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The increasing opportunity cost of sequestering CO2 in the Brazilian Amazon 

forest. 

ABSTRACT 

Bush fires raged across the Brazilian Amazon in 2019. The CO2 that was sequestered in those 

forests is now in the atmosphere, adding to the rate of global warming. The burned-over land 

will likely be converted to agriculture. Possible contributors to these events include climate 

change itself, creating hotter, drier conditions, and what is reportedly a reduction in the vigor of 

forest preservation efforts under a new government. But here we explore a third possible 

contributor: technical change may have been increasing the incentives to convert forests to 

agriculture. We examine the nature of technical change from 2003 to 2015, across 287 

municipalities within Brazil’s “arc of deforestation”. We consider grains, livestock and timber 

as agricultural outputs and CO2 emission from deforestation as an undesirable output. On 

average across the region, we estimate the annual rate of technical change in agriculture over 

this period to have been 4.9%, with a significant bias toward agricultural outputs and away from 

CO2 emissions, meaning that it has been increasingly attractive to convert these forests to 

agriculture. This technological incentive for deforestation has thus been building up during the 

early part of this century, but actual deforestation was held in check somewhat by forest 

preservation policies until recently, when a more relaxed policy environment has allowed the 

increased technological incentive for deforestation to be more fully expressed. These changes 

have added to climate change as contributors to the recent burst in Amazon forest destruction. 

Key words: CO2 sequestration, Amazon Forest, agricultural productivity, technical change biases. 

JEL: O44, Q55, Q15. 
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1. INTRODUCTION  

Brazil encompasses the largest tropical forest in the world, corresponding to more than 10% of 

the world’s forest area and around 60% of Brazil’s surface (MacDicken et al., 2016). Strong 

agricultural expansion in the Amazon region, starting in the 1990s, has been closely related to 

deforestation and therefore to deforestation-related CO2 emissions. The increased agricultural 

output is a "good", but the related increase in CO2 emissions is a "bad", given its critical role in 

global warming. This paper addresses the changes in the technological tradeoff (marginal rate of 

transformation) between increased agricultural production (goods) and increased CO2 emissions 

(a bad).  

In this article, we estimate the rate and biases of technical change for the “arc of 

deforestation” in the Brazilian Amazon during 2003-2015, including in the analysis deforestation 

as a proxy for CO2 emissions. Specifically, we measure both the rate of technical change and its 

effect on the opportunity cost of reducing CO2 emissions by forest preservation, i.e., whether 

technical change has been biased toward agricultural production or toward reductions of CO2 

emissions from reductions in deforestation. To do this we estimate a municipality-level 

production possibility frontier (PPF) for agriculture for the period 2003 to 2015. This permits us 

to identify whether technical change was progressive or regressive, and whether technical change 

was biased toward or against CO2 emissions from deforestation.  

Even though our analysis does not include information after 2015, in particular that which is 

relevant to the recent fires and deforestation, it does help understand the increasing pressure to 

deforest given the increasing opportunity cost we estimate.  
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2. BACKGROUND 

In the literature, the “arc of deforestation” has been loosely defined as the set of municipalities in 

the agricultural frontier in the northern region of Brazil with high levels of deforestation. In this 

article, we investigate technical change in agriculture when deforestation as a proxy for CO2 

emissions is also considered. We use information from 287 municipalities in nine states: Acre, 

Amazônia, Roraima, Rondônia, Amapá, Pará, Mato Grosso, Tocantins and Maranhão. Figure 1 

illustrates total deforestation by municipality during the period 2001 to 2015.  

[Figure 1] 

Rivero et al. (2009) assert that high rates of deforestation between 1995 and 2006 were 

caused partially by grain and livestock expansion in the North and Midwestern regions. In 

addition to these two activities, timber revenue has also been identified as a motivation for 

deforestation [Rivero et al. (2009); Margulis (2004); Cardille et al. (2003); Nepstad et al. (2001); 

Quintanilha and Lee Ho (2005)]. Other studies that also highlight the positive relationship 

between overall agriculture or a specific crop such as timber and deforestation in Brazil are Reis 

and Guzmán (1992), Andersen et al. (2002), Diaz and Schwartzman (2005), Nepstad et al. 

(2007), Araujo et al. (2009), Börner et al. (2010), Bowman et al. (2012), Assunção et al. (2013), 

Nepstad et al. (2014), Silva et al. (2019a, 2019b), and Koch et al. (2019).  

Regarding the role of technical change in forest preservation, Villoria et al. (2014) suggest 

that technical change (productivity change) could lead to two opposite effects on forest 

preservation; higher deforestation as commercial activity is expanded, or lower deforestation due 

to less land-intensive production (input substitution). They argue that empirical work is needed 

to test which of these effects has prevailed. 
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Filho et al. (2015), for example, investigated whether Brazil can increase food supply without 

increasing deforestation. They assert that conversion of low-yield pasture area to crop production 

could offset the production effect of reducing deforestation. To obtain these results, they used a 

Computable General Equilibrium (CGE) model of Brazil to model land use over 20 years. 

Although they conclude that improved technology could provide the amount produced by 

deforestation, it is almost certain that increased crop productivity would lead to deforestation, as 

well, absent some policy restrictions to prevent it. 

Koch et al. (2019) study the effect of a policy to reduce deforestation on land use, crop yields 

and livestock stocking rate in a subset of municipalities in the Amazon subjected to a forest 

protection policy.  They concluded that the policy would induce increases in the livestock 

stocking rate and a substitution of other inputs for land in these municipalities. 

There are several recent studies of productivity of Brazilian agriculture. Bragagnolo et al. 

(2010) estimate Total Factor Productivity (TFP) for Brazilian agriculture using a panel of 

municipalities and agricultural census data (1975, 1985, 1995 and 2006). They estimated a 

translog production function to obtain the TFP and its several components including technical 

change. They found an average annual technical progress of around 3.1%. Using their estimates 

of state-level average technical progress, we find the simple average rate of technical progress in 

the subset of states with municipalities in the “arc of deforestation” was around 6.7%, ranging 

from 3.9% in Maranhão to 10.2% in Roraima. 

Gasques and Conceicao (1997), Gasques et al. (2004), Gasques et al. (2008) and Fuglie 

(2010) have all previously measured agricultural TFP rates higher than 3% for Brazil. Gasques et 

al. (2014) argue that a favorable international scenario, public research, and credit availability 

had important roles in these results. Rada and Valdes (2012) also found gains in TFP, mainly 
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driven by technical change, at an annual rate of about 4% for recent decades. Mendes et al. 

(2009) and Trindade and Fulginiti (2015) measured lower TFP growth rates, 1% for 1985-2004 

and 2% for 1969-2009, respectively. Gomes and Braga (2008) investigated factors associated 

with agricultural TFP in the Legal Amazon using state level data. They found that infrastructure 

and credit made available by a regional institution to promote growth (Fundo Constitutional de 

Financiamentos do Norte) contributed to higher TFP rates. None of these studies considered the 

relationship between agricultural TFP and CO2 from deforestation.  

The harmful environmental effects of the production of goods have been studied using 

directional output distance functions with two kinds of outputs: undesirable (e.g., pollution) and 

desirable (e.g., production). Chung et al. (1997) argue that rates of productivity change are 

biased when estimated using conventional methods that do not consider harmful byproduct 

effects on the environment. Only a few studies have included undesirable outputs to evaluate 

productivity change in agriculture, as we do here, for example, Rezek and Perrin (2004), Färe, et 

al. (2006) and Kabata (2011) for the United States and Flavigna, et al. (2013) for Italy.  

 

3. THE MODEL 

In this article, we seek to estimate the rate and biases of technical change for agricultural 

production in the Brazilian Amazon. Figure 2 illustrates the production possibilities structure we 

propose, in this case for a single good output such as agriculture (vertical axis) and on the 

horizontal axis a single undesirable (or “bad”) output such as CO2 emissions. Because direct 

measures of CO2 emissions do not exist, in this study we use deforestation as a proxy for CO2 

emissions from land use change, which constitute the most important component of total 

greenhouse gas emissions in this region. For an undesirable output b that is not freely disposable, 
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the production possibilities frontier (PPF) exhibits an upward-sloping region where it is not 

possible to reduce the bad output (CO2 emissions from deforestation) without also reducing some 

of the desirable output. Here we interpret a rightward movement along the horizontal axis as an 

increase in emissions, and a leftward movement as either a decrease in emissions or an increase 

in CO2 sequestration. This is a logical characterization of the agriculture/CO2 technology in the 

Amazon.  

Technical change is represented in Figure 2 by a shift in the frontier from the solid line to the 

dashed line. This outward shift of the production possibility frontier represents a progressive 

technical change, allowing both more agriculture and less CO2 emissions than previously 

attainable from the given set of inputs. A bias in technical change is revealed here by a change in 

the marginal rate of transformation (MRT) along a directional line segment such as BC. In the 

case illustrated, the marginal rate of transformation in terms of the amount of good output y 

foregone to reduce a unit of bad output b has increased. This is described as a technical change 

bias toward good output y and away from bad output b, indicating that it is becoming relatively 

more expensive to sequester a unit of CO2. Generalizing the two-output representation of 

technology in Figure 2, in this study we represent the municipality-level agricultural technology 

of this region with a directional distance function relating three desirable outputs (timber, grains, 

and livestock), one undesirable output (CO2 emissions); and three inputs (labor, capital and 

land).  

We estimate the frontier of this production set with a directional distance function. Several 

previous studies have used directional distance functions to represent technologies that include 

the joint production of both desirable and undesirable outputs: Färe et al. (2005); Chung, et al. 

(1997); Färe, et al. (2006); Macpherson, et al. (2010). Our results will reveal that the PPF has 
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shifted outward (progressive technical change) and that the slope has increased due to technical 

change (a bias toward agriculture).  

The agricultural production technology uses inputs 𝒙	 ∈ ℜ!
"  to produce outputs 𝒖	 ∈ ℜ!

# . 

Some outputs 𝒚	 ∈ ℜ!
$, are desirable (such as grain, livestock and timber production), and some 

outputs 𝒃	 ∈ ℜ!
% , are undesirable (CO2). We characterize the production technology using a 

directional distance function:  

𝐷))⃗ &+𝒙, 𝒚, 𝒃, 𝑡; 𝒈𝒚, 𝒈𝒃0 = 𝑚𝑎𝑥5𝛼: +𝒚 + 𝛼𝒈𝒚, 𝒃 − 𝛼𝒈𝒃0	𝜖	𝑃(𝒙)>, (1) 

where 𝒈𝒚 and 𝒈𝒃 constitute the directional vector 𝒈 = +𝒈𝒚, −𝒈𝒃0 and  subscripts 𝑘 =

(1, 2, … , 𝑁) representing observed units and 𝑡 = (1, 2, … , 𝑇) representing years are dropped for 

simplicity. This directional distance function defines the frontier of an output possibility set at 

time t, 𝑃(𝒙, 𝑡).		On the frontier itself, the value of the frontier function (1) is zero, determined in 

our case by a functional estimation of P(x) that approximates the frontier determined by input-

output bundles from the best performing units. For all observations inside the frontier the 

directional distance function is positive.  

 In general, the directional distance function is non-negative in (y, b), non-increasing and 

strongly disposable in y, non-decreasing in b, weakly disposable, and concave in (y, b). It also 

satisfies the translation property: 

𝐷((⃗ !*𝒙, 𝒚 + 𝛼𝒈𝒚, 𝒃 − 𝛼𝒈𝒃, 𝑡; 𝒈𝒚, −𝒈𝒃2 = 𝐷((⃗ !*𝒙, 𝒚, 𝒃, 𝑡; 𝒈𝒚, −𝒈𝒃2 	− 𝛼,						𝛼	𝜖	ℜ (1a) 

which states that increasing desirable outputs by 𝛼𝒈𝒚 and simultaneously decreasing undesirable 

outputs by −𝛼𝒈𝒃 is equivalent to subtracting the translation factor 𝛼 from the original directional 

distance function.  
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Figure 2 illustrates this directional distance function for the case of one desirable output y and 

one undesirable output b and a fixed bundle of inputs, given a directional vector 𝒈 =

+𝑔) , −𝑔*0 = (1,−1). The positive slope of the frontier (the locus of points for which 𝐷((⃗ != 0) 

indicates that the undesirable good b is weakly disposable, which means that for given input 

levels it is costly to dispose of b in terms of desirable good y that must be given up. The distance 

of observation kt from the frontier is represented as a projection from point A along vector g = 

(1,-1) to point B. The directional output distance function measures this distance as 𝛼, the 

maximum feasible simultaneous expansion of y and contraction of b, with distance 𝛼 measured 

in multiples of the vector 𝒈 = +𝑔) , −𝑔*0. 

[Figure 2] 

 

3.1 Parameters characterizing technical change 

Traditionally, technical change has been characterized by two kinds of parameters: a rate of 

technical change and biases of technical change toward/against individual outputs and inputs. 

Here, an outward shift of the frontier represents a technical change of positive (progressive) rate, 

while an inward shift indicates a negative (regressive) rate. A pair-wise Hicks neutral1 technical 

change is implied if the MRT is the same at point B and point C along the projection of the 

original observation between the two frontiers. If between points B and C the MRT changes, 

technical change is biased. In that case, technical change has altered the frontier tradeoff (the 

MRT) between good and bad output in the projection of observation kt along vector 𝒈 =

+𝑔) , −𝑔*0. In the case illustrated in figure 2, technological change is biased toward y, in accord 

 
1 We use the Blackorby et al. (1976) interpretation of Hicks neutral technical change. Specifically we have adapted 
their implicit Hicks neutrality (IHN) concept to output space with desirable and undesirable outputs. 



10 

 

with the notion of implicit Hicksian neutrality in Blackorby, et al. (1976). Given the algebraic 

specification of the distance function that we will use, both the rate and the bias of the shift in the 

frontier can differ depending on the location of observation kt in P(x) and depending on the 

directional vector along which the data point is projected. We estimate both the rate and bias of 

technical change at the data points for each municipality, as described below. 

  

3.2 Primal output-based directional measure of the rate of technical change 

We measure the rate of technical change following the strategy developed by Färe and 

Karagiannis (2014). The total differential of the distance function is 

−+∇*𝐷))⃗ &0
+
𝑔*𝑑𝛼 + +∇)𝐷))⃗ &0

+
𝑔)𝑑𝛼 +

𝜕𝐷))⃗ &
𝜕𝑡 𝑑𝑡 + ∇,𝐷

))⃗ &𝑑𝑥 = 0 
(2) 

Specifying 𝑑𝑥 = 0, imposing the translation property as  −+∇*𝐷))⃗ &0
+
𝑔* + +∇)𝐷))⃗ &0

+
𝑔) = −1 and 

solving for the rate of technical change, 𝑑𝛼 𝑑𝑡⁄ : 

𝑑𝛼
𝑑𝑡

=
𝜕𝐷''⃗ !
𝜕𝑡

 (3) 

The rate of technical change is thus measured as the common number of times the desirable 

output and the undesirable output vectors (𝑔) and 𝑔*) can be added to the desirable output and 

subtracted from the undesirable output as a result of technological change, starting at a given 

output plan on the original PPF. In figure 2 it is represented by the length of the segment BC. 
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3.3 Primal output-based directional measure of the bias of technical change 

We use a primal definition of Hicksian bias (Fulginiti, 2010) between a desirable output ym and 

an undesirable output b, defined as the change in the MRT along the projection ray 𝒈 =

+𝑔)! , −𝑔*0: 

𝐵)!,*(𝒚, 𝒃, 𝒙, 𝑡) ≡
𝜕 ln+𝑀𝑅𝑇)!,*0

𝜕𝑡 	 
(4) 

where 𝑀𝑅𝑇)!,* is defined as the ratio of 𝜕𝐷))⃗ & 𝜕𝑏⁄  to 𝜕𝐷))⃗ & 𝜕𝑦.T .  𝐵)!,* measures the Hicksian 

pair-wise bias in technical change as a change in the slope of the production possibility frontier 

along the directional ray 𝒈 = +𝑔)! , −𝑔*0 .  𝐵)!,* > 0 indicates that technical change is biased 

towards the production of desirable output ym relative to undesirable output b, i.e., technical 

change has led to an increase in the cost of reducing a unit of undesirable output b, in terms of 

desirable output ym given up.  𝐵)!,* < 0 indicates that technical change is biased against 

production of desirable output ym relative to undesirable output b.  

 

4. THE APPLICATION  

Our sample of municipalities for analysis is selected from the 574 municipalities in the nine-state 

region we have identified as constituting the arc of deforestation. We first calculated total 

deforestation as a proxy for CO2 emissions by municipality, over the period 2001 to 2015, using 

data from the National Institute for Space Research (INPE/PRODES, 2017). Because many of 

the smaller municipalities registered no forest or anomalous levels of deforestation, we selected 
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for this study the 287 municipalities with deforestation above the median of 13,000 ha, which 

represent 94% of deforestation in this area.2  

Annual data on desirable outputs and inputs at the municipal level for the period 2003-2015 

are from the Municipal Agricultural Production (in Portuguese Produção Agrícola Municipal – 

PAM) survey3 conducted by the Brazilian Institute of Geography and Statistics (IBGE, 2017). 

We obtained information on grains, livestock and timber production. Grain production is 

measured as the sum of corn and soybean production (in tons per year). Timber is measured in 

cubic meters of logged wood per year. Livestock production is measured in thousand liters of 

milk produced per year, given that data on cattle sold is not available on an annual basis. 

Descriptive statistics are in table 1. 

Because direct measures of CO2 emissions from the Brazilian Amazon at municipal scale do 

not exist, in this study we use deforestation as a proxy for CO2 emissions from land use change. 

Although the emissions from deforestation depend on the density and type of forest, we use the 

average emission rate of 132.2 tons of carbon (Brazilian Ministry of Environment (MMA), 2011; 

Amazon Fund, 2015) 4 per hectare of forest preserved, which is used by the government of Brazil 

in their REDD+ contracts with Norway, Germany, Petrobras and others. Deforestation by 

municipality, measured in hectares per year, was obtained from the National Institute for Space 

Research (INPE/PRODES, 2017). Margulis (2004) suggests that deforestation of a given plot 

might occur over three years, and be detected only in the third year of the process, depending on 

 
2  We also completed the analysis for the entire set of 574  municipalities and for a set of 313 municipalities with 
deforestation above 10,000 ha, with no substantive change in our conclusions.  
3 Agricultural Census data was available for 1995/96 and 2006, while deforestation at municipal level was only 
available from 2000 to 2016 on January of 2017.  
4 The Amazon Fund (2015) raises funds to preserve the forest using this carbon content based on the Technical 
Committee of the Amazon Fund (CTFA), but states that it is a conservative measure considering that the carbon 
content in the Amazon Forest ranges from 130 tons of Carbon/ha to 320 tons of Carbon/ha.  
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the process of deforestation used. It is possible that agricultural activities would be occurring 

during this process with revenue from both agriculture and timber sales during this period. This 

leads us to follow Margulis and measure deforestation for a given year as the average of the 

current and previous two years.  

Municipalities in the state of Pará and Mato Grosso have the largest average deforestation, 

6,595 and 5,951 hectares, respectively. Grain production is largest in municipalities in the state 

of Mato Grosso averaging 273,037 tons of grains per year. Municipalities in the state of 

Rondônia have the largest average livestock production, 13,337 thousand liters of milk. 

Municipalities in the state of Pará have the largest average production of timber, 83,972 m3.  

[Table 1] 
 

We were able to obtain information on three inputs, all from IBGE. We measure labor as the 

population in the municipality. Rural population is more than 70% in about 75% of the 

municipalities. Agricultural area is measured in hectares, obtained by subtracting forest area 

from the total area of the municipality. Capital is represented by stock of livestock, in number of 

head. Following Färe et al. (2005), we normalized all these variables, dividing by their means5. 

In addition to these inputs we add a time trend to capture exogenous technical change. 

 

4.1 Empirical estimation 

We specify the distance function (Eq. 1) as a quadratic flexible functional form, with the 

subscript 𝑖 = (1,2, … , 𝑁) representing municipalities and subscript t = (1, 2, …, T) for periods 

(subscripts t are dropped here, for simplicity): 

 
5 For a hypothetical municipality that uses mean inputs and produces mean outputs, the input and output variables 
would be (𝑥, 𝑦, 𝑏) = (1,1, −1).  
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𝐷))⃗ &,/(𝒙𝒊, 𝒚𝒊, 𝑏/ , ; 𝑡, 1, −1) = 	𝛾1 +Y𝛾2𝑥3/

4

356

+ 𝜃6𝑏/ + Y 𝛽.𝑦./

4

.56

+
1
2YY𝛾27𝑥3/𝑥7/

4

756

4

356

 

+	
1
2 Y Y𝛽.8𝑦./𝑦8/

4

856

4

.56

+
1
2𝜃66𝑏/

9 + YY𝛿.3𝑥2/𝑦./

4

356

4

.56

+Y𝜑3𝑥3/𝑏/

4

356

 

+Y 𝜇.𝑦./𝑏/

4

.56

+	𝜐6𝑡 +
1
2 𝜐66𝑡

9 +	Y𝜗36𝑥3/𝑡
4

356

+ Y 𝜂.𝑦./𝑡
4

.56

+ 𝜆6𝑡𝑏/ 

(5) 

where 𝑥$% are labor, capital, and area, 𝑦&% are timber, livestock and grains, and 𝑏% is deforestation 

as proxy for CO2 emissions, t is technical change measured as years, and g'𝑠, b’s, q’s, d’s, j’s, 

𝜐’s, 𝜗’s , h's, µ’s and l1 are parameters to be estimated. The intercept is a constant term plus 

municipality fixed effects (dummies). We use the directional vector = +𝒈𝒚, −𝑔*0 = (𝟏,−1), 

representing a simultaneous expansion in desirable outputs and contraction of undesirable output, 

where 1 is a 1x3 unit vector. The symmetry and translation properties in outputs and inputs are 

imposed before estimation, requiring the following restrictions:  

Y 𝛽.

4

.56

− 𝜃6=− 1;			Y𝛽.8

4

856

− 𝜇.=0;			𝜃66 − Y 𝜇.

4

.56

=0;		 Y 𝛿.3

4

.56

− 𝜑3=0 

Y 𝜂.

4

.56

− 𝜆6=0;		m	=1,	2	and	3;	s	=1,	2	and	3;			𝛽.8 = 𝛽8. 

 We estimated equation (5) after imposing the translation property in (1a) that results in 

transformation of outputs and of the left hand side, at 𝐷))⃗ &,/(𝒙𝒊, 𝒚𝒊, 𝑏/ , ; 𝑡, 𝟏, −1) = 0, as  

−𝛼! = 𝐷%%⃗ "!'𝑥𝑖, 𝑦𝑖 + 𝛼! , 𝑏𝑖 − 𝛼!; 𝟏, −1- +	𝜖! ,		 (6) 

where 𝛼! is the translation factor and 𝜖! is an error term. The quadratic flexible functional form 

with symmetry and translation properties imposed is estimated as 
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−𝑏/ =	𝛾1 +Y𝛾3𝑥2/

4

356

+ 𝜃6𝑏′/ + Y 𝛽.𝑦′.

4

.56

+
1
2YY𝛾37𝑥3/𝑥7/

4

756

4

356

 

+	
1
2 Y Y𝛽.8𝑦′./𝑦′8/

4

856

4

.56

+
1
2𝜃66𝑏′/

9 +YY𝛿.3𝑥3/𝑦′./

4

356

4

.

+Y𝜑3𝑥3/𝑏′/

4

356

 

+Y 𝜇.𝑦′./𝑏′/

4

.56

+ 𝜐6𝑡 +
1
2 𝜐66𝑡

9 +Y𝜗36𝑥3/𝑡
4

356

+ Y 𝜂.𝑦′./𝑡
4

.56

+ 𝜆6𝑡𝑏′/ + 𝜖/ 

(7) 

where 𝑦′6/ = 𝑦6/ + 𝛼𝑖, 𝑏′/ = 𝑏/ − 𝛼𝑖. In our case we chose 𝛼/ = 𝑏/6, so the parameters 

associated with 𝑏/ are recovered after estimation using the translation property restrictions. We 

calculate estimated technical change following equation (3), as 

𝜕𝐷))⃗ &
𝜕𝑡 = 	 𝜐6 + 𝜐66𝑡 +	Y𝜗36𝑥3/

4

356

+Y𝜂.𝑦./

4

.

+ 𝜆6𝑏/ (8) 

The biases of technical change are calculated using equation (4) as 

𝐵)!"	,*"(𝑦./ , 𝑏/ , 𝒙, 𝑡) ≡ j
𝜆6
𝐷))⃗ *"

−
𝜂.
𝐷))⃗ )!"

k (9) 

where 𝐷))⃗ *" and 𝐷))⃗ )!" represent the first derivatives of the directional distance function for 

municipality i with respect to the undesirable and a desirable output, respectively.  

Our selection of the directional vector (1,1,1,-1) for measuring technical change warrants 

some comment. First, recall that our output levels have been normalized by dividing by their 

means, so that one unit of distance is equivalent to 100% of the mean of each variable. Recall 

also that we measure the rate of technical change at each observation (equation 8) as the change 

 
6 The factor 𝛼# used to impose the translation property of the directional distance function is chosen by the 
researcher and most studies have chosen one of the outputs. In this article, we have used the undesirable output but 
we have also estimated Eq. (6) considering 𝛼# = 𝑦$#. Results are quite consistent with those with 𝛼# = 𝑏i . 
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in distance evaluated for that municipality. Thus, if the change in distance is 0.10, this implies 

that the production frontier has shifted outward along the vector (1,1,1,-1) with each agricultural 

output increasing by 10% of its mean and deforestation decreasing by 10% of its mean. The 10% 

is thus a measure of the change in the entire bundle of outputs that is made possible by technical 

change, which itself is a measure of welfare that was pioneered by Allais, Debreu and others. 

This directional measure is not only appealing as an economic concept, it is also completely 

consistent with the traditional measures of productivity change that consider a single aggregated 

output. This traditional approach would also measure a 10% productivity change if all 

subcategories of output were to increase by 10% for given levels of input.   

We first use Corrected Ordinary Least Squares (COLS) to provide starting values for the 

parameters in the Maximum Likelihood Estimation (MLE) procedure. For the MLE estimation, 

the error term in equation (7) is specified as 𝜖/ = 𝑢/ − 𝑧/, where 𝑢/ represents the standard error 

term and 𝑧/ captures the distance from the frontier, also interpreted as a measure of the 

inefficiency of observation i. We assume a half-normal distribution for 𝑧/~𝑁!(0, 𝜎<9), as 

described in Kumbhakar, Wang, and Horncastle (2015). The estimation was done using Stata 14 

following the command sfmodel suggested by Kumbhakar, et al. (2015) and sfcross suggested by 

Belotti, et al. (2012).  

 

5. RESULTS AND DISCUSSION 

We estimated the quadratic specification for the directional distance function in equation (7) 

using a frontier MLE approach described above7. Parameter estimates for the first step COLS 

 
7 A Likelihood Ratio test of 35.09 indicates that MLE estimates with a half-normal distribution for the one-sided 
error term are superior to the COLS estimates (the one percent critical value is 5.4). We also utilized the GMM 
method and found the results to be similar. These results can be obtained from the authors upon request. 
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and the MLE are shown in table A1 in Appendix A. The MLE estimation has 30 statistically 

significant parameters out of 36 (excluding municipality dummies).  

An estimate of the distance of each municipality from the frontier is obtained from equation 

(7), and is interpreted as a measure of inefficiency. The average distance estimated for the region 

was 0.19. This means that for the average municipality, agricultural outputs (grains, timber and 

livestock) could be expanded by 19% each while simultaneously decreasing CO2 by 19%. We 

acknowledge, however, that to the extent that the quality of resources is not homogeneous across 

municipalities, it may not be possible to close all of these efficiency gaps. 

The estimated rate and biases of technical change vary over the production space depending 

on the level of inputs and outputs for individual municipalities at each point in time. We 

evaluated the estimated annual rate and biases for each observation, then averaged those 

estimates. The overall average annual rate of technical change estimated for this region during 

the period 2003-2015 is 4.93% (see table 2). This means that on average for given levels of 

inputs, technical change has shifted the frontier outward, allowing municipalities to expand 

agricultural outputs (grains, timber and livestock) by around 4.93% while simultaneously 

contracting CO2 emissions (deforestation) by 4.93%.8 Average estimates for each year vary from 

0.042 to 0.061, following a slightly U-shaped pattern as revealed in Figure 3. At the 

municipality-level, estimates of this rate vary across space, as illustrated in Figure 4.   

 Other studies reporting rates of technological change in Brazilian agriculture have not 

considered deforestation or emissions, and analyze the whole country except for the Bragagnolo 

et al. (2010), who provide estimates by state. Bragagnolo's estimates of the rate, for an earlier 

 
8  Estimated average rates of technical change for the entire set of 574 municipalities is 0.045 and for the 313 
municipalities with deforestation above 10.000 hectares is 0.048, compared with 0.049 for the sample in this study.  
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period (1975-2006), averaged 3.1% for the country, but for the states in which the municipios of 

our study are located, the simple average estimate of the rate was 6.7%.  Gasques and Conceicao 

(1997), Gasques et al. (2004), Gasques et al. (2008), Fuglie (2010) and Rada and Valdes (2012) 

all measured country-wide rates exceeding 3%, but Trindade and Fulginiti (2015) estimated rates 

of only 1% for 1985-2004 and 2% for 1969-2009. Gomes and Braga (2008) investigated factors 

associated with agricultural TFP in the Legal Amazon using state level data and found that 

infrastructure contributed to higher rates.  

[Table 2] 

[Figure 3] 

[Figure 4] 

Our primary interest for this study is in the biases of technical change between agricultural 

production and CO2 emissions, because they indicate changes in trade-offs due to technical 

change. We evaluate this issue by estimating Hicksian pairwise technical change biases as 

defined in equation (4) and equation (9). Our results indicate that municipalities in the “arc of 

deforestation” have experienced technical change that is biased toward each agricultural output 

and against CO2 emissions. This means that as a result of technical change, for a given level of 

efficiency, less CO2 emissions from deforestation is now necessary to increase a unit of 

agricultural output. Expressed as the inverse, it means that the opportunity cost to farmers of 

reducing CO2 emissions by one unit has increased in terms of agricultural output foregone. An 

interpretation of this is that the cost to farmers of legal restrictions intended to reduce 

CO2/deforestation has increased, an issue that we discuss below. 

[Figure 5] 
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From equation (8), the estimate of parameter l1, +0.017, indicates that the estimate of the rate 

of technical change is higher in areas with more emissions from deforestation, and the positive 

values of coefficients for grain, livestock and timber indicate that the rate of technical change is 

also higher in areas with more of each of the agricultural outputs.  

For each of the desirable outputs we evaluate pairwise technical change biases relative to CO2 

emissions from deforestation using equation (9). As indicated earlier, a pairwise bias in favor of, 

say grains, relative to CO2 would be reflected by a steeper MRTt+1 in Figure 2. To evaluate 

whether technical change has on average been biased toward grains and against CO2 from 

deforestation, we evaluate 𝐵)%	,*% at each observation using equation (9), then calculate the 

average across municipalities. We proceed in the same manner to estimate average technical 

biases with respect to timber and livestock. Using the maximum likelihood estimates (MLE in 

Table 2), we find that the average bias for grains relative to CO2 is 𝐵)%	,*% = 0.15, for timber 

relative to CO2 is 𝐵)&	,*% = 0.11 and for milk relative to CO2 is 𝐵)'	,*% = 0.17.  These estimates 

indicate that as a result of bias in technical change, more of each of these agricultural outputs 

must be foregone to decrease one unit of CO2 emission from deforestation, as illustrated by the 

increased slope of the MRT in Figure 2.  

In 2007, the Brazilian government identified a list of priority municipalities with high levels 

of deforestation and high rates of growth of agricultural output, where strict monitoring would 

take place. These 40 municipalities, clustered in the states of Pará and Mato Grosso, are all 

included in our sample. Our results show that the average rate of technical change in the priority 

municipalities was 10.3%, significantly higher than the 3.8% in the rest of the municipalities in 

these states (the null hypothesis of no difference in these means was rejected at the 1% level). 

Koch et al. (2019) using a diff-in-diff approach study the impact of this monitoring policy on 
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crop yields and livestock stocking rates in priority municipalities versus others. They conclude 

that this policy resulted in substitution of land by other inputs and increased livestock stocking 

rates in priority municipalities; results that do not contradict our broader multifactor productivity 

estimates for these municipalities.  

Brazilian policies to reduce CO2 emissions by controlling deforestation, such as the 2004 

Action Plan for Deforestation Prevention and Control in the Legal Amazon9 and others 

mentioned below, may be related to these results in two ways. First, these programs have focused 

attention on the tradeoff between deforestation and agricultural production, providing incentives 

and enforcement to reduce deforestation and therefore emissions. These incentives or penalties 

would increase the slope of the iso-revenue line (not shown in Figure 2) that agents would 

presumably use as a target to adjust the MRT to the profit-maximizing point on the production 

possibilities frontier in Figure 2. The policies would thus lead us to observe municipalities with 

less deforestation (and emissions) than was profitable (reductions in both desirable and 

undesirable output along the transformation frontier in the vicinity of B and C in figure 2). 

Second, the policies may have also affected the nature of technical change by inducing 

development and adoption of innovations that allowed both yield increases and reduced 

deforestation and therefore emissions (Nepstad et al., 2014). Therefore the relationship between 

policies, their impacts on behavior, and their impact on the nature of technical change, although 

important, cannot be entirely disentangled. In this analysis we do not examine any explicit 

impact of policies on the technology set itself, given the extended period of time required for 

such an impact to occur. 

 
9Plano de Ação para a Prevenção e Controle do Desmatamento na Amazônia Legal – PPCDAm found at 
http://www.mma.gov.br/florestas/controle-e-preven%C3%A7%C3%A3o-do-desmatamento/plano-de-
a%C3%A7%C3%A3o-para-amaz%C3%B4nia-ppcdam 
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Among the other policies mentioned above are the Soy Moratorium (SoyM) in 2006, and the 

Cattle Agreement in 2010, which constituted obstacles to deforestation and the concomitant 

reductions in emissions despite the fact that they are voluntary (Nesptad et al., 2014; Gibbs et al., 

2015). The enforcement of newer regulations such as the Brazilian Forest Code (FC), the Rural 

Environmental Registry of private property (CAR), and surveillance by the Brazilian Institute of 

the Environment and Renewable Natural Resources (IBAMA), have been shown to have positive 

impacts as deforestation and therefore to be effective emission control mechanisms (Gibbs et al., 

2015; Soares-Filho et al., 2014; Hargrave and Kis-Katos, 2013). The impact of these regulations 

on the rate and bias of technical change has not been explicitly studied in this research, but we 

speculate that the intensification measured by the bias in technical change might have been, in 

part, a result. 

The Brazilian government has also invested in infrastructure, public research and extension, 

and has promoted agricultural production via increased credit availability (Gomes and Braga 

(2008); Gasques et al. (2014)). From 1999 to 2009, credit availability through the Program to 

Support Family Farms (PRONAF)10 has increased, on average, at a rate of 24% annually for the 

states considered in this article. The total credit made available by the government to this region 

increased six-fold between 2001 and 2009. These incentives would appear to favor increased 

agricultural production, presumably to some extent at the cost of higher CO2 emissions. 

 

 
10 Programa Nacional de Fortalecimento da Agricultura Familiar. This information is for all municipalities in the 
Legal Amazon region and can be found at http://www.mda.gov.br/sitemda/pagina/acompanhe-
a%C3%A7%C3%B5es-do-mda-e-incra  
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6. CONCLUSIONS 

In this article we evaluate whether the high measured rates of technical change reported in the 

literature for Brazilian Amazon agriculture remain high when CO2 emissions, considered as an 

undesirable output, are included in the estimation. We are more specifically interested in the 

nature of the biases in technical change, to determine whether innovations have made it less or 

more costly to reduce CO2 emissions from deforestation. Our analysis of these issues is based on 

a sample of 287 municipalities in the “arc of deforestation” in Brazil over the period 2003-2015. 

We estimated an aggregate municipality-level technology using a directional output distance 

function with data on grains, livestock and timber production from IBGE and CO2 emissions 

from deforested area from INPE. The directional distance function was specified as a flexible 

quadratic form and estimated using a stochastic frontier approach.  

Our results reveal that the rate of technical change (the percentage increase in agricultural 

outputs and decrease in emissions achievable while holding inputs constant) averaged about 

4.9% per year across these municipalities during the period from 2003 to 2015. These estimates 

of technical change are as high or higher than other estimates for Brazil that have ranged 

between 1% to 4%, even though in our case we included reduction of emissions in the analysis.  

 The most significant of our results are that technical change was biased toward agricultural 

production relative to emissions indicating a change in the marginal rate of transformation along 

the production possibility frontier between CO2 emissions and agricultural outputs. This 

possibility has not been examined before, and it indicates that for given levels of inputs, more 

agricultural production must be foregone per unit of CO2 sequestered in the forest. For future 

agricultural/environmental policies, these results imply that incentives for decreasing 

deforestation-related CO2 emissions will need to increase well above the current $5/t in Brazil's 
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REDD+ agreements, and will need to continue to increase if preservation of the forest is to be 

financially attractive relative to agricultural production. 

The observed rates of deforestation in this region were decreasing during the period of 

analysis. We take this  as indirect evidence of the success of Brazilian policies during this period 

intended to reduce deforestation and therefore emissions. Our results show that meanwhile the 

technology was changing in such a way as to make it more ever expensive to reduce 

deforestation.  However, news media have reported recently that deforestation in 2016 was 

higher than in 2015, the last year of our study. Deforestation in the state of Mato Grosso for 

example, increased by 190% during the first months of 2016 compared to 201511. In fact there 

has been an increase of 58% in the annual deforestation rate in the last four years, from 6.2 

thousand km2 in 2015 to 9.8 thousand km2 in 201912. Our interpretation is that during the early 

years of the century, policies were effectively inhibiting deforestation, despite the increasing 

incentives to deforest because of the nature of technical change. More recent relaxation of the 

enforcement of the policies has allowed the accumulating deforestation incentive to be expressed 

as a catching-up of the rate of deforestation consistent with this technological change. When 

combined with the hotter, drier conditions accompanying climate change, this has resulted in a 

burst of deforestation. Clearly these events are evidence that the REDD+ payments of $5 per ton 

of CO2 preserved are no longer high enough to reduce emissions, relative to the growing value of 

the agricultural production foregone.  

 

 
11 http://g1.globo.com/mato-grosso/noticia/2016/05/desmatamento-da-amazonia-legal-aumenta-190-em-mt-diz-
imazon.html 
12 Information available at TerraBrasilis 
(http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates). 
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Figure 1.  Total deforestation (in km2), 2001-2015, in each of the 287 municipalities in 
the “arc of deforestation” in the northern region of Brazil  
 
Note: White are municipalities not included in the estimation of equation (1). In the application section we 
describe how we identified the two-hundred eighty seven municipalities. 
Source: Authors' estimates using Stata 14, using data obtained from the National Institute for Space Research 
(INPE/PRODES, 2017). 
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Figure 2.  Output Set - P(x), and directional output distance function 
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Table 1. Descriptive statistics for agricultural outputs, inputs and deforestation in 287 
municipalities with 13,000 ha or more deforested  (94% of total deforestation) in the arc of 
deforestation, Brazil, 2003-2015. 
 

 Variable Mean Standard 
Deviation Minimum Maximum 

Outputs      

Grains (tons) 𝑦6 69,112 275,835 0 4,584,870 

Livestock (1000 liters) 𝑦9 5,414 8,917 0 91,953 

Timber (m3) 𝑦4 40,845 114,683 0 1,521,233 

GHGemissions(as 
deforestation, in ha) 𝑏6 4,621 8,683 0 142,463 

Inputs      

Labor (population) 𝑥6 43,544 126,735 1225 2,020,301 

Capital (head of livestock) 𝑥9 167,987 203,354 0 2,282,445 

Agricultural area (ha) 𝑥4 372,896 425,683 420 7,193,020 

Source: Desirable outputs and inputs were obtained from SIDRA/IBGE and deforestation from INPE/PRODES. 
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Table 2. Average rate and biases of technical change in 287 municipalities with 13,000 ha 
or more deforested  (94% of total deforestation) in the arc of deforestation, Brazil, 2003-
2015. 
 

 COLS MLE 

Rate of technical change   

Median 0.0323 0.0334 

Mean 0.0491*** 
(0.0043) 

0.0493*** 
(0.0042) 

Bias Grains-emissions (𝐵)%	,*%) 0.1573*** 
(0.0029) 

0.1480*** 
(0.0027) 

Bias Livestock-emissions (𝐵)'	,*%) 0.1383*** 
(0.010) 

0.1673*** 
(0.0169) 

Bias Timber-emissions (𝐵)&	,*%) 0.1132*** 
(0.0033) 

0.1055*** 
(0. 0035) 

Note: The biases were calculated only on the estimates that satisfy monotonicity. Monotonicity for both grains and 
livestock was satisfied at 98%, for timber at 92%, and for emissions (deforestation) at 88% of the 3731 observations. 
The standard errors for the average technical change were estimated using the Delta method, *** for p-value smaller 
than 0.01, ** smaller than 0.05, and * smaller than 0.1.  
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Figure 3. Average rates of technical change in the arc of deforestation, Brazil, from 2003 to 

2015. 
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Figure 4. Histogram of average rates of technical change by municipality in the arc of 
deforestation, Brazil, 2003 to 2015. 

Note: The top and bottom 1% of the sample were dropped to simplify the figure. 
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Figure 5. Average rate of technical change in 2011 by municipality in the arc of 
deforestation, Brazil.  
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APPENDIX A 

Table A1. Parameter estimates for the directional distance function under alternative 
econometric approaches, municipalities in the arc of deforestation, Brazil, 2003-2015.  
 

Coefficient Variable COLS MLE 
𝜷𝟏 𝑦6 -0.2401*** -0.2418*** 

  (0.0103) (0.0102) 
𝜷𝟐 𝑦9 -0.1011*** -0.0939*** 

  (0.0067) (0.0065) 
𝜷𝟑 𝑦4 -0.5326*** -0.5254*** 

  (0.0105) (0.0104) 
𝜷𝟏𝟏 𝑦+, 0.0021*** 0.0022*** 

  (0.0003) (0.0003) 
𝜷𝟐𝟐 𝑦,, 0.0056*** 0.0053*** 

  (0.0004) (0.0004) 
𝜷𝟑𝟑 𝑦-, 0.0558*** 0.0572*** 

  (0.0022) (0.0021) 
𝜷𝟏𝟐 𝑦6𝑦9 0.0164*** 0.0170*** 

  (0.0013) (0.0013) 
𝜷𝟏𝟑 𝑦6𝑦4 -0.0401*** -0.0401*** 

  (0.0016) (0.0015) 
𝜷𝟐𝟑 𝑦9𝑦4 -0.0140*** -0.0150*** 

  (0.0014) (0.0013) 
𝜸𝟏 𝑥6 -0.0275 -0.0156 

  (0.0494) (0.0466) 
𝜸𝟐 𝑥9 0.3531*** 0.3776*** 

  (0.0389) (0.0367) 
𝜸𝟑 𝑥4 0.0074 0.0069 

  (0.0271) (0.0256) 
𝜸𝟏𝟏 𝑥6𝑥6 0.0021* 0.0019* 

  (0.0012) (0.0011) 
𝜸𝟐𝟐 𝑥9𝑥9 -0.0304*** -0.0855*** 

  (0.0088) (0.0147) 
𝜸𝟑𝟑 𝑥4𝑥4 0.0419*** 0.0002 

  (0.0118) (0.0026) 
𝜸𝟏𝟐 𝑥6𝑥9 -0.0815*** -0.0336*** 

  (0.0159) (0.0083) 
𝜸𝟏𝟑 𝑥6𝑥4 -0.0553*** 0.0394*** 

  (0.0143) (0.0116) 
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𝜸𝟐𝟑 𝑥9𝑥4 0.0001 -0.0473*** 
  (0.0026 (0.0133) 

𝜹𝟏𝟏 𝑦6𝑥6 -0.0607*** -0.0619*** 
  (0.0040) (0.0038) 

𝜹𝟏𝟐 𝑦6𝑥9 -0.0350*** -0.0328*** 
  (0.0054) (0.0052) 

𝜹𝟏𝟑 𝑦6𝑥4 0.0389*** 0.0401*** 
  (0.0044) (0.0042) 

𝜹𝟐𝟏 𝑦9𝑥6 -0.0086*** -0.0070*** 
  (0.0013) (0.0014) 

𝜹𝟐𝟐 𝑦9𝑥9 0.0074*** 0.0069*** 
  (0.0024) (0.0023) 

𝜹𝟐𝟑 𝑦9𝑥4 0.0008 -0.0005 
  (0.0020) (0.0018) 

𝜹𝟑𝟏 𝑦4𝑥6 0.0597*** 0.0580*** 
  (0.0044) (0.0042) 

𝜹𝟑𝟐 𝑦4𝑥9 0.0136** 0.0090* 
  (0.0056) (0.0054) 

𝜹𝟑𝟑 𝑦4𝑥4 -0.0430*** -0.0388*** 
  (0.0060) (0.0057) 
𝝊𝟏 𝑡 0.0129** 0.0016 

  (0.0053) (0.0054) 
𝝊𝟏𝟏 𝑡, -0.0004 0.0011* 

  (0.0007) (0.0007) 
𝝑𝟏𝟏 𝑥6𝑡 -0.0022** -0.0022*** 

  (0.0009) (0.0009) 
𝝑𝟐𝟏 𝑥9𝑡 0.0095*** 0.0103*** 

  (0.0018) (0.0017) 
𝝑𝟑𝟏 𝑥4𝑡 -0.0027* -0.0025* 

  (0.0015) (0.0014) 
𝜼𝟏 𝑦6𝑡 0.0112*** 0.0112*** 

  (0.0006) (0.0006) 
𝜼𝟐 𝑦9𝑡 0.0022*** 0.0023*** 

  (0.0005) (0.0005) 
𝜼𝟑 𝑦4𝑡 0.0037*** 0.0035*** 

  (0.0009) (0.0009) 
𝜽𝟏 𝑏 0.1263*** 0.1388*** 

  (0.0090) (0.0096) 
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𝝁𝟏 𝑦6𝑏 -0.0216*** -0.0209*** 
  (0.0013) (0.0012) 
𝝁𝟐 𝑦9𝑏 0.0080*** 0.0073*** 

  (0.0011) (0.0011) 
𝝁𝟑 𝑦4𝑏 0.0016 0.0021* 

  (0.0011) (0.0011) 
𝜽𝟏𝟏 𝑏𝑏 -0.0119*** -0.0115*** 

  (0.0012) (0.0012) 
𝝋𝟏 𝑏𝑥6 -0.0096*** -0.0109*** 

  (0.0026) (0.0025) 
𝝋𝟐 𝑏𝑥9 -0.0140*** -0.0169*** 

  (0.0033) (0.0032) 
𝝋𝟑 𝑏𝑥4 -0.0033 0.0008 

  (0.0053) (0.0051) 
𝝀𝟏 𝑏𝑡 0.0171*** 0.0170*** 

  (0.0010) (0.0010) 
𝜸𝟎 Constant -0.2065** -0.0774 

  (0.0945) (0.0899) 
𝝈𝒖	  - -2.7958*** 

   (0.1457) 
𝝈𝒗	  - -3.5791*** 

   (0.1033) 
𝝀𝑴𝑳𝑬  - 1.4794*** 

   (0.0262) 
Note: COLS parameters used as starting values for MLE. Standard error in parenthesis; *** for p-value smaller than 
0.01, ** smaller than 0.05, and * smaller than 0.1. The dependent variable is the negative of average deforestation.	
𝝀𝑴𝑳𝑬 refers to the estimated 𝝈𝒖/𝝈𝒗 instead of the parameter associated with the interaction between undesirable 
output and time trend (Eq. 7). In the two methods, we include municipality dummies, available upon request. 
Parameters for deforestation, are recovered using the translation property. 3731 observations were used in these 
regressions.  
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