming damages is observed in all other uniform warming scenarios as shown 

in figure 514.  

 

Figure 5 Projected yield consequences under a range of uniform warming scenarios. Note: 

“baseline” denotes the yield projections derived from the baseline model with all degree-day 

variables included. The “omit freezing” indicates the yield projection derived from the model in 

which freezing variables were excluded (Frez_fall, DDlow_winter, and Frez_spring). Numbers in 

the figure are yield reductions in percentage.  

Second, the “omit freezing” projections are consistent with previous findings in which freezing 

impacts were not explicitly considered. For instance, an ensemble projection made by 30 crop 

simulation models at 30 agricultural sites indicated a yield reduction of 6% (compared with our 

 

14 We also show the projection results with the alternative winter temperature threshold setup (see figure A5 in the appendix). The 

results are largely consistent with that shown in figure 5.  



5.5% yield reduction) under a 1 ºC uniform warming scenario (Asseng et al., 2015). Additionally, 

(Liu et al., 2016) obtained consistent projections from crop models and statistical regressions15. 

For winter wheat in China, their estimated yield reduction was 3.0% under a 1 ºC uniform warming 

scenario. These estimates relied on either crop models with daily (monthly) temperature (Asseng 

et al., 2015; Liu et al., 2016) or statistical regressions with temperatures averaged over the entire 

growing period (Liu et al., 2016). In such cases, impacts of extreme incidences (including freezing 

and heat) are overlooked and variations of temperature responses across seasons are neglected. 

The consistency between our “omit freezing” projections with these previous work supports the 

importance of considering freezing effects and its changes in evaluating climate change impacts 

on winter wheat yields.  

Yield projections with Shared Socioeconomic Pathways scenarios 

To shed light on the yield consequences under more plausible climate change scenarios, we 

conducted the yield projections with SSPs data from the WorldClim database (Fick and Hijmans, 

2017). The database provides climate model output of past and future climate data at a monthly 

temporal resolution and a variety of spatial resolutions. We downloaded historical monthly 

temperature data (1970-2000) and future temperature projection data (2041-2060) derived from 

the IPSL-CM6A-LR climate model at a spatial resolution of 4.6 km * 4.6 km. The gridded data 

were converted to county-level by weighted-averaging over grid cells that overlap each county. 

Following that, changes in monthly mean temperature (2041-2060 relative to 1970-2000)16 were 

calculated and applied to historical hourly temperatures, and degree day variables were 

recalculated. Finally, changes in yield were estimated under a variety of SSPs scenarios (SSP126, 

SSP 245, SSP 370, and SSP 585).  

The results are shown in figure 6. Again, the warming damages are overestimated if the effects of 

freezing days are omitted. Moreover, unlike projections under uniform warming, the results with 

 

15 By performing a meta-analysis of process-based crop model simulations, (Wilcox and Makowski, 2014) concluded a 3.3 + 0.8% 

declined in wheat yield with a 1 ºC increase in local temperature. Based on historical regressions and simulation studies, (Fischer 

et al., 2014) reported an average of 5.9% wheat yield decline with 1 ºC warming.  

16 Ideally, we should measure the temperature changes in 2041-2060 relative to 1981-2015. Unfortunately, the database does not 

provide the model output of 1981-2015. Note that one cannot directly compare the output of climate models with historical 

observations (Auffhammer et al., 2013). In other words, when calculating temperature changes, both temperatures in 2041-2060 

and temperatures in 1981-2015 should be output of climate models. Nonetheless, we averaged the model output of 1970-2000 and 

the output of 2021-2040 (under the SSP126) to represent the temperatures of 1981-2015. Using these as base temperatures, we 

redid the SSP projections and the results (see figure A6) are consistent with that in figure 6.  



SSP scenarios suggest overall yield gains. For instance, the projection with the full set of variables 

under SSP126 shows a yield increase of 4.5% while the projection omitting freezing effects 

indicates a yield reduction of 7.8%. The yield improvement is also observed in the rest of the SSP 

scenarios.  

 

Figure 6 Projected yield consequences under SSP scenarios. Note: Similar as in figure 5,“baseline” 

denotes the yield projections derived from the baseline model with all degree-day variables 

included. The “omit freezing” indicates the yield projection derived from the model in which 

freezing variables were excluded (Frez_fall, DDlow_winter, and Frez_spring). Numbers in the 

figure are yield reductions in percentage. 

 

The difference in projections between SSPs and uniform warmings could be because climate 

change-induced temperature increases are unlikely to be uniform across seasons, i.e., we may 

expect more evident temperature increases in the winter and spring seasons. See the evidence in 

figure 2 where we plot the historical trend of seasonal temperatures from 1981 to 2015.  



Although the projections with SSP scenarios suggest positive effects of climate change on winter 

wheat yields, the inherent uncertainties associated with the projections should be addressed, such 

as the uncertainties in climate change data as well as the uncertainties in our empirical models. For 

instance, our model failed to detect statistically significant negative effects of heat (temperatures 

over 30 ºC) in the spring, because temperatures rarely exceed the threshold. However, this may 

not hold under the future climate, in which case heat in the spring could become a more evident 

threat to yields. Moreover, uncertainties in the climate data could be exacerbated as our projections 

highly depend on climate change impacts on specific seasons and hourly temperatures. 

Nonetheless, this could be a research avenue for future studies.   

Yield projections at the county level: the north region tends to suffer more from 

future climate change 

The yield projections in the previous section show that, on average, the overall climate change 

damages are relatively low under a variety of scenarios. In this section, we further assess the spatial 

heterogeneity of the climate change effects, that is we show the yield projections at the county 

level. This is of great importance because even under uniform warming scenarios, the changes in 

degree day variables are likely to differ across seasons and counties.  

It should be noted that despite the different responses between hot and cold regions we revealed 

in previous sections, we performed county-level projections using the empirical results from the 

baseline model without any dummy interactions. This is because, in addition to the key variables 

(DDhigh_fall and Frez_spring), the rest of the climate variables also play important roles in the 

projection. We intend to show the disparity of the average climate impacts across counties.   

The results with uniform warming scenarios are presented in figure 7 below. The northern regions, 

particularly the southern part of Hebei, are more susceptible to climate change damages and have 

the most evident yield reduction in any of the warming scenarios. Under a uniform warming of 1-

2 ºC, most counties in this region are expected to experience yield reduction between 0-5%. The 

west part of our study region (mostly in Henan province) exhibits a similar pattern as in the north 

region and both regions are characterized by a shortage of rainfall.  

The southeast region (north part of Anhui and Jiangsu provinces) and the coastal part of Shandong 

province, which have a warmer climate and more abundant rainfall, are projected to gain benefits 



under moderate warming scenarios. For instance, 1 ºC warming tends to increase yields by 0-5%. 

Yet under warming of 4-5 ºC damages outweigh benefits and consequently lead to considerable 

yield reductions. County-level projections with SSPs show a similar pattern yet are more dispersed 

in space (see figure A7 in the appendix). For instance, yield reductions are expected in the north 

part in all the SSP scenarios, whereas yield gains are observed in the south part. 

Evidence from statistical analysis (Butler and Huybers, 2013) and field experiments (Ristic et al., 

1996) for some summer crops (i.e. corn) suggest the existence of a spatial pattern of climate change 

impacts. That is hotter regions are less sensitive to extreme heat than the cooler counterpart partly 

because hotter regions have adapted to the hot climate (though such findings were not observed in 

(Schlenker and Roberts, 2009)). Winter wheat has a different story. As we have shown in previous 

sections, yield responses to temperature differences across seasons, and winter wheat is vulnerable 

to both heat in the fall and freezing in the spring. In this spirit, the overall climate change impacts 

are more important, because climate change not only alters the frequency and intensity of extreme 

incidences but changes the distribution of moderate temperatures. Our county-level projections 

show that in terms of the overall effects, north regions tend to experience more evident warming 

damages than the south and coastal regions. This spatial presentation is consistent with the findings 

in (Lv et al., 2013), in which the authors concluded that under rain-fed conditions, the future wheat 

yield tends to decrease in the northern regions while increases in the southern regions.  



 

Figure 7 Yield consequences at the county level under uniform warming scenarios. Note: Yield 

projections were conducted following the same steps in figure 5, except that the projections were 

shown at the county level.  

  



 

Conclusion 

The agriculture sector is among the most susceptible sectors to climate change. Temperature and 

precipitation directly enter the production function and are determinants to crop yields. 

Investigating the impacts of climate change on agricultural productivity is important for 

developing effective and efficient adaptation strategies which are critical for emerging economies. 

In this paper, we performed a comprehensive analysis of climate change on winter wheat, the first 

domesticated and one of the most widely planted food crops globally (Food and Agriculture 

Organization of the United Nations, 2018).  

Specifically, we divided the long growing period of winter wheat into three seasons, fall (Oct-Nov), 

winter (Nov-Feb), and spring (March-May), corresponding to different growing stages. We first 

ran piece-wise regressions to identify the appropriate temperature thresholds separately for each 

season to construct a rich set of degree day variables. Following that, we ran the panel data model 

with fixed effects to estimate different yield responses to climate across seasons. We explicitly 

modeled the impacts of heat as well as the impacts of freezing days. We also examine the variation 

of responses across regions with different climates to reveal possible local adaptations.  

Our findings indicate that heat (temperatures over 24 ºC) in the fall and freezing days (temperatures 

below 0 ºC) in the spring are the most important drivers to yield reductions. 10 degree days increase 

in temperatures over 24 ºC in the fall and 10 degree days increase in temperatures below 0 ºC in 

the spring would decrease yield by 11.4% and 11.3%, respectively. Furthermore, the results support 

our hypotheses of long-turn adaptations. That is heat is less harmful in regions with hot fall and 

freezing damages are substantially smaller in regions with cold spring. Our preferred model passed 

a variety of robustness checks and more importantly outperformed a suite of alternative model 

specifications that were used in previous studies.  

The comparison between the separate regressions with observations from 1981-2000 and 2001-

2015 reveals a lower bound of adaptation effects to some extent. 10 degree days increase in 

temperatures above 24 ºC in the fall tends to reduce yield by 14.7% in 1981-2000, whereas the 

reduction decreases to 4.6% in 2001-2015. The freezing days in the spring season show a yield 

reduction of 10.3% in 1981-2000, while the effect is reversed to a 0.2% yield gain in 2001-2015. 



Finally and most importantly, our yield projections with various climate change scenarios highlight 

the importance of accounting for the potential benefits stemming from the reduction of freezing 

days. If such effects were omitted, the assessment of climate change impacts on winter wheat will 

lead to significantly overstated damages. For instance, our findings suggest that projections 

omitting the freezing effects indicate a yield reduction of 5.5% under a 1 ºC uniform warming 

scenario. This number decreases to 0.5% when the freezing effects are accounted for in the 

projections. The overestimation of warming damages is observed in the rest of uniform warmings 

(2-5 ºC) and is robust to SSP climate change scenarios, in which case overall yield gains are 

expected (i.e. a yield increase of 4.5% under SSP126). County-level yield projections show that 

warming damages are less evident in regions with a warmer and wetter climate. For developing 

countries, adaptation strategies such as applying irrigation in the fall, moving the major planting 

areas to warmer regions could be appropriate.   
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Supplementary tables 

 

Table A1 Estimated temperature thresholds for alternative growing periods 

September to May 

Season Thresholds (in ºC) 

Fall (Sep-Nov) 17 and 24 

Winter (Dec-Feb) -5 and 8 

Spring (March-May) 25 and 30 

September to June 

Season Thresholds (in ºC) 

Fall (Sep-Nov) 18 and 23 

Winter (Dec-Feb) -5 and 8 

Spring (March-June) 25 and 30 
  



Table A2 Regression coefficients with observations from 1990-2015, the full NCP, and the 

baseline estimates, respectively 

 Winter wheat yields 
 1990-2015 Full NCP Baseline estimates 
 (1) (2) (3) 

Frez_fall -0.001 (0.005) 0.004 (0.007) -0.001 (0.008) 

DDlow_fall -0.002** (0.001) -0.0002 (0.001) -0.002 (0.001) 

DDmed_fall 0.011*** (0.004) 0.015** (0.006) 0.022*** (0.007) 

DDhigh_fall -0.022* (0.012) -0.103*** (0.019) -0.114*** (0.021) 

DDlow_winter 0.005 (0.003) -0.009*** (0.003) -0.008 (0.006) 

DDmed_winter 0.005*** (0.002) 0.013*** (0.003) 0.017*** (0.003) 

DDhigh_winter -0.005 (0.003) -0.014*** (0.005) -0.019*** (0.006) 

Frez_spring -0.046*** (0.010) -0.116*** (0.014) -0.113*** (0.019) 

DDlow_spring -0.0003 (0.001) -0.007*** (0.001) -0.006*** (0.001) 

DDmed_spring 0.024*** (0.006) 0.026*** (0.008) 0.037*** (0.010) 

DDhigh_spring -0.076*** (0.013) 0.007 (0.017) -0.015 (0.020) 

County fixed effect Yes Yes Yes 

Linear time trend Yes Yes Yes 

Quadratic time trend Yes Yes Yes 

Observations 7,433 11,893 8,867 

Adjusted R2 0.288 0.526 0.527 

Note: Column (1) indicates the regression results with data restricted to 1990-2015. Column (2) presents the results with full NCP 

coverage, i.e. the entire seven provinces and municipalities including Hebei, Beijing, Tianjin, Henan, Shandong, Anhui, and Jiangsu. 

Column (3) shows our baseline estimates. Standard errors were clustered at the county-level and are shown in the parenthesis.  

 

  



 

Table A3 Regression coefficients with separate seasons and all seasons, respectively 

 Winter wheat yields 

 Only fall Only winter Only spring Full season 
 (1) (2) (3) (4) 

Frez_fall -0.015* (0.008)   -0.001 (0.008) 

DDlow_fall -0.004*** (0.001)   -0.002 (0.001) 

DDmed_fall 0.034*** (0.005)   0.022*** (0.007) 

DDhigh_fall -0.125*** (0.017)   -0.114*** (0.021) 

DDlow_winter  -0.010* (0.005)  -0.008 (0.006) 

DDmed_winter  0.008*** (0.003)  0.017*** (0.003) 

DDhigh_winter  -0.008 (0.005)  -0.019*** (0.006) 

Frez_spring   -0.119*** (0.021) -0.113*** (0.019) 

DDlow_spring   -0.006*** (0.001) -0.006*** (0.001) 

DDmed_spring   0.047*** (0.008) 0.037*** (0.010) 

DDhigh_spring   -0.039** (0.016) -0.015 (0.020) 

County fixed effect Yes Yes Yes Yes 

Linear time trend Yes Yes Yes Yes 

Quadratic time trend Yes Yes Yes Yes 

Observations 8,867 8,867 8,867 8,867 

Adjusted R2 0.518 0.515 0.521 0.527 

Note: Column (1) – (4) corresponds to separate regressions for fall, winter, spring, and all seasons, respectively. Standard errors 

were clustered at the county-level and are shown in the parenthesis.  

  



 

Table A4 Confidence intervals constructed from clustering and bootstrapping, respectively 

 Winter wheat yields 

 Clustered at county-level Bootstrapping 
 (1) (2) 

Frez_fall -0.001 (-0.017, 0.014) -0.001 (-0.017, 0.014) 

DDlow_fall -0.002 (-0.004, 0.0004) -0.002 (-0.005, 0.0004) 

DDmed_fall 0.022*** (0.008, 0.036) 0.022*** (0.008, 0.036) 

DDhigh_fall -0.114*** (-0.155, -0.073) -0.114*** (-0.155, -0.074) 

DDlow_winter -0.008 (-0.019, 0.003) -0.008 (-0.019, 0.003) 

DDmed_winter 0.017*** (0.010, 0.023) 0.017*** (0.010, 0.023) 

DDhigh_winter -0.019*** (-0.030, -0.007) -0.019*** (-0.030, -0.008) 

Frez_spring -0.113*** (-0.151, -0.075) -0.113*** (-0.153, -0.073) 

DDlow_spring -0.006*** (-0.009, -0.004) -0.006*** (-0.009, -0.004) 

DDmed_spring 0.037*** (0.018, 0.056) 0.037*** (0.018, 0.056) 

DDhigh_spring -0.015 (-0.055, 0.025) -0.015 (-0.053, 0.024) 

County fixed effect Yes Yes 

Linear time trend Yes Yes 

Quadratic time trend Yes Yes 

Observations 8,867 8,867 

Adjusted R2 0.527 0.527 

Note: Confidence intervals of 95% are shown in the parenthesis. Column (1) indicates the confidence interval calculated using 

clustered standard errors whereas column (2) displays the confidence intervals constructed from the bootstrapping.  

  



Table A5 The average changes in degree day variables under uniform warming scenarios 

 
 Fall Winter Spring 

Warming 

scenarios 
Freezing DD_low DD_med DD_high DD_low DD_med DD_high Freezing DD_low DD_med DD_high 

+1 °C -0.15 4.71 1.10 0.24 -0.80 1.56 0.92 -0.16 8.09 0.77 0.21 

+2 °C -0.25 8.97 2.49 0.58 -1.30 4.16 2.24 -0.24 16.02 1.65 0.51 

+3 °C -0.32 12.94 4.10 1.03 -1.62 7.52 3.95 -0.29 23.73 2.66 0.94 

+4 °C -0.36 16.58 5.93 1.62 -1.82 11.44 6.11 -0.32 31.18 3.81 1.52 

+5 °C -0.37 19.65 7.83 2.33 -1.93 15.29 8.53 -0.33 37.75 4.99 2.20 

Note: Changes in degree days are measured in 10 degrees*days.  
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Supplementary figures 

 

 

Figure A1 The study region. Note: This region (also known as the “Huang-Huai-Hai” plain) 

mainly covers the south part of Hebei, most of Henan, the entire Shandong, and the north part of 

Anhui and Jiangsu.  
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Figure A2 The robustness check with a growing season of Sep-May. Note: The x-axis indicates the 

degree day variables constructed from the associated temperature thresholds. Bars show the 

estimated coefficients of the respective degree day variables and the 95% confidence intervals 

using standard errors clustered at the county-level.   
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Figure A3 The robustness check with a growing season of Sep-June. Note: The x-axis indicates 

the degree day variables constructed from the associated temperature thresholds. Bars show the 

estimated coefficients of the respective degree day variables and the 95% confidence intervals 

using standard errors clustered at the county-level.   
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Figure A4 The robustness check with an alternative winter temperature threshold setup. Note: The 

x-axis indicates the degree day variables constructed from the associated temperature thresholds. 

Bars show the estimated coefficients of the respective degree day variables and the 95% confidence 

intervals using standard errors clustered at the county-level.     
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Figure A5 Projected yield consequences with an alternative winter temperature threshold setup. 

Note: these results were derived following the same steps in figure 5 in the text.  
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Figure A6 Projected yield consequences under an alternative SSP scenario specification. Note: In 

this figure, the base for calculating temperature changes is the mean of temperatures between 1970-

2000 and the temperatures of 2021-2040 (under the SSP126). Everything else is similar as in figure 

6 in the main text.  
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Figure A7 Yield projections with SSP scenarios at the county level. Note: Yield projections were 

conducted following the same steps in figure 6 in the main text, except that the projections were 

calculated at the county level. 

 
 

 
 

 


