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Micro versus Macro Acreage Response
Models: Does Site-Specific
Information Matter?

Jundie Wu and Richard M. Adams

Because requisite micro data frequently are unavailable, it is common practice to use
aggregate data to estimate economic relationships representing the behavior of
individual agents. A substantial body of literature has examined conditions under
which inferences between micro and aggregate specifications can be made. Less
attention has been focused on the relative accuracy of predictions for each scale of
model. In an empirical application, we compare the goodness-of-fit measures of eight
sets of acreage response models, varying in aggregation from field- (micro-) level to
regional- (macro-) level models. Results suggest aggregate models are superior to the
micro model in predicting acreage response, even though the micro models contain
substantially more data on site-specific characteristics.

Key words: acreage response model, aggregation, macro models, micro models, pre-
diction accuracy, site-specific information

Introduction

Applied economists must wrestle with the tradeoff between a theoretically consistent
model specification and tractability constraints imposed by data. For example, micro-
economic relationships representing the behavior of individual economic agents are
frequently estimated using aggregate or “macro” data. These empirical macro relation-
ships are then used for making inferences about individual behavior and for making
aggregate predictions. This practice of using macro or aggregate data to estimate what
are inherently micro relationships is often necessary because micro-level data are un-
available (Grunfeld and Griliches).

Two problems arise from this practice. One, which is often referred to as the aggrega-
tion problem, concerns the connections between micro and macro behavior (Chambers
and Pope). If aggregate relationships are used to make inferences about individual
behavior, one must consider the conditions under which the distribution of individual
characteristics can be ignored so the results can be treated as if they are the outcome
of the decision of a single “representative” firm or consumer. If these conditions are met,
the relationships derived from micro theory can be estimated with aggregate data and
behavioral interpretations can be drawn from the estimated parameters.

The second problem, which is the focus of this study, concerns the relative accuracy
of predictions made by micro and macro models. With the advance of data collection and
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management technologies, such as Geographic Information Systems (GIS) and satellite
imaging, more micro-level, spatially articulated data are now available. With these data,
it is increasingly possible to estimate micro models and then statistically aggregate the
micro-level predictions to the aggregate level by using distributions of micro-level char-
acteristics. The question is whether the micro approach, facilitated by the availability
of those micro data, will provide better predictions of aggregate outcomes than traditional
aggregate models.

Alarge body of literature has focused on the aggregation problem in general, and two
lines of inquiry in particular. The first seeks the requisite conditions on micro behavior
to guarantee existence of a representative producer or consumer for any distribution of
individual characteristics (Gorman; Muellbauer), or on the distribution of individual
characteristics that guarantee the existence of macro functions which share some or all
properties of the corresponding micro functions (Klein; Theil; Hildenbrand; Chiappori;
Stoker; Blackorby and Schworm). These conditions are found to be quite stringent. The
second line of inquiry focuses on the problem of “aggregation bias,” defined by the deri-
vation of the macro parameters from the average of the corresponding micro parameters
(e.g., Theil; Gupta; Sasaki; Lee, Pesaran, and Pierse), or tests the consistency between
theory and empirical evidence (Shumway 1995; Love).

In contrast to the aggregation problem, the issue of prediction accuracy has received
less attention. In a 1960 paper, Grunfeld and Griliches (GG) examined the relative power
of micro and macro models for explaining the variability of the aggregate dependent
variable and found the aggregate equation may explain the aggregate data better than
a combination of micro equations, if the micro equations are not correctly specified.
Sasaki reexamined the issue using data from four Japanese industries and concluded
the explanatory power of the macro models is not necessarily higher than that of micro
models.

Pesaran, Pierse, and Kumar (PPK) developed a more general criterion for choosing
between micro and macro models and applied it to labor demand in UK industries. They
found that for manufacturing industries, the prediction criterion marginally favors the
aggregate model, but over all industries the disaggregate models are strongly preferred.
Building upon the work by PPK, Thompson developed a joint test for spatial and temporal
aggregation; Thompson and Lyon developed a generalized test of perfect aggregation
which accommodates the case where the full rank conditions required for conducting the
PPK test are not satisfied or where linear models estimated with time-series data display
serially correlated error terms.

The primary objective of this study is to compare the prediction accuracy of micro and
macro models, using crop acreage projections as an example. As with other types of eco-
nomic predictions, acreage projections are typically based on “macro” models estimated
from aggregate time-series data. However, substantial site-specificdata [e.g., the National
Resources Inventory (NRI) and similar GIS-based land use data systems] are becoming
available for estimating micro-level relationships. The availability of such data now
allows estimation of more disaggregate models of acreage response and on-farm behav-
ior. The question is whether the micro approach, facilitated by the availability of micro
data, will provide better predictions of aggregate outcomes than traditional aggregate
models.

To explore this issue, we estimate eight sets of crop choice/acreage response models
for the Corn Belt (Iowa, Illinois, Indiana, Ohio, and Missouri) and then compare their
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goodness-of-fit measures. Five of the models, which are specified at the field, county,
state, and regional levels, were estimated using the National Resources Inventory, the
most comprehensive resource and land use survey ever conducted in the United States.
The other three models, specified at the county, state, and regional levels, were
estimated using county crop acreage data from the U.S. Department of Agriculture’s
(USDA’s) National Agricultural Statistics Service (NASS). Although the NASS data are
more aggregate than the NRI data, they encompass a much longer time series.

This article makes two contributions to the literature. First, we show that the GG
criterion for discriminating between micro and macro models may lead to the choice of
the macro model even if the micro models are correctly specified. This goodness-of-fit
criterion, which is based on the sum of squared residuals, may fail simply because even
when the sums of squared residuals are very large, the aggregate prediction can be
accurate if over-predictions for some units are offset by under-predictions for others. The
PPK criterion, which is more general than the GG criterion, will not lead to the choice
of a “wrong” model. However, in some special cases (see the next section), the PPK
criterion cannot be used to discriminate between micro and macro models even if the
variance of prediction errors of the micro model is smaller.

Second, this study focuses on acreage prediction, an area where aggregate models are
most commonly used but where disaggregate data are now becoming available. Previous
studies on prediction issues, however, have not examined acreage projections.

Aggregation and Prediction Accuracy

In this section, we present a statistical model to examine the relative accuracy of micro
and macro models in terms of aggregate prediction. We show that even in the context
of linear prediction models, the issue of whether one should choose micro or macro models
to make aggregate predictions cannot be generally resolved by a priori reasoning. The
issue must be settled with empirical analysis.

Assume a set of sample observations on a “panel” of N decision units over 7" time per-
iods. Let Y, be the dependent variable for unit i in period £, and let X, = (x,;,, X,;,, ..., %3;,)
be the independent variables for unit i in period . We wish to use these data to develop
a model to predict the total value of Y for all units associated with an estimate of inde-
pendent variables X} (i = 1,2, ..., N). There are several approaches for making such a
prediction. A simple approach is to use the pooled time-series and cross-sectional data
to estimate the following micro model:

(1 H;: Y, =X,B +uy, u,~N(O,0%),

and then use the model to make predictions for each micro unit. Summing the predic-
tions for all micro units provides an aggregate prediction. Model (1) is a very restrictive
specification, but one that allows us to illustrate the problem with the GG and PPK
criteria.’

! Amore general specification of the micromodelis H,: Y, = X,,B; + u;,, which allows parameter B to vary across micro units.
In the empirical study, both (1) and the more general specification were estimated, and their prediction accuracies were
compared.
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Alternatively, we can first add Y, and X,, for all units in each time period to get
Y/ - LY, and X{= (z,-:x”“ DIEI Xijxkit),
and use aggregate, time-series data to estimate a macro model:
@) H:Y!=X!B*+v? vl~N(©,da),

and then use the macro model to make aggregate predictions. Following GG and PPK,
we consider the question as to which approach provides a more accurate prediction.

The GG and PPK prediction (or, more accurately, the within-sample goodness-of-
fit) criteria for choosing between micro and macro models are based on the sums of
squared residuals from the micro and macro models. Specifically, the GG prediction cri-
terion is:

(3) Choose the micro model if eje; < e e,,

where e, and e, are vectors of residuals from (1) and (2), respectively. The estimates
employed by GG for e, and e, are based on the ordinary least squares (OLS) method and
are given by:

4) e, = [INT - X(X'X)“1X']u and e, = [IT - Xa(xa'xa)~lxa']va’

where Ly, is an {NT x NT} identity matrix; X = (X{1, ..., X175 Xo1s +ees Xog; «o; Xpyis oes Xovp) 18
{NT xk}; and X® = (X%, X%, ..., X&) is {T x k).

As noted by PPK, like the justification for Theil’s R criterion, the rationale behind
the use of the GG criterion lies in the fact that if the micro equations are correctly
specified, the fit of the macro equation should not be any better than the fit of the micro
equations. Specifically, we should have

(5) E (eje;) < E (e.e,),
where E (-} is the mathematical expectation operator under H,. However, from (4),
(6) E (eje,) - E lele,) = (NT - k)a® - (T - E)No? = (N - 1)ko® > 0.

Thus, even if the micro model is correctly specified, under the GG prediction criterion
the macro model will be chosen.

The PPK prediction criterion is also based on the sums of squared residuals. In the
context of the micro and macro models specified in (1) and (2), the PPK adjusted goodness-
offit criterion is:

Neje, _ o _ €ie,
NT -k “ T-k

This criterion, however, cannot be used to discriminate between the macro and micro
models in (1) and (2) because

(7 Choose the micro model if s; =

(8) E (s]) - E s2) = 0.

Thus, like the GG criterion, the PPK does not lead to the choice of the micro model
even if it is correctly specified. However, this does not mean the micro model has no
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advantage over the macro model in terms of aggregate prediction. Below, we show that
the variance of prediction errors from the micro model at an out-of-sample point is
always smaller than that from the macro model if the micro model in (1) is correctly
specified.

To demonstrate this result, consider the aggregate prediction from the micro model
(1) at an out-of-sample point, X} = (x), x5, ..., xo)":

N N
9 Y Y =) X;B,

i1 i1
which implies the prediction error is
N N ¥ N .
IRAEDNAEDNIEDM ()
i1 i1 i1 i1

The variance of the prediction error is found by squaring equation (10) and taking expec-
tations:

(10) e)

'

N N
Y X [e2xXX))| X7,
i1 i=1

By using a similar procedure, the variance of prediction errors from the aggregate model
can be derived as

N ! N
(12) Vied) = No? + [Zxﬁ?] [No?(X*X*)] [ y x?] :
i=1

(11) Vie]) = No? +

i1
A comparison of (11) and (12) indicates the disaggregate model makes better predictions
li.e., V(e2) < V()] if and only if

(13) (X'X)! < N(X¥X%)1 or N(X'X) > (X¥X9),

in the sense that the difference between the two matrices is positive semi-definite. This
condition always holds because

(14) NX'X) - (XX =N Y (X, - X)X, -X)' > 0,

where X; = (X}, X5, ..., X;7)', and X = %, X;/N. Thus, if the micro model is correctly speci-
fied, the micro model makes more reliable (smaller variance) out-of-sample predictions
than the macro model. The intuition behind this result is that when the micro model (1)
is correctly specified, it provides a more accurate prediction of p than the macro model
(i.e., the variance is smaller) because it uses more observations than the macro model.
As a result, the second component of the variance of prediction errors from the micro
model is smaller than that for the macro model. This result is important because it
demonstrates PPK’s goodness-of-fit criterion may fail to discriminate between the micro
and macro models even in the context of linear models.

The above results suggest the out-of-sample prediction error has two components: the
random disturbance term and the error term which occurs due to the incorrect esti-
mation of the model coefficients. The GG criterion fails to select the micro model even
if it provides more reliable predictions because (a) it provides biased estimates of the
first component of the variances of the prediction errors, and (b) it ignores the second
component of prediction errors. Although the PPK criterion provides unbiased estimates
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of the first components of the variances of prediction errors, it ignores the second com-
ponent of the prediction error. Thus, although the PPK criterion does not lead to the
choice of a “wrong” model, it may not be able to discriminate between the micro and
macro models under some circumstances.

In addition to the above problem, there are several other issues that make the choice
between micro and macro models difficult. First, aggregate or macro data for estimating
economic relationships are often available for a longer time series than disaggregated
data. Other things being equal, this tends to favor the macro model because the longer
the time series, the smaller the variance of the prediction error. Thus, there is a tradeoff
between a longer time series and more detailed data in terms of prediction accuracy. A
longer time series tends to favor prediction accuracy of macro models.

Second, the result that the prediction error for the micro model has a smaller variance
than the prediction error variance for the aggregate model depends on the assumption
the micro models are correctly specified—an unlikely event. GG argue that as long as
micro models are not correctly specified, there can be a gain from aggregation, due to
the elimination of the specification errors. In such a circumstance, the issue of whether
disaggregation is useful for the study of macro phenomena and the extent of the gain
which may be expected from micro models depends on the relative importance of the
micro specification errors in the micro model and the aggregation errors in the macro
model (Pesaran, Pierse, and Kumar).

Third, one may not be able to include some variables typically contained in micro
models in the estimation of macro models. For example, we can include land quality var-
iables in a micro acreage response function to examine their impact on land allocation,
but cannot include these variables in a macro model that uses time-series data because
land quality generally does not change over time. Furthermore, the type and format of
variables in macro and micro data are often different. For example, survey-based data
frequently focus on whether an economic agent produces or consumes a certain product,
whereas in aggregated data, total production and consumption are reported. As aresult,
different methods may be required to estimate micro and macro models.

Finally, nonlinear specification complicates the choice between micro and macro
models. The GG and PPK criteria, which are based on the coefficient of variation or
sums of squares of residuals, may not be meaningful for a nonlinear specification or a
discrete choice model. The perfect aggregation test developed by PPK, and subsequently
generalized by Thompson and by Thompson and Lyon in the context of linear models,
cannot be applied to nonlinear models.? For these reasons, we use the Theil U-statistic
and the root mean squared error (RMSE) of aggregate predictions to discriminate
between the micro and macro models. Specifically, the root mean squared errors of pre-
diction from the micro and macro models equal:

1%

%(Yzz - Y;t)

i=1

(15)  RMSE, -

T
)
t=1

N[

2We could make the same arguments as made by PPK when they apply their criterion to the log of the dependent variable,
but if this argument is made, then comparisons of predictions from a nonlinear field-level model with predictions from “linear”
models are not legitimate.
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In our empirical application, Y;, and Y, represent the reported and predicted crop acre-
age from micro models, and Y;® and Y, represent the reported and predicted crop acre-
age from macro models. Theil’s U-statistics are defined as:

RMSE RMSE
(16) Ud=——-———%, U,=—"-.
1 iﬁ’: 2| 1 & L]
L Y; L Y.
TEE" TEE "

In the remainder of this study, we apply these measures to evaluate eight sets of crop
choice and acreage response models.

Crop Choice and Acreage Response Models

The crop choice and acreage response models are specified at four different levels of
aggregation: field, county, state, and regional levels. Each model is used to predict crop
acreage at the regional level, and the results are compared with the reported acreage
to calculate the Theil U-statistic and RMSEs. The specification and estimation of each
model are discussed below.

The Field-Level Crop Choice Models

The crop choice problem at the field level is modeled as a multinomial logit model:

e ' B.
an P, - M  G=1,2,...N;j=1,2,..,M¢=12,..T),
> exp(X;,,B,)
k-1
where P, is the probability of field i being used to grow crop j in year ¢. The multi-

nomial logit model has been widely used in economic applications, including the choice
of transportation modes, occupations, asset portfolios, and the number of automobiles
demanded. In agriculture, it has been used to model farmers’ land allocation decisions
(Lichtenberg; Wu and Segerson; Hardie and Parks; Plantinga, Mauldin, and Miller) and
the choice of irrigation technologies and alternative crop management practices (Caswell
and Zilberman).

The coefficients in a multinomial logit model are difficult to interpret, so the marginal
impacts of independent variables are often calculated using the following:

oP, - A
£ = Pijt(ﬁjl'a - Z;Rﬂﬁj]’
i

k
axijt

(18)

where xgt and Bf are the kth element of vectors X, and B;, respectively. In policy analy-
sis, it is also useful to estimate the acreage elasticity for a region. With the multinomial
logit model, the total acreage of crop j in year ¢ in the region, A,, can be estimated by:

N
(19) A= Z;PiﬁEi’

where E, is the acreage of field i. Using equations (18) and (19), the acreage elasticity
of crop j for the region can be obtained as follows:
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=~k N
(20) ., = _‘].E l = L E l,]t — Jt N P.
Cjt axj’: A, Ay ; ax A, E i ﬁ E utB

where x, is the average of x,ﬁ across all N fields.

Two types of multinomial logit models are estimated. One is estimated with param-
eters P restricted to be the same across fields in the study region. The other is estimated
with the restriction relaxed to allow different f; in each state. Both are estimated using
the Times Series Processor’s LOGIT procedure (Hall). The logistic procedure is used
because our micro-level survey data indicate the type of crop grown in each field (see the
discussion of data in the next section).

Multinomial logit models predict the probability of choosing each crop at each field
and the results can be aggregated to the county, state, or regional levels based on the
acreage of individual fields as determined by the survey. The acreage elasticities are
calculated using (20), with all variables evaluated at their means. The ¢-statistics and
standard errors are estimated using Times Series Processor’s ANALYZ procedure for the
null hypothesis that the acreage elasticities are zero (Hall, pp. 26-27).

The County-Level Acreage Response Models

Because of a lack of disaggregate data, most acreage response models are estimated using
regional or national data (e.g., Houck and Ryan; Lidman and Bawden; Chavas and Holt;
Chavas, Pope, and Kao). More recently, several studies have estimated acreage response
models using county-level data. Lichtenberg estimated a county-level acreage response
model to examine the interaction among land quality, cropping patterns, and irrigation
development. Wu and Segerson estimated a similar model to examine the effect of
government commodity programs and land characteristics on groundwater pollution in
Wisconsin. Hardie and Parks used county-level data to analyze the impact of land quality
on land allocation between agriculture and forests.

In these county-level analyses, P,, is estimated as the share of potential cropland
allocated to crop j in county i in year ¢, and the beta parameters are estimated using the
following logistic regression equations, which are derived by taking the log of the ratio
of P, and P,,, in (17):

ijt

(21) In| —2

= X + vy, (G=1,.,M-D),
P

where i is the index of the county, and B,, is normalized to zero to reduce the indeter-
mmacy in the model (Greene 1990, p. 697). The acreage elasticity of crop j with respect
to xut for the whole region is specified as:

0A, Xk &P N oA, zF XN
(22) = —LIt - JE YT Tt p LR EPB
7 axijf’t A, A i axift Ajt i Jt ut

N

E[Ewut ut
Jj=1 1

where w;;, = A,/A, is the percentage of total acreage of crop j in county i in year .
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The county-level model is estimated using panel data. Because county size, cultiva-
tion history, and other disturbance factors differ across counties, heteroskedasticity may
exist in the county-level model. Heteroskedasticity was tested using the Lagrange
multiplier test (Greene 1990, p. 467). Also, because the disturbances affecting one crop
in one year may affect the same crop in other years, autocorrelation was tested using
the Durbin test. Finally, with land allocation imposing joint production decisions and
disturbances for different crops reflecting common factors (e.g., climate and the general
state of the economy), contemporaneous correlation (i.e., correlation between error terms
for different crops) may be present. Contemporaneous correlation was tested using the
Lagrange multiplier test suggested by Breusch and Pagan (Greene 1990, p. 515). All
these standard problems were present in the county-level model.

Several approaches can be used to specify the error structure for the county-level
model (Baltagi and Raj). Our specification follows Kmenta’s cross-sectionally hetero-
skedastic and timewise autoregressive model for panel data (Kmenta, pp. 509-12). In
addition, we allow the error terms for the different equations to be contemporaneously
correlated. Thus, this specification accounts for groupwise heteroskedasticity, autocorre-
lation, and contemporaneous correlation. To correct these econometric problems, the
county-level equation system was estimated using SUR-HEAR—a procedure that com-
bines the Seemingly Unrelated Regression technique with Kmenta’s method of handling
heteroskedasticity and autocorrelation problems (Wu and Brorsen). The procedure was
implemented using SAS.

The State- and Regional-Level Acreage Response Models

To determine the effect of aggregation on prediction accuracy, two models representing
higher levels of aggregation were estimated. One was at the state level, and the other
at the regional level. For each state, we specify the following acreage response system:

s
(23) In| 2| -zt g, (o1, M)
Py,
where s is the index of state, P; is the percentage of potential cropland allocated to crop
Jin year t in state s, Z; is a vector of independent variables including input and output
prices and government commodity program provisions in the state. The acreage elasti-
city of crop j with respect to an independent variable for the whole region is:

s

(24) G = 2 wis
s=1

where C}, is the acreage elasticity of crop j in state s in year £, and wj; is the percentage
of total acreage of crop j in state s in year £. The state model differs from the county-level
model in that only time-series data are used in the estimation (as opposed to panel data
in the county model). In addition, the parameters are restricted to be the same across
the states in the county-level model, but are not in the state-level model.

The state-level model is estimated in a two-step procedure. First, the Prais-Winsten
transformations based on OLS estimates are applied to individual equations to correct
for autocorrelation (Greene 1990, p. 443). Then the equations for all states are estimated
simultaneously using the seemingly unrelated regression (SUR) estimator.
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The most aggregated (macro) acreage response model estimated in this study is a
regional-level (Corn Belt) acreage response model, which is also specified as a logit re-
gression model:

B ;
(25) In a =Z,y;+g;, (=1,.,M-1),
4
where P, is the percentage of potential cropland allocated to cropj in year ¢ in the region.
The regional-level model is estimated using the same procedure as the state-level model.

Acreage elasticities were estimated using (24) for the state-level model. All elasticities
were evaluated at the mean values of variables. Since these elasticities were calculated
from a number of the estimated parameters, it is important to test their statistical sig-

nificance. F-statistics are calculated to test the null hypothesis that the elasticities are
zero, and standard errors for the elasticities are then calculated using the F-statistics.

The Data

Acreage and Land Characteristic Data

The field-level crop choice model was estimated using data from the 1982, 1987, and
1992 Natural Resources Inventory (NRI) for the Corn Belt. The NRI is conducted every
five years by the USDA’s Natural Resource Conservation Service (NRCS) to determine
the status, condition, and trend in the nation’s soil, water, and other related resources
at more than 800,000 sites (fields) across the continental United States. Each NRI site
is assigned a weight (called the expansion factor) to reflect the acreage each site repre-
sents. For example, the summation of expansion factors for all sites planted to corn in
a region gives an estimate of corn acreage in the region.

For each NRI site, information on nearly 200 attributes is collected. The information
includes land use and cover, cropping history, tillage and conservation practices, topog-
raphy, hydrology, and scil type. In the Corn Belt, over 55,000 NRI sites fall into the
cropland, rangeland or pastureland categories. Three NRI surveys are currently avail-
able (1982, 1987, and 1992). (The 1997 NRI survey has been conducted, but has not yet
been released.) Each NRI survey has crop choice information for four years (the current
year plus the previous three years). Thus, we have land use/crop choice information for
12 years at each NRI site. Pooling these time-series and cross-sectional data results in
660,000 observations (55,000 NRI sites x 12 years).?

Tomake our estimation computationally feasible, 10% of the NRI sites were randomly
selected and used in the estimation of the crop choice model. Specifically, we first divid-
ed the NRI sites in each Major Land Resource Area (MLRA) defined by the USDA into
different groups according to crop, crop rotations, irrigation, and tillage and conser-
vation practices; we then drew 10% of sample sites from each group. This procedure
guarantees the subsamples are representative of the whole sample in terms of crop
acreage and management practices. To ensure the subsamples are also representative
in terms of soil properties, the frequency distribution of four important soil properties

% The lack of a continuous time series from the NRI data makes correction of autocorrelation more difficult. Instead of
multiplying only the first observation by y1 - p? in continuous time series, we must multiply the first observation by y1 ~ p?
in each time interval.
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for the selected sample (clay percentage, bulk density, pH, and organic matter percent-
age) was compared to that of the population. The two distributions were found to be
essentially identical, indicating the subsamples were also representative in terms of soil
properties.

Each NRI sample site is linked to the NRCS’s SOILS5 database, providing detailed
soil profile information from soil surveys. From the data, average measures of soil prop-
erties for top soil layers were calculated. These include average organic matter percent-
age, clay percentage, soil pH, and permeability. The data also include information about
soil texture and land capability class. Historical weather data from 1975-1992 were
obtained from the Midwestern Climate Center. The mean and variance of maximum
monthly temperature and precipitation during corn and soybean growing seasons were
estimated from these weather data and included in the crop choice model.

The county-level acreage response model was estimated by aggregating the NRI data
to the county level. Instead of using dummy variables to indicate soil texture, we now
use the percentage of land with different textures as independent variables. We esti-
mated the average values of slope, organic matter percentage, permeability, and soil pH
for potential cropland (defined as cropland, pastureland, and rangeland) in each county
based on land characteristics at each NRI site and the number of acres each NRI site
represents. In the field-level model, dummy variables were included to indicate the
MLRA to which each NRI site belongs. The percentage of potential cropland in each
county that falls into each MLRA was also estimated and included in the county-level
model. The state- and regional-level models were estimated by aggregating the NRI data
to the state and regional levels. Only time-series data were used in the state and regional
models because land characteristics of potential cropland do not change much over the
relatively short time period involved here. The data include a sample for the 12 years.

Three of the four models (the county, state, and regional models) were also estimated
using the NASS’s county crop history data. The advantage of these data is that they
cover a much longer time series than the NRI data. For this study, county crop acreage
data from 1975-1994, along with land quality variables from NRI and the SOILS5
database, were used to estimate the county-level acreage response model. All other inde-
pendent variables were constructed in the same manner as in the NRI-based models,
although they cover a longer time series. The state- and regional-level acreage response
models were then estimated by aggregating the data to the state and regional levels.
Table 1 provides details about the number of cross-sectional units and the length of each
time series for both data sets, along with the estimation procedures for each model.

Prices and Government Commodity Programs

Much research has focused on the effect of government commodity programs on acreage
responses (e.g., Lidman and Bawden; Houck and Ryan; Chavas, Pope, and Kao; Chavas
and Holt; Shumway 1983; Wu and Segerson). Based on most recent studies, the follow-
ing approach was used to incorporate government commodity programs.

The expected market price for corn was specified as a weighted average of target price
and lagged market price, and the weights were selected to minimize the sum of the
prediction error. The higher of the expected market price and the weighted target price
was specified as the farmers’ expected price for corn, where the weighted target price
is calculated by multiplying the target price by the portion of corn base permitted for
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Table 1. Sample Details and Estimation Procedures for the Eight Sets of
Crop Choice and Acreage Response Models

Number of Cross- Time Series Procedure/

Models Sectional Units Length (years) Program ¢
Estimated with NRI Data:

Field Model® 5,924°¢ 12 LOGIT/TSP

Field Model-Restricted® 5,924 12 LOGIT/TSP

County Model 439 12 SUR-HEAR/SAS

State Model 0 12 SUR-AR/SAS

Regional Model 0 12 SUR-AR/SAS
Estimated with NASS Data:

County Model ® 439 20 SUR-HEAR/SAS

State Model 0 20 SUR-AR/SAS

Regional Model 0 20 SUR-AR/SAS

*Estimation allows different coefficients for each state (i.e., different models for different states).

®Coefficients are restricted to be the same across states.

“The number of cross-sectional units in Iowa, Illinois, Missouri, Indiana, and Ohio are, respectively, 1,569, 1,611, 899,
903, and 942, for a total of 5,924,

4See Wu and Brorsen for a discussion of the SUR-HEAR and SUR-AR procedures.

corn planting [i.e., 1-Acreage Reduction Program (ARP) rate for corn]. In contrast to
corn, soybeans is not a program crop. The expected price for soybeans was specified as
the average futures price in the planting season, which was estimated as the average
of the first and second Thursday closing prices in March at the Chicago Board of Trade
(CBOT) for November soybeans.

Government commodity program data, such as target prices and the ARP rates, were
taken from Green and other USDA publications. Input prices including farmer wage
rates and prices paid by farmers for agricultural chemicals, seeds, and fuel (index num-
ber) were taken from the USDA. All prices were normalized by the index of prices paid
by farmers for all inputs including interest, taxes, and wages (USDA).

Results and Implications

This section presents results from the estimation of the four acreage response models,
as applied to the NRI (field-level) and NASS (county-level) data for corn and soybeans.
Using two data sets provides a more comprehensive test of the relative performance of
the various models; comparisons within a given data set ensure consistency with respect
to specifications and time periods.

The models are first evaluated relative to their ability to predict actual (reported)
acreages of each crop. This type of comparative evaluation, performed with the two sta-
tistical measures (Theil U-statistic and RMSE), can test for model superiority when the
primary goal is to predict acreage. The other form of comparative evaluation reported
here evaluates the performance of each model in terms of statistical properties and esti-
mates of structural parameters, including resulting elasticities. These characteristics
are important when addressing specific policy issues, such as the effect of government
programs on land use and off-site environmental consequences.
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Table 2. The Theil U-Statistic and the Root Mean Squared Error of Predic-
tions, by Model and Crop

Theil’s U-Statistic RMSE

Models Corn Soybeans Corn Soybeans
Estimated with NRI Data:

Field Model® 0.022 0.025 830 733

Field Model-Restricted® 0.027 0.029 1,000 856

County Model® 0.033 0.068 1,243 1,981

State Model 0.057 0.067 2,120 1,961

Regional Model 0.021 0.023 837 669
Estimated with NASS Data:

County Model® 0.039 0.048 853 1,003

State Model 0.047 0.062 1,019 1,276

Regional Model 0.033 0.041 724 849

*Estimation allows different coefficients for each state (i.e., different models for different states).
b Coefficients are restricted to be the same across states.

The predictive ability of each model is evaluated statistically in table 2, which reports
the Theil U-statistic and the root mean squared errors for each model’s predictions
based on comparisons of reported and predicted regional crop acreages. The results in
table 2, for both statistical measures, indicate the aggregate or macro model performs
best for both the NRI and NASS data and for each crop. Specifically, the regional model
performs better than the restricted field-, county-, and state-level models for the NRI
data and better than the county and state models for the NASS data, for both corn and
soybeans. For the less restricted field model, the predictive ability is similar to the most
aggregated model (as measured by the RMSE), although the Theil U-statistics for the
most aggregated model are superior.

The fact that the most aggregated model in general performs better than the least ag-
gregated models for each data set (i.e., the county-level NASS model and the field-level
NRI model) seems counterintuitive, given that the micro model contains more informa-
tion. As Grunfeld and Griliches report, this finding can be explained in the nature of the
estimation required for each type of model. Specifically, “perfect” micro relationships will
perform better, as evidenced by a comparison between the restricted and less restricted
field-level models. Because the null hypothesis that parameter vectors are the same
between any two states (i.e., Hy: B; = B,, i # ) is rejected at the 1% level of significance,
the less restricted field-level model is likely a better approximation to the real micro
relationship, and thus provides better predictions than the restricted field-level model.

In practice, however, we do not know the real micro relationships. Estimating an
aggregate measure may favor the aggregate model, simply because there is less aggre-
gation required to obtain the measure used here (total crop acreage). The other models
used here require aggregation of hundreds to thousands of predictions to obtain an
annual aggregate acreage response. In the process, prediction errors across micro units
will be accumulated. In addition, the quality of micro data may be another source of
aggregation gain (Grunfeld and Griliches; Gardner).

Figures 1-4 compare reported and predicted regional corn and soybean acreages for
models of different levels of aggregation estimated using NRI and NASS data. The total
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acreages from the NASS data are much lower than those from the NRI data because
counties with no land quality data are not used in the estimation and their acreages are
not included in the total acreage.

Two noticeable points are demonstrated by the figures and elasticities. First, the mod-
els estimated with NASS data (with a longer time series) fit the data better than the
models estimated with NRI data. This result is consistent with statistical expectations
derived earlier in the paper. Second, the predictions of corn models are more stable
across models as evidenced by the figures and the number of significant elasticities. This
finding is partially explained by the fact that corn, as the more profitable crop, tends to
respond more directly to economic incentives than soybeans, which has a shorter grow-
ing season and tends to be a residual claimant on acreage (often planted when weather
conditions prevent timely planting of corn). In addition, government programs for corn
could be a source of stabilization. For example, under acreage reduction programs,
farmers had incentive to maintain their acreage “base.”

It is interesting to note that while the most aggregate models perform best (as
measured by both statistical tests and across crops and data sources), the next best
performance is by the most micro-level models (the less restricted field-level model using
NRI data and the county-level model using NASS data). The mid-range models are
consistently the worst performers. Thus, the inclusion of site-specific, field-level data in
models without few restrictions in model coefficients may improve prediction perfor-
mance.

The results from table 2 and figures 1-4 address the predictive performance of each
model. The implication is that if aggregate acreage predictions are the primary inter-
est, then a more highly aggregated (macro) model is generally superior to a series of
micro relationships. This result is consistent with Grunfeld and Griliches’s argument:
“Aggregation is not necessarily bad if one is interested in the aggregates.” It has the
advantage of simplicity in specification and estimation because fewer variables are
required to estimate such a model.

However, for many policy analyses, there is a need to understand how changes in
inputs may affect acreage planted. Increasingly, there is also interest in understanding
the link or relationship between physical characteristics of land and acreage responses.
For example, solutions to many environmental issues related to agriculture require
information on the interaction between physical or environmental variables and land
use. In this case, the simpler, more aggregate models may not be as useful, given they
abstract from many of the variables of interest.

To explore the performance of the various models in this regard, table 3 reports the
acreage elasticities with respect to input and output prices.* The statistical properties
of each model, as measured by statistical significance of each explanatory variable,
present a different picture than observed in table 2. Specifically, the micro models have
the highest number of statistically significant variables. For example, five of the six
price elasticities in the NRI-based field-level model (restricted) for corn are statistically
significant at least at the 5% level. Similarly, all six price elasticities in the NASS-based
micro (county) model for corn are significant at the 5% level. However, the aggregate
model for corn has only three statistically significant variables in the NRI-based model

* The general statistical results for each model are summarized in an appendix and are available from the authors upon
request.
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Table 3. Acreage Elasticities Estimated with Models of Different Levels of
Aggregation and Different Data

Acreage Elasticities with Respect to:

Expected Expected

Price for  Price for Chemical Seed Fuel Wage
Models Acreage of: Corn Soybeans  Price Price Price Rate
Estimated with NRI Data:
Field Model * Corn 0.03 -0.18* -0.46* -0.16 0.19% -0.15
Soybeans -0.05 0.24%* 0.51% -0.10 0.01 0.21
Field Model-Restricted Corn 0.14* -0.15% -0.52% -0.23*% 0.15* 0.12
Soybeans 0.09 0.10 0.34* -0.22 -0.03 0.29*
County Model® Corn 0.20 -0.18 -0.48 -0.33 -0.07 -0.24
Soybeans -0.13 0.14 0.35 -0.14 0.20 0.54*
State Model Corn 0.10 -0.14 -0.07 -0.26 0.36% -0.09
Soybeans -0.09 0.12 -0.16 -0.06 -0.21 0.11
Regional Model Corn 0.20 -0.28* -0.59* -0.68 0.002* -0.11
Soybeans -0.02 0.15 0.34 0.26 0.19 0.35
Estimated with NASS Data:
County Model ® Corn 0.22% -0.10* -0.09% -0.61* -0.06* -0.12%
Soybeans ~0.24* 0.14%* ~-0.11%* 0.50% 0.14* 0.04
State Model Corn 0.25% -0.12% 0.00 -0.32 -0.08 -0.13
Soybeans -0.17% 0.06 ~0.32% 0.34* -0.08 0.00
Regional Model Corn 0.17 -0.03 0.03 -0.45 -0.07 0.04
Soybeans ~-0.17 0.07 -0.24 0.31 0.14 -0.17

Notes: All elasticities are evaluated at the mean of variables for the sampling period. An asterisk (*) denotes statistical
significance at the 5% level.

* Estimation allows different coefficients for each state (i.e., different models for different states).

®Coefficients are restricted to be the same across states.

and none in the NASS model. For soybeans, the micro models again have more statisti-
cally significant variables than do the most aggregate (the regional) models. In general,
the corn models perform better than the soybean models across all levels of aggregation.
Table 4 presents the elasticities and standard errors for the physical variables used
in the field and county models (the state and regional models do not contain these
variables). The differences between these four models are not as striking as those shown
in table 3 when measured by the numbers of statistically significant variables. For
example, both the restricted and unrestricted field models have similar numbers of
significant variables. However, the signs of the elasticities for the field-level model are
more consistent with agronomic expectations. For instance, corn is more likely to be
planted on high-quality land with low slope. This is consistent with the sign of the elas-
ticities for the first-class land and the slope variables in the field-level models, but not
with the sign of the elasticities for these variables in the two county-level models. Field-
or farm-level acreage and planting decisions should be more responsive to site-specific
data, such as soil characteristics. Thus, it seems plausible the effects of physical vari-
ables on planting decisions are likely to be captured with the field-level models.
Overall, the performance of the aggregate models, as measured by significance of esti-
mated elasticities, is inferior to that for the micro (field or county) models. In terms of
signs of acreage elasticities for the economic variables, all models perform about equally
well. As shown in table 3, all own-price elasticities have the expected sign. Elasticities
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Table 4. Estimates of Acreage Elasticities with Respect to Physical Variables
from Disaggregated Models

Field Field Model- County County
Model* Restricted® Model® Model®
(NRI Data) (NRI Data) (NRI Data) (NASS Data)

Physical Variables Corn Soybean Corn Soybean Corn  Soybean Corn Soybean
First-Class Land 0.03* 0.08* 0.05* 0.04* -0.31% 0.63* -0.27* 0.60*
(3.99) (7.32) (5.74) (3.15) (-8.76) 9.77)  (-32.10) (42.11)

Land Slope -0.03* -0.13* -0.02* -0.11* 0.15*  ~0.33* 2.94* -6.66*
(-5.28) (-18.36) (-4.14) (-18.54) (6.90) (-7.51) (39.44) (-51.81)

Organic Matter % 0.07* 0.00 0.00 -0.01 0.22*  -0.19*% 0.00 0.03*
(7.52) (0.14) (0.78) (-1.64) (4.18)  (-3.04) (0.05) (2.63)

Soil pH 0.24* 0.27* 0.22% 0.14* 1.47* 0.07 3.05* -0.87*
(3.69) (3.25) (4.59) (2.48) (3.66) (0.16) (25.21) (-7.14)

Soil Permeability 0.01* -0.02* 0.02% ~0.02* 0.10*  -0.14* 0.16* -0.34%
(3.72) (-4.19) (5.52) (~5.21) (4.16) (-4.79) (19.82) (-39.24)

Medium Textured Soil -0.002 -0.09* -0.01 0.02 0.15* -0.34* 0.44% 0.31*
(-0.21) (-9.40) (-1.29) (1.34) (2.61) (-5.37) (25.36) (18.63)

Fine Textured Soil -0.004* 0.00 -0.04* -0.05 -0.01 0.02 -0.02%* 0.10*
(-2.33) (-0.82) (-2.39 (-1.94) (-0.46) (1.18) (-6.86) (32.23)

Mean Max. Temp. ~1.70* 1.87% ~2,99% 2.37% -6.45* 2.42% 2.60* 2.49*
(-6.41) (5.50) (-16.30) (11.03) (-6.49) (2.40) (14.28) (13.02)

Std. Dev. of Max. Temp. -0.27* 0.26* -0.75% 0.40%* ~-1.70% 0.48 -1.06* 0.72%
(-3.17) (2.39) (-11.92) (5.42) (-5.76) (1.50) (-17.91) (11.91)

Mean Precipitation ~ -0.07 -0.19 -0.12 -0.12 044  -0.80*  -292%  -0.40*
(-0.77) (-1.72) (-1.79) (-1.62) (1.38) (-2.24) (-35.58) (~4.85)

Std. Dev. of Precip. -0.21* 0.38* -0.16* | 0.24* -1.13* 0.68* 1.73* 0.45%
(-2.29) (8.35) (-2.36) (3.06) (-3.62) (1.96) (23.28) (5.96)

Notes: All elasticities are evaluated at the mean of variables for the sampling period. An asterisk (*) denotes statistical
significance at the 5% level. Numbers in parentheses are ¢-statistics.

“ Estimation allows different coefficients for each state (i.e., different models for different states).

®Coefficients are restricted to be the same across states.

with respect to the competing crop for all models except the field-level soybean equation
also have the expected sign. However, the signs of the acreage elasticities for the physi-
cal variables are more consistent with agronomic information in the field-level models
than in the county-level models.

The results are consistent with the arguments provided in this article. With a disag-
gregated model, a large number of data points are used to estimate a few coefficients,
and the standard errors of the estimates are smaller due to higher degrees of freedom.
Yet, the one set of estimated coefficients arising from the restricted models may not be
representative of land-use responses of a particular state, and hence the resulting pre-
dictions may be poor. Conversely, the coefficients can be selected to closely fit the macro
data and provide good predictive power, but the variances of the parameter estimates
are relatively large because of the smaller size of the aggregated sample.’ These results
suggest that the choice of level of aggregation depends on the intended use of the results.
If data are available, then estimation of micro relationships may warrant the effort when
specific parameters are needed. Otherwise, aggregate models, given their relative ease
of estimation, are a preferred alternative.

® We thank an anonymous referee for this observation.
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Conclusions

The increasing availability of physical and natural science data describing land charac-
teristics allows economists to specify and estimate increasingly complex micro relation-
ships concerning land-use decisions. To the extent these relationships meet certain,
stringent conditions, it is generally assumed that the aggregation of these individual
micro relationships will yield better predictions than more aggregate models.

In this study, we examine the performance of a field- (micro-) level model of land use
(crop choice) relative to more common (and aggregated) specifications of the land-use
decision. Specifically, models of county-, state-, and regional-level acreage responses are
also evaluated. This comparison allows for an exploration of the question of whether the
availability of such micro data, and hence the ability to conduct detailed micro-level
analysis, matters for improving predictions of aggregate changes in land use.

Based on our results, if the measure of interest is aggregate crop acreage predictions,
then the micro model is inferior to the most aggregated class of models, despite the
greater informational content embedded in the micro model. This conclusion holds
across two data sets evaluated here. The greater number of variables and the more de-
tailed spatial resolution represented in the micro model make it much more complex.

In the case of the crops and regions studied here, econometric complications increase
the variance of the estimates, and consequently the root mean square error of model
predictions. However, the micro model did perform better than the two intermediate
models (county and state models). Also, when emphasis is on a limited set of character-
istics, such as elasticities derived for a particular variable, the micro model does perform
better than the most aggregate models. This finding is encouraging, given that detailed
site-specific information and land use data are needed when one is interested in the
impact of land use changes on nonpoint-source pollution and other environmental qual-
ity indicators.

The results of this study may not hold for other crops and settings, but they do
corroborate findings of earlier theoretical inquiries contending that aggregation is not
necessarily “bad.” Within the context of contemporary problems associated with aggre-
gate land use decisions, the results provide evidence to suggest economic analysis of
land-use issues need not await the availability of data on every conceivable geographic
variable; economic reasoning and simple aggregates of data can be useful tools for pre-
dictions. However, the fact that micro models perform better in terms of other statistical
measures clearly indicates the choice of model must reflect the intended use of these
models.

[Received April 2001; final revision received February 2002.]
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