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The Accuracy of Producers' Probability
Beliefs: Evidence and Implications

for Insurance Valuation

Bruce J. Sherrick

The accuracy of producers' subjective probability beliefs is examined through a
survey of large cash-grain farmers in Illinois. Findings reveal that their subjective
probability beliefs about important weather variables are systematically mis-
calibrated. The nature and extent of differences between subjective probability
beliefs and probabilities based on long-term historic weather data are shown empiric-
ally, and through fitted calibration functions. The economic significance of inaccurate
subjective probability beliefs is established in the context of insurance valuation.
The results demonstrate that significant errors in producers' risk assessments and
insurance valuation arise as a consequence of producers' systematically inaccurate
probability beliefs.
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Introduction

The vast majority of the existing risk management literature is underpinned with the
assumption that producers accurately understand and rationally respond to the risks
they face. While it is generally understood and acknowledged that subjective beliefs
form the basis for individual behavior under risk (Bessler; Machina and Schmeidler),
relatively little research has been conducted to assess the accuracy of producers' beliefs,
or the economic implications of inaccurate beliefs. This research explores the important,
but frequently unexamined assumption that producers possess accurate probability
beliefs when evaluating risky variables affecting their financial well-being.

Particular attention in agricultural risk management has been devoted to the develop-
ment and evaluation of crop yield, and crop revenue insurance contracts. Numerous
studies have carefully examined risks represented in the distributions of crop yields and
prices, and have developed various insurance valuation models equipped to deal with
the resulting specifications (Day; Gallagher; Goodwin and Ker; Ker and Goodwin;
Nelson; Stokes). On the behavioral side, issues related to moral hazard and adverse
selection have also been carefully assessed and incorporated into explanations of the
performance of popular insurance products, and into empirical and theoretical studies
of crop insurance demand (Coble et al.; Just, Calvin, and Quiggin; Smith and Goodwin;
Skees and Reed).
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Economics, University of Illinois. The author thanks Peter Barry, Paul Ellinger, and participants of the NC-221 Regional
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While the bulk of the applications in agriculture have understandably targeted the
large array of Federal Crop Insurance Corporation (FCIC) products, there has also been

a rapidly increasing interest in the use of weather derivatives as mechanisms to manage
specific agricultural risks. To date, the weather derivative market has developed much
more rapidly in energy applications, and in insurance for outdoor public events, but

studies which parallel crop insurance methods to evaluate weather insurance are also

beginning to appear in the literature (Martin, Barnett, and Coble; Dischel; Sakurai and

Reardon; Turvey; Changnon and Changnon). In any case, in most agricultural risk analy-

ses, the common assumption is that producers have accurate beliefs about risks faced.

In this study, a survey designed to elicit subjective probability beliefs about important

weather variables influencing producers' well-being was administered to a set of rela-

tively large grain producers. The recovered subjective probability beliefs are compared

to historic weather event distributions in both empirical (nonparametric) and fitted

form. Calibration functions are then estimated to provide insight into the extent and

nature of the differences between the probability distributions based on historic data

and individuals' subjective probability measures.l
Standard precipitation insurance contracts are evaluated to demonstrate the economic

significance of the differences between producers' beliefs and the underlying distribu-

tions of interest. Weather variables are employed due to their ubiquity, relevance to crop

farmers, impossibility of influence by farmers, and widely available existing information
to condition decision makers' priors. Further, insurance on weather variables naturally

limits adverse selection and moral hazard, and thus isolates the impacts of inaccurate

priors in a relatively straightforward fashion.

Expectations of Climate Variables Survey

A personally administered survey instrument was used to recover complete probabilistic

descriptions of producers' climate expectations. 2 The potential impact of the survey

elicitation process on the recovered probabilities has been well recognized in the litera-

ture, and some guidance exists for developing useful measures of subjective probabilities

(see Nelson and Bessler). Numerous approaches have been used in past studies, includ-

ing voluntary assessments in self-assigned intervals (Kenyon), allocation of probabilities

into fixed categories (Eales et al., citing procedures from Bessler and Moore), economic

games (Fisher and Tanner), use of market indicators (O'Brien, Hayenga, and Babcock),

and many others, both with and without direct compensation. It is generally agreed the
respondents should have a motivation to complete the task (seriousness, or have compen-

sation for success), and that proper scoring rules or other methods should be used to

help ensure that respondents' stated beliefs correspond to their true beliefs, within the

limits of the encoding measures.

1A probability assessment is termed "calibrated" if the proportion of realizations equals the probability assigned (Lichten-
stein, Fischoff, and Phillips). The long-term precipitation frequencies are taken as the "true," and are used as a set of repeated
outcomes of the same event against which subjective probabilities can be assessed. Dawid more fully develops the concept
of calibration, and demonstrates its usefulness in evaluating competing sequential forecasts (as in Bessler and Kling), and
in cases that do not require probability forecasts to be interpreted against repeated trials as well. Curtis, Ferrell, and Solomon
apply the methods to assess probability distributions more generally, and to identify impacts of aggregation of forecasts. The
term calibration is used here to describe the congruence between the producer subjective beliefs and the long-term
precipitation frequencies.

2 A copy of the complete survey instrument is available from the author upon request.
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In an attempt to design as sound an instrument as possible, the survey was developed
with the guidance of an expert in the field of eliciting and coding subjective beliefs about
climate events, and with input and approval of the Survey Research Laboratory-a
University of Illinois resource for organizing and pretesting survey work, and which
serves as an arm's-length evaluator of the actual instruments used.3

Formally trained enumerators were employed, and a single training session with each
respondent was used at the beginning of each interview to assess the ability of the
respondents to present proper probability measures. Participants were required to pass
a probability consistency test before proceeding with the survey. The following charac-
teristics determined the selection of participants: (a) their cooperation with the Illinois
Farm Business-Farm Management (FBFM) record keeping association; (b) their proxim-
ity to a single weather reporting station [i.e., to mitigate the potential effects of widely
differing experiences, all participants were in a territory covered by a single National
Oceanic and Atmospheric Administration (NOAA) weather reporting station]; (c) their
business enterprises were all relatively large cash-grain operations; and (d) their demon-
strated understanding of probability concepts.

Interviewers elicited producers' perceptions of the long-run probabilities of rainfall
at various levels through a series of questions posed in both the cumulative distribution
function (CDF) framework and inverse CDF framework. Numerous questions were
recast throughout the survey to locate any changes in perceptions or misperceptions of
the intent of questions. For example, if a respondent indicated the level of rainfall at
which the 25th cumulative percentile occurred was 2 inches, theti enumerator would later
ask for the probability that 2 inches would be exceeded, to confirm the respondent replied
in a manner consistent with the earlier answer. A pretest was administered to ensure
comfort and adequate facility with probabilistic concepts, and internal checks were con-
structed to corroborate that respondents' probability measures were indeed consistent
and representative of their beliefs.4

The survey included approximately 12 categories of variables affecting the producer's
financial well-being, and took approximately one hour plus pretest time per respondent
to administer. A total of 54 surveys were administered and processed into useable form.5

Among the specific climate variables of interest included in the survey are April rainfall

3Dr. Peter J. Lamb, currently Director of Cooperative Institute for Mesoscale Meteorological Studies and School of Meteor-
ology, University of Oklahoma, provided survey design consultation and guidance.

4The pretest involved allocating probabilities to game-event outcomes. The enumerators then reviewed the tests with the
respondents and discussed consistency requirements. For the weather questions, the enumerator asked for rainfall levels at
fixed quantile values (14 total per farmer for the two distributions). A guide script for the enumerators included (example
from April; July phrasing was similar):

We now want you to think about the amount of rainfall you would expect in a typical April in this location. What
would you say the rainfall is with a 10% chance of occurrence-in other words, that 1 in 10 years would be at
or below this level, and 9 of 10 would be above? [ _ inches ].

Similar questions for the other percentiles were used. The enumerator was also instructed to record the answer from the 25%
response on a later page in the survey and again ask the respondent for the probability associated with that level of rainfall,
without any indication it was the same question in inverse form. The enumerator had the option to rephrase any previous
questions if inconsistencies were found. The probabilities were required to be consistent (increasing CDF), and respondents
were asked if they had any revisions to supply at the end of the test.

5 While the sample is relatively small, these individuals were all commercial-scale farmers in proximity to a single weather
reporting station and all were participants in a record keeping association, which signals they have high-quality financial
information. Weather variables are of particular salience to such producers. Each producer provided considerable detail about
his/her operation and beliefs. A larger sample would have necessitated loss of detail and would have required comparisons
to data from more than one weather reporting station.

Sherrick
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and July rainfall.6 Higher April precipitation is considered by Illinois grain producers
to be a negative event, as it tends to delay planting. Conversely, July precipitation is a
positive event, as it tends to enhance crop growth and reproduction during a crucial
phase of development. Precipitation levels in April and July were chosen because of their
particular importance to grain farmers, and because the effects on the respondents are
of opposite sign, thus generating a natural contrast for study of the accuracy of their
probability beliefs.

Weather Variable Representations

A distributional representation is needed to summarize information from the historic
weather data, and to provide a description of each producer's subjective probability
beliefs. A distribution used extensively in various forms to model precipitation amounts
is the Burr-12 distribution, also sometimes referred to as a three-parameter Kappa dis-
tribution in weather applications (Mielke; Mielke and Johnson; Tadikamalla). The Burr
distribution covers the positive domain, may take on a wide range of skewness and kur-
tosis values, and can be used to fit almost any set of unimodal data (Tadikamalla).

The Burr distribution is highly flexible and contains the Pearson types IV, VI, and
bell-shaped curves of type I, gamma, Weibull, normal, lognormal, exponential, and logis-
tic distributions as special cases (Rodriguez; Tadikamalla). Because of this flexibility,
it is widely accepted in the climate literature as a representation for precipitation levels,
and was used to represent the historic distribution, and each producer's underlying sub-
jective distribution.7

The Burr probability density function (PDF) and cumulative distribution function
(CDF) for rainfall, Y, with parameters a, X, and T, are respectively:

(1) f(y) = ;a-cl(y/a)X-l( + (y/a)-X() , y, , X, T > 0;

(2) F(y) = 1 - (1 + (y/a))-.

Monthly data from the National Climatic Data Center on rainfall totals from 1900 to
2000 at the East Central Illinois weather reporting station were used to estimate the
parameters of the underlying distributions of April and July rainfall using maximum-
likelihood estimation. Goodness of fit of the estimated distributions was assessed using
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests of the differences between
the empirical and fitted distributions. The results indicate an exceptionally good fit (i.e.,
failure to reject at any tabulated level of significance) for both April and July fitted

6 The survey was conducted during the summer of 1991 as part of a larger project examining producer beliefs. Producer
subjective distributions were also recovered for commodity prices, temperature during pollination, winter precipitation,
interest rates, and other variables affecting financial performance. Other researchers have also examined non-weather
expectations. For example, Eales et al. assessed the congruence between producer and merchant expectations and distri-
butions of commodity prices implied by the market. They found producers have accurate means but tend to have understated
variances. Likewise, Pease et al. examined subjective beliefs about yield and found miscalibrated producers' expectations
which could substantially affect insurance valuation. Kenyon concluded that producers have significantly miscalibrated beliefs
with a tendency to overstate the probability of lower prices and understate the probability for large increases.

7Various related parameterizations have been presented in the literature, including Burr-3, Burr-12, Kappa, gamma, and
Lomax versions. Martin, Barnett, and Coble use the gamma distribution to represent cumulative rainfall. Mielke demon-
strates the favorable performance of the Burr over the gamma, but leaves other choices unranked. In this study, the Burr-12,
Kappa-3, and Burr-3 parameterizations were each fitted, with negligible resulting differences. The results presented here
are from the Burr-12 set of estimations only, as the other two were qualitatively identical.
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distributions.8 Parameters for each producer's subjective probability measures for both
April and July rainfall were also estimated under the same parametric assumptions
using nonlinear least squares between implied and tabulated response quantiles.

Results

Figure 1 depicts the subjective beliefs about precipitation levels for a selected set of five
respondents with differing types of probability beliefs. As can be seen in the graph, dif-
ferent forms ofincongruence between historic and subjective measures exist. For example,
farmers #5 and #47 believed the density of April precipitation to be more spread out,
and have a higher median than the true of 3.55 inches (these two examples represent
the most common type of responses relative to April precipitation). The subjective proba-
bility measures for farmers #19 and #25 are generally shifted to a lower level than the
true, but with somewhat longer right-hand tails. Respondent #44 displays overconfi-
dence, and a slightly elevated central tendency.

Relative to July precipitation, respondent #25 has a higher median, while the others
each have subjective beliefs with medians lower than the fitted underlying distribution
of 3.42 inches. Respondent #47 displays extremely high pessimism with a highly over-
stated probability of zero or no rainfall. Exhibiting a median that is below the true and
somewhat understated probabilities at the high range, respondent #44 represents a
typical response for July rainfall. Respondent #5 has fairly accurate probability beliefs
relative to July rainfall. For convenience in interpretation, the cumulative distribution
functions are graphically displayed in figure 1 as well.

The five respondents depicted in the graphs are not meant to be representative of the
entire sample, but were chosen simply to illustrate the nature of the information
retrieved and to provide an understanding of the types of differences observed in the sur-
vey findings-both among producer responses and between individual producer beliefs
and the historic measures.

Table 1 summarizes the farmer responses across the entire sample for both April and
July precipitation. Several quantiles are tabulated under which the farmers' responses
are summarized and compared to the actual precipitation values from the empirical
distribution (the results are virtually identical when compared to the fitted distributions
as well). For example, for April precipitation at the 25th percentile, the precipitation
level corresponding to the actual distribution is 2.30 inches. In other words, there is a
75% chance of receiving at least 2.30 inches of precipitation in the month of April in this
weather reporting district. Of the farmers surveyed, 63% expected more precipitation
at the 25th percentile. The average of all responses at the 25th percentile of the distri-
bution was 2.77 inches.

From table 1, note that the average of the expected precipitation is greater than
actual precipitation experienced in history at all percentile levels, although by only a

8Following a reviewer's suggestion to test for the robustness to sample period effects, the data were divided into 1900-1950
and 1951-2000, and examined for evidence of change. There was no statistically significant difference in the means or vari-
ances, and the overall results were virtually unchanged when using parameters from either subset for April. The results are
qualitatively similar, but slightly stronger (more miscalibrated) when using only the latter half sample for July. While
farmers' beliefs are likely conditioned by experience, the longest available data series was preferred to represent the under-
lying climate events. All reported results in this analysis use the full sample period.

Sherrick



Journal ofAgricultural and Resource Economics

APRIL RAINFALL PROBABILITY

1.0

0.8

0.6
U.

0.4

0.2

0.0

JULY RAINFALL PROBABILITY

cL0
0.

0 2 4 6 8 10 12 14

Inches Rainfall

APRIL RAINFALL DISTRIBUTION

0 2 4 6 8 10 12 14

Inches Rainfall

0 2 4 6 8 10 12 14

Inches Rainfall

JULY RAINFALL DISTRIBUTION

0 2 4 6 8 10 12 14

Inches Rainfall

Figure 1. Fitted and producer probability measures for
April and July rainfall

Table 1. Summary of Farmers' Subjective Probability Beliefs Relative to
Actual Probabilities

Percentile Level

Description 10% 25% 50% 75% 90%

April Precipitation:
Actual (inches) 1.40 2.30 3.55 4.98 6.39
Average farmer response (inches) 1.41 2.77 4.47 5.85 7.53
% of responses greater than actual 53.7 63.0 72.2 74.1 64.8
Standard deviation across respondents 0.56 1.02 1.24 1.45 2.07

July Precipitation:

Actual (inches) 1.12 2.02 3.42 5.14 6.93
Average farmer response (inches) 0.81 1.79 3.03 4.65 6.18
% of responses greater than actual 16.7 22.2 25.9 42.6 38.9
Standard deviation across respondents 0.54 0.72 0.84 1.19 2.27
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slight amount at the 10th percentile level. Clearly, the subjective probabilities elicited
from this group of farmer respondents generally overweighted what they perceive as the
negative event of excess April precipitation, with the fraction overstating the rainfall
higher at levels generally considered less desirable. If the respondents had no system-
atic bias in their beliefs, then the percentage overstating the median might reasonably
have been expected to be around 50%, but the miscalibration in the sample appears to
be systematically toward overstated levels of precipitation. The standard deviation across
responses at each quantile is also provided in table 1 to show the degree of agreement
among respondents at each level.

The respondents' subjective probability beliefs about July precipitation follow a differ-
ent, yet still pessimistic, pattern. In this case, more rainfall is considered to be a good
event, and the respondents generally understate the likelihoods of occurrence. As ob-
served in table 1, only 22% of the respondents overstated the quantity of rainfall at the
25th percentile of the actual distribution. In fact, at each percentile level, the farmers
understated the incidence of precipitation, or equivalently, overstated the probability
of what would be viewed as the negative event-lack of precipitation. As with April, the
results are consistent whether the farmer responses are compared to the fitted or empir-
ical distributions.

Individual Producer Calibration Tests

In addition to the information available in table 1 summarizing the entire set of
respondents, it is useful to develop more descriptive measures of differences between
individual producers' subjective beliefs and the fitted underlying distribution. And, in
cases exhibiting significant differences, insight can be gained by more completely
describing the nature and extent of the difference between subjective and actual
distributions over different percentile levels or among differing events. For example,
a producer may be very good at forecasting the likelihood of a low-rainfall event, but
be poor at assigning probabilities to large-rainfall events. Or, the producer may have
more accurate priors about April than July rainfall. Because risk management activities
often focus only on ranges of adverse outcomes, an assessment of the congruence
between historic events and subjective probability beliefs in specific regions of interest
would be beneficial. To address these and related issues, calibration functions were
estimated.

Calibration approaches were originally developed for identification of adjustment
functions to apply to sequences of probability forecasts, based on differences between
past forecasts and outcomes. In terms of probability beliefs, calibration describes the
congruence between two different distributions (Curtis, Ferrell, and Solomon). Heur-
istically, the adjustment required to make the subjective beliefs correspond to the true
distribution is termed the calibration function. Specifically, if the true distribution can
be described as ((x), and the estimated function is F(x), then K(F(x)) = ((x) implicitly
defines a transformation, K(@), of F to generate estimates, K(F(x)), that are well cali-
brated. The function K(@) is called the calibration function. A parametric form can be
chosen for the calibration function and estimated using standard methods, with the
resulting shape of the estimated function used to interpret the nature of the miscali-
bration (Fackler and King).

Sherrick
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For purposes of this study, the calibration function is based on the beta distribution
with density:

(3) K(x) = Xp-l(1 - x)q-1

P(p, q)

where P(p, q) is the beta function with parameters p and q. As noted in Fackler and
King, the beta distribution is well known, flexible, and contains the uniform distribution
as a special case whenp = q = 1, implying perfect calibration. Regions of K() with slope
greater than one correspond to regions of the subjective probability CDFs that need to
have mass added, and regions of K() with slope less than one correspond to regions of
the subjective distribution having too much mass. Other shapes of the fitted calibration
curve similarly indicate the "reweighting" of the estimated distributions needed to cor-
respond to those subsequently observed.

At least five general shapes for the calibration function emerge which summarize the
nature of the miscalibration displayed by each individual. Figure 2 graphs the sample
calibration functions corresponding to the following cases:

* CASE 1. Well calibrated or uniform (p = q = 1);

* CASE 2. Underconfidence or an overstatement of dispersion (p > 1, q > 1);

* CASE 3. Overconfidence or an understatement of dispersion (p < 1, q < 1);

* CASE 4. Understatement of location (p > 1, q < 1); and

* CASE 5. Overstatement of location (p < 1, q > 1).

Because the slope of the calibration function reflects the reweighting of the subjective
distribution needed to make it correspond to the fitted distribution, the uniform case 1
is a straight line with slope 1 throughout, and therefore leaves the subjective beliefs
unchanged. Case 2 is an "S"-shaped function that takes mass away from the tails (where
the slope is less than one) and adds it to the interior region where the slope is greater
than one. Case 3, by contrast, is a "reverse-S" shaped function which spreads the mass
out by adding to the tails and reducing the central region where the calibration function
slope is less than one. Case 4 is a "U"-shaped function, shifting mass to the right, and
case 5 is an "inverted-U" shape, shifting mass to the left. The median is located correctly
whenp = q (cases 1, 2, and 3 as shown in figure 2), but the calibration function can also
cross the uniform from above or below at locations other than at F(y) = 0.5, indicating
miscalibration in both location and dispersion.

Calibration functions were estimated for each participant's subjective distribution for
both April and July rainfall using least squares between the recalibrated beliefs and the
fitted distributions at each percentile level surveyed. Table 2 provides the summary of
the results organized into two sections, with the upper panel reporting the parameter
pairings from which general shapes can be inferred, and the lower panel giving more
specific information about two attributes-median location and dispersion-that help
in understanding the degree and nature of the miscalibration.

As shown in table 2, the most prominent recalibration needed for the April subjective
distributions is to shift the mass to the left (inverted-U), and for July the most common
fitted calibration function indicates the mass of the probability distributions needs to be
shifted to the right (U-shaped). These shifts can occur in conjunction with either increases
or decreases in dispersion, and thus it is also useful to tabulate the more general effects.
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Figure 2. Calibration functions for five sample cases

Table 2. Summary of Calibration Functions

April Precipitation July Precipitation
Fitted and Empirical Calibration Features % of Farmers % of Farmers

"U"-shaped calibration function 20.4 51.9

"Inverted-U" shaped calibration function 61.1 20.4

"S"-shaped calibration function 11.1 14.8

"Reverse-S" shaped calibration function 7.41 13.0

Median overstated and Dispersion overstated 57.4 20.4

Median overstated and Dispersion understated 14.8 5.6

Median understated and Dispersion overstated 7.4 16.7

Median understated and Dispersion understated 20.4 57.4

Note: Dispersion is considered overstated if the calibration function indicates that the probability in the interquartile
range is understated by the producer (i.e., the slope of the calibration function is greater than one over the range). Dis-
persion measured by the standard deviation of fitted relative to true gives similar results.

The lower panel of table 2 provides evidence about combined attributes representing
location and dispersion. The top two rows can be added together to obtain all the cases
with median overstated (and can also be read from the 50th percentile column in table
1), while the lower two rows can be summed to obtain cases with the median under-
stated. The first and third rows contain all the cases with dispersion overstated, while
the second and fourth rows show the cases with dispersion understated. As observed
from the table, of those occurrences where location is overstated, the dispersion tends

Sherrick
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to be overstated as well-both attributes which overstate risk. Of those understating the
July location, the sample is more heavily weighted toward understatement of dispersion.

Because errors from the first-stage fitting of what is taken as the "true" distributions
could affect the results, the calibration results must be interpreted with caution. As a
check, empirical versions of the calibration functions were also constructed by plotting
the response quantiles joined by linear line segments against the empirical quantiles
from the data sets. The resulting Q-Q plots serve as nonparametric calibration functions.
Although less smooth than the fitted versions, the results are qualitatively identical,
providing additional support for the results.

In addition to the results for individual responses, calibration functions were also
estimated for the simple average of all respondents. In the case of April, the resulting
calibration function has an "inverted-U" shape, understating the location while over-
stating the dispersion. For July, the calibration function for the average response across
producers displays a "U"-shape with a slightly understated dispersion.

It is apparent from both the tabulated survey results and the calibration tests that
producers tended to overstate the amount of rainfall in April and understate the rainfall
in July-i.e., both undesirable events are overweighted by producers. Further, the
calibration tests reveal that dispersion in the subjective rainfall distributions has a
tendency to be understated in the case of July rainfall and overstated in the case of
April rainfall. Based on these findings, producers' beliefs are systematically what could
be termed "pessimistic," rather than simply being misstated in a manner that applies
regardless of the event being considered. Again, if the probability results were simply
the manifestation of a "naive" mistake process, the types of mistakes would more likely
have been consistent between the two events rather than displaying the upward bias
in April and the downward bias in July probabilities.

Implications for Insurance Valuation

The impact of inaccurate priors depends both on the degree of difference from the under-
lying, and on the specific context in which the information is used. It could be the case
that small inaccuracies have substantial consequences in risk management, or it could
be the decision rules are such that the probability beliefs are relatively inconsequential
and have little economic impact. To demonstrate the potential economic importance of
having miscalibrated probability beliefs about weather variables, precipitation insur-
ance is evaluated under each producer's fitted probability beliefs and compared to the
actuarial value calculated under the distributions fitted to historic data. The differences
can then be viewed as direct measures of the potential economic impact of the inaccur-
ate prior beliefs.

The most common forms of precipitation insurance can be valued in a manner analo-
gous to standard option pricing approaches. Numerous precipitation guarantee valuation
models have been reported elsewhere in the literature to take advantage of specific
attributes of producer demand, but most are developed in terms of the expected loss func-
tions (Martin, Barnett, and Coble; Turvey; Aquila Energy Derivatives Group; Dischel).

Typically, an insured event, such as cumulative precipitation in a specified interval
of time, is offered for insurance at various trigger points or strike prices, and at a fixed
liability for each unit of excess or deficit. In the current context, rainfall totals measured
at a single weather reporting station during the months of April and July are the insured
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events. The indemnity triggers, often termed strikes or k, could be offered at either
producer-selected levels or at standardized increments, for example, at 2.5 inches, 3.0
inches, 3.5 inches, and so on.

As is typical, the insurance contract is written to pay a constant (A) times the amount
by which the insured event exceeds the trigger (k), and make no payments if the trigger
is not exceeded. The scale of A is chosen to make the contract magnitude meaningful to
the users, and in the case of rainfall insurance, multiples of $1,000 are commonly used.
The strike prices are set to provide a meaningful "menu" to appeal to producers with dif-
fering needs. For instance, a producer with a large machinery base and light soils may
consider excess rainfall less of a problem than a producer who needs more workable field
days to put in a crop. The first farmer might prefer a relatively high strike compared to
the latter farmer, to more nearly mimic the points at which each begins to suffer
economic losses due to excess rainfall.

The indemnity payoff function for excess rainfall can be written as max{0, y - k} *X,
where y is the realized rainfall total. Given a probability density f(y) governing the
rainfall outcome y, the expected (actuarial) value, Vr, of the excess rainfall insurance
contract is specified as:

(4) Vr = X * (y - k)f(y)dy.

Similarly, July-drought insurance is evaluated which pays X per inch of rainfall deficit
to k during the month of July, with a resulting indemnity function of max{0, k - y} *X.
The actuarial value, Vd, of such a contract can thus be found by evaluating:

(5) d= * k (k - y)f(y)dy.

The values of insurance against excess April rainfall were calculated using equation
(4) across strike prices from 2 inches to 10.5 inches in half-inch increments, and using
X = $1,000. At each strike, the valuation equation was applied using the fitted rain-
fall distribution forf(y), and then repeated using each producer's subjective beliefs
to describe the probability density f(y). The result is one valuation relationship for
each farmer, and the actuarial values at each strike against which they can be com-
pared. 9

Table 3 presents the complete results of the actuarial calculations and producer val-
uation results for insurance against excess rainfall in April. Columns A and B give the
strike price or level of rainfall insured against, and the associated probability of trigger-
ing the insurance under the actual rainfall distribution. Column C contains actuarially
fair values of insurance (expected costs) which range from approximately $1,895 at a 2
inch strike price, down to only $1.39 per $1,000/inch coverage at a strike of 10.5 inches.
For example, as seen from table 3, the actuarially fair payments to a policy holder who
insures at a strike price of 5 inches would be $347.93. Column D reports the average
across all respondents of their perceived probability of triggering insurance payments
at that strike. Comparison to corresponding entries in column B provides a direct indi-
cation of the mistakes in risk assessment arising from miscalibrated beliefs.

9 The insurance values were also calculated under the empirical rainfall distributions as well. The results were slightly
"lumpier" than those reported under the fitted distributions, but are qualitatively unchanged in all respects.
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Table 3. April Excess Rainfall Insurance: Actuarial Values and Producer Val-
uation Summary (X = $1,000)

[A] [B] [C] [D] [E] [F] [G] [H] [I]
Average Percent Average Self-

Value Average Respondents Value Selected
Actuarial Subjective to Percent Who Given Percent

Strike Probability Insurance Probability Producer Misvalued Overvalue Overstated Overvalued
(inches) Rain > k ($) Rain > k ($) (%) (%) ($) (%)

2.0 0.806 1,895.31 0.859 2,525.93 33 74 2,925.52 54
2.5 0.712 1,515.31 0.787 2,126.21 40 74 2,506.79 65

3.0 0.611 1,184.37 0.706 1,766.73 49 74 2,121.68 79
3.5 0.509 904.36 0.621 1,451.01 60 72 1,798.29 99

4.0 0.412 674.19 0.535 1,179.97 75 72 1,490.14 121

4.5 0.324 490.42 0.451 951.79 94 72 1,221.84 149

5.0 0.248 347.93 0.373 762.54 119 67 1,047.63 201

5.5 0.184 240.63 0.302 607.45 152 65 866.74 260
6.0 0.132 162.17 0.239 481.68 197 69 670.33 313
6.5 0.092 106.47 0.186 380.55 257 69 536.43 404

7.0 0.063 68.07 0.141 299.73 340 69 426.85 527

7.5 0.041 42.37 0.105 235.41 456 69 337.81 697
8.0 0.026 25.67 0.077 184.32 618 67 272.70 962

8.5 0.016 15.13 0.055 143.79 850 67 213.74 1,312

9.0 0.010 8.68 0.038 111.65 1,186 67 166.54 1,818

9.5 0.006 4.84 0.026 86.16 1,679 67 128.83 2,560
10.0 0.003 2.63 0.018 65.97 2,410 65 101.53 3,763
10.5 0.002 1.39 0.012 50.00 3,505 63 79.26 5,616

Column E in table 3 lists the average implied values of insurance at each strike.
Interestingly, this group of producers, on average, overvalued the risk-costs associated
with rainfall at every level tabulated. The difference at the actuarially fair point is due
solely to misperceptions of the risks faced (column F), in this case resulting in perceived
values of insurance which exceed the actuarial values by $631 (33%) at the 2 inch strike,
to $611 (40%) at the 2.5 inch strike, and so on to the point where the overstatement is
nearly 35 times the actual value at a strike of 10.5 inches. While the dollar value of the
error declines with the strike, the percentage overstatement explodes as the actuarial
value approaches zero. Under either case, respondents clearly overestimate the risks
associated with what is perceived to be the negative event of excess April rainfall.

Column G of table 3 lists the percentage of respondents whose implied values, given
their subjective probability distributions, are greater than the value under the fitted dis-
tribution. Across the sample, roughly 70% of the respondents overvalued the insurance.
Because the different perceptions of risks result in different implied values, it is reason-
able to expect different responses to the availability of such insurance. For instance, it
could be reasonable to assume that only those producers who perceived themselves to
have a positive expected payoff to insurance would buy, and at the strike price for which
the positive expected payoff were greatest. This form of self-selection may be viewed as
favorable adverse selection to the producers, but is really just a result of having inaccur-
ate probability beliefs. 10

10 The discussion is presented in terms of actuarial values only without the additional value the producer would be willing
to pay as a risk premium if risk averse. Likewise, insurance loading costs are not considered. From an insurance provider's
perspective, the positive misperceptions of value by producers provide a greater potential to add profit loadings to insurance
contracts or cover greater actual expense loadings, and should stimulate the supply of such insurance relative to a case in
which producers had accurate beliefs.
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Table 4. July Rainfall Deficit Insurance: Actuarial Values and Producer Valu-
ation Summary (X = $1,000)

[A] [B] [C] [D] [E] [F] [G] [H] [I]
Average Percent Average Self-
Value Average Respondents Value Selected

Actuarial Subjective to Percent Who Given Percent
Strike Probability Insurance Probability Producer Misvalued Overvalue Overstated Overvalued

(inches) Rain < k ($) Rain < k ($) (%) (%) ($) (%)

0.50 0.026 4.91 0.055 12.67 158 57 20.17 311
0.75 0.052 14.53 0.092 30.98 113 59 46.66 221
1.00 0.083 31.23 0.134 59.10 89 59 86.49 177
1.25 0.119 56.31 0.179 98.04 74 63 135.01 140
1.50 0.158 90.79 0.226 148.58 64 63 200.46 121
1.75 0.200 135.47 0.276 211.29 56 65 275.56 103
2.00 0.244 190.93 0.326 286.53 50 67 362.82 90
2.25 0.289 257.57 0.377 374.44 45 67 468.04 82
2.50 0.335 ,335.63 0.427 474.99 42 67 586.41 75
2.75 0.381 425.17 0.476 587.96 38 69 709.89 67
3.00 0.427 526.14 0.524 712.98 36 69 852.34 62
3.25 0.471 638.35 0.569 849.53 33 69 1,006.20 58
3.50 0.514 761.52 0.611 996.97 31 70 1,160.71 52
3.75 0.556 895.30 0.650 1,154.61 29 70 1,334.72 49
4.00 0.596 1,039.25 0.686 1,321.68 27 72 1,505.16 45
4.25 0.633 1,192.88 0.719 1,497.39 26 72 1,695.14 42
4.50 0.669 1,355.67 0.749 1,680.94 24 72 1,892.45 40
4.75 0.702 1,527.07 0.776 1,871.59 23 72 2,095.90 37
5.00 0.733 1,706.50 0.800 2,068.59 21 72 2,304.73 35

Nonetheless, assuming only producers whose implied values exceed the actuarial
values actually purchase the insurance gives even more striking results. Column H in
table 3 tabulates the averages of the perceived values at each strike for the subset of
producers whose implied insurance values are greater than the actuarial value. As ob-
served, the dollar value overstatement is greatest at the lower strikes, and declines as
the probability interval evaluated in the insurance decreases. The percentage overstate-
ment in value (column I) is near 100% at 3.5 inches, a strike situated nearly at the mean
of the fitted distribution.

Table 4 presents comparable results for July drought insurance, with X = $1,000. The
table is constructed across strikes from 0.5 to 5 inches in half-inch increments. The
probability range covered in this interval is from approximately 1% likelihood, or a 1-in-
100 years drought event, to 5 inches, covering the outcomes of nearly three-quarters of
all years. Actuarially fair insurance at a strike of 3.25 inches has a value of approxi-
mately $638 (column C).

The producers again substantially overstate the probability of needing the insurance
(triggering payment), and overvalue the risks of drought across all farmers at every
strike tabulated, with the greatest percentage overvaluation occurring at the extreme
low range of the outcome distribution. The percentage of respondents who overvalue the
insurance (table 4, column G) is not as great as was the case with April excess rainfall
insurance, but still exceeds 50% across the entire range of outcomes. As with April
insurance, percentage and value of the differences between the producers' valuations
and the actuarial valuations are very large (columns H and I). Again, the results demon-
strate that inaccurate probability beliefs of the nature possessed by the producers in this
sample can have a significant impact on the evaluation of risk.
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Figures 3 and 4 summarize the results for the actuarial value, average across all
farmers, median across all farmers, and the average across farmers who would self-
select insurance based on having overstated expected values of insurance for April and
July, respectively. The figures take on the familiar shapes of traditional option or insur-
ance values, as expected. These results are found independently of the calibration tests,
but extend the findings by converting the differences to measures having economic
interpretation as well-the value of insurance at different strike prices. Although only
summary statistics are shown, it is worth noting that the valuation relationships for the
individuals vary greatly, with the majority falling well above the actuarial level, and a
few that either fall below or cross the actuarial relationship from below. Based on find-
ings derived either from the averages or from the individual results, clearly the producers
in this study sample substantially overstated the value of this type of insurance due to
their miscalibrated beliefs about adverse outcomes.

Summary and Conclusions

Much effort has been devoted to evaluation of production insurance of various forms and
on other risk-management tools. However, relatively little attention has been paid to
what could be called the maintained hypothesis of this line of reasoning-i.e., that
subjective beliefs held by the decision makers are accurate. The results from this study
indicate producers hold systematically inaccurate beliefs about weather variables having
important impacts on their financial well-being. The differences between subjective
priors and the underlying weather event distributions are highly varied, but display the
tendency across respondents to overstate likelihoods for negative events, and thus
understate the incidence of positive events. Despite the wide differences in beliefs, they
commonly lead to substantial overvaluation of both excess rainfall insurance during
planting, and drought insurance during a critical phase of crop development.

The results, of course, are subject to limitations of the data, but nonetheless are
important because they challenge acceptance of the assumption that producers accur-
ately understand, and therefore can rationally respond to, production risks faced. The
implications for precipitation insurance are direct: inaccurate subjective beliefs can lead
to substantial overstatement of the value of insurance, and there could be significant
self-selection of participation due solely to differences in producers' perceptions of the
risks faced.

More generally, the results suggest those designing new insurance and risk manage-
ment tools should include the potential effects of inaccurate risk assessments by users
on demand for new products. And, interestingly, in cases where inaccurate beliefs would
lead to underusage of insurance, it may be more effective to educate potential users
about the actual risks faced than to subsidize the products enough to make them appear
attractive to farmers with miscalibrated beliefs. This point may be especially relevant
to the design of crop yield insurance programs, where there is evidence showing farmers
expect yields that are too high relative to the true, and consequently understate the prob-
abilities of very low yields.

Future research should examine a similar question with regard to producers' percep-
tions of other risky variables, with particular attention paid to producers' beliefs about
yield and revenue risks, and the impact of potential inaccuracies on the demand for
yield and revenue insurance products. Other extensions could likewise investigate the
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role of beliefs about risk in input usage and marketing behavior, to identify just two
other instances where the assumption of the accuracy of producers' beliefs may merit
further examination. One thing is clear from these results: the assumption that produ-
cers possess accurate understanding of the risks they face should not be accepted with-
out further scrutiny of the potential types of miscalibrations of beliefs which might exist,
and the potential effects on their assessments and responses to risk.

[Received August 2001; final revision received March 2002.]
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