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Infrequent Shocks and 
Rating Revenue Insurance: 

A Contingent Claims Approach 

Timothy J. Richards and Mark R. Manfredo 

Revenue insurance represents an important new risk management tool for agricul- 
tural producers. While there are many farm-level products, Group Risk Income 
Protection (GRIP) is an area-based alternative. Insurers set premium rates for GRIP 
on the assumption of a continuous revenue distribution, but discrete events may 
cause the actual value of insurance to differ by a significant amount. This study 
develops a contingent claims approach to determining the error inherent in ignoring 
these infrequent events in rating GRIP insurance. An empirical example from the 
California grape industry demonstrates the significance of this error and suggests 
an alternative method of determining revenue insurance premiums. 

Key words: Black-Scholes, contingent claim, grapes, insurance, jump-diffusion, option 
pricing 

Introduction 

Revenue insurance is becoming an increasingly important risk management tool for U.S. 
agricultural producers. Insuring gross farm revenue directly addresses the key risk 
management concern of most growers-providing stable cash flows while minimizing 
the cost of obtaining insurance. Although many growers choose an individual farm- 
based yield or revenue insurance product, area-based revenue insurance alternatives, 
such as Group Risk Income Protection (GRIP), promise advantages for producers and 
insurance providers alike [U.S. Department of AgricultureBtisk Management Agency 
(USDA/RMA) 2001.1.l Potentially lower premiums, less stringent data requirements, 
more complete coverage, and lower administrative costs are all potential benefits from 
an area-based revenue insurance plan.2 Despite these many advantages, participation 
in GRIP programs remains low (USDA/RMA 2002). Such low participation rates suggest 
there may be fundamental problems with the GRIP insurance pricing structure. 
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'Crop Revenue Coverage (CRC), a farm-level revenue insurance product allowing growers to take advantage of any price 
increases between planting and harvest, has become a popular alterative for Midwestern farmers. I n  2000, fully 45.9% of all 
insured corn acreage was represented by CRC c o n t r a c t s ( ~ ~ ~ A / R M A  2002). 

Some producers' Actual Production History (APH) yields are likely to be much lower than the area-based yields. If this 
is the case, then the higher implicit premium subsidy under GRIP might encourage producers to buy the GRIP policy, 
assuming producers are motivated by the absolute dollar value of the premium subsidy, not the subsidy as  a percentage of 
the premium. 
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Clearly, if premium rates are set too high relative to growers' expected losses, growers 
will be better off self-insuring or choosing another product. In contrast, if premium rates 
are set too low, insurance companies and the RMA are less likely to actively market the 
product for fear of incurring excessive underwriting losses. Rating errors may reflect 
incorrect distributional assumptions, data problems, or more fundamental issues with 
the rating methodology. Indeed, a growing number of studies determine the value of 
insurance through entirely different approaches compared to procedures employed by 
insurance actuaries--e.g., by using contingent claim, or option pricing techniques. 

Several studies demonstrate that a contingent claim approach can be used to deter- 
mine justifiable premium rates. For example, Turvey, and Turvey and Amanor-Boadu 
adopt a traditional Black-Scholes approach to investigate the true value of income 
insurance and price-support programs for Canadian farmers. Stokes, Nayda, and English 
treat gross revenue as  a nontradeable asset in developing an  equilibrium pricing 
approach used to calculate premiums for farm-based revenue insurance products in the 
United States. Using Monte Carlo simulation methods, Stokes derives an Asian-option 
pricing analogue for Crop Revenue Coverage (CRC) insurance and shows that existing 
premiums differ significantly from their true values. Academic research in general has 
a strong history of contributing to the development of rating methods used in actual 
practice (Botts and Boles; Skees and Reed; Goodwin; Goodwin and Ker). Therefore, 
further academic investigation into revenue insurance rating methods will likely have 
a significant impact on the way in which insurance premiums are determined in the 
future. 

Option pricing techniques have the ability to correct for at  least two potential sources 
of error which may occur in traditional rating methods. First, existing actuarial methods 
either explicitly or implicitly assume revenue distributions are continuous, despite the 
fact that crop revenue may follow more of a composite process-i.e., one composed of 
continuous and discrete-jump elements. While Stokes acknowledges this possibility, he 
leaves its solution to future research. Second, the value of insurance to growers is 
twofold. In addition to its intrinsic value, insurance is viewed by growers as akin to an 
option premium, or the value of having an alternative to selling what yield they are able 
to harvest for whatever the market will bear. Consequently, if the error caused by ignor- 
ing these two sources of value is significant, existing rating methods will understate 
justifiable premiums for revenue insurance. The implications of such rating errors are 
of more than notional significance, because mispriced insurance products will likely fail 
due to either insufficient demand or supply. Moreover, the demand for more accurate 
pricing techniques promises to grow as innovation extends beyond new products to new 
markets with unique data constraints and entirely different risk profiles, such as revenue 
insurance for specialty crops. 

In fact, the Agricultural Risk Protection Act (ARPA) of 2000 provides incentives for 
the extension of insurance to as many growers as possible, including those who grow 
specialty crops. Given that these growers have limited risk management alternatives, 
despite research showing a significant latent demand, revenue insurance appears to be 
a viable option (Blank and McDonald). Pricing revenue insurance for specialty crops, 
however, requires a method capable of accommodating the idiosyncracies of their price 
and yield processes. Although the geographic concentration of many specialty crop mar- 
kets means that discrete events and the natural hedge created by negatively correlated 
prices and yields are more important than for program crops, most specialty crops are 
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grown in irrigated or temperate climates. Thus, yields tend to be more stable. Conse- 
quently, if rating methods developed for program crops ignore option values and implicit 
hedges imbedded in revenue insurance, results are likely to (a) understate the true 
value of insurance due to the existence of discrete events, and (b )  overestimate justifi- 
able premiums to the extent negative correlations between price and yield are ignored. 

Unlike premiums for CRC, the most popular revenue insurance product, GRIP premi- 
ums do take price and yield correlation into account (Goodwin, Roberts, and Coble). 
However, the GRIP rating method does not explicitly address the likelihood of discrete 
events. Clearly, as  agricultural insurance expands into new products and markets, 
rating methods must reflect the unique risks involved in each if the performance of the 
Federal Crop Insurance Corporation (FCIC), measured by both participation rates and 
loss ratios, is to remain sound. 

The primary objective of this analysis is to develop an appropriate methodology for 
determining area-based revenue insurance premiums, taking into account the possi- 
bility that specialty crop revenues experience periodic, discrete shocks to revenue, but 
also include an implicit hedge due to negatively correlated prices and yields. While the 
methodology presented here could be applied to any number of crops, the study focuses 
on rating insurance for specialty crops. Given this focus, data from California grape 
production (wine grapes, table grapes, and raisin grapes) are used to examine the poten- 
tial error incurred by ignoring discrete events. California grapes are relevant as a "case 
study" because they are representative of the types of specialty crops to be insured 
under GRIP. As such, California grapes may demonstrate the potential shortcomings 
of the current approach to valuing and administering insurance programs designed for 
traditional program crops. 

A Contingent Claims Model of 
Insurance Premiums 

A revenue insurance contract gives a grower the right, but not the obligation, to claim 
a fmed amount from the insurer in the event of an indemnifiable loss. Because the prob- 
ability of this loss is known only up to an observed distribution for yields and prices, the 
value of such an insurance contract can be established in a manner similar to a European 
call option (Turvey; Gardner 1977,1988; Fackler; Petzel; Bardsley and Cashin; Marcus 
and Modest; Stokes, Nayda and English; Stokes). Applying the contingent claim method 
of option valuation (Black and Scholes 1972,1973; Black; Merton 1973), the particular 
value of this option depends upon the parameters of the stochastic processes governing 
prices and yields, and therefore revenue. Due to the importance of the Black-Scholes 
(BS) result, both in academia and financial markets, a vast amount of research has been 
directed toward improving the accuracy of the original BS model. 

Several studies document the errors caused by the simplifications made in the 
original BS pricing model and propose extensions to correct them. Bakshi, Cao, and 
Chen provide a review of some of these refinements, and demonstrate the relative 
importance of each using a general option pricing model that nests anumber of common 
submodels. Although many of the crop insurance and price support studies cited above 
adopt some variant of the original BS model to value protection for program crops, the 
risks faced by produce growers are somewhat different, requiring an alternative valu- 
ation approach. 
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For produce growers, stochastic processes underlying revenues may not be completely 
continuous as  is commonly assumed, but rather consist of continuous and discrete 
components. If true, this would mean revenues experience a relatively small amount of 
year-to-year variation, but possess a probability mass or "fat tail" in the lower end of the 
distribution, reflecting events such as frosts, floods, or mass pest infestations. Although 
all crops are adversely affected by these perils, the economic impact on fresh produce 
growers is often particularly severe as the geographic concentration of produce produc- 
tion and its perishability exacerbate any shock to supply. Historically, yield losses have 
been covered by ad hoc disaster assistance payments. However, if federally underwritten 
insurance programs are to be priced correctly, they must reflect the likelihood of these 
discrete events and the damage such events can cause. 

For the arbitrage logic underlying the fundamental valuation equation of the BS 
model, an investor must be able to create a portfolio consisting of a short position in the 
derivative security, a long position in the underlying asset, and lending a t  the risk-free 
rate such that a zero-risk portfolio is achieved. However, for nontraded assets where 
derivative securities on the underlying asset do not exist (e.g., grapes), an equilibrium 
pricing method is more appropriate (Bates 1991; Stokes; Hilliard and Reis). 

In a Capital Asset Pricing Model (CAPM) framework, the no-arbitrage condition 
underlying the contingent claim pricing method requires the periodic returns to holding 
the asset to be uncorrelated with a market portfolio, so the required rate of return is the 
risk-free rate. Indeed, if revenues are comprised of both continuous and discrete 
components, then it is reasonable to assume both the smooth component and the jump 
component are unrelated to the market portfolio. In the CAPM approach, therefore, both 
components would have a zero beta, and the required rate of return would again be the 
risk-free rate (Merton 1976). 

Because grapes represent a small portion of the overall economy, it is entirely plaus- 
ible that grape returns are indeed independent of returns to the market as a whole. 
Given these simplifying assumptions, an option pricing model is developed for revenue 
insurance under relatively general distributional assumptions for crop revenue. 

Beginning from a specification of the process underlying revenue as the product of 
price and per acre yield (R =py), Black's variation on the BS contingent claim approach 
to valuing European call options on commodity contracts is used (Black; Cox and Ross; 
Hull13 Whereas Black's model relies upon a single stochastic process for the futures price 
of a commodity, crop revenue is divided into random processes governing both price and 
yield. The price process is represented as a geometric Brownian motion with drift: 

and the yield process in a similar manner:4 

(2) dy = a, ydt + oy ydz, , 

Although Black develops the model assuming the underlying asset is a futures contract, he explains the logic of why this 
is equivalent to a claim on the spot commodity as well. By transferring risk to those most able to bear it through a corpor- 
ation, commodity growers are able to establish a zero-beta position in their commodity portfolio, and thus act as if the spot 
price is equivalent to a futures price. 

Because there is some question as to whether or not yields exhibit trends over time, this assumption is tested in the 
empirical example below. Contrary to Turvey's findings, a significant drift component is found in these data. 
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where a, and a, are rates of drift, or annual rates of price and yield increase, respec- 
tively; a, and a, are standard deviations of the price and yield processes; and dz is the 
increment of a standard Weiner process, where dz2 -+ 0, and dzpdzy -+ pdt, and p is the 
correlation between price and quantity. Applying Ito's lemma to R gives: 

where aRlap =y, aRlay =p, a2Rlap2 = 0, a2Rlay2 = 0, and a2Rlapay = 1. Substitutingthese 
terms and (1) and (2) into (3), and allowing the process to vary by county, gives an 
expression for the stochastic process for revenue in county i: 

where a, = a, + a,, + pa. a. If revenue in a particular county follows this process, then 
LP 2,. 

the value of a guaranteed level ofR is equivalent to the value of a call option on the 
revenue target. 

Assume arbitrage so that the value of a call option on a grower's revenue stream in 
county i, VA, with target revenue ZiR is: 

where O is the normal cumulative distribution function, R,, is the current, pre-contract- 
ing farm revenue, r is the discount rate, and the respective values of d,, and di2 are 
given by: 

( ln(RioI~,) + %(a: + a; + 2 p ,  uip o,)r 
d.. = I 

and 

In (6) and (7), T is defined as the time to expiry in terms of a proportion of a year (if T is 
the time to expiry in days, then T = Tl365). For the current example, the time to expiry 
is assumed to be the average time between contracting for insurance and harvesting 
grapes, or roughly six months. While this model assumes the revenue process is contin- 
uous, shocks to either price or yield can cause the revenue process to differ from that 
described above. 

Indeed, Goodwin, Roberts, and Coble argue that  jump processes or jump-diffusion 
mixtures may be better able to represent the true distribution of revenue. Although they 
attempt to model nonstandard price distributions as mixtures of normals, shocks may 
instead be independent, discrete events rather than shifts of the entire distribution. By 
definition, indemnifiable events are more likely to be discrete in nature, or "abnormal" 
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(Merton 1976X5 As such, these events indicate the stochastic process governing revenue 
may be a composite of both a continuous part and a jump process, the arrivals of which 
are assumed to be Poisson distributed and their magnitude lognormal. Because prices 
and yields are generally assumed to be negatively correlated, the probability of a jump 
in revenue would seem a priori to be much lower than a shock to either price or yield. 
Consequently, the premium for revenue insurance is expected to be significantly lower 
than either price or crop insurance. Although the natural hedge implied by negative 
price-yield correlation is well understood, the impact of discrete events on the price of 
insurance is less clear. 

In a contingent claim valuation framework, the effect of discrete events is captured 
by modifying the underlying process governing revenue to incorporate discrete jumps 
so that: 

where 3L is the mean number of arrivals per unit of time (Merton 1976), dq is the instan- 
taneous change in revenue due to the discrete event, and 4 is the resulting expected 
percentage change in revenue. Next, given the dynamics in (8) for returns to the under- 
lying asset, the option price can be expressed as a twice-differentiable function of this 
value and time: V: = F(R, t). 

Assuming the CAPM accurately describes the equilibrium to which all asset prices 
must move, and discrete shocks have a zero beta, Ito's lemma is applied to F(R, t) to 
produce the fundamental partial differential equation describing the equilibrium option 
value (suppressing the county subscript): 

subject to F(0, t) = 0 and F(R, 0) = max [O, R - Z,]. Define k as the realization of an i.i.d. 
random variable representing the percentage change in the insured variable if the event 
occurs. Assuming k is lognormally distributed gives (Merton 1976): 

In (101, fn(R, t) is the option value for exactly n realizations of the discrete event which 
2 is found by modifying the components of (5) by substituting the variance term (v: = OR + 

nh2/t) and the interest rate (rn = r - A @  + nylt), where h2 is the variance of the log of k, 
y = log(1 + @), and 3L' = 3L(1+ 4). Therefore, the value of insurance for revenue following 
a composite jump-diffusion process is a weighted average of its value under each possible 
realization of the random number of discrete events, given adjustments to the variance 
of revenue and the discount rate. Consequently, the difference between the value of 
insurance calculated assuming a continuous revenue process and the value under a 

More common applications of such jump-diffusion processes consider stock prices, where such abnormal events may be 
the release of unfavorable information regarding clinical trials of a new drug, the outbreak of a foodborne illness in a 
restaurant chain, or the recall of a faulty tire. Other examples ofjump-diffusion processes in derivative valuation include the 
likelihood of bankruptcy (Cox and Ross), default on mortgage insurance (Johnson and Stulz), corporate bonds (Hull and 
White), currency devaluation (Bates 1996), or price movements in equity markets (Jorion; Naik and Lee). 
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jump-diffusion process is a function of both the probability and magnitude of discrete 
events. For the purposes of this study, there are two ways of assessing the importance 
of these two factors. 

First, analytical expressions for insurance premiums under competing distributional 
assumptions are compared in order to predict the direction of the potential error caused 
by ignoring low-probability catastrophic events. Although option comparative statics (or 
"Greeks") are well understood (see Wolf or Hull, for example), this study focuses on 
comparing the difference between option values calculated under each assumed revenue 
process. For revenue insurance, the difference in option premiums is given by: 

where V;, is the premium associated with n realizations of the discrete event. Because 
the first term in (11) necessarily sums to one, it suffices to show that each of the V',, 
values is greater than the continuous counterpart to determine whether the presence 
of discrete jumps results in a higher total premium. The impact of discrete events has 
both an "interest rate" and a "volatility" effect (vega), both of which can be shown to be 
unambiguously positive (details are available from the authors upon r e q ~ e s t ) . ~  There- 
fore, the empirical question becomes one of whether these analytical differences are 
indeed economically significant, given the small probability that any adverse event is 
likely to occur. The larger question remains, however, whether the pricing model in (10) 
generates estimates of insurance premiums which differ significantly from those calcu- 
lated using current FCIC methods. 

Comparing the insurance premium calculated using (10) with GRIP premiums pro- 
vides a second basis for evaluating the significance of both discrete events and the 
option value inherent in a revenue guarantee. The FCIC sets pure premiums for GRIP 
insurance such that  they are actuarially sound, or equal to expected underwriting 
10sses.~ First, distributions for price and yield are defined to calculate expected losses. 
This is necessary because the FCIC defines revenue as the product of these two values, 
rather than historical realized revenue. Consistent with FCIC practice, an empirical 
yield distribution for each county is defined, correcting for any trends in yield and 
scaling the result to represent a common "weather year" based in 1998 (USDA/RMA 
2001). Because there is no futures market for grapes, annual county-level prices and 
historical sample variances are used to describe the price distribution, which is assumed 
to be lognormal. Lognormality is not only consistent with much of the options-pricing 
literature, but is also able to account for the positive skewness resulting from the ability 
to allocate grapes among competing uses (wine, raisins, table) in the event of a poor crop 
year. Next, because the correlation between prices and yields is likely to be a significant 
factor in rating county-level revenue insurance, the correlation for each county is 
estimated and the average correlation is used to help define a distribution for annual 
revenue. 

The vega is usually listed among the group of option-value sensitivities known as "Greeks," despite the fact that vega is 
not a member of the Greek alphabet. 

'Pure premiums are exclusive of administrative costs and are intended to cover underwriting losses only. Gross premiums 
include the insurance load and are the values quoted to insurance buyers (Vaughn and Vaughn). 
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The revenue distribution is defined by drawing correlated prices and yields according 
to the method developed by Johnson and Tenenbein and applied to Midwestern corn 
production by Babcock and Hennessy. This approach is described in general terms, 
while readers interested in further details should consult Babcock and Hennessy or the 
GRIP rating documentation (USDAIRMA 2001). 

First, begin by defining marginal distributions for p and y consistent with the 
assumptions above: Fl(p) and F2( y). Next, rank all yields from highest to lowest. Define 
U' = @-1(F2(Y)), where @ is the standard normal cumulative distribution and F2( y) is the 
empirical yield distribution defined as: 

for yields that are above county average, and 

for those below average. Third, define: 

where V' is a standard normal random variable and c is a constant in the interval [O, 11 
selected so as to make the correlation betweenp and y assume the desired value. Next, 
definep' = H,(V), where Hl(V) is the distribution function of Vso thatp = ~ ~ ' [ l  - Hl(V)] 
provides a variable consisting of price deviates with the required yield correlation. 
Drawing from this price distribution 1,000 times for each yield value and multiplying 
the result by the associated yield provides 1,000 revenue deviates for each year in the 
sample. In the example below, there are 13 years of data for each county, so 13,000 rev- 
enue deviates are generated. Finally, expected revenue is multiplied by a fxed coverage 
level (80%, for example) and the average deviation of actual revenue from this guarantee 
over all 13,000 possible revenue values for each county is found. This value, as a percent- 
age of total liability, is the expected loss, or the pure GRIP premium. The next section 
describes the particular application of this approach and the comparison of insurance 
premiums calculated using each alternative method. 

Data and Methods 

To assess the premium-valuation error inherent in the current GRIP rating method, this 
study compares the results from three alternative valuation methods on a pairwise 
basis. The first set of results compares the difference between insurance premiums 
calculated using a traditional Brownian motion (BM) contingent claims approach 
relative to those found with the current GRIP rating methods. For the BM approach, 
revenue is assumed to be distributed lognormal, with lognormal prices and lognormal 
yields, while the current GRIP methodology assumes lognormal prices but an empirical 
yield distribution. Because there is no a priori reason to believe revenues are indeed 
lognormal, each revenue series is tested for lognormality. To do so, the log of revenue 
for each different type of grape is regressed against a set of geographic dummy variables 
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and the residuals are tested for normality using a Jarque-Bera test (the results appear 
in table I).' 

The second comparison examines the difference between insurance premiums using 
the BM approach relative to premiums calculated under a jump-diffusion (JD) process. 
The primary hypothesis is that improvements in insurance pricing can result from 
incorporating a jump-diffusion process for revenue distribution relative to a Brownian 
motion assumption. Thus, the distribution of revenue is assumed to be lognormal, condi- 
tional on no jumps. A growing amount of research suggests that a mixture distribution 
can explain apparent pricing anomalies among exchange rates (Bates 1996), stock price 
(Naik and Lee), and commodity options (Hilliard and Reis). Higher insurance premiums 
are expected to result if revenue follows a JD process as opposed to a BM process. 

Because the defining characteristic of the GRIP program is its use of an area trigger, 
or a "group risk" concept, the data describe grape production and prices on a county level 
in the state of California. "County Agricultural Commissioner Reports," prepared by the 
California Department of Food and Agriculture, provide acreage, yield, and price data 
for wine, table, and raisin  grape^.^ For wine grapes, the sample counties are Fresno, Kern, 
Kings, Madera, Mendocino, Merced, Sacramento, San Joaquin, San Luis Obispo, Stanis- 
laus, and Tulare. Raisin and table grapes are grown only in a subset of these counties- 
raisin grapes in Fresno, Kern, Kings, Madera, Merced, and Tulare counties, and table 
grapes in Fresno, Kern, Kings, Madera, Merced, San Joaquin, and Tulare counties. 

For each county, there are 13 annual observations, from 1986 through 1998. Given 
the limited number of annual observations per county, all observations are pooled across 
counties for each type of grape for the purposes of estimating the jump-diffusion 
parameters. This yields 143 annual observations for wine grapes, 91 for table grapes, 
and 78 for raisin grapes. Table 1 provides a summary of the price, yield, and revenue 
data used in each valuation model, while each of the option-value models assumes a risk- 
free rate of 6%. Although the selection of a risk-free rate is somewhat arbitrary, variation 
in this value has little effect on calculated option values and does not affect the quali- 
tative conclusions among premiums. 

There are two ways of parameterizing the revenue process: implicit estimation, or 
maximum likelihood. Hilliard and Reis adopt the former approach, arguing that a 
maximum-likelihood approach requires too many time-series observations to include a 
sufficient number of low-probability events, and preference parameters must be 
estimated for use in the risk-neutralized valuation equation. However, an  implied 
parameterization approach requires a series of option prices. Because there are no 
traded options on grapes, or on many other commodities for which GRIP will eventually 

The assumption of both lognormal prices and yields for the Brownian motion model is a matter of necessity. While log- 
normal prices are consistent with the literature, as  pointed out by a reviewer, it is more difficult to justify lognormal yields. 
However, the use of the lognormality assumption is standard for contingent claimsvaluation, and lognormal yields have been 
used in previous research examining revenue insurance (Turvey). Based on the results reported in table 1, wine and raisin 
grape revenues appear to be lognormal, but not table grapes. Therefore, the table grape results should be interpreted with 
the caveat that the BS pricing model is not directly applicable. 

According to the USDA's National Agricultural Statistics Service (NASS), "... these reports [the County Agricultural 
Commissioner Reports] provide the most detailed annual data available on agricultural production by county. Basic data 
collected by the Agricultural Commissioners and their stafh are compiled from many sources. Sources vary from county to 
county. Examples of data sources include grower surveys, regulatory and inspection data, shipment data, industry assess- 
ments, etc." [online website, http://www.nass.usda.gov/~~ullagcom~inde~~av.html. Given theinconsistency in data collection 
methods, the quality of these data are of some question, but, as  NASS officials state, they remain not only the most detailed, 
but often the only county-level data available. We assume any errors are random. 
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Table 1. Summary of Grape Price, Yield, and Revenue Data 

Wine Table Raisin 
Description Unit Grapes Grapes Grapes 

Yield Volatility: a, % 0.029 0.047 0.085 

Price Volatility: a, % 0.021 0.034 0.077 

Revenue Volatility: a, % 0.052 0.083 0.159 

Average Yield: 9 tonslacre 8.433 8.656 10.541 

Average Price: p $/acre 460.271 939.702 245.312 

PriceNield Correlation: p,, -0.046 -0.036 -0.032 

x2 Value: (H,: Lognormal Revenue) 1.400 18.825* 3.436 

Critical x2: (df = 2, a = 5%) 5.990 5.990 5.990 

Number of Observations ( N )  143 9 1 78 

Notes: A single asterisk (*) denotes significance a t  the 5% level. All volatility and correlation values reported here 
are sample averages across all counties for each type of grape. Parameters used in the option pricing model are 
county specific. 

be offered, the maximum-likelihood method of Ball and Torous; Jarrow and Rosenfeld; 
and Das is the only viable alternative. Even with pooling of grape data across counties, 
there is concern the data series are not sufficiently long to reliably estimate jump 
parameters. However, the lack of traded options and limited historical data on price and 
yields are endemic of all produce and specialty crops. Indeed, firms that rate revenue 
insurance products will be faced with similar obstacles. Fortunately, the use of maximum 
likelihood imposes little cost. Ball and Torous; Jarrow and Rosenfeld; and Jorion each 
demonstrate the ability of the maximum-likelihood approach to provide efficient esti- 
mates of both the frequency and magnitude of jumps in stock prices, even in relatively 
small data sets.'' Adoption of the maximum-likelihood method becomes a matter of 
necessity, not preference, when estimating jump-diffusion parameters for produce com- 
modities. 

Prior to estimating the jump-diffusion parameters, however, specification tests are 
performed to establish whether a jump-diffusion or continuous Brownian motion process 
is a better representation of the revenue series. To accomplish this, a maximum-likeli- 
hood approach is used to test the Poisson-normal mixture model (Merton 1976; Jarrow 
and Rosenfeld) against a normal alternative. A Wald chi-square test is used to test the 
null hypothesis that there are no jumps in the revenue series, or A = a2 = 0, based on 
maximum-likelihood estimates of the unrestricted log-likelihood function: 

lo Note, the data sets in each of these studies are considerably larger than the one used here. Therefore, the sampling 
properties of the maximum-likelihood estimator claimed by Ball and Torous may not be strictly applicable to the current 
case. 
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for T observations of annual changes in revenue (ri = ln(Ri,tlRi,t_l)) for each i county, 
where 3L is the Poisson intensity parameter, o i  is the volatility of the continuous part, 
ti2 the volatility of the discrete part, and pR = a, - 412 is the mean of r. Following Ball 
and Torous, n is defined as the random realization of a shock to revenue, and N is fixed 
at a value likely to include all possible occurrences of a shock (three proved to 
be sufficient).'' The log likelihood (15) is maximized with respect to the remaining 
parameters after pooling all county data and allowing for fmed county effects for each 
grape type. 

The goal in estimating this model, however, is not only to determine which specifica- 
tion provides a better fit to the data, but also to estimate the revenue process parameters 
to be used in calculating contingent-claim insurance premia. Therefore, once each of the 
jump-diffusion parameters has been estimated by maximizing (15), they are used in 
equation (10) to determine the option value of each insurance premium. Further, it is 
important to remember that estimates of the jump-diffusion parameters are obtained 
with the pooled data, but the insurance premiums (option price simulations) use the 
same 13,000 simulated price and yield values created for the GRIP procedure. Doing this 
allows for the continuity of market conditions, and permits the examination of differences 
in the premiums due strictly to the model used. 

Results and Discussion 

Prior to calculating the premiums implied by a contingent claim approach, it is first 
necessary to determine the appropriate form of the stochastic process underlying revenue 
for each type of grape. To do so, we report both results obtained by applying the Wald 
chi-square test to each revenue process as well as the individual parameter estimates 
(table 2). For wine grapes, the Wald chi-square test statistic is 68.050. The corresponding 
value for table grapes is 38.637, and 102.288 for raisin grapes. With two restrictions and 
a significance level of 5%, the critical x2 value is 5.99, so the null hypothesis of simple 
Brownian motion is rejected in favor of a jump-diffusion specification subject to the caveat 
raised by Andrews for one-sided hypothesis tests of this type.12 Further, the majority of 
individual parameter estimates are significant at a 5% level, so the weight of the avail- 
able statistical evidence leads, albeit tentatively, to the conclusion that a jump-diffusion 
process is preferred to a simple Brownian motion for each grape revenue series. Note, 

I' Other studies estimate the jump-diffusion model with N = 10 (Ball and Torous; Jorion). We adopted the approach sug- 
gested by Ball and Torous and first estimated the model as a Bernoulli, or where N =  1. With these startingvalues, the model 
was subsequently estimated with increasingly higher values of N  until the estimated parameters did not change. This 
occurred at  N = 3 for each type of grape. This finding is not surprising because the sample used here is considerably smaller 
than samples used in other studies, so it is expected there will be correspondingly fewer total jumps in the series. 

'2Andrews shows that when the possibility exists for the estimated parameter to lie on the boundary of the null hypothesis 
(i.e., A = ti2 = O), then standard test statistics understate the true critical value of the test. He presents simulated quasi- 
likelihood ratio (QLR) critical values for a test involving one parameter (in the context of both GARCH and random 
coefficients models) which he shows to be asymptotically equivalent to those relevant to the Wald chi-square tests used in 
the current study. Andrews demonstrates they are significantly higher than the values which are typically used. Given that 
our problem involves two parameters, is fundamentally different from the examples used in Andrews' paper, and is estimated 
in a relatively small sample, we present the Chebyshev inequality, or upper-boundvalue for the significance of a test statistic 
under an unknown distribution. Chebyshev's inequality is calculated as Pr [x2 > MI 5 qIM, where q is the number of para- 
metric restrictions and M is the number of standard deviations defined by the estimated X2 value. If the upper bound of this 
p-value is less than 5%, then the null hypothesis can be rejected under more conservative criteria than is typical when using 
a Wald chi-square test. As shown in table 2, the significance level is below 5% in both the wine and raisin grape cases, but 
not table grapes. Therefore, the jump-diffusion estimates for table grapes should be interpreted with some caution. 
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Table 2. California Wine, Table, and Raisin Grape Revenue Process Maximum- 
Likelihood Estimates, 1986-2000 

Parameters 1 Wine Grapes Table Grapes Raisin Grapes 

Counties Coefficient t-Ratio Coefficient t-Ratio Coefficient t-Ratio 

a 0.091* 4.829 0.026* 2.616 0.161* 9.519 

a2 0.044* 8.131 0.016* 6.999 0.001 1.122 

;1 1.848 1.313 1.313* 2.521 1.755* 7.011 

62 0.043* 8.085 0.198* 2.472 0.018* 4.370 

@ 0.596* 26.884 0.185 1.730 0.050* 2.982 

Fresno 0.061 0.920 0.028 0.555 0.012 0.194 

Kern 0.067 1.015 0.038 0.751 -0.040 -0.665 

Kings 0.054 0.812 0.071 1.388 0.075 1.248 

Madera 0.068 1.020 0.055 1.069 0.024 0.399 

Mendocino 0.119 1.794 NA NA NA NA 

Merced 0.085 1.276 0.031 1.547 0.034 0.565 

Sacramento 0.073 1.101 NA NA NA NA 

San Joaquin 0.075 1.125 0.098 1.916 NA NA 

San Luis Obispo 0.115 1.735 NA NA NA NA 

Stanislaus 0.083 1.254 NA NA NA NA 

Tulare 0.057 0.852 0.067 1.305 -0.014 -0.234 

No. of Observations 143 91 78 

Log Likelihood 14.540 92.199 12.643 

Wald x2 68.050* 38.637* 102.288* 

Chebyshev Upper Bound 0.029 0.052 0.019 

Notes: A single asterisk (*) denotes significance at the 5% level. The parameters are definedas follows: a is the mean 
drift rate of the series, a2 is the variance of the continuous part, A represents the Poisson intensity parameter, 6' 
is the variance of the discrete part, and 4 is the conditional shock to the change in revenue, expressed as a multiple 
of the average revenue value. The null hypothesis for the Wald X2 statistic is that A = ti2 = 0. Because the distribution 
of the Wald statistic is unknown on the boundary of the null hypothesis, the Chebyshev upper bound provides a 
maximum value for the probability that the null hypothesis is true. NA indicates no data are available for this type 
of grape for the associated county. 

however, the variance of the jump process for wine grapes is statistically significant on 
its own, but not the Poisson intensity parameter. This suggests at  least two observations: 
(a) a joint test of both parameters is indeed necessary, and (b:l by their very nature, 
discrete, infrequent jumps are difficult to identify in low-frequency data. Because of the 
nondefinitive nature of this specification test, insurance premiums are first obtained 
under a Brownian motion and then a jump-diffusion assumption. 

Typically, quoted insurance premiums reflect more than simple expectations of actu- 
arial loss. In this analysis, however, the estimated premiums represent equilibria that 
are supportable as the outcome of a complete market for agricultural insurance, but do 
not admit the normal load factors or compensation for moral hazard or adverse selection 
that  may arise. For wine grapes, table 3 compares county-level revenue insurance 
premiums under three coverage levels (50%, 70%, and 90%) and three rating methods: 
(a) the current method used by the FCIC, (b )  a contingent claims approach under a 
simple Brownian motion revenue-process assumption, and (c )  a more general contingent 
claims model that assumes revenue follows a composite jump-diffusion process. Tables 
4 and 5 provide similar comparisons for table and raisin grapes, respectively. 
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Table 3. Wine Grape GRIP Premiums: FCIC and Option Value Premium Esti- 
mates ($/acre) 

RATING METHOD BY COVERAGE LEVEL' 

50% 70% 90% 

County FCIC BM JD FCIC BM JD FCIC BM JD 

Fresno 

Kern 

Kings 

Madera 

Mendocino 

Merced 

Sacramento 

San Joaquin 

San Luis Obispo 

Stanislaus 

Tulare 

"FCIC indicates current Federal Crop Insurance Corporation rating method, BM is option value of insurance with 
Brownian motion revenue-process assumption, and JD is the option value under the jumpdiffusion assumption. 

The results in table 3 are used to estimate the magnitude of the difference in premium 
estimation caused by ignoring the option value implicit in a revenue guarantee. Compar- 
ing premiums between the current (FCIC) method and the simplest contingent claim 
model (BM), it is obvious, at a 50% coverage level, revenue insurance has no value under 
traditional rating methods, but up to almost $18 per acre if the similarity between a 
revenue insurance contract and a financial option is formally taken into account. At the 
next highest coverage level (70%), the premium suggested by current calculation tech- 
niques remains zero for four counties. However, the financial value from a contingent 
claim perspective is, on average, 7.09 times higher on a per acre basis. At the highest 
coverage level considered (go%), the average contingent claim estimate, assuming a 
simple BM process, is 1.97 times the estimate found using conventional rating methods. 

Clearly, if private insurance companies market GRIP to wine-grape growers at 
"actuarially sound" premium rates, growers would receive a significant amount of 
economic surplus. Considered another way, these results indicate that existing premium 
subsidies paid by the federal government are actually a smaller proportion of the true 
economic benefit of the insurance contract, simply because subsidies are paid as a pro- 
portion of the actuarially sound premium rate and not the actual economic value. If the 
option value ignored in the current method of estimating premium rates is similar for 
crops now covered by GRIP contracts-such as corn in Illinois, Indiana, or Iowa-this 
finding may help explain the very low participation rates in GRIP relative to CRC. On 
the other hand, low participation rates may suggest the problem lies in the supply of 
GRIP contracts, rather than their demand. If premium rates are set too low, then there 
is little incentive for insurance companies to actively market the product to growers. 
Higher premium estimates with a contingent claim approach, however, are not uniform 
among the empirical examples considered here. 

As observed from the results in table 4, three out of seven counties exhibit higher 
FCIC premiums for table grapes relative to those calculated using the base contingent 
claim model (BM) at a 90% coverage level. Further, table 5 shows that three of six raisin 
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Table 4. Table Grape GRIP Premiums: FCIC and Option Value Premium Esti- 
mates ($/acre) 

RATING METHOD BY COVERAGE LEVEL a 

County 

Fresno 

Kern 

Kings 

Madera 

Merced 

San Joaquin 

Tulare 

FCIC BM JD 

70% 

FCIC BM JD 

90% 

FCIC BM JD 

"FCIC indicates current Federal Crop Insurance Corporation rating method, BM is option value of insurance with 
Brownian motion revenue-process assumption, and JD is the option value under the jump-diffusion assumption. 

Table 5. Raisin Grape GRIP Premiums: FCIC and Option Value Premium Esti- 
mates ($/acre) 

RATING METHOD BY COVERAGE LEVEL' 

50% 70% 90% 

County FCIC BM JD FCIC BM JD FCIC BM JD 

Fresno 0.00 0.00 19.42 0.00 9.79 71.17 14.71 48.18 188.97 

Kern 0.00 17.38 40.64 159.21 91.77 165.47 431.22 307.71 396.29 

Kings 81.01 0.00 12.21 178.25 35.03 44.26 306.60 54.86 123.86 

Madera 0.00 0.00 16.74 0.00 15.75 61.32 6.72 47.60 164.15 

Merced 11.91 0.80 36.52 52.27 35.87 134.26 210.37 259.53 375.36 
Tulare 0.00 7.40 32.55 93.37 51.44 126.84 327.01 226.87 326.06 

"FCIC indicates current Federal Crop Insurance Corporation rating method, BM is option value of insurance with 
Brownian motion revenue-process assumption, and JD is the option value under the jump-diffusion assumption. 

grape counties exhibit similar reversals. Closer inspection of the data reveals FCIC 
rating methods are likely to overestimate premiums relative to the contingent claims 
approach when revenue is highly volatile. In the case of table grapes, for example, the 
average coefficient of variation among counties with the expected pattern of premiums 
(i.e., higher premiums estimated with a contingent claim approach) is 11.8%, in contrast 
to the coefficient of variation of 36.7% among counties in which FCIC premiums are 
higher than those determined using contingent claim methods. 

While revenue volatility is a critical parameter for both methods, it is apparent that 
the static approach used by the FCIC is more sensitive to errors in estimatingvolatility. 
This sensitivity, in turn, is due to the distributional assumptions underlying each of the 
revenue components. Whereas both the FCIC and contingent claim approaches assume 
lognormality for prices, the FCIC method relies on empirical yield distributions and the 
contingent claim approach assumes lognormal yields. 

Given the relative paucity of data available for this, and any other attempt to rate 
GRIP insurance (USDALRMA 2001), empirical yield distributions are likely to better 
represent data series with nonconforming yield years. Therefore, the "reversals" found 
in table and raisin grapes reflect instances where the FCIC approach does a better job 
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Table 6. Percentage Difference Between JD and BM Insurance Premiums for 
the 50%, 70%, and 90% Coverage Levels: Wine Grapes, Table Grapes, and Raisin 
Grapes (%) 

Wine Grapes Table Grapes Raisin Grapes 

County 50% 70% 90% 50% 70% 9Wo 50% 70% 90% 

Fresno 

Kern 

Kings 

Madera 

Mendocino 

Merced 

Sacramento 

San Joaquin 

San LL& Obispo 

Stanislaus 

Tulare 

Average 696.56 136.09 68.91 0.76 234.04 35.74 616.54 131.27 71.12 

Notes: A single asterisk (*) denotes a statistically significant difference in the two premiums at the 5% level using 
a one-tailed t-test. The t-ratios in parentheses testthe difference inmeans between JD and BM insurancepremiums. 
Entries labeled NA reflect percentage differences greater than 10,000% which are suppressed for presentation 
purposes or for counties where no data are available for the particular grape type identified in the column heading. 

of capturing the true distribution of revenue. Given this observation, a contingent claim 
model that more accurately reflects abnormal yield years, such as one based on a jump- 
diffusion process for the underlying state variable, would likely be an improvement 
relative to the overly simplistic lognormal or BM revenue distribution. Premiums 
calculated using a JD assumption are expected to more accurately reflect abnormal yield 
years in a manner similar to the empirical distribution underlying current FCIC rating 
methods. 

From the simulation results in tables 3,4, and 5, the difference in premium estimates 
between the BM and J D  models is not inconsequential. Table 6 summarizes the extent 
of the difference for three coverage levels for each type of grape. Focusing on wine 
grapes, and excluding counties where the premium estimate is virtually zero, the 
average difference under 50% coverage is almost 700%, falling to 136% a t  a 70% 
coverage level for all counties, and 69% for 90% coverage. Each of these differences is 
statistically significant based on a one-tailed t-test for the difference in two means. At 
lower coverage levels, the likelihood that "normal" volatility will cause revenue to fall 
below the trigger diminishes, so discrete events assume a greater proportionate share 
of the total risk of a loss. Nonetheless, even a t  the highest coverage level, a 69% error can 
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mean the difference between financial viability and failure when normal load factors 
average approximately 12% (Vaughn and Vaughn). 

The differences in premiums are slightly less compelling for table and raisin grapes, 
but are still significant both economically and statistically. Perhaps more important, if 
insurance companies ignore the impact of discrete events on the value of revenue 
insurance, they will not only fail to price their coverage correctly, but will likely miss the 
opportunity to market a potentially beneficial product to their clients. If premiums are 
actuarially sound, insurance companies participating in the federal crop insurance pro- 
gram should not stand to make abnormal economic profits over the long run, but growers 
will definitely benefit from having access to a powerful risk management tool. 

Given the events of 2001, companies beyond agriculture now realize the importance 
of risks which were previously thought to be of such low probability they could safely be 
ignored. Indeed, the most pressing problem facing the insurance and risk management 
industry is the pricing of such low probability events. This analysis represents an  
example of how existing methods can be brought to bear in helping to solve this problem, 
but future research may address the breadth of the problem in other insurance markets. 
Although the rating error found is relatively small in some cases, the degree of under- 
estimation varies widely from county to county, as it is highly dependent upon a 
particular county's price and yield history. Such rating errors can have a significant 
impact on a grower's decision to insure or not, potentially exacerbating adverse-selection 
problems shown to plague many forms of crop insurance (Turvey). Moreover, the use of 
county-level data is likely to lead to an underestimate of the Poisson parameter that 
would be relevant for a farm-level product such as CRC. Because the JD  option value 
is a weighted average of the value under each realization of the Possion variable, higher 
values of A would lead to dramatically higher premiums. 

Conclusions and Implications 

With passage of the Agricultural Risk Protection Act of 2000 and subsequent discussion 
regarding risk management components of future farm legislation, federally subsidized 
insurance is expected to play a significant role in future farm policy and, consequently, 
farm management as well. Moreover, with the success of revenue insurance products 
such as CRC and the inherent cost advantages of revenue insurance relative to combin- 
ations of price and yield insurance (Hennessy, Babcock, and Hayes; Richards 2000a, b), 
future offerings likely will target farm income rather than just price or output individu- 
ally. Efforts to develop new insurance products have targeted an expanded range and 
number of covered crops, particularly "specialty crops." Given these trends, it is there- 
fore critical to develop an accurate method for determining the financial value of these 
new insurance products to growers. Such a method would not only help growers assess 
the economic value of competing insurance products, but also would assist the government 
in determining their likely cost. 

This study presents a method of estimating revenue insurance premiums using a 
contingent claims, or option pricing, approach and compares them to premiums calculated 
using current FCIC methods. Unlike previous applications of options-pricing techniques 
to rating insurance, this analysis allows for the possibility that revenue processes contain 
both continuous and discrete elements. An empirical example using county-level wine, 
table, and raisin grape data from the state of California demonstrates the magnitude of 
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the difference in insurance premiums caused by ignoring both the option value inherent 
in a revenue guarantee and the effect of abnormal events. 

The results show that current FCIC rating methods significantly understate the 
economic value of revenue insurance relative to a simple option-pricing model in most 
cases. This discrepancy occurs because the FCIC uses a static approach and, as such, 
does not consider the "option value" component of a revenue guarantee. Yet, in cases of 
extreme volatility, or where revenue is distinctly not lognormal, the opposite may occur 
and FCIC premiums can be greater than those obtained through an option-pricing 
technique. Permitting revenue to follow a Poisson-normal mixture, however, accounts 
for these seemingly anomalistic cases and provides premium estimates that are higher 
than either FCIC or simple option value estimates. 

If revenues do indeed follow a Poisson-normal process, then growers and regulators 
alike must use a rating technique which accounts for both the option value inherent in 
insurance and the composite discrete-continuous nature of the revenue distribution. 
Given increased Congressional scrutiny of RMA operations and its budgetary impact, 
accurate pricing is necessary to minimize the impact of problems such as moral hazard 
and adverse selection that may doom the program to financial ruin (Turvey). Further, pro- 
duction contracting in wine grapes is a common price-risk management practice (Heien). 

Contracting between small growers (at least relative to their bargaining partners) 
and increasingly large and concentrated wineries gives rise to the potential for oppor- 
tunistic behavior on the part of the wineries, and hence adverse bargaining outcomes 
for growers. If small growers are presented with a viable alternative risk-management 
technique, then perhaps they would not need to sacrifice price levels for price stability 
to the same extent they do now. 

This study provides an important point of departure for future research, not only for 
the pricing of revenue insurance, but also for the further examination of alternative dis- 
tributions of specialty crop revenue. Foremost, further research in this area will benefit 
from more extensive price and yield data. Truly accurate estimates of yield and price 
volatility require far more data than those available to this investigation. Nevertheless, 
paucity of data is a common problem faced when dealing with specialty crops. While our 
example focuses on GRIP, which is a county-level (or group-risk) product, farm-level price 
and yield data would permit a more accurate valuation of individual-risk revenue products 
like the CRC or the "new generation" whole-farm income products. However, because 
payment prices under the CRC are determined as the higher of that prevailing during 
planting or harvest, Marcus and Modest's endogenous-exercise price approach would be 
the appropriate method in the farm-level case. Future research with more detailed data 
would also benefit from considering some of the other extensions to Black's model in the 
finance literature, namely stochastic volatility and asynchronous trading data. 

[Received April 2002;final revision received June 2003.1 
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