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Pesticide Productivity: 
Of Bugs and Biases 

F. Bailey Norwood and Michele C. Marra 

Pesticide productivity is both important and difficult to measure. Typically, pesticide 
marginal products are estimated without information on the pest pressure. Three 
theoretical models are developed which suggest absence of such information may 
cause an underestimation of pesticide productivity. Using application frequency 
variables as a proxy for pest populations, we show that pesticide marginal products 
are higher when pest pressure is accounted for. 

Key words: damage abatement, marginal product, pesticide economics, productivity, 
unobserved variables 

Introduction 

To protect public health, the government has aggressively pursued pesticide regulation 
through a series of laws beginning with the Federal Insecticide, Fungicide, and Rodenti- 
cide Act in 1947. Pesticide regulations have evolved such that today the only pesticides 
permitted are those which ensure "reasonable certainty that no harm will result from 
aggregate exposure to the pesticide chemical residues." This criterion makes the devel- 
opment and approval of new pesticides expensive, and has led to a 7% to 9% decrease 
in pesticide registration (Fernandez-Cornejo, Jones, and Smith). 

A total ban on pesticide use in the United States has been estimated to cost $41 bil- 
lion per year in higher food costs and lower quality crops and livestock (Knutson et al.). 
Thus, good pesticide policy clearly must consider the costs as well as the benefits of 
pesticide regulation. Economists often assess pesticide benefits by measuring pesticide 
marginal products. The higher the value of the pesticide marginal product relative to 
marginal cost, the greater the additional benefit from increasing pesticide use, and thus 
the greater the cost from more stringent regulation. If the value of the pesticide marginal 
product is low relative to marginal cost, it is more likely that farmers can profitably 
decrease pesticide use while simultaneously reducing environmental and health risks. 
It is clear, then, that regulatory mistakes can be made if pesticide marginal products are 
mis-measured. One source, among several, of mis-measurement is an inherent bias in 
the estimation of the marginal product due to choice of measurement procedure or data. 
This study examines analytically and empirically the bias due to omission of pest 
pressure in the estimation of pesticide marginal products. 

Early attempts to measure the value of pesticide productivity found it to be quite high 
relative to pesticide marginal costs. Of the estimates conducted prior to 1986,18 out of 
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20 suggest an extra dollar spent on pesticides generates more than a dollar in return 
(Headley; Campbell; Fischer; Carlson), implying pesticides are systematically underused 
from a profit maximization point of view. In response, two possible sources of an upward 
bias in estimated marginal products have been put forth in the literature. First, almost 
all studies to date use cross-sectional data from private farms where data reflecting 
differences in land quality, managerial ability, and other fixed effects are not available 
(Campbell). If any of these fixed effects are correlated with pesticide use, then the 
corresponding marginal products may be biased. Carpentier and Weaver found, when 
fixed-firm effects are accounted for, marginal products are indeed lower.' 

Second, all marginal product estimates before 1986 use the Cobb-Douglas production 
function. In a 1986 analysis, Lichtenberg and Zilberman argued that the single-equation, 
Cobb-Douglas model may be inappropriate, and offered a different model of the pesticide- 
yield relationship which might result in lower marginal products. This approach proposes 
a damage abatement model. Essentially, the approach considers the effect of pests on 
yield separately from the effect of pesticides on pests. 

While some subsequent studies have found, under some circumstances, damage abate- 
ment models yield lower marginal products (e.g., Babcock, Lichtenberg, and Zilberman), 
others have reported higher estimates (e.g., Carrasco-Tauber and Moffitt). Finally, in 
an analysis using cross-sectional data from French farms, and accounting for fixed 
effects, Carpentier and Weaver concluded marginal products from both approaches are 
similar. 

Although these earlier studies have provided rich insight into a potential upward bias 
in estimated pesticide marginal products, the potential for a downward bias has not 
been considered. Also, while unobserved fixed-firm effects have received much attention, 
a potentially more important unobserved effect is pest pressure. Pest pressure is argu- 
ably one of the most critical factors in explaining pesticide productivity. The data used 
in each of the studies cited above do not incorporate pest pressure measurements. 

Pest pressure data have been used in many studies for purposes other than measur- 
ing pesticide productivity. For example, some have used pest pressure data to determine 
the threshold pest level warranting a single pesticide application (e.g., Gilmeister et al.; 
Marra and Carlson; Moffitt, Hall, and Osteen). These analyses utilize a competition 
function between pest numbers of a single pest and crop yield as an input into the 
calculation of the economic threshold pest population, but usually hold the pesticide's 
effects on pests to be a constant percentage kill ratio. Consequently, a measure of the 
pest marginal product is used, rather than a measure of thepesticide marginal product. 

The present investigation suggests pesticide marginal products estimated in the 
absence of pest pressure information will probably be lower than the true marginal 
product. This study also demonstrates that pesticide marginal products estimated in the 
absence of pest populations are difficult to interpret. In the following section, the stan- 
dard theoretical crop production function is used to explore, analytically, what pesticide 
marginal products represent when pest pressure is unobserved, and to illustrate the 
potential bias due to unobserved pest pressure. 

This finding may be the result of differences in managerial ability, land quality, or other effects. If one farmer's soil tends 
to produce higher than average yields, the pesticide marginal product will be higher because there is more crop susceptible 
to damage, thereby eliciting higher pesticide usage. Here, the higher yield is falsely attributed to higher pesticide use, when 
the true source is better soil. 
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Estimates of pesticide marginal products with and without pest pressure information 
are then provided in the next section. Although pest numbers associated with each 
pesticide application are not available, information on the number of pesticide applica- 
tions (denoted application frequency) is used as a proxy for pest pressure. Empirical 
estimates show that pesticide marginal products are higher with pest pressure variables 
than without. Both the theory and the empirical example in this study suggest pesticide 
marginal product estimates without pest pressure information will have a downward 
bias. 

The Pesticide Marginal Product 
When Pest Pressure Is Unobserved 

In this section, a theoretical crop production function developed by Feder is used, which 
assumes there is only one period in the crop year for pests to inflict damage. This model 
is first analyzed assuming only that pest pressure and pesticides are positively corre- 
lated. Then, pesticides are assumed to be applied in a profit-maximizing manner. We 
then extend Feder's model to include multiple periods. The Feder model contains only 
one pest species and pesticide type. 

Let yield (Y) in the absence of pest damage be given by a constant (II), where this 
constant represents the contribution offertilizers, rainfall, soil type, and similar inputs 
to yield. Yield damage from a single pest is assumed to be equal to -6, such that if Z is 
the pest population able to inflict damage and each pest's damage is independent of the 
total pest population, yield can be written as  Y = II -62. 

Following Feder, pest damage can be prevented by the use of pesticides, where pesti- 
cide use is denoted by D. If $(D) is the percentage of pests killed and an additive error 
E is included, yield can be written as: 

Feder assumes I$'(-) > 0 and I$"(-) < 0. The stochastic error E is assumed to be independent 
of pesticide use and to have a zero mean. Note, the unobserved variable of concern is the 
initial pest density, not the pest density after the pesticide is applied-i.e., pest measures 
such as the average pest density will not solve the unobserved variable problem, as  the 
average density is a combination of pests before and after pesticide applications. 

The pesticide marginal product (hereafter denoted a s  PMP) is then described as  
follows: 

This PMP is increasing in pest pressure and the rate at  which pests inflict damage. The 
PMP is positive but declining in pesticide use. 

What does a PMP mean if it is not dependent on a measure of pest pressure? To 
address this question, we break the true production function in (1) into an observed and 
unobserved component by adding and subtracting an arbitrary constant 2 to the true 
pest population: 
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where the first term is yield in the absence of pest damage, and the second term repre- 
sents yield damage from an arbitrary pest population 2 when D pesticides are applied. 
The third and fourth terms represent variations in yield due to unobserved pests and 
the error term. Since the first two terms are independent of pests, we can rewrite them 
as 11 - 62 [ I -  $(Dl1 11 + g(D, P), where Pis a parameter vector. The functiong(D, P) rep- 
resents yield loss if the true pest population equals 2,  and D pesticides are applied. This 
general function is intended to represent the types of functional forms estimated when 
pest pressure estimates are not a~ailable.~ If pests are unobserved, the error term from 
the researcher's perspective is v = (-6[Z - 2 1  [ I -  $(Dl + E). 

The value ofg(D, P) is I 0, since pests cannot enhance yield by definition. Following 
Feder, we assume g,, gp, and gDp > 0, and gDD c 0. To reiterate, we are attempting to 
determine whether PMPs estimated in the absence of pests are unbiased estimates of 
true marginal products. Specifically, do they at least represent the true PMP at an arbi- 
trary pest population? This will only be true if the parameter vector P can be estimated 
without bias. If $ is larger than the true value, the estimated marginal product gD($) 
will be larger than the true marginal product gD(P), since gDp is assumed greater than 
zero. For example, taking the PMP in (2), an increase in P is like an increase in pesticide 
effectiveness that increases the function d$(D)ldD, which increases the PMP. 

If the estimate of p is obtained using least squares, the appendix shows the sign of 
E($ - p) equals the sign of: 

If pesticide use is positively correlated with the pest pressure, as would seem the case, 
the first term is negative. The sign of the second term depends on the value of Z relative 
to 2 ,  but because 2 is an unknown arbitrary constant and Z varies across observations, 
the sign of the second term is ambiguous. This suggests that when pest populations are 
unobserved, estimates of the parameter vector P making up the term 11 + g(D, P) are 
biased. Put differently, these PMPs have no clear interpretation. It is also unclear 
whether the PMPs are over- or underestimated. This can be explained intuitively. First, 
pests cause yield damage and are positively correlated with pesticide use. When pests 
are unobserved, the yield damage caused by higher pest numbers is falsely attributed 
to higher pesticide use, resulting in an underestimation of pesticide productivity. 

Second, PMPs are increasing in the pest population. Higher pest numbers elicit both 
higher pesticide use and higher productivity at any usage level. This higher productivity 
is falsely attributed to higher pesticide use, and PMPs are overestimated. There are two 
forces biasing marginal product estimates, and they both work in opposite directions; 
therefore, it is unclear whether the overall bias is negative or positive. The next two 
model variants illustrate that while the sign of the bias remains ambiguous, there is 
evidence for hypothesizing a negative bias is more probable than a positive bias. 

For example, Babcock, Lichtenberg, and Zilberman estimate a model where Y = II - IIZexp( Po - P,D). The marginal pro- 
duct is IIZexp(P, - PID)Pl, and the derivative of the marginal product with respect to pesticide use is -IIZexp(P, - P,D)P: 
If pl is positive, the marginal product is positive but declining. This is similar to assuming gD > 0 and g,  < 0. Another 
example is the Cobb-Douglas model, where Y = IIDD. Again, the marginal product is positive and declining so long as 0 < P 
< 1. Also, with the Cobb-Douglas, we know an increase in P increases the marginal product, which is identical to assuming 
~ D D  > 0. 
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The derivation of the bias considered previously does not account for how pesticides 
are applied on private farms, from which data are typically taken. We now present the 
bias differently, under the assumption pesticides are applied such that their marginal 
value product equals the marginal cost. APMP represents yield damage prevented from 
a small change in pesticide use (D). Consider the ratio of yield differences to pesticide 
use differences below, where D and D' represent different pesticide levels. The ratio in 
(5) assumes a constant pest population: 

PMP = Y(D) - Y(D1) - -6211 - @(Dl1 + 6Z[1 - @(DO1 
D - D f  D -D'  

A [true] PMP is the limit of (5) as D - D' goes to zero. Notice in (5), where the pest popu- 
lation across the two observations is constant, this yield difference will always be positive. 
To measure the true yield loss prevented fromvarying dosages of pesticide use, different 
pesticide amounts must be applied to a similarpest population. This condition usually 
is not met with data from private farms. If the private farms have identical technologies 
(their production functions are identical), are profit maximizers, face the same output 
and input prices, and the same transactions cost of applying pesticides, no two farms 
will ever apply different amounts of pesticides to the same pest population. 

Suppose the above assumptions hold, but pest populations differ across farms. Let the 
output price be P and the marginal pesticide cost be r,. Let Di denote the profit-maxi- 
mizing pesticide amount in response to pest populationZi. Consider two farms, one with 
a pest population Z1 and another experiencing Z2, where Z1 > Z2. Under the previous 
assumptions, the average rate of change in yield with respect to pesticide use across 
both farms can be expressed as:3 

The first term in (6) is similar to how PMPs are measured across farms when pest pres- 
sure is unobserved. If Z1 > Z2, then D1 > D2, since the PMP is increasing in pest pressure. 
This implies the first term on the right-hand side is positive, but the second term is 
negative. The sign of (6) is ambiguous. If Y(D) were deterministic, such that a regression 
was being estimated on data containing no stochastic components, one could easily plot 
the true production function. If pests are unobserved and one plots points of the deter- 
ministic function Y(D), with yield on the y-axis and pesticides on the x-axis, a downward- 
sloping production function may result. Adding a stochastic component does not 
eliminate this possibility. The plotted function would not pertain to the true relationship 
between yield and pesticides holding all else constant, but would only represent yield 
and pesticide points, as both pesticides and pests vary. If pests could be held constant, 
the plot of points would definitely reveal an upward-sloping curve (up to the third stage 
of production). 

' By definition of profit maximization, II - 6Z1[l  - $(D1)] - rDD1/P > II - 6Z1[1 - $(D2)1 - rDD2/P. If we add and subtract 
I1 - 6Z2[1 - $(DZ)l - rDDZ to  each side and rearrange terms, the expression in (6) is obtained. 
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The first model variant only illustrates the existence of a bias, where a positive bias 
is as  likely as a negative bias. This second model variant shows the possibility of esti- 
mating negative marginal products when the true marginal product is positive, implying 
a negative bias in the estimated marginal product. We suspect a negative bias is more 
likely than a positive bias. However, we acknowledge i t  is not a proof. 

So far, only the potential bias in a one-period setting has been considered. In reality, 
crops may experience multiple pest infestations which require multiple pesticide applica- 
tions. In this setting, there is more than one definition of "pesticide use." I t  could mean 
a single pesticide dosage or the sum of all pesticide dosages. Most studies utilize the 
latter. Some studies define pesticide use as total yearly pesticide expenditures (Headley; 
Fischer; Chambers and Lichtenberg; Teague and Brorsen; Carlson; Carrasco-Tauber and 
Moffitt; Campbell), while others use total pounds of active ingredients applied through- 
out the crop year (Babcock, Lichtenberg, and Zilberman), and others use some other 
form of total pesticide application throughout the crop year (Saha, Shumway, and 
Havemer; Carpentier and Weaver). 

Differences in total seasonal pesticide use across observations could be attributed to 
a different number of equal pesticide applications, a different amount of pesticides 
applied a t  each application, or both. This makes interpreting PMPs difficult. After modi- 
fying the crop production function in (1) to allow two time periods, we obtain: 

where Zi and Di are the pest and pesticide application levels, respectively, in period i. 
Consider two farms where the pest populations are equal in the first period. In response, 
both farms apply an equal pesticide dosage Df . Further, suppose the pest population for 
one farm is positive in the second period, but zero for the other farm. This could be due 
to farm-specific effects such as different weather conditions which may affect pest 
mobility or pesticide effectiveness, or to differences in skill levels in pesticide application. 
In the second time period, one farmer does not apply any pesticide while the other applies 
0;. The average rate of change in yield with respect to pesticide use between each farm 
is then specified as:4 

This term is negative, implying the estimated PMP will always be negative, even though 
the second pesticide application may have prevented a large yield loss. The fact that 
crops can experience numerous intra-seasonal pest infestations provides considerable 
justification for estimating negative PMPs. 

The models described above establish that PMP estimates are biased when pests are 
unobserved. Although no proof can be given, several of the models' implications suggest 
an underestimation of pesticide productivity. The first model simply shows a bias exists. 
The second model demonstrates that estimated PMPs can be negative when the true 
PMP is positive, which would imply a "large" negative bias. We argue this makes a 

One farm applies D;, while the other applies D', + D;. The difference equals D',. Yield on one farm is II - 6Z1[1 - J ~ ( D ; ) I ,  
and on the other farm is II - 6Z,[1 - Jr(D;)] - 6Z2[1 - J ~ ( D ; ) ] .  Hence, the average rate of change in yield with respect to 
pesticide use is {II - 6Z,[1 - Jr(D;)I - 6Z2[1 - $(D;)1 - II + 6Z,[1 - $(D;)l )I(D', + D; - D; = 1-622[1 - $(D',)] )I(D;l. 
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negative bias more probable, but again this is not a proof. Finally, the third model 
presents a setting where estimated PMPs will always be negative when the true PMP 
is positive. Since this setting is representative of many farms, the third model also 
makes a negative bias more likely. 

Still, the sign and significance of the bias remains an empirical issue. In some cases, 
although data are not available on the total pest population within a crop year, data are 
available on the number of applications in a year. Because a higher total pest population 
will elicit a greater number of applications, application frequency is a useful instrument 
for the total pest population. Estimating PMPs with and without application frequency 
variables is then useful for determining the sign and magnitude of the estimation bias. 
Although multicollinearity will exist between application frequencies and pesticide 
applications, multicollinearity would exist even if the true pest numbers were used. To 
better identify the sign and magnitude of this bias, the next section presents empirical 
estimates of PMPs with and without application frequency variables. 

Empirical Pesticide Marginal Product Estimates 
With and Without Pest Pressure Information 

In the previous section, the bias due to unobserved pest pressure data was illustrated. 
When there is only one pest infestation each year, the bias is ambiguous. If there are 
multiple, equal pest infestations within a crop year, the bias must be negative, because 
pesticide marginal products (PMPs) will always be [estimated as] negative despite the 
fact that pesticides prevented yield damage. In reality, there are multiple, unequal pest 
infestations within a crop year. Thus, while the theoretical models suggest a downward 
bias, the sign and magnitude of the bias remain an empirical issue. 

This section utilizes empirical data to help resolve this ambiguity. Insecticide mar- 
ginal products are estimated using potato production data. These data are useful because, 
coming from an experimental setting, they do not have unobserved fxed-firm effects. 
Another desirable feature is that the experiments mimic how insecticides are used on 
profit-maximizing farms. The most appealing feature of these data is that the number 
of insecticide applications made each year per observation is known.5 The number of 
insecticide applications is an indicator of insect pressure. By estimating PMPs with and 
without application frequency variables, the effect of unobsemed insect pressure on 
PMPs can be measured. 

Potato production data were collected from a University of Maine potato research 
station in Presque Isle, Maine. The main objective ofthe experiment was to estimate the 
difference in profitability when certain inputs (e.g., pesticides or synthetic fertilizer) are 
reduced from their normal levels. From 1991-1995, a total of 96 plots were managed on 
one contiguous plot of land. Each plot was 15% of an acre, and was rotated with a cover 
crop, giving 143 total observations of yields and input use over the five-year period. Yield 
(Y)  varied over the range (9,60) cwt per plot, with an average of 42 cwt per plot. 

Half of the plots were planted in the Atlantic variety and the other half in the Superior 
variety; this effect is captured by a dummy variable for the Superior variety (S) in our 

Herbicides and fungicides were also applied. Herbicides were not applied in response to pest pressure information on all 
the plots, and fungicides were applied according to apreplanned strategy. For these reasons, herbicide and fungicidevariables 
are not included in the analysis. 
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empirical example. All plots received synthetic fertilizer treatments, while half the plots 
received less fertilizer and an extra treatment of compost and manure, identical in 
nutrient composition. These effects were captured by a continuous fertilizer use variable 
(F) and a dummy variable for those plots receiving compost and manure (amended plots, 
or A). Rainfall, measured in inches per year from a nearby weather station, was also 
included as an explanatory variable (R). Rainfall varied from 34 to 40 inches per year. 

In response to insect pests such as the Colorado potato beetle and green peach aphids, 
five insecticide types were applied. Due to degrees of freedom issues, each insecticide 
type was converted to pounds of active ingredient to produce one insecticide variable (Dl 
detailing the total amount applied per plot throughout the crop year. The conversion of 
insecticides to pounds of active ingredients made their values small and spread over a 
small range (0.08 to 0.58 pounds per plot per year). To make the insecticide marginal 
product easier to interpret, the PMPs were converted to represent the per acre increase 
in yield from increasing insecticide use by Additional descriptive statistics are 
given in table 1. 

These data allow estimating yield as a function of the inputs described above, in a 
manner which displays no unobserved fxed-firm effects. Insect population measures, 
however, are not available. At some time these population numbers preceding applica- 
tions would have been known, since the applications are based on economic thresholds. 
The only direct pest population data recorded, however, were the within-season geomet- 
ric mean populations for each plot. These mean populations refer to insect populations 
before and after pesticide treatment, and therefore are not useful for estimated PMPs. 
Since the number of insecticide applications was recorded, and this number is positively 
correlated with total initial insect infestations, application frequency numbers are an 
acceptable proxy for insect pressure measurements. 

About half of the plots received insecticide applications at  the economic threshold and 
dosage used by private farmers. The economic threshold in this study is a pest level a t  
which the marginal benefit of a particular dosage of pesticide just equals its marginal 
cost. These thresholds were developed by agricultural economists so as to ensure profit 
maximization as the objective. Because private farms follow these suggested thresholds 
and dosages in Northern Maine, these observations are reflective of farmer behavior in 
the study area. 

The remaining plots only received insecticides when insects exceeded twice the eco- 
nomic threshold number, resulting in lower insecticide use than would normally be 
observed on commercial farms. The insecticide dosage was also reduced. This approach 
allows estimating PMPs a t  current levels versus lower levels of insecticide use (when 
higher thresholds and lower dosages are employed). 

The two most common production functions are the damage abatement function and 
the Cobb-Douglas function. Since there is no consensus as to which is best, we estimate 
both. The most common damage abatement function is the exponential function (Babcock, 

A marginal product can be interpreted as a &st-order approximation to the increase in yield &om increasing an input 
by one unit. Insecticide use in these data never increases by one, but by much smaller values, making the marginal products 
seem very large. To facilitate interpretation, all marginal products are multiplied by a constant. This constant is 1% of 
average insecticide use (0.36 pounds active insecticide ingredients per plot per year) divided by 0.15 (to convert it to a per 
acre basis), or (0.01)(0.36)(0.15)-' = 0.024. Thus, the marginal product can be interpreted as the first-order approximation 
to the yield change if insecticide use increases by 0.024 (1% of the average) per acre. Otherwise, it is possible for estimated 
marginal products to exceed yield, making interpretation difficult. This transformation does not influence the sign or 
significance of the marginal product; it only makes it easier to interpret. 
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Table 1. Maine Potato Production, Descriptive Statistics (143 observations, 
1991-1995) 

Variable Unit 
Mean 

(Std. Dev.) 

Yield (Y) 

Fertilizer (F) 

Rainfall (R)  

Superior variety ( S )  

Plots receiving identical treatments of 
compost and manure (amended plots, or A )  

Insecticides (D) 

Number of insecticide applications ( N )  

cwtlplot 

1bs.lplot 

incheslyear 

number of plots 

number of plots 72 

lbs. active ingredientlplot 0.36 
(0.15) 

numberlplot 3.66 
(1.80 

Note: One plot is 15% of an acre. 

Lichtenberg, and Zilberman; Carpentier and Weaver; Carrasco-Tauber and Moffitt) 
whose form is given in the literature as follows:' 

where Y is yield, Xi is the ith productive (non-damage abating) input (e.g., fertilizer), 
and D is a damage abating input (e.g., insecticides). The Cobb-Douglas function is speci- 
fied as: 

where E is a stochastic error term. The term QX? is often referred to as the potential 
yield function, which describes yield if there is no pest pressure, and thus no insecticides 
are applied. This function is identical for both models. Yield (Y) in cwt per plot in the 
absence of pests is defined to be a function of a dummy variable for amended plots (A), 
a dummy variable for the Superior variety (S), fertilizer in pounds per plot (F) ,  and rain- 
fall in inches per plot per year (R), shown as follows: 

(11) If no pests, Y = nxr(' = exp(ao + Aa, + Sa, )Fa3~a4.  
i 

The two models then differ in how insecticides (D) enter the production function. 
Neither model in (9) or (10) contains pest pressure variables. Pest population informa- 

tion is included here by using application frequency variables. Recall insecticides were 

'The Cobb-Douglas model expresses yield (Y) as Y = AaDp, where D is pesticides andA is other i n d v e r s i o n  
of the original damage abatement function replaces D with h(D), where h(D) lies on the (0,l) interval. The function h(D) 
contains parameters which must be estimated. Lichtenberg and Zilberman argued that if the true function is Y = A"[~(D) I~ ,  
but researchers instead estimate Y = AaDP, they will underestimate the pesticide marginal product. In a more recent study, 
Hall and Moffitt show the sign of the bias is theoretically ambiguous. The exponential damage abatement function expresses 
h(D) as I 1  - exp(y, - y,D)I and sets P = 1. 
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applied on some plots when insect numbers cross the economic threshold (as private 
farmers would), while other plots apply insecticides a t  a higher threshold to identify the 
effect on output and profit of reduced insecticide use. The first plots are referred to as 
"typical plots," while the latter are referred to as "reduced use plots." Thus, for an iden- 
tical series of pest infestations, more applications are expected to be given to the typical 
plots than to the reduced use plots. This implies the coefficients on application frequency 
variables should differ depending on whether the observation is a typical plot or a 
reduced input plot. 

Let N be the number of insecticide applications per plot per year, and RUP be a 
dummy variable equaling one if the plot is a reduced use plot. Application frequency 
variables are incorporated into the damage abatement function as follows: 

(12) Y = [exp(ao + Aa, + sa2)Fa3Ra4] [I - exp(y0 - y , ~ ) ]  [NP~+&R"] + e. 

Similarly, the Cobb-Douglas is specified as: 

This modification inserts pest information consistent with Moffitt, Hall, and Osteen. 
Both models are estimated with and without application frequency variables to deter- 
mine how PMPs differ when pest pressure information is not used. 

The parameter estimates for both models are reported in tables 2 and 3.' Since the 
production functions are highly nonlinear, making Wald tests undesirable, all standard 
errors are calculated using 100 nonparametric bootstraps (Dagenis and Dufour). In 
general, amended plots and plots planted in the Superior variety have lower yields. The 
marginal product with respect to fertilizer is negative, suggesting fertilizer is over- 
applied. The coefficients suggest rainfall is the major yield determinant. 

Insecticide marginal products are calculated for both models in table 4. Nonparametric 
bootstraps, where the original observations are sampled with replacement 100 times, 
are used to calculate the mean and standard deviation of each model's estimated PMP, 
with and without pest information. At each bootstrap, all non-insecticide variables are 
left a t  their original values. This provides 143 marginal products, one for each observa- 
tion. The average of the 143 marginal products is then used as the point estimate for 
that bootstrap. The marginal product is defined as the change in expected yield with 
respect to pesticide use. But to facilitate interpretation, this marginal product is multi- 
plied by {0.01* mean pesticide use), because the pounds of active ingredient is a small 
number and never increases by one. It  is then divided by 0.15 to convert marginal 
products from a per plot to a per acre basis With this transformation, the marginal 
product is a first-order approximation to the yield increase from a small increase 
(0.01 * mean pesticide use) in per acre pesticide use. 

At each bootstrap, the PMP from each model was observed to determine whether it 
was greater than zero. The percentage of bootstraps where the PMP was greater than 
zero can be interpreted as one minus the p-value for the null hypothesis that the PMP 

Note that one cannot use the coefficient estimate and standard error from pesticide parameters in these two production 
functions to assess the signilicance of pesticide marginal products. Even ifthe pesticide parameter is insignilicant, the pesti- 
cide marginal product may be highly signilicant. This is because pesticide marginal products are a nonlinear function of all 
model parameters. 
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Table 2. Estimates from Damage Abatement Production Function 

Parameter Estimates (Std. Errors in Parentheses) 

Without Application With Application 
Parameter Frequency Variable Frequency Variable 

a, (constant) 6.9849* 7.1258* 
(0.0393) (0.8989) 

a, (A = amended plots) -0.1030* -0.1064* 
(0.0348) (0.0384) 

a, (S = Superior variety) -0.5941* -0.2137 
(0.1228) (0.1220) 

a, (F = fertilizer) -0.8679* -0.3677* 
(0.1511) (0.1582) 

a, (R = rainfall) 2.3610* 0.9210* 
(0.3902) (0.4503) 

yo (constant) -0.0007 -0.0106 
(0.0022) (0.0350) 

y, (D = insecticides) 0.0001 0.0663 
(0.0004) (0.1924) 

p, (N = number of insecticide applications) - -0.9523* 
(0.1530) 

p, (RUP = dummy variable for reduced use plots) - 0.0179 
(0.0328) 

Coefficient of Determination 0.52 0.59 

Notes: An asterisk (*) denotes statistical significance at  the 5% level. Standard errors are calculated via nonparametric 
bootstraps by sampling the original observations with replacement 100 times. Estimation is achieved using nonlinear 
least squares. 

Table 3. Estimates from Cobb-Douglas Production Function 

Parameter 

Parameter Estimates (Std. Errors in Parentheses) 

Without Application With Application 
Frequency Variable Frequency Variable 

a, (constant) 

a, 01 = amended plots) 

a, (S = Superior variety) 

a, (F = fertilizer) 

a, (R = rainfall) 

y, (D = insecticides) 

p, (N = number of insecticide applications) 

p, (RUP = dummy variable for reduced use plots) 

Coefficient of Determination 0.47 0.50 

Refer to notes to table 2 above. 
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Table 4. Estimated Insecticide Marginal Products (observed at average per 
acre insecticide use) 

DAMAGE ABATEMENT MODEL 

Without With 
Application Application 
Frequency Frequency 

Description Variable Variable 

Average marginal product 0.0867 2.1913 

Standard deviation of marginal product (0.1113) (0.3553) 

% of times marginal product is positive 
in bootstraps 83% 100% 

COBB-DOUGLAS MODEL 

Without With 
Application Application 
Frequency Frequency 
Variable Variable 

from each model is equal to zero. The alternative hypothesis is that the PMP is greater 
than zero. One would reject the null hypothesis in favor of the alternative hypothesis 
a t  the 5% confidence level if the percentage of positive bootstraps is greater than 95%. 

For the damage abatement model, the PMP is larger when an application frequency 
variable is included (table 4). In the Cobb-Douglas model, the PMP is not significantly 
different from zero without an application frequency variable, but with the frequency 
variable it is significant and positive. Note, when the application frequency variable is 
excluded, the estimated marginal product is lower for the Cobb-Douglas model compared 
to the damage abatement model. Lichtenberg and Zilberman argued that the damage 
abatement function should provide lower PMPs than the Cobb-Douglas, and showed this 
is the case only if the damage abatement function is the true model. 

Thus, as Carpentier and Weaver point out, Lichtenberg and Zilberman hypothesize 
that PMPs are lower with damage abatement functions, but do not prove it. Since the 
true functional form is unknown, PMPs can be lower or higher with damage abatement 
functions than the Cobb-Douglas. Carrasco-Tauber and Moffit demonstrate that while 
damage abatement functions sometimes do yield lower marginal products, in other cases 
they are higher. 

These estimates suggest, a t  least in this case, estimated pesticide marginal products 
are lower without pest pressure information. To further test the hypothesis that PMPs 
will be underestimated if pest pressure variables are not included, a statistical test is 
conducted. A series of 100 nonparametric bootstraps are performed, where the original 
observations are randomly sampled with replacement. At each bootstrap, the insecticide 
marginal product at  mean insecticide use is calculated for each model with and without 
application frequency variables. For each of the models, the percentage of times the PMP 
with application frequency variables is less than the PMP without application frequency 
variables is calculated for all 100 bootstraps. This percentage can be interpreted as the 
p-value for the null hypothesis that the average PMP is equal with and without pest 
pressure information, versus the alternative hypothesis that the average PMP is higher 
when pest pressure information is used. 

Thep-value was 0% for both models, implying the PMP with pest pressure variables 
was higher than the PMP without pest pressure variables 100% of the time. These 
results suggest pesticide productivity estimates are lower when pest pressure informa- 
tion is ignored. Recall, Carpentier and Weaver found that unobserved firm and time 
effects may lead to an  overestimation of productivity, even in a damage abatement 
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framework. Whether the exclusion of both types of unobserved variables will offset each 
other in part or in whole in a particular application is an empirical que~ t ion .~  

Summary and Implications 

Pesticide marginal product measurements are necessary for establishing good farm and 
food policy. Measuring pesticide productivity is both critical and difficult. Agricultural 
economists never have perfect data, nor is obtaining perfect data worth the cost. Thus, 
we make measurements to the best of our ability, and continually monitor the extent to 
which our estimates are biased. Historically, studies have focused on factors which tend 
to overestimate pesticide productivity. These include model misspecification and unob- 
served fured-firm effects. This study focuses on an unobserved variable, pest pressure, 
that may cause pesticide productivity to be underestimated. 

From a theoretical perspective, we cannot prove unobserved pest pressure causes an 
underestimation of pesticide productivity. However, three illustrations here suggest an 
underestimation. Data on Maine potato production are employed to test the resulting 
hypothesis that pesticide productivity can be underestimated. 

Two standard approaches are used to measure insecticide marginal products. To eval- 
uate how these marginal products change when pest pressure information is included, 
marginal products are estimated with and without insecticide application frequency 
variables. Hypothesis tests imply PMPs are significantly higher with pest pressure 
information than without. We argue that pesticide productivity estimates without the 
inclusion of pest pressure information will likely underestimate the true pesticide 
productivity (ceteris paribus). We therefore conclude that pesticide marginal products 
measured with pest pressure information omitted can lead to policies with greater costs 
than expected. 

[Received Januaty 2003;Jinal revision received September 2003.1 
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Appendix: 
Illustration of Function g(D, P) 

When the Pest Population Z Is Unobserved 

Suppose the true production function is Y = II - 6Z [ I -  $(D)] + E. This analysis shows this function can 
be written as Y = II - 6211 -$(Dl + (-612 - 2 1  11- $(D)] + E), which by definition equals Y = II +g(D, P) 
+ (-6[Z - 2 1  [ I -  $(D)] + e) = II +g(D, P) + v .  The purpose of this appendix is to illustrate what happens 
if we estimate the function g(D, P) when the pest population Z is unobserved. It is assumed that II is 
known or can at  least be estimated without bias. 

The derivative gp  represents the true marginal product at  the arbitrary pest population 2. If the 
parameter vector p can be estimated without a bias, then the estimate ofgp is meaningful; it represents 
the true marginal product at  an arbitrary pest population. Otherwise, the estimated marginal product 
has no good interpretation. Assuming the parameter vector P is estimated using least squares, its esti- 
mate must satisfy the following: 

min C (Y - II - g(D, b))2 = min C (v(b))2 

Using (A2) and the mean-value theorem, the term - P can be written as: 
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where p = AD - (1 -A)P for 0 s A s 1. The term in (A3) assumes that an intercept in g(D, P) is used to 
capture the unconditional expectation of -6[Z - 2 1  [ I -  +(D)]. 

For the estimate of p to be unique, it must be that 

is a positive definite matrix, which implies its inverse is as well. We wish to know the sign of the 
expected value of D - p. If the values of v and g, are assumed independent across observations, the 
expected value of vg, equals E(v)E(g) + cov(v,g). Since the expected value of e and [-6[Z -21 [ l  -+(Dl 
- E{ -6[Z - 2 1  [ I -  +(Dl 11 is zero, the sign of this expectation simply equals the sign of the covariance 
of v and g,. Both g, and g,, = g,, are assumed to be positive, so if the term v is increasing in D, this 
covariance is positive. If v is decreasing in D, the covariance is negative. Noting the following derivative, 

it can be seen that the sign between v and gp for each observation is uncertain. If the covariance 
between pests and pesticides is positive, as would seem the case, the first term is negative. However, 
the sign of the second term depends on the value of Z relative to 2. But since 2 is an arbitrary constant 
a n d 2  varies across observations, the sign of the second term is ambiguous. This implies the sign of the 
expected value of fi - p is unknown, and is not necessarily zero. Since it is not zero, the estimate is 
biased, where the direction of the bias is unknown. 


