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Optimal On-Farm Grain Storage 
by Risk-Averse Farmers 

Jing-Yi Lai, Robert J. Myers, and Steven D. Hanson 

Most previous research on post-harvest grain storage by farmers has assumed risk- 
neutral behavior andlor made restrictive assumptions about underlying price prob- 
ability distributions. In this study, we solve the optimal on-farm storage problem for 
a risk-averse farmer under more general assumptions about underlying price distri- 
butions. The resulting model is applied to Michigan corn farmers and findings show, 
contrary to the "sell all or nothing" risk-neutral rule, risk-averse farmers will spread 
sales out over the storage season. As farmers become more risk averse, the optimal 
strategy is to sell more grain at harvest and spread sales over the storage season, 
even though this practice reduces expected return. This result is more consistent 
with observed farmer behavior than the "sell all or nothing" risk-neutral rule. 

Key words: grain storage, risk aversion, stochastic dynamic programming 

Introduction 

On-farm grain storage can have important effects on farm profitability. Thus, it is not 
surprising many research and extension programs have investigated the optimal timing 
of sales from storage (e.g., Fackler and Livingston; Ferris; Lence, Kimle, and Hayenga; 
Tronstad and Taylor; and Zulauf and Irwin). By storing grain at harvest and waiting for 
prices to rise over the storage season, farmers can sometimes obtain higher total 
returns, even after accounting for storage costs. Of course, this strategy is risky because 
prices sometimes fall over the storage season or do not rise enough to cover storage 
costs. Furthermore, stocks must be sold at some point in time, and determining the best 
time to sell can be difficult. 

In a recent article, Fackler and Livingston solve the optimal on-farm storage problem 
using stochastic dynamic programming, and apply their model to on-farm storage of soy- 
beans in Illinois. One of the innovations in their analysis is that they model irreversi- 
bility by assuming, once sold, on-farm stocks cannot be replenished until the next 
harvest. Speculative repurchase of grain is ruled out on grounds that on-farm storage 
is a business marketing activity, and transaction costs from speculative repurchase 
will discourage such behavior. This appears to be a significant innovation because 
irreversibility is shown to have an important impact on optimal grain storage decisions, 
and certainly, very little speculative repurchase of grain is observed among operational 
grain farms (Sartwelle et al.). Fackler and Livingston's optimal storage strategy under 
irreversibility is an "all or nothing" rul+sell everything now if the current price is high 
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enough, otherwise wait and sell nothing. The decision to sell is determined by a "cutoff 
price" that may change over time in response to changing information about the state 
of the market (and hence expectations about future price levels). 

One concern about Fackler and Livingston's "all or nothing" rule is that it seems at 
odds with the way operating grain farmers actually behave. For example, on-farm corn 
stocks in Michigan were estimated at 120 million bushels (mb) on January 1,2002, after 
the 2001 corn harvest. But stocks had fallen to 80 mb by March 1,54 mb by June 1, and 
16 mb by September 1,2002 W.S. Department of Agriculture (USDA)]. Clearly, sales 
out of on-farm storage are spread out over the storage season, at least at the aggregate 
state level. Of course, these aggregate data could be reflecting a large number of differ- 
ent individual farmers each making "all or nothing" sell decisions at different points in 
time. Nevertheless, both the aggregate data and anecdotal evidence suggest many, if not 
most, farmers with on-farm storage facilities spread sales out over the storage season, 
rather than selling everything at one time. 

The "all or nothing" nature of Fackler and Livingston's optimal decision rule stems 
from the linearity of their return function and transition equation. Clearly, any model 
extension which makes the return function strictly concave will result in optimal sales 
which are spread out over the storage season, at least to some extent. How might this 
be accomplished? As shown by Tronstad and Taylor, allowing for a nonlinear tax schedule 
can introduce such a concavity. Other possibilities are allowing for liquidity constraints 
andlor differential borrowing and lending costs which encourage farmers to spread sales 
out in order to meet continuous consumption needs. However, an obvious source of 
return function concavity which has received very little attention in the on-farm storage 
literature is farmer risk aversion. If farmers are risk averse, they will have an incentive 
to spread sales out over the storage season to diversify the risk of selling everything at 
one time. Hence, incorporating farmer risk aversion into the optimal on-farm storage 
model appears to have the potential to explain partial sales at different times during the 
storage season, as is often observed among operational grain farms. 

Based on a search of the literature, the only published study of optimal on-farm stor- 
age accounting explicitly for farmer risk aversion is an analysis by Berg, who examined 
on-farm wheat storage in the European Union (EU). Berg did indeed find that spreading 
sales out over the storage season can be optimal for risk-averse EU wheat farmers. But 
while this study provides useful insights, the model is quite restrictive. In particular, 
Berg assumed triangular price distributions and that the probability distribution for 
price in any one period is independent of price outcomes in previous periods. These 
appear to be very restrictive assumptions given what we know currently about the 
probability structure of most grain price movements (e.g., Yang and Brorsen; Baillie and 
Myers; Wang et al.). 

The objective of this study is to show how the optimal on-farm grain storage problem 
can be solved assuming risk-averse farmers and incorporating more realistic price prob- 
ability distributions. Stochastic dynamic programming in a discrete-time framework is 
used to derive optimal storage rules under risk aversion. We continue to use Fackler and 
Livingston's irreversibility assumption, but extend their risk-neutral analysis by 
allowing for farmer risk aversion. In our model, an optimal partial selling rule is 
derived, as opposed to the "all or nothing" rule obtained by Fackler and Livingston. This 
means it is optimal to spread sales out over the storage season, as is more commonly 
observed in practice. 
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The resulting optimal storage rules are applied to on-farm storage of corn in Michigan. 
Results provide empirical support for spreading sales out over the storage season as a 
diversification strategy. Sensitivity analysis is conducted to investigate how various 
factors influence the optimal timing of sales out of storage. Finally, the performance of 
the optimal storage rules is evaluated by comparing the mean and standard deviation 
of storage returns under a range of alternative storage rules. 

The Theoretical Model 

Consider a risk-averse farmer with on-farm storage facilities deciding when to sell grain 
over the storage season. The storage season begins at the current harvest, ends before 
next year's harvest, and is divided into T equal-spaced decision nodes. At the beginning 
of each decision node, the farmer has a current grain stock (st), observes the current mar- 
ket price (p,), and chooses an amount of the commodity (q,) to sell in the spot market. 
Following Fackler and Livingston, we impose the restriction 0 s q, s st, thereby ensuring 
sales must be nonnegative (grain cannot be repurchased for speculative purposes) and 
less than or equal to the current storage level (no short selling allowed). The behaviors 
ruled out by these restrictions would be speculative and involve additional transaction 
costs which discourage most farmers from engaging in them.' 

The farmer pays a one-time per unit cost, c > 0, to move grain into or out of storage, 
and for each period grain is carried over in storage there is an additional cost of k > 0 
per unit. Because farmers are risk averse, they may try to manage storage risk by hedg- 
ing stocks on the futures market. Let f, be the current futures price for grain deliverable 
at the next decision node, and b, be sales of futures contracts at t which are held until 
they mature at the next decision node, t + 1.2 Consistent with previous assumptions 
about nonspeculation with cash positions, we rule out speculation on futures by imposing 
the restriction b, 2 0. Because futures contracts are marked to market at the next 
decision node, any profits or losses from futures trading are realized at that time. There 
is a per unit transaction cost from trading futures (round-trip cost paid when the futures 
position is taken out) of 6. This also includes costs of attaining and processing the 
information required to trade futures. 

With these assumptions, compounded storage returns (n,) evolve over the storage 
season according to the following transition equations: 

( la)  "5 = (1 + r)[poqo - (c + k)(so - qo) - 6bo] + (fo -f,)bo 

and 

(lb) n,+l = (1 + rI[n, + (p, - c)q, - k(s, - q,) - 6b,] + (f, -ft+l)b,, 

for t = 1, ..., T - 1, 

'These transaction costs include not only transportation, brokerage, etc., but also the costs of collecting sufficient informa- 
tion and marketing expertise to be able to speculate with grain repurchase or short selling. 

Farmers will generally have a choice regarding which futures contract (maturity date) they use for hedging. Here they 
are assumed to use a nearby future (maturing at  the next decision node) because it will generally have higher liquidity than 
distant maturities. Specifically, when the next decision node is reached, if some grain is still going to be left in storage, then 
continued hedging requires the futures positions to be rolled over into the next rnaturingcontract. Therefore, futures positions 
are only held for one decision period and then liquidated, but if storage continues, new positions can be taken out in the next 
maturing contract. Generalizing the model to allow the farmer to sell futures contracts over a range offuture maturities does 
not alter the main results which follow, but would make the analysis more complicated. 
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where so is total grain available for initial storage or sale (i.e., total production harvested 
at t = 01, and r is the (assumed constant) interest rate. Storage is subject to the transition 
equation: 

At each period t = 0,1, ..., T - 1, the farmer chooses an amount to sell (q,) and an amount 
to hedge (b,) to maximize the expected utility of final compounded return at the end of 
the storage season: 

max EOU(nT), 
(q,l::, lbtl;: 

subject to the transition equations (1) and (2), the constraints 0 s q, 2 st and b, 2 0, and 
a Markov probability process for prices ( ~ t + l , ~ + l ) - g t ( p t + l ,  ft+, Ip,, f,), where g, is the 
(possibly time-varying) probability density function for cash and futures prices at t + 1 
conditional on current cash and futures prices at t .  The U(-) function is an increasing 
and concave von Neumann-Morgenstern utility function representing farmer risk pref- 
erence~.~ 

The storage problem can be solved using discrete-time stochastic dynamic program- 
ming (Bertsekas; Miranda and Fackler). Defining the state vector x, = (n,, s , , ~ , ,  f,) and 
value function v,(x,), then Bellman's equation for the problem is given by: 

and 

subject to the transition equations (1) and (2) and the constraints 0 2 q, < st and b, 2 0. 
Second-order conditions for a maximum are satisfied by the concavity of U. 

This problem has no closed-form solution, even for simple assumptions on the form 
of the utility function and probability distributions. However, some interesting insights 
can still be gained about the form of the solution by examining first-order necessary 
conditions for an optimum. Although the storage and hedging decisions are clearly inter- 
related, the necessary conditions for futures hedging are examined first: 

and 

Defining utility to depend on grain storage returns only imposes an implicit assumption that grain storage decisions are 
separable from other production and marketing decisions undertaken by the farmer. While this assumption is questionable, 
there is a long history of adopting it in applied risk analysis (see Newbery and Stiglitz). The separability assumption can be 
made less restrictive by examining storage behavior under a range of alternative risk aversion levels, as is done in the numer- 
ical analysis which follows. 
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If the futures market is unbiased, f, = E,(f,+,), and futures transaction costs 6 are high 
enough, then no positive value of b, will satisfy (5a) with strict equality. In this case, it 
is optimal not to use futures (b, = 0). Furthermore, even when futures transaction costs 
are low enough to encourage futures selling, it will never be possible to fully hedge all 
future return risk from the storage operation using futures contracts alone, as long as 
there is basis risk (see Beminga, Eldor, and Zilcha; Lence; and Myers and Hanson). 
Hence, even when an optimal hedging strategy is followed, there will still be residual 
return risk facing the farmer if storage is undertaken. Consequently, even when farmers 
are hedging using futures, residual basis risk will still influence the optimal storage 
decision. 

Next, the necessary conditions are examined for optimal choice of sales (storage) a t  
each t .  As shown in the appendix, these necessary conditions can be written as  follow^:^ 

and 

where A, is the shadow value of relaxing the short-selling constraint that requires 
q, s st. At the last decision node (T - I), the optimal decision is to set q,, = s,, (sell every- 
thing left in storage, if any) whenever p,, - c > 0. Because stocks have no value in the 
final period T, but revenue does, this decision ensures bins are emptied before the next 
harvest. At all periods prior to T - 1, the farmer faces a tradeoff-ither sell all or part 
of total stocks now (if any is left) and receive (p, - c), or sell nothing and wait to see if 
prices rise. There are four cases to consider. 

First, suppose st is zero (there is no storage left). In this case, the (trivial) optimal 
strategy is to set q, = 0 because this is the only choice in the opportunity set. 

Second, suppose current stocks are positive (st > 0) and the optimal choice is still to 
sell nothing and wait (q, = 0). Then qt < st and At = 0. Furthermore, from (6b) and (6~1, we 
have: 

In this case, the marginal value (in terms of expected utility of compounded storage 
returns) of selling the first bushel of grain out of storage must be less than or equal to 
the marginal value (again in terms of expected utility of compounded storage returns) 
of keeping that bushel of grain in storage. If (7) is satisfied with strict inequality, the 
farmer would actually like to buy more grain to store but is precluded from doing so by 
the constraint q, t 0. 

Note ,  at t = 0, the marginal return from current period sales would bep, instead of (p, - c )  because grain sold right away 
does not go into storage. Thus, there is no charge for taking it back out of storage. 
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Third, suppose current stocks are positive (s,>O) and the optimal choice is to sell 
everything (q, =st). Then A, 2 0, and (6b) and (6c) imply: 

In this case, the marginal value (again in terms of expected utility of compounded storage 
returns) of selling the last bushel of grain is greater than or equal to the marginal value 
of keeping that bushel of grain in storage. If (8) is satisfied with strict inequality, the 
farmer would like to sell more, but is constrained by q, < st. 

Fourth, suppose the optimal strategy satisfies 0 < q, < st. Then A, = 0, and (6b) and (6c) 
imply: 

In this final case, the farmer is indifferent between selling or keeping the marginal 
bushel of grain. The concavity of U(-), together with the previous result that futures 
hedging will not eliminate all storage risk in the presence of transaction costs and basis 
risk, ensures v,(x,) is concave in n, and st. This implies there may be a wide range of 
conditions (price, storage costs, risk preferences, etc.) under which there are interior 
solutions satisfying 0 < q, < st. 

It is the interior solution (case four) which distinguishes this model from the one in 
Fackler and Livingston. The linearity of the (risk-neutral) Fackler and Livingston model 
leads to a "sell all or nothing" rule, whereas the (risk-averse) model here provides an 
incentive to spread sales out over the storage season. Of course, if current prices rise 
high enough, everything will be sold, and if current prices drop low enough, nothing will 
be sold. At some intermediate range of current prices, however, the risk-averse farmer 
will sell some grain and keep some in storage, even if some of the risk can be hedged on 
futures markets. While this is an interesting theoretical possibility, it is not yet clear 
how empirically relevant the possibility of partial sales really is. Can we find a reason- 
able problem and realistic set of parameter values for which significant partial sales are 
part of the optimal strategy? In the next section, this question is addressed using an 
empirical application to on-farm corn storage in Michigan. 

An Application 

While there is no closed-form solution to the theoretical model developed in the previous 
section, it can be solved numerically if assumptions are made about risk preferences and 
the model parameters are estimated. In this section, we solve the model numerically for 
the optimal on-farm storage problem faced by a farmer using the Saginaw market in 
Michigan to market corn. The 1997 corn crop year is used to calibrate the analysis. We 
attempt to ensure the structure of the problem is as realistic as possible. However, we 
emphasize that the main goal of the application is not to provide specific extension 
advice to farmers. Rather, the objectives are to illustrate how a numerical analysis of 
the model can be undertaken, and to demonstrate that partial sales can indeed be opti- 
mal for a realistic on-farm storage problem with risk-averse farmers and a reasonable 
set of parameter values. 
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Michigan corn farmers make their first marketing decision at harvest (defined here 
as the first week of November) when they decide how much production to sell immedi- 
ately and how much to store to sell later. We then break the storage season up into five 
additional decision nodes (the first weeks of January, March, May, July, and Sep- 
tember). At each of these six decision nodes (harvest plus the five through the storage 
season), the farmer can sell some or all of his or her corn. Any storage left over a t  the 
first week of September is automatically sold to make way for the coming new crop. 

To keep the problem simple, transaction costs for trading futures are assumed to be 
high enough that farmers choose not to hedge on futures markets. This assumption is 
adopted for two reasons. First, it is consistent with the fact that few farmers make exten- 
sive use of futures hedging (Musser, Patrick, and Eckman; Sartwelle et d.; Asplund, 
Forster, and Stout). Second, by excluding futures hedging from the numerical example, 
we focus on storage decisions rather than hedging decisions, and provide the maximum 
incentive for farmers to spread sales out over the storage season. This approach seems 
reasonable, given the main objective of the numerical example is to show that partial 
sales will occur for a t  least some farmers under some conditions. 

I t  is  also emphasized that while allowing for futures hedging may reduce the 
incentive to spread sales out over the storage season, it will not eliminate this incentive 
entirely (because of residual basis risk, as explained earlier). Indeed, one way to obseme 
how the introduction of futures hedging (a reduction in risk) might influence the storage 
choice would be to investigate what happens when the farmer becomes less risk averse 
(a reduction in risk aversion). In both cases, the storage decision rule should move in the 
same direction (toward the "all or nothing" risk-neutral rule and away from the partial 
sales risk-averse rule). Hence, by examining how optimal storage rules change when the 
farmer's degree of risk aversion is reduced (but always assuming no futures trading), 
it is possible to assess the direction of the effects on the optimal storage rule of allowing 
futures hedging (lowering of futures transaction costs). The advantage of this approach 
is that it allows us to meet the main objectives of the numerical application without 
overly complicating the state space for the analysis. 

Although the control and state spaces for the problem might best be viewed as contin- 
uous, a discrete approximation is used to facilitate a discrete state and control space 
solution technique. The control space is specified as a proportion of the total hamest (so) 
sold in any period. The proportion of the hamest sold at  any decision node is assumed 
totakeoneof11possiblevalues,qt~{O,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0).The 
state space for current stocks is also specified as a proportion of the total hamest, and 
so obviously consists of these same 11 possible proportions. The state space for selling 
pricesp, was specified as 15 possible price states ranging from $1.60 to $4.40 per bushel 
in 20q increments. Each price in the state space is viewed as the mid-point of the under- 
lying continuous price interval. The upper-bound price state of $4.40 per bushel repre- 
sents the price interval of $4.30 or above, while the lower-bound price state of $1.60 per 
bushel represents the price interval of $1.70 or below. 

The state space for compounded storage returns could be approximated similarly to 
the storage and price state spaces. However, this would require value function inter- 
polation because for a given current storage level, price level, and compounded storage 
return, and a given current sales choice, there would be no guarantee next period's 
compounded storage return would lie in any discrete state space that might be chosen 
for storage returns. To avoid the additional approximation error resulting from value 
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function interpolation, the state space for the compounded storage return was defined 
to be time dependent based on all possible feasible values the storage returns could take 
over the time horizon of the problem, given the state and control spaces for price, 
storage, and sales as defined previously.5 This procedure increases computation time, 
because of the large number of compounded storage return states which must be 
evaluated, but does eliminate approximation error that would otherwise be caused by 
value function interpolation. 

Three alternative values were used for the annual interest rate and monthly storage 
costs, r = 5%, lo%, and 15%, and k = 0@, I@, and 2@ per bushel. Interest rates will vary 
for individual farmers with differing opportunity costs of capital. Hence, it seems sensible 
to investigate the sensitivity of results over a range of interest rates. Similarly, storage 
costs may vary for different farmers because drying and handling costs will depend on 
the farm's capital s t ru~ture .~  However, it is important to note that variable on-farm 
storage costs for corn in Michigan are very small, consisting only of some electricity to 
run fans, and perhaps some minor fuel, labor, and maintenance costs. Hence, variable 
costs of on-farm storage are estimated to run between 0@ and 1@ per bushel per month 
(Ferris). The 2@ cost rate is included to show the sensitivity of results to an extreme 
upper bound. 

The remaining cost parameter c, which represents the cost of moving corn into and 
out of on-farm storage bins, was set to zero. While this cost may be important in some 
applications, it is not a major additional cost of on-farm corn storage in Michigan-i.e., 
most Michigan farmers who own storage bins move the harvest from their fields into the 
bins, even if they are planning on selling immediately. This is done to collect the corn 
for transport to the elevator by semi-trailer (Hilker). 

Thus, there are no significant additional charges from moving corn into and out of on- 
farm storage in Michigan, other than those expected to be accrued during the normal 
harvesting process. Furthermore, many elevators have an in-charge at harvest time 
when the demand' for their services is high, and then drop the charge later in the storage 
season as throughput falls. Clearly, this additional in-charge for selling immediately at 
harvest can offset any additional cost from moving grain into storage at harvest and out 
again later in the storage season. 

The final assumptions required to operationalize the model are a utility function and 
a set of transition probabilities for transitioning from one price state to another. A con- 
stant relative risk aversion (CRRA) utility function was assumed: U(nT) = nk-Rl(l- R ), 
R > 0.7 The parameter R denotes the coefficient of relative risk aversion and is set to one 

The state space for compounded storage returns is computed starting at  the harvest period when there is a single state 
of zero (returns from storage must be zero before any sales take place). To compute the state space at subsequent decision 
nodes, we chose an interest rater, and cost of storage parameters c and k, and took every feasible time path in the state space 
for storage decisions and applied every feasible price path sequence in the state space for price, to obtain every possible path 
for the compounded storage return a, at  every period over the time horizon of the problem. All of these possible values were 
then used at  each decision node as the state space for that node. The resulting state space for compounded storage returns 
is time dependent, and gets very large toward the end of the storage season. 

Note, variable costs only are counted because we are looking at  the optimal storage decision for given he., sunk) storage 
facilities, not analyzing new investment in storage facilities. 
' Because sales and current stock levels are expressed as a proportion of the total harvest, compounded storage returns 

must be scaled by the total harvest as well. Thus a storage return level of 1.351 would indicate total compounded returns 
at that date would really be $1.351 times the amount of the initial harvest in bushels. It can be shown, in the case of a 
CRRA utility function, this transformation has no effect on the optimal decision rule because the CRRA is homogeneous of 
degree 1 - R (Varian). Hence, the use of this transformation is innocuous and is only used to make the results easier to 
interpret. 
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Table 1. Corn Price Model Estimates 

Notes: In(pi)  is the logarithm of cash price at  Saginaw, Michigan, in week i. The constant was excluded from the 
conditional mean equation because its estimated value was very close to zero and not statistically different &om zero. 
Likelihood-ratio tests were used to determine the order of the seasonal functions in mean and variance; n is the obser- 
vation number in the season which corresponds to the current i (n = 1, 2, ..., 52); and LR is the likelihood-ratio test 
statistic for GARCH(1,l) with conditional normal errors ( l lv = 0) against conditional t-distributed errors ( l lv > 0); Q(1) 
is a test for lth-order serial correlation in the residuals; and Qz(l) is a test for lth-order serial correlation in the squared 
standardized residuals. 

Parameter Estimate p-Value 

Y 0.0506 0.0488 

dl1 -0.5776 0.0000 

d21 -0.3893 0.0007 

dl2 -0.0021 0.4929 

d z  0.3211 0.0029 

of seven possible values, R = {0.0001, 0.5, 1.0, 2.0, 3.0, 5.0, 10.01, in order to compare 
results across a range of farmer risk aversion.' Computation of the price transition prob- 
abilities required a detailed empirical analysis. 

Parameter Estimate p-Value 

a 1.6255 0.0078 

a 0.0934 0.0013 

P 0.7658 0.0000 

$1 0.6222 0.0614 

$2 -1.1059 0.0000 
v- l  0.1913 0.0000 

Computation of Price Transition Probabilities 

Statistics: 
Likelihood Ratio (LR) = 74.9968 

Ljung-Box &-Statistics (p-values in parentheses): 

Q(5) = 3.6719 (0.2991) Q2(5) = 1.1303 (0.7698) 

Q(15) = 13.1055 (0.4397) Q2(15) = 12.8787 (0.4572) 

Q(20) = 17.9130 (0.4614) Q2(20) = 16.3879 (0.5655) 

The probability density functions for corn prices faced by the farmer at  each decision 
node, t, are represented by a set of transition probability matrices which map the 
stochastic price states across the decision nodes. The underlying stochastic structure is 
estimated using weekly cash corn closing prices each Wednesday at Saginaw, Michigan, 
starting the first week in October of 1975, and ending the last week in September of 
1996. The underlying price process is specified as an autoregressive seasonal model for 
the conditional mean of changes in log prices, and a generalized autoregressive condi- 
tional heteroskedastic t-distribution model (GARCH-t) with seasonality for the condi- 
tional variance of the innovations (Fackler; Bollerslev). These specifications have been 
found to do a good job of representing the probability structure of weekly grain price 
movements (Yang and Brorsen). 

Because the CRRA utility function is not defined under exact risk neutrality, we set R = 0.0001 (near risk neutrality) to 
approximate the optimal risk-neutral strategy. Henceforth, this case will be simply described as "risk neutral." Similarly, 
the CRRA utility function converges to logarithmic utility ifR = 1.0, so logarithmic utility was used in this case. 
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After investigating several alternative models for goodness of fit, a preferred model 
was chosen and estimated (see table I).' The logarithm of weekly Saginaw corn prices 
was found to be nonstationary, and the conditional mean and variance of the change in 
log prices appear to vary over time as a result of both stochastic and seasonal factors. 
The Ljung-Box Q-statistics show the chosen model is well specified in terms of removing 
autocorrelation from both the errors and squared standardized errors of the change in 
log prices. 

The weekly econometric model can be used to generate transition probabilities corres- 
ponding to the 15 possible price states in the price state space. The transition probabil- 
ities are allowed to be different at each decision node, t ,  and so five different sets of 
transition probability matrices are computed. The transition probabilities are generated 
from the estimated weekly price model (table 1) using simulation. 

The simulation process begins by going to the first decision node (the harvest period 
specified as the first week of November). Then the first possible November price state 
($1.60) is selected and its natural logarithm is taken to give the first possible value of 
the log price state in November. Next, one realization of the change in log price from 
November to January is simulated by taking the weekly econometric model estimated 
in table 1 and making a sequence of eight or nine (whichever is appropriate) random 
draws on ci values, making certain the dynamics of both the log price and the variance 
of the ci are tracked properly over the two-month period.1° F'inally, we take the simulated 
change in log prices from November to January, add this to the initial log price in 
November, and exponentiate to give one possible realization of the price level in the first 
week of January, conditional on the price in the first week of November being $1.60. 

This process is repeated 10,000 times using a random number generator for the ei, 
and a check is made of the relative frequency with which the price outcomes fall into 
each of the price intervals in the price space. These relative frequencies are used as the 
transition probabilities for transitioning from the initial price state $1.60 in the first 
week of November to each of the possible alternative price states that could occur in the 
first week of January. 

To generate the entire matrix of transition probabilities, this process was repeated 
for every possible initial price state at the harvest period in the first week of Novem- 
ber ($1.60, $1.80, $2.00, $2.20, $2.40, $2.60, $2.80, $3.00, $3.20, $3.40, $3.60, $3.80, 
$4.00, $4.20, $4.40). This provides the entire matrix of transition probabilities for 
transitioning from the first week of November to the first week of January. To 
generate a transition probability matrix for every decision node, this entire pro- 
cedure was repeated for transitioning between all decision nodes (November- 
January, January-March, March-May, May-July, July-September). This process 

' Initial starting values for the estimation were found by applying ordincuy least squares (OM) to the conditional mean 
part of the model and then examining the autocorrelation function and partial autocorrelation function of the squared OLS 
residuals to obtain reasonable starting values for the GARCH parameters. We also investigated a range of alternative 
starting values and spot checked the likelihood value over a wide grid of alternative parameter values to ensure the 
maximum-likelihood estimates were a global maximum. 

lo To track these dynamics properly, it is necesscuy to specify starting values for Alog(pi.,), E:.,, and a:, to initialize the 
simulation, and then compute the dynamic path of the change in log prices and its conditional variance recursively (using 
the estimated model from table 1 and beginning from these startingvalues). Also, care was taken to update the conditional 
variance at  each step before simulating the next ei value. In the absence of any other conditioning information, we set the 
initialvalue of Alog(p,.,) to zero, and the initial values of E:., and a:., equal to their unconditional expectation (the estimated 
unconditional variance of E,). Any sensitivity ofthe results to these startingvalues will diminish as simulation extends further 
into the future. 
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November January March May July September 

Figure 1. Comparison of simulated average and historical 
average price movements 

gives five different transition probability matrices which can be input into the dynamic 
programming algorithm.'' 

We conducted a number of experiments to validate the econometric model and esti- 
mated transition probabilities. In one ofthese experiments the initial price in November 
was set equal to its historical data mean of $2.24 and this price was simulated forward 
over the entire storage season using the econometric model and 10,000 replications. We 
then computed the average simulated value (across the 10,000 replications) a t  each 
week over the storage season and compared this to the actual historical average price 
at  each week over the season. Results are graphed in figure 1. Average historical prices 
clearly rise through the storage season until about July, when prices begin to fall in 
anticipation of the coming hamest. This is the expected pattern, and the simulated 
average prices do a good job of tracking the actual historical average weekly prices, 
though the path of simulated average prices is smoother (as expected). This result 
suggests the econometric model performs well in capturing the seasonal movement in 
Saginaw corn prices. 

The pattern of volatility movements predicted by the econometric model was 
examined by forecasting the seasonal component of the conditional variance of changes 
in log prices. This seasonal component is graphed in figure 2 and shows corn price vola- 
tility is a t  a minimum during the winter months of December through February, then 
rises during spring planting and the growing season. Volatility reaches a maximum a t  
the end of summer in July and August, and finally falls again after harvest and into the 

"As noted by an  anonymous reviewer, the estimated econometric model is not entirely consistent with the discrete Markov 
probability structure assumed for the transitions between price states in the dynamic programming (DP) model. The 
econometric model is based on weekly price observations, while the decision nodes in the DP model are each two months 
apart. Furthermore, because the econometric model is in first differences and has a second-order lag, the econometric model 
is not first-order Markov (current price is not a sufEcient statistic for predicting next week'e price). We do not view these 
inconsistencies as  a serious problem. The aim in our analysis is to take the preferred econometric model of weekly prices 
(which happens not to be first-order Markov) and use this to obtain a preferred estimate of a fist-order Markov approxi- 
mation for bi-monthly price movements which is required to implement the DP algorithm. This is exactly what the simulation 
procedure accomplishes. 
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Figure 2. Seasonal component of conditional volatility 

winter months. This is exactly the pattern we would expect because price movements 
(in either direction) should tend to be greater during the growing season when even mild 
changes in weather conditions can have a big impact on expectations regarding the 
coming harvest (and hence on current corn prices). 

In a final validation check, we evaluated several price probability distributions implied 
by our estimated transition probability matrices. There are many of these implied distri- 
butions depending on the initial startingprice. However, the information in the transition 
probability matrices can be summarized by computing the unconditional distribution 
of price outcomes at each of the decision nodes. These unconditional distributions were 
computed by first obtaining the relative frequencies with which historical November 
prices fell into each of the discrete price intervals over the sample period from 1975 to 
1996. The resulting vector of relative frequencies, Po, was used as the estimate of the 
(discrete) unconditional marginal distribution of November prices.12 The unconditional 
distribution of prices at  each future decision node was then calculated by computing the 
product {POPIP,, ..., Pj} for decision nodes { j = 1,2,3,4,5} using transition probability 
matrices {PI,  P,, ..., Pj}, which give the probabilities of transitioningfrom prices in deci- 
sion node j - 1 to prices in decision node j. 

The resulting unconditional discrete probability distributions are shown in figure 3 
for each decision node. There are several interesting features of these unconditional 
probability distribution estimates. First, each distribution is truncated from below with 
significant probability massed at the $1.60 minimum price level. This observation is 
consistent with the fact that the loan rate supported market prices at  a minimum price 
level over most of the sample period used for the econometric model. Second, although 
it is difficult to see from the graphs, the distributions show a rise in mean prices over 
the storage season, until September when mean price falls slightly. Furthermore, the 
distributions become more spread out as the storage season progresses (variance in- 
creases). Both of these features are consistent with the historical data. 

Finally, as the storage season progresses, more probability gets massed at the upper- 
bound price level of $4.40 (figure 3). This occurs because the discrete approximation 
masses extra transition probability at  the upper bound of the discrete price space (rather 

12 The raw historical frequencies were smoothed using a four-span Hanning linear smoother to smooth out "bumpsn in the 
historical frequencies. 
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Figure 3. Estimated discrete unconditional price distributions for each decision node 
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than spreading it over higher prices above the upper bound). Hence, when the current 
price state is relatively high, the conditional mean of prices next period will be under- 
stated by the estimated transition probabilities. Any approximation error introduced by 
this truncation effect will have little impact on optimal storage decisions at low or inter- 
mediate current price states (because the conditional mean of future prices will be 
estimated well in these cases), though it may have more of an impact on optimal storage 
decisions at high current price states (because the conditional mean of future prices will 
be understated in this case). This problem is intrinsic to all discrete approximations of 
continuous probability spaces, and any attempt to reduce the truncation effect must 
come at the expense of increasing the dimension of the state space, thus making the 
problem more difficult to solve.13 

The Dynamic Programming Algorithm 

A discrete time, discrete state, and control space, dynamic programming algorithm based 
on the approach of Miranda and Fackler is used to solve the model. Programmed and 
solved in GAUSS, the algorithm proceeds by evaluating the value function at every 
(discrete) point in the state and control space and takes several hours to solve on a 
personal computer.14 

Results 

We first solved the model for the case of a risk-neutral farmer (R = 0.0001). This leads 
to the same "sell all or nothing" marketing strategy obtained by Fackler and Livingston 
(as expected). Hence, in this case, the optimal marketing strategy is defined by a cutoff 
price for each decision node. If the current price is at or above the cutoff price, sell every- 
thing, and if it is below, then sell nothing. 

The cutoff prices at each decision node for the risk-neutral case are presented in table 
2. Using the base case (the first numeric column) as an example, for the month of 
November the cutoff price is $4.10 per bushel. Thus, if the cash price in the first week 
of November is $4.10 per bushel or higher, it is optimal to sell everything in storage. 
Otherwise, the optimal strategy is to retain the entire stock. The results show the opti- 
mal cutoff price starts with a relatively high value at the beginning of the marketing 
season and decreases as the end of the marketing season approaches. This is because 
at earlier stages of the marketing season there are more future time periods in which 
prices might rise. The cutoff prices for different assumptions about storage costs and 
interest rates are also presented in table 2. The cutoff price declines as storage cost 

l3 Another way of thinking about the discrete approximation problem is that the estimated discrete transition probability 
matrices impose an implicit reflecting barrier at the lower and upper price bounds of the discrete state space (prices bounce 
along or off the barrier instead of breaking through; see Dixit and Pindyck, p. 83). This leads to approximation error if the 
true underlying price distribution does not contain reflecting barriers (as is implicitly assumed in the econometric model). 
However, ifthe true underlying price distribution does have reflecting barriers (say, at  a lower bound because of government 
support programs and at an upper bound because of freedom of entry into a profitable market), then using estimated 
transition matrices which impose the reflecting barriers actually may provide a better estimate of the underlying price 
probability distribution than an estimate that is barrier free. 

14 The reason for the long computation time is the large dimensionality of the state space, particularly the state space for 
compounded storage returns at  decision nodes well into the storage season. As discussed previously, the state space for 
compounded storage returns was dehed  by evaluating every possible return state that could be achieved under every 
possible price and storage outcome. This turns out to be a very large number. The tradeoff is that we obtain a more accurate 
solution, because value function interpolation is not required. 
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Table 2. Cutoff Prices Under Risk Neutrality for Different Storage Costs and 
Interest Rates 

Changes in Changes in 
Base Case Storage Costs Interest Rates 

Month r = lo%, k = $0.01 k = $0.02 k = $0 r = 15% r = 5% 

November $4.1 

January $4.3 

March $4.1 

May $1.9 

J ~ Y  $1.7 
September 0 

increases. This is intuitive because storage cost is a negative income incurred when 
holding the grain. An increase in storage costs suggests a decrease in the value of waiting 
to sell stocks in the future, which makes storage less desirable and lowers the current 
cash price needed to compensate for the foregone benefits of future sales. Similarly, an 
increase in interest rates triggers a lower cutoff price because the potential increase in 
interest income represents an increased opportunity cost of holding the grain, which 
makes storage less attractive. 

Moving to the case of risk aversion, we initially set relative risk aversion at R = 5 to 
examine how the optimal storage strategy changes under risk aversion. For R = 5, the 
optimal marketing strategy for the harvest period (first week of November) is repre- 
sented graphically in figure 4 for the base case of 10% interest rate and storage cost of 
$0.01 per bushel per month. Because this is the first decision node, the unique storage 
state is 100% of the total harvest and the unique initial compounded return from sales 
state is zero (because nothing has been sold yet). Therefore, the optimal marketing 
strategy depends only on the current price. As shown from the results, if prices are at 
or above $4.10 at harvest, the optimal strategy is to sell everything, and if it is $1.70 or 
below, the optimal strategy is to sell nothing and wait. At intermediate prices, however, 
there are partial sales. Ifthe current price is between $1.70 and $1.90, the optimal strat- 
egy is to sell 50% of the crop at harvest; if it is between $1.90 and $3.70, the optimal 
strategy is to sell 60% of the crop at harvest, and so on. Risk aversion creates a clear 
incentive to sell at least some of the harvest right away and not store it. 

The optimal marketing strategy for this same risk-averse farmer in January is more 
difficult to represent because the state space has many more dimensions (the possible 
storage and compounded returns from storage states are no longer unique). In partic- 
ular, instead of one storage state of s = 1.0 (as in November), there are now 11 possible 
January storage states, s E { 0, 0.1, ..., 1.01, depending on how much corn was sold in 
November. And instead of one possible compounded storage return state, there are 
many, depending on the amount of November sales and the price at which previous 
sales in November took place. To demonstrate the optimal storage decision using two- 
dimensional diagrams, we constructed three separate graphs, one for each of three pos- 
sible current compounded storage return states-a high compounded return state (corn 
sold at harvest in November was sold at a relatively high price), an intermediate current 
compounded return state (corn sold at harvest in November was sold at an intermediate 
price), and a low compounded return state (corn sold at harvest in November was sold 
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Figure 4. Optimal November marketing policy for risk- 
averse farmers 

at a relatively low price). Then for each of these possible compounded storage return 
states, we computed how the optimal storage decision changes with changes in current 
(January) price and storage levels (see figure 5). Each line in each panel of figure 5 
reports optimal January sales as a function of the observed January price, given a 
particular level of current storage and a particular level of the incoming compounded 
storage return. 

Optimal strategies for January are more complex and less intuitive than for Novem- 
ber. The simplest result (not included in the graphs) is that if s = 0, the (trivial) optimal 
strategy is to sell nothing because all of the stock has already been sold. Other results 
for January are consistent in the sense that very low prices lead to no additional sales, 
while very high prices lead the farmer to sell everything currently available. At inter- 
mediate prices, there may be partial sales. Notice, however, in some cases, particularly 
when there is a lot of storage left (minimal sales in November), the optimal strategy is 
to sell less at  intermediate prices than at low prices (see the negative slope of some of 
the decision rules in figure 5 over some regions of the price space). This is because the 
current price state not only represents the benefits of immediate sale, but is also a 
signal indicating the probability of prices going higher in the future. Therefore, a higher 
current price encourages more sales now because it allows risk-free collection of a 
relatively high return. But it may also signal a higher probability of price increases in 
the future which would discourage current sales. If the latter effect dominates the 
former, then a higher current price may lead to less current sales. 

Optimal storage rules for the other decision nodes in March, May, and July were also 
computed, but results are not shown here to conserve space. When farmers are rela- 
tively risk averse, these results suggest partial sales may be optimal at each decision 
node (except the last), and the price required to encourage current sales falls with 
movement through the storage season (as expected). 

One way to summarize the optimal storage results is to use the estimated price proba- 
bilities and optimal storage rules to compute the expected frequency of optimal sales 
occurring in each month under risk neutrality and under various degrees of risk 
aversion, assuming the optimal storage rule for that degree of risk aversion is being 
followed. These results are summarized in table 3 assuming r = lo%, storage costs of 
$0.01 per bushel per month, and R = 0.0001,0.5, 1.0,2.0,3.0,5.0, and 10.0. 
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Figure 5. Optimal January marketing policy for risk-averse farmers 
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Table 3. Distribution of Expected Optimal Marketing Volumes Under Different 
Degrees of Risk Aversion 

Relative 
Risk Aversion November January March May July September 

1996-97 Aggregate 
Michigan Farm Corn 
Marketings 27% 27% 15% 8% 11% 12% 

Under risk neutrality, optimal sales in any given year will always occur in one month 
only (sell all or nothing rule), but table 3 shows the expected frequency of those sales 
occurring a t  particular months over repeated samples (years). Under risk neutrality, it 
is most often optimal to sell in May (56% of the time), but sometimes sales occur in July 
and September (22% and 12%, respectively), and occasionally it is even optimal to sell 
in January (10% of the time). Notice, however, it is almost never optimal for a risk- 
neutral farmer to sell at  harvest in November. As the farmer becomes more and more 
risk averse, the frequency of November sales grows dramatically, reaching 65% at R = 10. 
Furthermore, as the degree of risk aversion rises and the frequency of November sales 
increases, the frequency of May sales declines until it reaches just 23% at R = 10 (down 
from 56% under risk neutrality). Clearly, the optimal strategy under risk aversion is to 
spread sales out over the storage season, but most of the time sales will occur either a t  
harvest (a risk-reduction strategy) or in May (an expected profit-generating strategy). 

For purposes of simple comparison, aggregate Michigan farm marketings of corn are 
reported in the last row of table 3. The Michigan data are aggregated across individuals 
at  a point in time, and so are not directly comparable to the optimal storage results in 
table 3 (which refer to expected frequencies over time of marketings from a single 
farmer). Nevertheless, there is clearly much more corn being sold at  harvest in Michigan, 
and less being sold later in the storage season around May, than would be predicted 
from the optimal storage results under risk neutrality. 

Performance of the Optimal Storage Rules 

One way to evaluate the performance of the optimal storage rules is to compare out- 
comes in these cases to what would have happened if all corn was sold a t  harvest (no 
storage), or a naive strategy of selling an equal amount of corn at every decision period 
(even sales), or a strategy of allocating sales according to the proportion of aggregate 
monthly corn marketings by Michigan farmers during the crop year (see the last row of 
table 3). The latter comparison is designed to examine how the optimal rules compare 
to simply following the historical temporal pattern of aggregate corn marketing by 
farmers. 
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To conduct the performance evaluation, we used the transition probabilities to compute 
the conditional mean and conditional standard deviation of final compounded storage 
returns (at the end of the storage season), conditional on each possible initial harvest 
period price in the state space, under six different storage rules: (a) sell everything at 
harvest, (b )  sell an equal amount at each decision period, (c) allocate sales according to 
the proportion of aggregate monthly corn marketings by Michigan farmers during the 
crop year, (dl apply the optimal risk-neutral storage rule, (el apply the optimal storage 
rule under R = 5, and (f) apply the optimal risk-averse storage rule under R = 10. 
Results are provided in table 4 using an interest rate of 10% and a storage cost of $0.01 
per bushel per month. 

Selling everything at harvest is the least risky strategy because final compounded 
storage returns are then known with certainty (zero standard deviation). However, this 
strategy only returns the current initial harvest price (compounded through to the end 
of the storage season using the fixed 10% interest rate). This return can be high when 
the initial harvest price is high, but will be quite low when the initial harvest price is 
low (see table 4). When the initial harvest price is low, farmers could increase their 
expected return by storing rather than selling immediately, but this would also expose 
them to the risk of further price declines during the storage season. 

The optimal storage rule under risk neutrality always generates the highest expected 
return (as anticipated), but also has the highest risk (standard deviation) because 
storing and waiting for prices to rise exposes the farmer to the risk that price will not 
rise or actually fall. An exception to this outcome occurs a t  very high current prices 
when the optimal risk-neutral strategy is to sell everything immediately, which is 
of course also a risk-free strategy. The naive "even sales" and "historical marketings" 
strategies still continue to store some corn, even in the face of these relatively high 
initial prices, which is why their returns are still exposed to some risk (see the bottom 
part of table 4). 

As the degree of farmer risk aversion increases, the mean return from an optimal 
storage strategy generally declines relative to the risk-neutral strategy because the 
farmer is diversifying by selling at least some corn at harvest and otherwise spreading 
sales out over the storage season. However, the farmer also faces less risk than would 
have occurred under the optimal risk-neutral rule (smaller standard deviation than the 
optimal risk-neutral strategy). Of course, at high initial harvest prices (those at or above 
$4.101, the optimal strategy is to sell everything immediately, irrespective of the degree 
of risk aversion. At these prices, therefore, the expected return from an optimal strategy 
equals the current price compounded through to the end of the storage season and there 
is no remaining risk, regardless of the degree of risk aversion (see the bottom part of 
table 4). 

From the results in table 4, it is quite clear the optimal storage rules generally 
provide higher expected returns than the naive "no storage," "even sales," and "historical 
marketings" strategies, and in many cases also have lower risk than the simple "even 
sales" or "historical marketings" rules. Hence, the optimal strategies generally dominate 
the "even sales" and "historical marketings" strategies irrespective of the degree of risk 
aversion. The "no storage" rule is universally the least risky, but imposes a very high 
cost in terms of foregone expected returns. Which of the optimal strategies a farmer 
might prefer will depend on his or her willingness to trade off risk and expected return 
(i.e., the degree of farmer risk aversion). 
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Table 4. Mean and Standard Deviation of Final Compounded Storage Returns 
Under Alternative Storage Strategies Conditional on Different Initial Harvest 
Period Prices (interest rate = lo%, storage cost = $O.Ol/bushel/month) 

Initial 
Price 
($/bu.) 

Performance 
Measure 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
SM. Dev. 

Mean 
SM. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

Mean 
Std. Dev. 

No 
Storage 

STORAGE STRATEGY 

Optimal Optimal Optimal 
Even Historical Storage Storage Storage 
Sales Marketings (R = 0.0001) (R = 5) (R = 10) 

1.86 1.83 1.95 1.92 1.86 
(0.334) (0.251) (0.370) (0.255) (0.156) 

2.03 2.01 2.11 2.04 2.02 
(0.345 (0.263) (0.410) (0.186) (0.105) 

2.24 2.22 2.33 2.25 2.23 
(0.354) (0.270) (0.459) (0.180) (0.090) 

2.46 2.44 2.56 2.48 2.45 
(0.363) (0.277) (0.505) (0.200) (0.100) 

2.68 2.66 2.79 2.70 2.67 
(0.370) (0.283) (0.547) (0.218) (0.109) 

2.92 2.89 3.03 2.92 2.89 
(0.377) (0.290) (0.585) (0.231) (0.117) 

3.14 3.11 3.26 3.15 3.12 
(0.384) (0.298) (0.615) (0.245) (0.123) 

3.37 3.34 3.49 3.34 3.34 
(0.388) (0.304) (0.630) (0.251) (0.125) 

3.59 3.56 3.71 3.60 3.56 
(0.387) (0.306) (0.628) (0.249) (0.124) 

3.79 3.77 3.92 3.81 3.47 
(0.385) (0.309) (0.611) (0.239) (0.120) 

3.98 3.97 4.11 4.02 3.99 
(0.377) (0.307) (0.570) (0.220) (0.110) 

4.13 4.14 4.28 4.21 4.20 
(0.366) (0.300) (0.515) (0.149) (0.098) 

4.25 4.29 4.43 4.40 4.40 
(0.351) (0.290) (0.446) (0.043) (0.043) 

4.35 4.42 4.62 4.62 4.62 
(0.331) (0.271) (0.000) (0.000) (0.000) 

4.42 4.51 4.84 4.84 4.84 
(0.309) (0.247) (0.000) (0.000) (0.000) 

Conclusions 

This study extends the risk-neutral on-farm storage model of Fackler and Livingston to 
the case of a risk-averse farmer in a discrete time, discrete state and control space 
framework. Results provide both theoretical and empirical support for the optimality 
of partial sales over the storage season, as opposed to the simple sell everything or sell 
nothing strategy derived by Fackler and Livingston. This partial sales behavior is more 
consistent with what we actually observe farmers doing when they make their storage 
decisions. The optimal distribution of sales over the storage season depends on the degree 
of farmer risk aversion, as well as storage costs, interest rates, and the underlying 
probability distribution of prices. 
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An application of the model to farm storage of corn in Michigan shows risk-averse 
farmers will sell a proportion of their corn crop early (generally right at harvest) unless 
harvest prices are extremely low. Farmers use this strategy even though it reduces their 
expected compounded storage return because it also reduces risk. This result confirms 
that risk aversion is capable of explaining the observed behavior of partial sales over the 
storage season without assuming farmers are somehow myopic or failing to optimize. 

Performance comparisons indicate that optimal storage rules can generate consider- 
ably higher expected returns than selling everything at harvest, though at the cost of 
increased risk. However, part of this risk can be mitigated (at the cost of part of the gain 
in expected return) by optimally diversifying sales over the storage season based on 
current observed price levels, expectations about future price movements, and the degree 
of farmer risk aversion. 

[Received November 2001;final revision received August 2003.1 
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Appendix: 
Derivation of the Optimality Conditions for Storage 

Differentiating Bellman's equation [text equation (4b)l with respect to q, aRer using a Lagrangian to 
account for the no short-selling constraint (q, < st) gives: 

and 

(Ale) 

Here, 1, is the shadow value of relaxing the short-selling constraint. From the envelope theorem we 
have: 

and 

Now substituting (Ma) and (Mb) into (Al) results in equations (6) in the text. 


