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Heterogeneity in the Impact of Conservation
Agriculture Practices on Farm Performance and

Inorganic Fertilizer Use in Ghana

Baba Adam and Awudu Abdulai

We employ farm household data to investigate the heterogeneous treatment effects of conservation
agriculture (CA) practices on farm performance and inorganic fertilizer use in Ghana. We use
the marginal treatment effect (MTE) framework to account for treatment effect heterogeneity
in both observed and unobserved characteristics and to analyze policy-relevant treatment effects
(PRTE). Farmers with a high propensity to adopt CA reduce nitrogen usage from inorganic sources
and experience significant increases in maize yields and farm net returns compared to those less
likely to adopt. PRTEs reveal that increasing training sessions and providing incentives to reduce
implementation costs are crucial for promoting conservation agriculture.
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Introduction

There are growing concerns about whether agriculture can sustainably meet the rising food demand,
given the threats of increasing world population and deteriorating natural resources, exacerbated
by climate change, especially in most of sub-Saharan Africa (SSA). The challenge facing most
governments and policy makers in SSA, including in Ghana, is not only to increase agricultural
production and reduce poverty given limited resources but also to increase productivity in a
sustainable manner that protects the natural resource base and prevents further environmental
degradation (Beddington et al., 2012; Bationo et al., 2018).

Recent approaches to agricultural production pose a huge threat to many ecosystem services such
as nitrogen fixation, soil regeneration, and biological control of pests (Lee, 2005; Pretty, Toulmin,
and Williams, 2011). For example, agricultural land expansion, deforestation, and mono-cropping
have led to habitat loss and an increase in greenhouse gases (GHGs) (Tilman et al., 2002; Beddington
et al., 2012). Farming practices such as bush burning, removing crop residues, and continuous
cropping have depleted soil fertility through erosion and nutrient removal (Food and Agriculture
Organization of the United Nations, 2015). According to the Food and Agricultural Organization
(FAO), an estimated 33% of global soils are degraded as a result of unsustainable farming practices
(Food and Agriculture Organization of the United Nations, 2015).

These practices have contributed to spiraling declines in productivity and farm revenues and
increased food insecurity and poverty (Nkonya, Mirzabaev, and von Braun, 2016; Ghana Ministry
of Food and Agriculture, 2017). Estimates show that in SSA, nutrient depletion from 105 hectares of
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cropland by unsustainable practices constitutes an annual loss of about 280 million tons of cereals
(ELD Initiative and UN Environmental Programme, 2015). This productivity loss contributes to
annual declines in agricultural gross domestic product (AGDP) of 5% in Ghana (Diao and Sarpong,
2007). Further, maize productivity and output in Ghana remains among the lowest in SSA and the
world (Ragasa, Chapoto, and Kolavalli, 2014), with an average yield of 1.2–1.8 tons/ha, compared
with yields of around 2 tons/ha, the average in Africa, and less than half the world average of
approximately 5.5 tons/ha (Cairns et al., 2013; Food and Agriculture Organization of the United
Nations, 2016). Potential yields of 4–6 tons/ha could be realized under a comprehensive soil fertility
management approach.

To address the agricultural productivity and output challenges, input subsidy programs,
particularly those focusing on boosting inorganic fertilizer use, have become popular policy
instruments among SSA governments (World Bank, 2007). However, while inorganic fertilizers
could help increase short-run agricultural productivity (Marenya and Barrett, 2009), their increased
use may not be sufficient to increase productivity in a sustainable manner and could even pose
potential environmental challenges over time (Lee, 2005; Pretty, Toulmin, and Williams, 2011).

Of greater concern in Ghana and other parts of SSA are the trends of degraded farmlands
characterized by low soil organic matter (SOM) (Marenya and Barrett, 2009; Jones et al., 2013).
Low SOM means that the nutrients from inorganic fertilizers are inefficient and less productive,
contributing to low fertilizer yield response and subsequent low rates of inorganic fertilizer
application (Liverpool-Tasie et al., 2017; Abdulai and Abdulai, 2017). It is estimated that cereal
crops utilize only 18%–49% of nitrogen (N) applied as fertilizers, partly due to poor soil conditions;
the remainder leaches to pollute water bodies and the atmosphere, as well as increasing the
prevalence of pests and diseases (Cassman, Dobermann, and Walters, 2002). Merely increasing
inorganic fertilizer use alone is not a panacea for resolving farm productivity challenges (Marenya
and Barrett, 2009; Abdulai and Abdulai, 2017).

Several studies (e.g., Lee, 2005; Pretty, Toulmin, and Williams, 2011; Jayne et al., 2019)
have made compelling arguments for a more sustainable and equitable food system in SSA. The
sustainable development goals (SDGs) also acknowledge the need for a well-functioning and
sustainable food system that protects the environment. In particular, the second goal of the SDGs
advocates for increased investment in infrastructure and technology to ensure widespread adoption
of alternative and complementary agriculture intensification practices capable of addressing current
and future threats to food security and ecosystem services (United Nations, 2015); this goal has
become a major research and policy issue (Jayne et al., 2019).

The 2014 Malabo Declaration by African heads of states further underscores the need for
sustainable use of natural resources, including land and water, to realize their enormous potential
(see Declaration III—Commitment to Ending Hunger in Africa by 2025 in African Union
Commission, 2014). In the case of Ghana, the government’s flagship program on “Planting for
Food and Jobs” (PFJ) describes soil degradation as a high-risk factor that could impede its smooth
implementation. As a result, the program recognizes the importance of promoting sustainable soil
conservation practices as an effective way to boost food production through improved soil health
(Ghana Ministry of Food and Agriculture, 2017).

Conservation agriculture (CA) has emerged to fill a need for sustainable soil management,
climate change adaptation and mitigation, and environmental conservation. According to the Food
and Agriculture Organisation of the United Nations (2017), the CA cropping system is based on three
agronomic management principles: (i) minimum mechanical soil disturbance (e.g., no tillage); (i)
permanent soil organic cover (e.g., crop residue retention, mulch, cover cropping); and (iii) species
diversification (e.g., crop rotation, intercropping). These practices promote good soil structure and
contribute to building up the pool of soil organic matter over time, which is essential for improving
soil properties and processes fostering plant growth, including nutrient recycling, moisture retention,
erosion prevention, and enhanced biological activity. Soil organic matter (SOM)—a good indicator
of fertile soil—releases available N that may better correspond with crop N demand than inorganic
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N fertilizer. Thus, soils with enhanced SOM may require less inorganic N fertilizer over time. CA
practices further build up soil organic carbon capital, contributing immensely to climate change
mitigation (Giller et al., 2009; Food and Agriculture Organisation of the United Nations, 2017).

Given the well-documented advantages of CA practices in contributing to sustainable food
production systems (see Lee, 2005; Issahaku and Abdulai, 2020), a long-standing puzzle is why
adoption rates remain low in parts of SSA (Jayne et al., 2019). This is true for Ghana where, despite
domestic and donor-sponsored initiatives, there are limited on-farm investments in sustainable soil
conservation practices. According to a recent report by the African Union Commission (2018),
only around 0.04% of farmlands are managed under soil conservation practices. Although it has
been argued that CA practices can provide economic and environmental benefits, there are still
concerns about its potential to increase food production and farm incomes (Giller et al., 2009). For
instance, Di Falco, Veronesi, and Yesuf (2011) found positive and significant impacts on crop yields
in Ethiopia. Similarly, Manda et al. (2016) found that CA practices had a positive impact on yield and
income in Zambia. Abdulai and Huffman (2014) and Issahaku and Abdulai (2020) found significant
increases in crop yields and reduction in poverty among farmers who adopted CA in Ghana, while
Boimah et al. (2018) found no significant impact of CA on maize yield and rather negative impact
on profits.

While these studies have contributed to understanding the factors that hinder or facilitate the
adoption of CA practices as well as their impact on crop production and other welfare indicators,
not enough empirical evidence exists on its impact on inorganic fertilizer use. Often-cited impact
pathways of CA indicate, among others, its ability to increase soil organic matter, build up N
capital, reduce leaching of applied nutrients, and thus lower the amount of inorganic N fertilizer use
over time (Lee, 2005; Pretty, Toulmin, and Williams, 2011). Understanding the nexus between the
adoption of CA practices and their implication for inorganic fertilizer use is crucial for its widespread
promotion and adoption in SSA. Using recent survey data of 512 farm households from the northern
Savanna regions of Ghana, this study examines the factors that affect farmers’ decision to adopt CA
practices as well as the impact of adoption on inorganic fertilizer use, maize yields, and farm net
returns.1

Our study contributes to the empirical literature on CA adoption, first, by examining how
adoption contributes to economic and environmental sustainability. Much of the concern over calls
to adopt CA practices stems from its potential impact on food production (Giller et al., 2009).
This study seeks to address these concerns by examining whether adopting CA practices could
ensure productivity gains and at the same time regulate the use of inorganic N fertilizer. An earlier
study by Boimah et al. (2018), using an endogenous switching regression approach, found no
significant impact of CA practices on yields and inorganic fertilizer use in Ghana. However, CA
practices are location-specific and will need localized farm-level empirical evidence to boost their
adoption in SSA (Jayne et al., 2019). Thus, the heterogeneity of agroclimatic conditions as well as
socioeconomic and biophysical factors is nontrivial.

Second, much of the previous empirical work on impact of agricultural technology adoption has
assumed homogeneous treatment effects using approaches such as endogenous switching regression
(ESR) or propensity score matching (PSM) (e.g., Di Falco, Veronesi, and Yesuf, 2011; Boimah
et al., 2018; Singha, 2019). However, agents differ in their benefits from adoption of technologies
(Heckman, Humphries, and Veramendi, 2018). Failure to account for this heterogeneity can lead to
confusion in interpreting the estimated effects of adoption. In this paper, we employ the marginal
treatment effect (MTE) approach to account for treatment effect heterogeneity in both observed and
unobserved characteristics (Cornelissen et al., 2018). The MTE approach estimates a continuum of
treatment effects along the whole distribution of farmers’ unobserved resistance to adoption (Frölich
and Sperlich, 2019). In addition, it allows us to estimate several economically useful treatment effect

1 As rightly noted by an anonymous reviewer, another way of analyzing the impact of CA would be to look at the various
practices and their impacts. However, to the extent that the focus of the present paper is on the heterogeneity in the impact of
conservation agriculture, we define CA in line with Di Falco, Veronesi, and Yesuf (2011) and Michler et al. (2019).
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parameters, including average treatment effect (ATE), treatment effect on the treated (TT), treatment
effect on the untreated (TUT), and policy-relevant treatment effect (PRTE).

Data and Descriptive Statistics

Data

The data used for this study come from a survey conducted for the 2018/2019 cropping season in
15 communities across six districts and three regions in the savanna zone of Ghana. We selected
and interviewed 512 maize-farming households in the Sustainable Land and Water Management
Project (SLWMP) intervention areas.2 First, based on the operational areas of the project and the
prevalence of CA practices, we purposively selected six districts from the three regions: Bawku
and Talensi from the Upper East region, Sissala West and Wa East from the Upper West region,
and West Mamprusi and West Gonja from the Northern region. Second, we randomly selected
three to six communities from each district, taking into account the concentration of the project
interventions. The intervention primarily focused on agriculture technologies such as contour
bonds, zero tillage, adoption of intercropping/mixed cropping, crop rotation, vegetative barrier, and
integrated nutrient management (e.g., animal manure and compost, maize–legume rotation, cover
cropping, and mulching). Beneficiaries received one-time support in the form of materials (e.g.,
seedlings) and training to adopt the CA technologies of their choice. The maize farm households
were randomly sampled in proportion to the farmer population in the community. The survey data
were collected using a structured questionnaire by trained and qualified researchers and enumerators
with good working knowledge of the farming system in the study areas.

Based on a review of theoretical works and existing empirical literature on adoption and impact
of agricultural technology (see Asafu-Adjaye, 2008; Di Falco, Veronesi, and Yesuf, 2011; Manda
et al., 2016), we collected self-reported plot-level characteristics such as soil erosion (moderate or
severe erosion), slope of the land, and soil fertility level (fertile or moderately fertile). The survey
also included detailed information on production costs, prices, household demographics, access to
market information, extension contacts, and CA practices being implemented. In line with existing
literature on the impact pathways of CA practices (e.g., Lee, 2005; Pretty, Toulmin, and Williams,
2011), the data also contain detailed information on the three main outcome variables used in the
context of this study: inorganic N fertilizer use, maize yield, and farm net returns. We also controlled
for location, differentiating among the three regions, to account for heterogeneity of agricultural
practices across areas.

Concerning the outcome variable on inorganic fertilizer use, our primary focus is on N content
(hereafter referred to as inorganic N fertilizer) of the applied inorganic fertilizer.3 Therefore,
following Liverpool-Tasie et al. (2017) and Ragasa and Chapoto (2017), we obtain the N content
from the chemical composition of the applied inorganic fertilizer. The most widely used fertilizers
in Ghana for maize cultivation include nitrogen, phosphorus, and potassium (NPK) (15:15:15)4 as
basal fertilizer, together with either urea or sulfate of ammonia as top dressing, each containing 15%,
46%, and 21% N, respectively (Ghana Ministry of Food and Agriculture, 2017). We then compute
the sum of the total amount of N by multiplying those percentages by the amount of inorganic
fertilizer used per plot.

2 The project is funded through a grant facility from the Global Environment Facility (GEF), implemented through the
Ministries of Environment, Science, Technology and Innovation (MESTI) and Agriculture (MoFA). The project supports
sustainable land and water management practices with the aim of reducing land degradation and enhancing the protection of
ecosystem services in the northern Savanna region of Ghana (Verheijen, 2016).

3 N is often the most deficient nutrient, particularly for maize production, largely because of the very low organic matter
content in the soils. Efforts to increase N content using inorganic fertilizers in poor soils have resulted in environmental
problems such as leaching and loss of N into the atmosphere (Cassman, Dobermann, and Walters, 2002).

4 MoFA recommends using two bags each of NPK and either urea or sulphate of ammonia per acre.
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Conservation Agriculture Use Patterns in the Study

A key limitation of empirical studies on CA adoption is the lack of clarity on the contextual definition
of CA practices (Michler et al., 2019). Although the three main pillars of CA are in principle
common to global CA systems, their application varies considerably because of the heterogeneity
of farming systems and agri-environments (Corbeels et al., 2014). Following Michler et al. (2019),
our study adopts a more practical definition of CA given the context of the study area. Notable CA
practices implemented by farm households in our sample include crop rotation (i.e., maize–legume
rotation), zero tillage, cover cropping, mulching, and organic amendments (i.e., animal manure and
compost). Other studies—such as Dalton, Yahaya, and Naab (2014) and Ambler et al. (2020)—have
observed similar practices among farmers in the study area. A focus of our study is on practices
that help build up the N content of soils, hence, the inclusion of crop rotation, cover cropping,
and organic soil amendments as CA options. Crop rotation is an essential part of the CA system, and
numerous approaches underscore the use of rotating cereal and legume plantings (Giller et al., 2009),
which contributes to building up soil organic matter pool and N, boosting maize yields (Food and
Agriculture Organisation of the United Nations, 2017). Commonly cultivated legumes in our study
area include soybean (Glycine max L. Merrill), groundnut (Arachis hypogaea L.), beans (Phaseolus
vulgaris L.), and cowpea (Vigna unguiculata L. Walp.).

With an adoption rate of approximately 59%, representing 300 farm households (see Table 1), we
define CA adoption as the use of at least one of the above-mentioned practices (henceforth referred
to as “adopters” or “treated”). Table S3 in the online supplement (www.jareonline.org) summarizes
the pattern of adoption of CA practices. By disaggregating these practices based on the number
of adopters and farm size, we observe that maize–legume rotations and cover cropping are the most
common CA practices adopted. The adoption of zero tillage and mulching were comparatively lower
and the adoption of organic soil amendments remained the lowest. The average farmer adopted an
average of three of the above-mentioned CA practices. Table S3 also shows a lower average farm
size for farmers who adopted organic amendments (e.g., compost and manure). Anecdotal evidence
suggests that these inputs are usually not available in large quantities, and the bulkiness of compost
and manure, indicating increased costs of transportation and labor, usually deters those with larger
farms.

Descriptive Statistics

Table 1 reports descriptive statistics for the variables employed in our econometric analysis and the
mean differences between adopters and nonadopters in the sample. The average household size is six
persons. The majority of households in the sample are smallholder farmers, with an average farm size
of two hectares. These results corroborate a recent United Nations Development Programme (2018)
report that showed an average household size of six persons in the Northern Savanna Ecological
Zone (NSEZ), with the majority of the households classified as small-scale farmers, with farm size of
less than 5 hectares. Education and age represent the human capital characteristics in our study. The
mean educational level is approximately 3.6 years of schooling, suggesting lower years of education
across the study areas, compared to the national average of 7.3 years (United Nations Development
Programme, 2020).

Table 1 also provides t-test values showing differences between CA adopters and nonadopters.
The coefficients suggest statistically significant differences between adopters and nonadopters
with respect to some household and plot-level characteristics. For example, there are significant
differences between adopters and nonadopters concerning extension contacts, credit constraints,
farm size, membership in farmer-based organizations (FBO), and other household characteristics.

Adopters and nonadopters also have notable differences in outcome variables. For example,
adopters obtained an average maize yield of 915.33 kg/acre (2.26 ton/ha), higher than both the
590.79 kg/acre (1.46 ton/ha) for nonadopters and the 1.2–1.8 ton/ha average yields in Ghana.
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Table 1. Definition of Variables and Descriptive Statistics for Adopters and Nonadopters
(N = 512)

Variable Description

Full
Sample
(mean)

Std.
Dev.

Adopters
(N = 300)

Nonadopters
(N = 212)

Diff.
(t-stats)

Maize yields Quantity of maize output per acre (kg) 780.95 508.20 915.33 590.79 324.54⇤⇤⇤

Farm net returns Maize gross revenue less variable cost
(GHS) per acre

427.46 428.97 564.14 234.04 330.09⇤⇤⇤

Inorganic N
fertilizer

Total amount of nitrogen from
inorganic fertilizers used (kg/acre)

29.75 21.02 25.74 35.43 �9.69⇤⇤⇤

CA training Average number (village level) of CA
training (days) received

4.11 2.11 4.84 3.08 1.76⇤⇤⇤

Cost of CA Cost of CA implementation per HH
(GHS)

178.20 248.74 304.14 0.000 304.14⇤⇤⇤

Average CA
cost

Average cost (village level) of CA
implementation (GHS)

245.38 52.63 236.69 257.67 20.98⇤⇤⇤

Farm distance Farm distance from homestead to plot
(km)

2.93 1.26 2.53 3.488 �0.97⇤⇤⇤

Distance to
agric. office

Distance to agricultural extension
office (km)

24.26 10.35 22.31 27.01 �4.69⇤⇤⇤

Age Age of household head in years 42.44 12.66 43.42 41.07 2.35⇤⇤

Male =1 if male, 0 if female 0.63 0.48 0.77 0.44 0.33

Household size Size of household 5.96 2.95 5.96 5.95 0.01

Education Years of schooling of household head 3.63 4.74 4.33 2.64 1.69⇤⇤⇤

FBO = 1 if a member of farmer-based
organization (FBO), 0 otherwise

0.31 0.46 0.37 0.24 0.13⇤⇤⇤

Farm revenue Monetary value of maize produce
(GHS) per acre

980.11 610.01 1,092.99 820.37 272.62⇤⇤⇤

Price Maize price per bag (100 kg) in GHS 199.44 45.84 196.05 204.24 �8.19⇤⇤

Hired labor Total hired labor per acre 15.01 7.71 15.66 14.20 1.45⇤⇤

Farm size Total farm size of household (acres) 5.41 4.37 4.80 6.27 �1.47⇤⇤⇤

Extension
contact

Number of extension contacts per
annum

10.38 7.00 11.56 8.72 2.85⇤⇤⇤

Credit constraint =1 if household is credit constrained,
0 otherwise

0.37 0.48 0.31 0.45 0.140⇤⇤⇤

Livestock Number of livestock in tropical
livestock units (TLU)

1.85 4.07 2.26 1.27 0.99⇤⇤⇤

Market distance Distance to the nearest market (km) 8.66 4.63 7.40 10.44 �3.05

Slope Perception that plot is moderately to
steeply sloped (1=yes; 0=no)

0.66 0.47 0.65 0.68 �0.03

Moderate
erosion

Perception that plot is moderately
eroded (1=yes; 0=no)

0.48 0.50 0.58 0.34 0.25⇤⇤⇤

Severe erosion Perception that plot is severely eroded
(1=yes; 0=no)

0.09 0.28 0.13 0.03 0.10⇤⇤⇤

No erosion Perception that plot has no erosion
(1=yes; 0=no)

0.43 0.50 0.29 0.64 �0.35⇤⇤⇤

Fertile plot Perception that plot is fertile (1=yes;
0=no)

0.38 0.49 0.37 0.38 �0.00

Moderately
fertile

Perception that plot is moderately
fertile (1=yes; 0=no)

0.51 0.50 0.55 0.45 0.10⇤⇤

Infertile plot Perception that plot is infertile (1=yes;
0=no)

0.12 0.32 0.08 0.17 �0.09⇤⇤⇤

Northern region =1 if Northern region, 0 otherwise 0.37 0.48 0.29 0.49 �0.20⇤⇤⇤

Upper East =1 if Upper East region, 0 otherwise 0.33 0.47 0.36 0.29 0.07⇤

Upper West =1 if Upper West region, 0 otherwise 0.30 0.46 0.35 0.22 0.13⇤⇤⇤

Notes: The exchange rate at the time of the survey: 1 USD = 5.14 Ghana cedis (GHS).
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Adopters also earned significantly higher farm net returns, 330.09 GHS/acre more than nonadopters.
Nonadopters use 9.69 kg/acre more N from inorganic sources than adopters. The significant
differences between the outcome variables (i.e., maize yields, farm net returns, and inorganic
N fertilizer use) may not indicate impacts of adoption, as this comparison does not consider
confounding factors that affect adoption of CA practices. It is important to note that these outcome
variables are essential ingredients toward achieving, in particular, the second of the sustainable
development goals (SGD), which, among others, aims to end hunger and achieve food security in a
sustainable manner that does not lead to environmental degradation. Thus, according to the United
Nations 2030 Agenda for Sustainable Development, achieving this goal would require increasing
smallholder farmers; crop productivity and income through widespread promotion of CA practices
(United Nations, 2015).

Conceptual Framework and Estimation Procedures

The marginal treatment effect (MTE) approach was first introduced by Björklund and Moffitt
(1987) and generalized by Heckman and Vytlacil (2001, 2005, 2007). Following the approach
of Cornelissen et al. (2018), we assume that adoption is binary, denoted by Ci, with Y1i and Y0i
denoting the potential outcome for farmer i in the adoption (Ci = 1) and nonadoption (Ci = 0) states,
respectively. We model the potential outcomes as

Y1i = µ1 (XXXi) + e1i,(1)

Y0i = µ0 (XXXi) + e0i,(2)

where µ (XXXi) is the conditional mean of Yi given XXXi (which is the vector of observed exogenous
characteristics) and e1i and e0i are the error terms. Equations (1)–(2) indicate that the treatment effect
of farmer i, which is the difference between the potential outcomes in the adoption and nonadoption
states, is given as

(3) Y1i � Y0i = µ1 (XXXi)� µ0 (XXXi) + e1i � e0i,

which shows that the benefits from adoption are allowed to vary across farmers with different
observed (XXX) and unobserved (e1,e0) characteristics, an important aspect of our study that
emphasizes heterogeneity in the impact of CA adoption.

We model the CA adoption decision under the assumption that farmers are risk-neutral and
consider the net benefit (C⇤

i ) derived from adoption or nonadoption of CA practices. Thus, farmer i
will adopt (Ci = 1) if C⇤

i � 0. Since C⇤
i is the latent propensity to adopt and cannot be observed, we

specify it as a function of observed variables (Z) and an unobserved component (V ):

(4) C⇤
i = µC (ZZZi)�Vi,Ci = 1 if C⇤

i � 0, and Ci = 0 otherwise,

where ZZZ includes the same covariates XXXi as in the outcome equations (1)–(2) as well as an instrument
used for model identification. That is, ZZZ includes a variable that enters selection equation (4) but is
excluded from outcome equations (1)–(2). In this study, we use distance from the homestead to the
farm as the identifying instrument. The error term, Vi, goes into selection equation (4) with a negative
sign and represents unobserved characteristics that make farmers less likely to adopt CA practices.
Thus, Vi is often described in the literature as unobserved “resistance” or “distaste” to treatment
(Cornelissen et al., 2018), indicating that farmers with high values of V (low propensity scores) are
less likely to adopt CA practices compared to those with low values of V (high propensity scores).

It is a convention in the MTE literature to capture the treatment effect against the quantiles of V
instead of its absolute values, in accordance with the following transformation of the selection rule
in equation (3) (Cornelissen et al., 2018):

(5) µD (ZZZi)�Vi � 0 , µD (ZZZi)�Vi , F (µD (ZZZi))� F (Vi) ,
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where F() denotes the cumulative distribution function of V . The term F (µD (ZZZi)), also represented
by P(ZZZi), is the propensity score (a farmer’s probability of adopting CA) and F(Vi), represented by
F (Vi)⌘UDi, is the quantiles of the distribution of V .

To identify the parameters of the models, we assume that the identifying instrument, Z̃, is
statistically independent of the unobserved components of the outcome and selection equations
(e0,e1,V ) given the observable characteristics (i.e., (e0,e1,V ) ,? Z̃ | XXX). This assumption further
requires that, conditional on XXX , Z̃ can only affect the outcome variables through its influence on
adoption (referred to as exclusion restriction).

Using distance from homestead to farm in this study as an excluded instrument is assumed
to influence farmers’ adoption behavior. Recent changes in settlement and land use patterns,
coupled with increased population pressure, have contributed to reduce access to farmlands closer
to homesteads. This is assumed to have contributed to a reduction in or abandonment of fallowing
periods in favor of continuous cropping, which leads to depletion of soil nutrients and increased soil
erosion. On the other hand, more distant farmlands are often virgin lands with inherent soil nutrients
capable of sustaining crop growth over time. Thus, declining soil fertility and limited access to
farmlands tend to increase the adoption of CA practices (e.g., leguminous cover cropping, maize–
legume rotations, mulching) for those farming closer to homesteads, to rejuvenate and improve soil
fertility (McCall, 1985). Thus, the instrument plays an important role in the adoption of CA but
should not directly affect the outcome variables.5

In line with Cornelissen et al. (2018), we also assume that the MTE is additively separable into
observed and unobserved components:

MTE(x,uD) = E (Y1i � Y0i | XXXi = x,UDi = uD)
(6)

= x(d1 � d0)| {z }
Observed component

+ E (e1i � e0i | Xi = x,UDi = uD)| {z }
Unobserved component

where (d1 � d0) represent the difference in the treatment effect between the adoption and the
nonadoption states. This assumption enables the MTE to be identified over the unconditional support
of the propensity score, which is generated by both the instrument and the observed covariates, XXXi,
instead of the support of the propensity score conditional on XXXi = x (Brinch, Mogstad, and Wiswall,
2017).

We employ the method of local instrumental variables (IV) to estimate the MTEs (Cornelissen
et al., 2018). The outcomes in equations (1)–(2) yield the following outcome equation, conditioned
on the observed covariates, X , and propensity score, P(Z):

(7) E (Y | X ,P) = Xld0 + Xl (d1 � d0)P + K(P),

where K(P) is a nonlinear function of the propensity scores (P). Thus, the MTE equals the derivative
of equation (7) with respect to the propensity scores (Carneiro, Lokshin, and Umapathi, 2017):

(8) MTE(XXXi = x,UDi = P) =
∂E (Y | XXX ,P)

∂P
= X (d1 � d0) +

∂K(P)
∂P

.

Our estimation procedure has two stages. We first obtain propensity score estimates from a first-
stage probit estimation from selection equation (4) and then proceed to model K(P) as a polynomial

5 To check the validity of our instrument, we follow Di Falco, Veronesi, and Yesuf (2011) and run separately a probit
model of the selection equation and ordinary least squares (OLS) regression for the outcome equations of nonadopters. The
estimates show that the instrument negatively affects adoption of soil conservation practices and is statistically significant
at 1% level (see the first column of Table 2) but did not show any statistically significant impact on the outcome variables
among nonadopters (see Table S1). In addition, a c2 test of the effect of the instrument on CA practices shows a p-value of
0.000, suggesting that the distance-to-farm variable is significantly different from 0. A further test of correlation reveals the
instrument employed is not correlated with any of the outcome variables (see Table S2).
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in P of degree k. Thus, we estimate the impact of adoption of CA practices in the second stage:6

(9) Yi = XXXid0 + XXXi (d1 � d0)P +
K

Â
k=1

akPk + ei.

The derivative of equation (9) with respect to P delivers the MTE curve. We estimate our baseline
model using a second-order polynomial (K = 2) in the propensity scores. We also conduct robustness
check analysis with K = 3, K = 4, and semiparametric specifications, but observe a similar pattern
of results.

Empirical Results and Discussion

Table 2 reports the estimates of the determinants of CA adoption decisions. Based on equation (9),
we present estimates of the effects of the covariates on the outcome variables in column 1 and
the treatment effects across covariates in column 2 of Tables 3–5. Next, we present the results of the
marginal treatment effects and the treatment effects parameters in Figure 1, and Table 6 respectively.
Finally, we report the robustness checks results, as well as the estimates of the policy simulation
analysis. Figure S3 in the online supplement shows the distributions of the predicted probabilities
for both adopters and nonadopters. The identification of the MTE depends on the common support
of propensity scores, which requires sufficient overlap in the characteristics of the adopters and the
nonadopters. As depicted in Figure S3, there is considerable overlap between these two groups,
suggesting that there are adopters and nonadopters with comparable characteristics.

Determinants of Adoption of Conservation Agriculture Practices

In the interest of easing interpretation, Table 2 reports the marginal effects of the determinants
of CA adoption. The results indicate that the key factors that significantly influence adoption
decisions include household characteristics (age, gender, education), resource constraints (livestock,
farm size), institution and social capital (extension contacts, member of FBO), and plot-level
characteristics (soil erosion). The coefficient of farm size is negative and statistically significant
(at the 1% level). That is, a 1-acre increase in farm size decreases adoption by about 6%, suggesting
that maize farmers cultivating smaller farm sizes are more likely to adopt CA practices such as
compost and manure application (see Table S3). A possible explanation for this finding is that
farmers with larger farms may not have a higher incentive to implement these practices due to
their cumbersome nature and the unavailability of these organic materials in larger quantities. The
coefficient of age is positive and significantly different from 0, suggesting that older farmers with
more farming experience are more likely to adopt, a result consistent with earlier work on technology
adoption (e.g., Shahzad and Abdulai, 2020).

Consistent with previous findings (e.g., Abdulai and Huffman, 2014), our estimates reveal that
more educated farmers have a higher probability of adopting CA practices. The estimates show that
soil conditions are strong predictors of adoption of CA practices. Specifically, farms characterized
by moderate and severe erosion are more likely to adopt CA techniques. The results also show that
livestock ownership increases farmer’s propensity to adopt, underscoring the important role livestock
plays as a source of organic fertilizer (see Abdulai and Goetz, 2014). Additionally, the estimate of the
moderately fertile variable is positive and statistically significant (at the 5% level), suggesting that
CA practices are more likely to be implemented on moderately fertile farms. The coefficient of the
variable representing extension service is positive and statistically significant, indicating that more
contacts with extension agents increase the likelihood of adoption. Similarly, FBO membership
is positive and highly significant (at the 1% level), suggesting that farmers belonging to these

6 We estimate our model using the mtefe Stata command (see Andresen, 2018).
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Table 2. Marginal Effects of the Determinants of CA Adoption (N = 512)
Variables Marginal Effects Standard Error
Age 0.005⇤⇤⇤ 0.001
Male 0.172⇤⇤⇤ 0.034
Household size �0.011⇤ 0.006
Education 0.009⇤⇤ 0.004
Farmer-based organization (FBO) 0.103⇤⇤⇤ 0.038
ln(farm size) �0.066⇤⇤⇤ 0.025
Extension contact 0.007⇤⇤ 0.003
Credit constraints �0.048 0.037
ln(market distance) �0.093⇤⇤⇤ 0.022
Livestock 0.004 0.007
Hired labor 0.003 0.002
Slope �0.022 0.035
Moderate erosion 0.244⇤⇤⇤ 0.029
Severe erosion 0.295⇤⇤⇤ 0.075
Fertile plot 0.080 0.052
Moderately fertile plot 0.098⇤ 0.051
Upper East �0.016 0.048
Upper West 0.122⇤⇤⇤ 0.042
Farm distance �0.093⇤⇤⇤ 0.014

c2 test of instrument 32.32
p-value of instrument 0.000

Notes: Table 2 reports the marginal effects estimates of the adoption decision from the probit selection model. The p-value
for the excluded instrument (farm distance) is reported. Single, double, and triple asterisks indicate significance at the 10%,
5%, and 1% level, respectively.

associations are more likely to adopt, a finding that further underscores the crucial role of farmer
groups in disseminating information on agricultural technologies. Both extension contact and FBO
membership results are consistent with previous findings from the literature (e.g., Ma, Abdulai, and
Goetz, 2018). The results also reveal that male-headed households are more likely than female-
headed households to invest in these practices to improve their soils.

Treatment Effect Heterogeneity in Observed Characteristics

Tables 3 and 4 report the treatment effect of adoption based on equation (9), for maize yields and
farm net returns, respectively. The estimates indicate the extent to which treatment effects differ
depending on the farmers’ observed characteristics. The coefficients in column 1 of Tables 3–5
measure effects on the outcome in the untreated or nonadoption state (i.e., d0 in equation 9). The
coefficients in column 2 of Tables 3–5 measure the difference of the effects between the treated and
the untreated state (i.e., d1 � d0 in equation 9). In other words, they can be interpreted as differences
in treatment effects across covariate values, just like an interaction between treatment status and a
covariate in an OLS regression (Andresen, 2018).

Farm size has a positive and significant effect in the untreated state, implying that a percentage
increase in farm size tends to increase yields and net revenues. However, the treatment effect is
negative and statistically significant on maize yields, suggesting that farmers with smaller farm sizes
tend to obtain significantly higher yield gains after adoption. These findings suggest that adopting
CA practices helps smaller farms to catch up with large-scale farms in terms of yields. This may be
due to the fact that CA practices allow smallholders to use inputs more efficiently.
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Table 3. Maize Yields (log) Equation (N = 512)
Outcome d0 Outcome (d1 � d0)

1 2
Variable Coefficient Std. Err. Coefficient Std. Err.
Age �0.005 0.004 0.005 0.005
Male �0.08 0.11 0.12 0.16
Household size 0.04⇤⇤⇤ 0.01 �0.02 0.02
Education 0.002 0.01 0.01 0.01
Farmer-based organization (FBO) 0.12 0.10 �0.08 0.13
ln(farm size) 0.45⇤⇤⇤ 0.09 �0.23⇤⇤ 0.11
Extension contact 0.03⇤⇤⇤ 0.01 0.02⇤⇤ 0.01
Credit constraints �0.06 0.07 �0.28⇤⇤ 0.11
Livestock 0.02 0.02 �0.01 0.02
Hired labor 0.02⇤⇤⇤ 0.005 �0.01⇤ 0.007
Slope �0.12⇤ 0.07 0.11 0.11
Moderate erosion �0.08 0.12 0.14 0.16
Severe erosion �0.62 0.48 0.57 0.54
Fertile plot �0.02 0.11 �0.05 0.19
Moderately fertile plot �0.05 0.09 0.14 0.18
Upper East �0.03 0.06
Upper West 0.13⇤⇤⇤ 0.05

Constant 6.45⇤⇤⇤ 0.17 0.31 0.37
Test of observed heterogeneity, p-value 0.000

Notes: Columns 1 and 2 present the estimates of the maize yield equation in the nonadoption state and the treatment effect
(difference between adoption and nonadoption states), respectively. The reported test of observed heterogeneity is a test of
whether the treatment effect (d1 � d0) varies across the observed covariates. Std. Err. reports the bootstrapped standard
errors. Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level, respectively.

We also observe a similar pattern concerning hired labor. In the untreated state, farmers who are
less labor endowed experience lower maize yields and farm net returns compared to those endowed
with more labor. This disadvantage in benefits disappears when they adopt, implying that farmers
with a smaller labor endowment are able to catch up with farmers endowed with more labor with
respect to maize yields and net farm returns after adoption.

In the untreated state, farmers who are not liquidity constrained experience 6- and 49-percentage-
points increases in maize yields and net returns, respectively, than liquidity-constrained farmers,
although this result is not significant in the case of maize yields. Interestingly, when those who are
not liquidity constrained adopt CA practices, they experience even higher gains in maize yields,
about 49 percentage points, than those who are liquidity constrained. However, the treatment effect
is not significant in the case of net returns. The estimate of the extension variable is positive and
statistically significant in the untreated state for maize yields, suggesting that farmers with more
extension contacts tend to experience more yields. Similarly, the treatment effect is also positive and
statistically significant, suggesting that farmers with more extension contacts tend to have higher
gains in yields after adoption.

Table 5 reports results on the treatment effect of adoption on inorganic N fertilizer use. The
estimate of the variable on age is not statistically significant in the untreated state. However, the
treatment effect is negative and significantly different from 0, suggesting that older farmers tend
to reduce their use of inorganic N fertilizer after adoption compared to younger farmers. In the
untreated state, male-headed households tend to significantly apply more inorganic N fertilizer. At
the same time, their treatment effect is negative, suggesting that they significantly cut down on N
from inorganic sources after adoption relative to female-headed households.
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Table 4. Farm Net Returns (log) Equation (N = 512)
Outcome d0 Outcome (d1 � d0)

1 2
Variable Coefficient Std. Err. Coefficient Std. Err.
Age �0.01⇤⇤ 0.01 0.02⇤⇤ 0.01
Male �0.22 0.18 0.36 0.29
Household size 0.02 0.03 �0.03 0.04
Education �0.02 0.02 0.05⇤ 0.03
Farmer-based organization (FBO) 0.20 0.19 �0.27 0.29
ln(farm size) 0.31⇤⇤⇤ 0.10 �0.11 0.17
Extension contact 0.02 0.02 0.03 0.02
Credit constraints �0.49⇤⇤⇤ 0.14 �0.63 0.20
ln(market distance) 0.38⇤⇤ 0.16 �0.48⇤⇤ 0.19
Livestock 0.04 0.03 0.01 0.04
Hired labor 0.02⇤⇤⇤ 0.01 �0.05⇤⇤⇤ 0.01
Slope �0.07 0.14 �0.01 0.20
Moderate erosion �0.11 0.18 0.08 0.26
Fertile plot 0.18 0.18 �0.49 0.37
Moderately fertile plot �0.07 0.20 0.03 0.36
Upper East �0.06 0.10
Upper West 0.17⇤ 0.09

Constant 0.52⇤⇤⇤ 0.55 1.98⇤⇤⇤ 0.63
Test of observed heterogeneity, p-value 0.000

Notes: Columns 1 and 2 present the estimates of the farm net return equation in the nonadoption state and the treatment
effect (difference between adoption and nonadoption states), respectively. The reported test of observed heterogeneity is a
test of whether the treatment effect (d1 � d0) varies across the observed covariates. Std. Err. reports the bootstrapped
standard errors. Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level,
respectively.

Farms with moderate soil erosion tend to use significantly (at the 10% level), albeit marginally,
more inorganic N fertilizer in the untreated state. However, the treatment effect is negative, implying
that moderately eroded farms reduced their inorganic N use after adoption compared to farms
without erosion. A similar pattern emerges for moderately fertile plots. At the untreated state,
moderately fertile farms tend to use more inorganic N fertilizer. Interestingly, the treatment effect
shows that, compared to infertile farms, moderately fertile farms significantly cut down the use of
inorganic N fertilizer after adoption. These findings could be attributed to improvements in soil
conditions due to the use of leguminous cover crops and other conservation practices and thus
highlight their importance in reducing run-off and erosion and retaining soil nutrients.

Average and Marginal Treatment Effects Estimates

An important motivation of this study is to ascertain whether farmers benefit from the adoption of
CA practices and how this effect varies with respect to their unobserved characteristics. The MTE
illustrates whether farmers who are more likely to adopt based on unobservable traits have higher
or lower gains from adoption. Figure 1 displays the MTE estimates evaluated at the mean values of
the observed covariates. In general, the pattern of the MTE estimates is largely consistent with the
intuition and concept of CA as expressed earlier in this paper.

In particular, the MTE estimates for maize yields and farm net returns in Figure 1a and
1b, respectively, show a declining MTE, implying that farmers who are more likely to adopt
CA practices (i.e., those with low unobserved resistance to treatment, UD), tend to benefit more
from its adoption, (i.e., a pattern of positive selection on unobserved gains). Consistent with our
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Table 5. Inorganic N Fertilizer Use (log) Equation (N = 512)
Outcome d0 Outcome (d1 � d0)

1 2
Variable Coefficient Std. Err. Coefficient Std. Err.
Age 0.01 0.01 �0.03⇤ 0.02
Male 1.01⇤⇤⇤ 0.35 �1.87⇤⇤⇤ 0.52
HH size 0.04 0.04 0.01 0.06
Education �0.01 0.04 0.004 0.05
FBO 0.50 0.35 �0.59 0.51
ln(farm size 0.24 0.28 0.42 0.47
Extension contact 0.02 0.04 0.006 0.05
Credit constraints 0.06 0.28 �0.49 0.49
Livestock 0.04 0.05 �0.04 0.07
Hired labor 0.03⇤ 0.02 �0.02 0.03
Slope �0.19 0.26 �0.08 0.40
Moderate erosion 0.63⇤ 0.36 �0.94⇤ 0.57
Fertile plot 0.16 0.31 �0.75 0.59
Moderately fertile plot 0.56 0.37 �1.19⇤ 0.62
Upper East 0.33⇤ 0.19
Upper West 0.29 0.19

Constant 2.77⇤⇤⇤ 0.65 2.42⇤ 1.26
Test of observed heterogeneity, p-value 0.000

Notes: Columns 1 and 2 present the estimates of the inorganic N fertilizer use equation (9) in the nonadoption state and the
treatment effect (i.e., difference between adoption and nonadoption states), respectively. The reported test of observed
heterogeneity is a test of whether the treatment effect (d1 � d0) varies across the observed covariates. Std. Err. reports the
bootstrapped standard errors. Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1%
level, respectively.

Figure 1. MTE Curves for Outcome Equations
Notes: This figure shows the estimated marginal treatment effects (MTE) of the three outcome equations estimated at the
mean values of the observed covariates (XXX).
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findings, a recent study by Kim et al. (2019) in rural Tanzania found that the adoption of CA
practices such as maize–legume intercropping and organic fertilizers (e.g., manure or compost) was
associated with increases in maize yields and income, compared to nonadoption. Our results further
suggest significant heterogeneity (at the 10% and 5% levels for maize yields and farm net returns,
respectively) in the returns to the adoption of CA practices, varying from approximately �0.5 for
high UD farmers (who would lose from CA adoption) to about 1.1 for low UD farmers (who would
gain from CA adoption) in the case of maize yields. Further, we also observe returns to adoption
from �0.5 for high UD farmers to around 3.0 for low UD farmers, suggesting that farmers who are
less likely to adopt would lose if they adopted. Suri (2011), who argued that farmers decide to adopt
agricultural technologies on the basis of their comparative advantage, corroborated the lower gains
for farmers who are less likely to adopt.

Interestingly, a different pattern is observed in the case of inorganic N fertilizer use. As shown in
Figure 1c, the MTE curve increases with respect to the unobserved resistance to treatment (UD) and
mirrors a pattern of reverse selection on gains, suggesting that farmers who are more likely to adopt
CA practices are also more likely to decrease inorganic N usage to a greater extent after adoption.
The result also depicts significant heterogeneity (at the 1% level) in the use of inorganic N fertilizer,
ranging from approximately 2.6 for high UD farmers (who would increase their inorganic N fertilizer
use) to about �5.4 for farmers with UD close to 0 (who would cut down greatly on inorganic N use).
As argued by ten Berge et al. (2019), soil N requirement varies with respect to the level of N use
efficiency. Minimizing N losses through the use of organic soil amendments, cover cropping, and
maize–legume rotation improves soil fertility over time and builds up N capital in the soil, thus
requiring relatively less N from inorganic fertilizers (Ma, Abdulai, and Goetz, 2018). On the other
hand, farmers with lower adoption desires would not cut down on inorganic N fertilizer usage by
an equivalent amount even if they chose to adopt. Intuitively, the pattern observed implies positive
selection on gains, since farmers who adopt CA practices tend to cut down on inorganic N fertilizer
usage because they have adopted alternative methods of enhancing soil N, such as maize–legume
rotation, compost and organic manure, and cover cropping.

Table 6 presents the average gains from the adoption of CA practices for different categories of
farmers. We show the estimates of the different treatment effect parameters as weighted averages of
the MTE: the ATE (average treatment effect), TT (effect of treatment effect on the treated), and TUT
(effect of treatment effect on the untreated). The estimated ATEs are 0.37 and 1.28 for maize yields
and net returns, respectively, implying that for a farmer picked at random from the farmer population,
adopting CA practices raises yields by 37 percentage points and net returns by 128 percentage points.
In the case of the TT, which places more weight on farmers with high propensity scores, the gain
from adoption for the average farmer who adopts is significantly higher: 65 percentage points for
maize yields and 193 percentage points for farm net returns. However, the findings for the TUT
are not statistically significant in the case of either maize yields or farm net returns. The different
treatment effect parameters suggest that the return to adoption for adopters is higher than for either
the random farmer or for nonadopters (TT > ATE > TUT), implying a positive selection on gains
from CA adoption.

Column 3 of Table 6 presents the estimates of the treatment effect parameters for inorganic N
fertilizer use. The results (TT > ATE > TUT) suggest that the average farmer who is more likely
to adopt significantly cuts down the usage of N from inorganic sources to a larger extent after CA
adoption compared to a nonadopter. These findings show a pattern of positive selection on gains,
implying that adoption tends to build up soil N capital and thus requires less N from inorganic
sources.

Further, the findings in Table 6 as well as the MTE curves (see Figure 1) also imply that the
adoption of CA practices would bring little benefits (and at some point even result in negative
effects) for nonadopters if they decided to adopt. It is significant to indicate that nonadopters are
generally less resourced due to a number of structural and institutional factors. First, CA practices
are knowledge and management intensive, requiring a considerable amount of training and on-farm
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Table 6. Estimates of Treatment Effects Parameters (N = 512)
Maize Yields

(log)
Farm Net Returns

(log)
Inorganic N

Fertilizer Use (log)
Parameter 1 2 3
Average treatment effect 0.37⇤⇤⇤ 1.28⇤⇤⇤ �1.46⇤⇤⇤

(0.13) (0.27) (0.51)

Effect of treatment on the treated 0.65⇤⇤⇤ 1.93⇤⇤⇤ �2.96⇤⇤⇤

(0.25) (0.55) (0.97)

Effect of treatment on the untreated �0.02 0.36 0.65
(0.18) (0.31) (0.78)

Test of observable heterogeneity (p-value) 0.000 0.000 0.000
Test of essential heterogeneity (p-value) 0.072 0.042 0.008

Notes: The reported test of observed heterogeneity is a test of whether the treatment effect (d1 � d0) varies across the
observed covariates. The p-value for the test of essential heterogeneity is a test for a nonzero slope of the marginal treatment
effect (MTE) curve. Bootstrapped standard errors are reported in parentheses. Single, double, and triple asterisks (*, **,
***) indicate significance at the 10%, 5%, and 1% level, respectively.

extension support to provide the needed backstopping (Faltermeier and Abdulai, 2009; Jayne et al.,
2019). However, this category of farmers faces limited extension contacts and training opportunities,
which are key to realizing the needed benefits from conservation agriculture. Second, CA practices
demand precision as to timing, but nonadopters’ farms tend to be located at greater distances from
their homesteads than adopters’, leading to longer journeys and less time available to work on the
farm. Thus, labor intensity (person-hours/day/season) is likely to decrease as farm distance increases
(Ali, Deininger, and Ronchi, 2019).

Our results generally reveal that the average farmer with a high propensity to adopt (low UD)
cuts down on the usage of N from inorganic sources to a greater extent, and experience significantly
increases in maize yields and farm net returns, compared to those with low propensity to adopt. CA
practices such as maize–legume rotations, cover cropping, manure, and compost tend to improve
soil organic matter and build up N capital, and in turn have direct and positive effects on soil
fertility, which inorganic fertilizer does not, but indirectly support crop growth. Farmers, therefore,
cannot rely on inorganic N fertilizer alone because of nutrient deficits arising from nutrient extraction
through crop harvest and removal of crop residues, which decrease soil organic matter.

To test the sensitivity of the baseline estimation results, we conduct robustness checks that
include using different functional forms of K(P) (e.g., cubic, quartic and semiparametric), allowing
the MTE curve to have a more flexible pattern, such as the U-shaped (Cornelissen et al., 2018).
The shapes of these curves from the alternative specifications are identical to those of our baseline
MTE curves (see Figure S4 in the online supplement). Further, we use a quadratic term of the farm
distance variable and its interaction with the variable on the distance to the nearest extension office
as instruments in separate estimations. The resulting estimates (Table S4 in the online supplement)
are of a similar pattern and corroborate our baseline results.

Policy Simulations

To the extent that farmers who are less likely to adopt CA practices (high UD) have lower returns
or even losses suggests that appropriate policy changes could induce them into adoption (i.e.,
change their propensity scores). We therefore estimate the mean effect of two policy alternatives by
computing the policy-relevant treatment effects (PRTE) (see Heckman and Vytlacil, 2001; Carneiro,
Lokshin, and Umapathi, 2017) as a weighted average over the MTE curves. We compute the PRTE
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Table 7. Policy-Relevant Treatment Effects (PRTE) Estimates (N = 512)
Implementation Cost Training Days

Propensity Scores Policy Effect Propensity Scores Policy Effect
Baseline Policy PRTE Baseline Policy PRTE

Outcome Variable 1 2 3 4 5 6
Maize yields (log) 0.58 0.67 0.19 0.58 0.69 0.22⇤

(0.16) (0.13)

Farm net returns (log) 0.58 0.67 0.93⇤⇤⇤ 0.58 0.7 0.58⇤⇤

(0.22) (0.24)

Inorganic N fertilizer (log) 0.58 0.65 �0.89⇤⇤ 0.58 0.7 �0.83⇤⇤

(0.43) (0.45)

Notes: Columns 3 and 6 present the policy-relevant treatment effects (PRTE) estimates per farmer induced to adopt based on
the two policy alternatives (increasing training days and reduction in implementation cost). Columns 1 and 4 report the
propensity scores from the baseline specifications of the policies. Columns 2 and 5 report the increases in the propensity
score as a result of the policy changes. Bootstrapped standard errors are reported in parentheses. Single, double, and triple
asterisks indicate significance at the 10%, 5%, and 1% level, respectively.

as follows:

(10) PRT E(x) =
Z

MT E (X ,UD) fUD|X (UD | X ,C(p) = 0,C(p̄) = 1)dv,

where P (policy instrument) does not affect the outcome equations and shift from P = p to P = p̄.
It is also important to note that, in situations where the policy instruments are not the same as

the excluded instrument used to identify the baseline models, as in this study, the former should also
affect adoption but should not enter directly into the outcome equations. These instruments were not
included in the baseline estimations because the baseline results for the treatment effect parameters
were not different from that of the PRTEs (see Tables S5 and S6 in the online supplement).

The first policy alternative addresses the fact that many CA practices have high implementation
costs, which limits their adoption (Petersen and Snapp, 2015). Thus, well-resourced farmers are
more likely to adopt CA practices, raising concerns about potential endogeneity. We therefore
compute the average village-level cost of implementation. If we had used the farmer’s actual value,
the result would have been biased toward well-resourced farmers. We therefore simulate the impact
of reducing the cost of implementing CA practices by 50%.

The second policy alternative acknowledges that CA practices are knowledge and management
intensive. Mockshell and Villarino (2019) highlighted the limited policy and institutional support
(e.g., training and research) for their upscaling. To promote widespread adoption, farmers need to
be exposed to further training that includes field demonstrations and advisory services. Capacity
building for farmers (e.g., training and field demonstrations in the study area) is usually organized
in groups at the village or community level. We therefore simulate a policy change that increases
the average community-level training days on CA practices (including field demonstrations) by
approximately 50% (i.e., 4.1 to 6.2 days).

Figures S1 and S2 (in the online supplement) show the PRTE weights for the two policy
measures with the estimates reported in Table 7. Columns 1 and 4 of Table 7 show the propensity
scores for the baseline specifications. As shown in columns 2 and 5, both policies induce nonadopters
into adoption. In particular, reducing the cost of implementation increases the probability of adoption
by 9 percentage points for both the outcome equations of maize yields and farm net returns and 7
percentage points for inorganic N fertilizer use. In addition, the returns to adoption for the average
farmer induced to adopt as a result of the policy change (PRTE) are 93 percentage points for farm
net returns and �89 percentage points for inorganic N fertilizer use (see column 3 of Table 7).
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A similar pattern is observed, albeit with higher probabilities, in the case of the second policy
measure. Increasing training and demonstration days on CA practices encourage nonadopters to
adopt, increasing the probability of adoption by 11 percentage points for maize yields and 12
percentage points for both farm net returns and inorganic N fertilizer use. The PRTEs are statistically
significant for all three specifications, at 22 percentage points for maize yields, 58 percentage points
for farm net returns, and �83 percentage points for inorganic N fertilizer use.

Conclusion and Policy Implication

This study uses a recent survey of farm households to examine the heterogeneity in the effect of
adoption of conservation agriculture (CA) practices on farm performance and inorganic N fertilizer
use in the Northern Savanna regions of Ghana. We employ the marginal treatment effect (MTE)
approach that allows us to estimate both the average treatment effects of adoption of CA practices
and the distribution of the impact of adoption on unobserved resistance to adoption. Understanding
the heterogeneity (both observed and unobserved) in the effect of adoption has implications on
policy decisions.

The empirical results reveal significant heterogeneity in the effect of adoption of CA practices
on maize yields, farm net returns, and inorganic N fertilizer use, suggesting that farmers’ adoption
decisions are based on their comparative advantage. We find that farmers with lower resistance
to adoption tend to have higher maize yields and farm net returns compared to those with higher
resistance. In the case of inorganic N fertilizer use, we find that farmers with high probability (lower
resistance) of adoption tend to significantly reduce inorganic N usage after adoption. While farmers
with low probability of adoption use relatively higher amounts of inorganic N fertilizer, the MTE
estimates show that they also realize lower gains on maize yields and farm net returns. These findings
are intuitive, particularly because most farmlands in the northern Savanna regions are characterized
by low organic matter, which is key for building up soil N capital and improving soil fertility (Häring
et al., 2017). Poore and Nemecek (2018) estimated that 60 g–400 g of inorganic N are lost for every 1
kg applied to crops, particularly due to inherent poor soil conditions, thus reducing the effectiveness
of inorganic N fertilizers on maize yields. Our findings further highlight the importance of CA
practices in improving soil organic matter content, which releases available N that may correspond
with the N requirement of the crop, contributing to reduced use of N from inorganic sources.

Despite potentially significant gains, we also find that CA adoption could result in small gains
or even negative effects for nonadopters if they were to adopt due to a number of institutional
(e.g., inadequate extension services, training) and structural (e.g., poor transportation and road
networks) limitations faced by this category of farmers. As highlighted by the African Union’s 2017
progress report on the 2014 Malabo Declaration, Ghana and other countries in sub-Saharan Africa
need to urgently increase the share of arable lands under conservation agriculture (African Union
Commission, 2018).

Our findings provide a number of salient policy implications. First, ensuring widespread
adoption and benefits for farmers would require increased capacity building for farmers through
training and field demonstrations. Additionally, and as evident from our findings, CA adoption
would require a more vibrant and proactive extension system with sufficient basic soil-testing tools to
promote location-specific agronomic recommendations (due to the heterogeneity of soil biophysical
characteristics). Second, providing incentives to implement CA practices could also boost adoption.
For instance, refocusing the fertilizer subsidy program as part of the government’s “Planting for
Food and Jobs” program to emphasize CA practices (e.g., cover cropping, maize–legume rotation,
and organic amendments such as animal manure and compost) could play a crucial role in promoting
conservation agriculture, thereby ensuring a buildup of soil N in the medium to long term. Third,
some of these internal inputs (e.g., crop residues, manure, compost) may not be available in sufficient
quantities due to low biomass production. Thus, the government, through public–private partnerships
such as the “One District, One Factory” initiative, could support the private sector in developing
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the value chains for these inputs. Until the markets for these organic materials and biomass are
developed, it will not be possible to drastically reduce the use of inorganic N fertilizer in the short
run. Instead, there should be a conscious effort to supplement its use with CA practices as part of a
comprehensive soil management strategy.

[First submitted June 2020; accepted for publication January 2021.]
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Table S1. Test of Validity of the Excluded Instrument
Dependent Variable Maize Yield Farm Net Returns Inorganic N Fertilizer Use
Farm distance �0.02 �0.07 0.01

(0.02) (0.04) (0.07)

Constant 6.394
⇤⇤⇤

5.571
⇤⇤⇤

3.112
⇤⇤⇤

(0.436) (0.889) (0.479)

Sample size 212 212 212

Notes: Standard errors are reported in parentheses. Significance level at *p < 0.1, **p < 0.05, ***p < 0.01.

Table S2. Correlation between Outcome and Instrumental Variables
Dependent Variable Farm Distance
Maize yield �0.02

Farm net returns �0.13

Inorganic N fertilizer use 0.11

Table S3. Summary of Descriptive Statistics of CA Practices
Farm Size Average Years of Adoption

CA Practices Observations Mean Std. Dev Mean Std. Dev
Organic amendments (compost, manure) 144 2.79 1.55 6.59 1.68

Maize-legumes rotation 222 4.76 2.94 5.84 1.80

Zero tillage 196 5.15 3.32 4.16 1.45

Cover cropping 236 4.81 3.15 6.47 1.54

Mulching 186 4.58 2.74 5.34 1.49

Notes: a
An average farmer adopted on the average three CA practices. Due to the multiple adoption, the observations do no

sum up to 512.



S2 May 2022 Journal of Agricultural and Resource Economics

Figure S1. This figure graphs the distribution of the PRTE weights (increasing CA training
days)
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Figure S2. This figure graphs the distribution of the PRTE weights (decreasing CA
implementation cost).

Figure S3. Support of Propensity Scores PPP for CCC = 1 and CCC = 0
Notes: PPP is the estimated probability of adoption. The figure shows the estimated probability of CA adoption. It is estimated

from a first stage selection equation model.
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Figure S4. Robustness Checks (1) of the Functional Forms
Notes: This figure depicts the alternative specifications of the MTEs using different functional forms such as the Third Order

Polynomial (cubic), Fourth Order Polynomial (quartic), and the Semiparametric model. The solid curve denotes our baseline

specification.
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Table S4. Robustness Checks Results (2)
Panel A

Baseline Quadratic Term Interacted Extension Distance
Maize
Yields

Farm Net
Returns

Maize
Yields

Farm Net
Returns

Maize
Yields

Farm Net
Returns

(log) (log) (log) (log) (log) (log)
Parameters 1 2 3 4 5 6
ATE 0.37

⇤⇤⇤
1.28

⇤⇤⇤
0.29

⇤⇤
1.09

⇤⇤⇤
0.30

⇤⇤
1.04

⇤⇤⇤

(0.13) (0.27) (0.12) (0.17) (0.12) (0.32)

TT 0.65
⇤⇤⇤

1.93
⇤⇤⇤

0.52
⇤⇤⇤

1.53
⇤⇤⇤

0.63
⇤⇤⇤

1.52
⇤⇤⇤

(0.25) (0.55) (0.19) (0.30) (0.21) (0.66)

TUT �0.02 0.36 �0.03 0.48 �0.16 0.36

(0.18) (0.31) (0.16) (0.30) (0.18) (0.47)

Test for

essential

heterogeneity,

p-value

0.072 0.042 0.041 0.035 0.026 0.221

Notes: This table presents the estimates of the robustness checks. Panel A shows the robustness checks for maize yields

and farm net returns. Columns 1 and 2 refer to the baseline model in Table 7. In columns 3 and 4, we use the quadratic

term of the instrument. In columns 5 and 6, the instrument interacts with the distance to the extension office. The p-value

for the test of essential heterogeneity, which is a test for a nonzero slope of the MTE curve is presented. Bootstrapped

standard errors are reported in parentheses. Significance level at *p < 0.1, **p < 0.05, ***p < 0.01

Panel B

Baseline Quadratic Term Interacted Extension Distance
Inorganic N Fertilizer Use

(log)
Inorganic N Fertilizer Use

(log)
Inorganic N Fertilizer Use

(log)
Parameters 1 2 3
ATE �1.46

⇤⇤⇤ �1.20
⇤⇤⇤ �1.03

⇤⇤

(0.51) (0.38) (0.56)

TT �2.96
⇤⇤⇤ �2.46

⇤⇤⇤ �1.67
⇤⇤

(0.97) (0.68) (1.04)

TUT 0.65 0.57 �0.13

(0.78) (0.81) (0.86)

Test for essential

heterogeneity,

p-value

0.008 0.008 0.283

Notes: Table 8 panel B presents the estimates of the robustness checks for inorganic N fertilizer use. Column 1 refers to the

baseline model in Table 7 (col, 3). In column 2, we use the quadratic term of the instrument. In column 3, the instrument

interacts with the distance to the extension office. The p-value for the test of essential heterogeneity, which is a test for a

nonzero slope of the MTE curve is presented. Bootstrapped standard errors are reported in parentheses. Significance level at

*p < 0.1, **p < 0.05, ***p < 0.01
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Table S5. Estimates of Treatment Effects Parameters Based on PRTE (CA training days)

Maize Yields
(log)

Farm Net Returns
(log)

Inorganic N
Fertilizer Use

(log)
Parameters 1 2 3
ATE 0.37

⇤⇤
1.28

⇤⇤⇤ �1.46
⇤⇤⇤

(0.15) (0.29) (0.47)

TT 0.65
⇤⇤⇤

1.93
⇤⇤⇤ �2.96

⇤⇤⇤

(0.25) (0.59) (0.94)

TUT �0.02 0.36 0.65

(0.20) (0.40) (0.67)

Test of observable heterogeneity, p-value 0.000 0.000 0.042

Test of essential heterogeneity, p-value 0.064 0.071 0.011

Number of observations = 512

Notes: This table presents the estimates of different treatment effects parameters based on the PRTE (increasing CA training

days); ATE (average treatment effect), TT (average treatment effect on the treated), TUT (average treatment effect on the

untreated), and the p-values for the test of observed and essential (unobserved) heterogeneities for the three main outcome

variables. Standard errors are reported in parentheses. Significance level at *p < 0.1, **p < 0.05, ***p < 0.01

Table S6. Estimates of Treatment Effects Parameters Based on PRTE (cost of
implementation)

Maize Yields
(log)

Farm Net Returns
(log)

Inorganic N
Fertilizer Use

(log)
Parameters 1 2 3
ATE 0.37

⇤⇤
1.28

⇤⇤⇤ �1.46
⇤⇤⇤

(0.17) (0.30) (0.48)

TT 0.65
⇤⇤

1.93
⇤⇤⇤ �2.96

⇤⇤⇤

(0.33) (0.56) (1.04)

TUT �0.02 0.36 0.65

(0.19) (0.31) (0.79)

Test of observable heterogeneity, p-value 0.016 0.000 0.007

Test of essential heterogeneity, p-value 0.163 0.036 0.026

Number of observations = 512

Notes: This Table presents the estimates of different treatment effects parameters based on the PRTE (decreasing CA

implementation cost); ATE (average treatment effect), TT (average treatment effect on the treated), TUT (average treatment

effect on the untreated), and the p-values for the test of observed and essential (unobserved) heterogeneities for the three

main outcome variables. Standard errors are reported in parentheses. Significance level at *p < 0.1, **p < 0.05, ***p < 0.01

[Received June 2020; final revision received January 2021.]
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