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Simulated Maximum Likelihood
for Double-Bounded
Referendum Models

Mary Riddel

Although joint estimation ofreferendum-type contingent value (CV) survey responses
using maximum-likelihood models is preferred to single-equation estimation, it has
been largely disregarded because estimation involves evaluating multivariate normal
probabilities. New developments in the construction of probability simulators have
addressed this problem, and simulated maximum likelihood (SML) for multiple-good
models is now possible. This analysis applies SML for a three-good model under a
double-bounded questioning format. Results indicate joint estimation substantially
improves the variances of the parameters and willingness-to-pay estimates.

Key words: censored regression; contingent valuation; Geweke, Hajivassiliou, and
Keane simulator; simulated maximum likelihood

Introduction

Contingent value (CV) surveys often seek to value multiple nonmarket goods within the
same survey using the referendum approach. When multiple goods are valued, survey
costs may be contained. Further, examining several goods simultaneously allows
researchers to estimate substitution effects between potentially related goods. Past
research has shown total willingness to pay (WTP) for related environmental goods
is not simply the sum of the individual WTP for each good due to substitution effects
between goods (Hoehn; Hoehn and Loomis; Carson; Carson and Mitchell). Thus, including
several goods in a survey has clear advantages in terms of unbiased total value estima-
tion and cost minimization.

Initially, researchers assumed the valuation responses were independent across indi-
viduals and goods, and estimated WTP for each good separately. Recent research has
shown responses are often highly correlated between the goods, making the assumption
of independence inefficient (Riddel and Loomis; Poe, Welsh, and Champ). When indepen-
dence is ignored, parameter-variance estimates, and hence estimates of WTP variances,
are overstated. The situation is analogous to a seemingly unrelated regressions model:
when errors are correlated across goods, information is neglected that would allow more
precise estimates of the covariance matrix.

Previous studies have reported that efficiency gains can be substantial from joint
estimation. Riddel and Loomis show efficiency gains of 15% using a Monte Carlo
simulation for ajointly estimated two-program, double-bounded model. Poe, Welsh and
Champ suggest a similar result for joint estimation of two programs with a single-
bounded model.

Mary Riddel is associate director of the Center for Business and Economic Research, and assistant professor of economics,
University of Nevada, Las Vegas. The author thanks R. Keith Schwer, Thomas Carroll, John Loomis, Rennae Daneshvary,
and an anonymous referee for helpful comments on this manuscript.
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Minimum variance estimators allow policy makers to draw appropriate conclusions
concerning the WTP for improvements in environmental quality. Using high-variance
estimators could cause policy makers to erroneously infer that WTP for improved quality
is not significantly greater than WTP for the existing level of environmental quality.
Also, methodological tests for scope, substitution, and different survey designs require
precise variance estimates for proper inferences. Estimates of the covariance between
WTP for competing or substitute goods allow calculation of joint confidence regions
around WTP values. These regions permit tests of hypotheses concerning preference
order or substitutability of competing public goods.

The primary impediment to joint estimation has been the existence of multiple inte-
grals in the likelihood equations. For the double-bounded referendum format with only
one good, the log-likelihood function arising from the standard probit approach to esti-
mation contains four bivariate normal probabilities. Expanding this model to only two
goods means including quadravariate normal probabilities in the likelihood function.

Cameron's latent variable approach reduces the order of integration substantially, but
increases the number of integrals to be estimated. For Cameron's approach, estimating
a double-bounded, two-good model entails calculating bivariate normal integrals. These
can be estimated readily with numerical methods. However, a three-good model involves
evaluating trivariate normal integrals, and, because of the high order of integration,
numerical methods for evaluating the integrals break down and thus preclude the use
of standard maximum-likelihood techniques for these models.

New developments in Monte Carlo simulation have led to a new class of simulated
maximum-likelihood models for solving many of the computational problems associated
withjointly estimating censored distributions like those arising from dichotomous-choice
referendum surveys. Simulated maximum likelihood (SML) models, based on work by
Lerman and Manski, are quickly gaining ground in solving many problems which were
previously intractable. The underlying idea behind SML is quite simple. One estimates
the multivariate probabilities involving high-dimensional integrals using a probability
simulator. For the popular simulator developed by Geweke, Hajivassiliou, and Keane
(GHK), the multivariate probabilities are written as a sequence of conditional probabil-
ities and simulated recursively, resulting in a simulated probability estimate. Given the
simulated probabilities, standard optimization techniques are used to choose a parameter
vector that maximizes the probability of obtaining the set of responses observed. In other
words, conditioning on the simulated probabilities, one uses conventional maximum-like-
lihood techniques to estimate the model parameters.

The SML method is surprisingly simple to employ. Constructing programs to generate
parameter estimates and the covariance matrix is relatively straightforward in a statis-
tical programming language, such as GAUSS or STATA, containing a maximization
routine. And, assuming correct model specification and relatively well-conditioned data,
the models are quite well behaved.

The purpose of this study is to present the use of SML techniques when faced with
intractable joint integrals regularly encountered in referendum-type survey data. The
SML is based on the smooth recursive probability simulator developed in separate works
by Geweke, Hajivassiliou, and Keane (GHK). Given the simulated probabilities, SML
is used to estimate WTP for multiple goods under the double-bounded questioning format
where multiple integrals typically arise.'

See the special issue of Review of Economics and Statistics, volume 76, November 1994, devoted to probability simulators
and their applications, for an in-depth discussion of different SML procedures.
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Models for Contingent Valuation Survey Data

Consider the problem of estimating WTP values when several goods are included in a
survey. We can specify a system of equations for the WTP amounts as a function of
systematic and random components for individual i:

(1) WTPil = bXl 1 + e l,

WTPi2 = b2^X + ei,

WTPiK = bkXK + eiK

where Kequals the number of goods under consideration, WTPk is the willingness to pay
for the kth good by the ith person, boXik is a linear combination of systematic compo-
nents of WTPik, and ek is a random error associated with the ith individual and the kth
good. The length of bk may be different for each of the k goods, depending on what inde-
pendent variables influence WTP for that good.

Error correlation may arise whenever there are linkages among the stochastic com-
ponents of the WTP distributions. Mathematically, this reduces to E[ejek] • 0 forj k.2

Conceptually, this may occur when hard-to-obtain, individual-specific characteristics,
such as proxies for tastes and preferences, are not included in the empirical model. For
instance, if two goods being valued in the survey are substitutes or complements, error
correlation will be nonzero.

Another potential source of error correlation is unobserved attributes of the respond-
ents that lead to nonzero errors across the equations. For example, the preference
function leading an individual to prefer one type of good may cause the individual to
value another good less. Of course, surveys of reasonable length can only elicit so much
information about respondents; thus error correlation, and the resulting inefficiencies,
are almost certainly troublesome.

For contingent valuation surveys employing the referendum approach, WTP is a
latent variable: only bounds on the actual WTP amounts are observed.3 Recognizing
this, Cameron suggests an estimation approach based on censored distributions.4 Under
her model, the bid amounts, together with the responses, define a range of WTP. For ex-
ample, individual i may be asked if she would be willing to pay ti for some nonmarket
good. If she responds yes, ti defines the lower bound for her WTP. If she responds no, then
ti defines the upper bound of her WTP. A set of individual or good-specific regressors,

2 If we assume normal error terms with contemporaneous correlation between the K error terms, so that E[ejek] 0 for
j # k, the underlying model is a seemingly unrelated regression (SUR) model (Greene).

3 In the single-bounded referendum model, respondents are offered a bid amount and asked if they would be willing to pay
that amount. They respond yes or no, and the bid amount becomes a lower or upper bound, respectively, to the latent WTP
value. In the double-bounded model, a second bid is proposed depending on the response to the first bid. A yes response to
the first question is followed by a stepped-up bid amount, and a no response is followed by a lower bid amount. The responses
to the two questions offer up to two bounds for each latent WTP.

4 An alternative estimation method to that presented here is the probit approach following Hanemann and Kanninen. The
probit approach can be expanded to the multi-good setting, but at great cost in terms of computation time and precision. For
a two-good model with a follow-up question, the likelihood function involves the quadrivariate normal because each of the
two questions for the four goods must be included as a random variable. In general, in the probit approach for K goods with
a double-bounded questioning format, the order of integration necessary to estimate the model parameters is 2K. Cameron's
approach, on the other hand, involves only K-order integration when K goods are studied. Although the GHK estimator will
handle either approach, the computing time may be excessive for higher-order integrals. For that reason, this article focuses
on Cameron's latent variable approach due to its superior computational properties.
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Xi, together with the parameters, b, define the conditional mean WTP. For the one-good,

single-bid model, assuming a normal error distribution, the following likelihood function

may be estimated using standard optimization techniques where y = 1 if a yes response

is given and zero otherwise:

n
(2) LogL = /{y log[ ((ti - b'X)/o)] + (1 -yi)log[1 - -D((ti- b'XV)/)].

i=1

Cameron's approach easily generalizes to the dichotomous choice with follow-up

format. Here, there are two elicitation questions, with four outcomes: (YES, YES), (YES,

NO), (NO, YES), and (NO, NO). The probabilities of these four outcomes may be defined

asp1 1, p10, p0 1 , andp°°, respectively, where p1l is the probability the individual responds

yes to both questions, and p 0 is the probability of a yes to the first question and no to

the second, and so on.
Accordingly, the probabilities of observing each outcome are:

(3) pll = pr(bid u < WTP),

p10 = pr(bid r < WTP < bid u),

p0 1 = pr(bid d < WTP < bid r),

p 00 = pr(WTP < bid d),

where bid r is the initial bid, and bid u and bid d are the step-up and step-down bid

offers, respectively. Assuming normally distributed errors with the normal cumulative

distribution function defined as 0(.), the contribution to the log-likelihood function from

the ith individual is specified as follows (Alberini; Cameron): 5

(4) LogLi = ill* log(Q(z2i)) + Ii10*log(Q(z2i) - (zli))

+ Ii0J*log(D(zli) - (Z2 i)) + Ii00 *log(1 - D(Z2i)),

where z1 = (c1i - bXl)/o, c1i is the first bid offer for the ith respondent, z2i = (ci - bXli)/

a, c2 i is the follow-up bid offer for the ith respondent, and Imn denotes an indicator vari-

able corresponding to the category of the observed response. The estimate of individual

i's willingness to pay for the good is calculated as bx X l i.

Cameron's approach also easily generalizes, in theory, to estimating WTP for multiple

goods included in a survey. For two goods, we have two sets of probabilities: p, = [p, ,

P 10, P 01, P 0 } and P2 = tP2 P2 P20 1 P20 0 }, where the subscriptj= 1,2 denotes good 1 and

good 2. In this case, there are 16 possible combinations of two responses for each of the

two goods. To allow for error correlation, it is necessary to use a bivariate cumulative

distribution function (CDF). The likelihood function contains terms from the joint CDF

for each possible outcome. The probability of the respondent answering yes to the initial

and follow-up bids for both goods is written as: 6

(5) pllnpl = Pr(z2 1 i < WTP1i < °; 2i < WTP2i < o)

= ((Z 21li 00; Z22i, Xo; P),

5 This model, referred to as the interval-data model, assumes the WTP distribution for good k does not change between

the initial and follow-up questions. Alberini shows that as long as the correlation between the underlying WTP distributions
is high (>0.6), then the interval-data model is more efficient than the bivariate model proposed by Cameron.

6 The likelihood function for the two-good, double-bounded model is reported in appendix A.
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where z21 i = (c i - bXli)/o1, c21i is the follow-up bid offered to the ith respondent for the
first good, z22 i = ( i - bX 2 i)/o2, c22 i is the follow-up bid offered to the ith respondent for
the second good, and 0o, (2, and p are the standard deviations and the correlation for the
errors in the first and second equations of equation system (1) (e1 and e2, respectively).

Expanding the model to three goods necessitates calculating N trivariate normal
probabilities for each iteration of the maximization process, where N is the sample size.
With three goods, there are 43 = 64 possible trivariate integrals. For instance, if the re-
sponse set is (YES, YES), (YES, NO), and (NO,YES) for the first, second, and third goods,
respectively, the joint probability is denoted by:

(6) p11npn 1 =p Pr(z2 1 i < WTP1i < ; z1 i < WTP2i <z2 ; 23 < WTP3i < 1 3 )

= ( 21i, 00; Z12ij Z22i; z2 3i Z13i; P1 2 , P1 3 , P23),

where pi is the error correlation between ei and ej.
Standard maximum-likelihood techniques cannot handle terms containing high orders

of integration for the normal or lognormal because the multivariate integrals are either
time consuming or impossible to calculate numerically. The issue may be side-stepped
by using a distribution from the generalized extreme value (GEV) family of distributions
such as the multinomial logit or the nested multinomial logit. The disadvantage of GEV
models is that they impose a rigid correlation structure on the covariance matrix. For
example, in the multinomal logit model with J alternatives, the disturbance terms, ei,
are independent, identically distributed for all j = 1, ..., J.

If we abandon GEV models to allow for a flexible correlation structure, it is necessary
to estimate multiple integrals of the chosen error distribution. These integrals are invari-
ably troublesome. The logistic distribution, though easier to integrate, is not appropriate
for modeling joint WTP because it constrains the correlation coefficients to unity (Cam-
eron and Quiggin; Hanemann and Kanninen). The normal distribution is preferred to
the logistic because it allows for positive correlation between WTP amounts.

Nevertheless, a closed form does not exist for the normal cumulative distribution
function, so either numerical or simulation methods are necessary to calculate proba-
bilities from the joint CDF. Numerical methods work quite well for calculating bivariate
normal integrals, but become frustratingly slow for trivariate integrals (Greene, p. 183).
For higher orders of integration, numerical methods are not computationally efficient
(Greene, p. 183).

Because of these problems, standard maximum-likelihood techniques are not approp-
riate for modeling censored joint distributions with more than three variables, and are
cumbersome for censored WTP models with three variables. SML techniques, although
still computationally time consuming, easily generalize to the censored multiple-good
framework. For this reason, we turn to a discussion of SML techniques for joint estima-
tion of WTP distributions.

The GHK Simulator and
Simulated Maximum Likelihood

The difficulties associated with calculating high-order integrals have spurred a flurry
of research in Monte Carlo integration and simulation techniques. Monte Carlo inte-
gration techniques involve repeated sampling from a distribution related to the one in

Riddel
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question. The sample average of the simulated probabilities converges to the desired

probability of the distribution. In the most general method proposed by Metropolis and

Ulam, we are interested in evaluating the integral for some general functionf(y) contin-

uous in the range a to b:

(7) F(y) = Vf(y) = v(y)g(y)dy.

If we assume K = fag(y) dy, then dividing by Kwill create the probability function h(y)=

g(y)/Kwith related cumulative density function H(y). Here, H(a) = 0 and H(b) = 1, so that

the limits of the new probability function H are exactly the limits of the integral F(y).

Substituting into (7),

F(y) = K v(y) dy = KEh[f()].
F(y)J Kfa K

Because h(y) = g(y)IK is a probability density function, F(y) is just K times the expected

value of function v(y) with y having distribution function H(y).

Drawing i = 1 to R random samples individually designated as Yh from the density

function h(y), then by the Strong Law of Large Numbers:7

(8) F(y) = K f(y F(y)
R i=l

where m.s. represents convergence in mean square as the sample size, R, becomes large.

The challenge is to find some decomposition of the probability density function (pdf),

f(y) = v(y)g(y), so that g(y)/K is a known pdf from which one can sample in a straight-

forward way. A simple application of this approach could, in theory, be used to calculate

trivariate normal integrals such as V(al < y < bl; a2 <y 2 < b2 ; a3 < y < b3), where D is the

normal CDF. One may generate R random draws from the trivariate normal, and score

a 1 when the values fall in the specified intervals and a zero otherwise. The sum of the

scores divided by R is the estimated probability.

While this simple approach is intuitively appealing, sample sizes allowing for good

approximations are large and computing time is excessive (Greene, pp. 179-85). As a

result, other less computer-intensive approaches have been developed for multivariate

normal distributions. Probably the most successful, in terms of computer time necessary

and convergence properties of the estimators, is the GHK smooth recursive simulator

(Geweke; Hajivassiliou; Keane).
According to Greene, the K-variate normal integral with covariance matrix Z can be

estimated as an average over repeated draws from truncated joint normal distributions

so that:

R K
· (al < Yl < b1; a2 < Y2 < b2; ... ; aK< yK< bK) E H Qrk

R r=l k=l

where the Qrk are univariate truncated normal probabilities with aK-variatejoint distri-

bution I=l Qrk. These Qrk can be calculated using the following k steps:8

7 See Robert and Casella (p. 75) for a discussion of the properties of h(y) which are necessary to ensure this result.
8 This explanation follows the discussion by Greene (pp. 181-85).
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* STEP 1. Calculate Qrl = >(bl/m1 1 ) - ((al/m 1 1 ), where Misthe lower triangle matrix
obtained from the Cholesky decomposition of Z with elements mkl.

* STEP 2. Generate Wr, from the standard normal distribution truncated at a1 /ml, on
the left and bl/mll on the right. 9 Using these, calculate:

Ar2 = (a 2 - mllWrl)/m22,

Br 2 = (b2 - mllrl)/m22

Qr2 = ((Br2) - (I(Ar2)

* STEP k. Generate wrk- from the standard normal distribution truncated atArk_ on
the left and Brk-l on the right, and then calculate:

k-1

Ark = ak - i mklWrl /mkk

k-1

Brk = bk- E mklWrl /kk,

Qrk = (Brk ) - ((Ark )

Steps 1 through k are performed R times, one for each of the R sampling points. The
final estimate of the probability is calculated as:

R K

(9) V(al < x < bl; a2 <Y2 < b2; ... ; aK<K<bK) IIQr
R r=1 k=1

The GHK simulator has superior statistical properties to those of other probability
simulators proposed by Stern; Lerman and Manski; and Breslaw, and those based on
the Gibbs sampling algorithm. Discontinuous frequency simulators, like those proposed
by Lerman and Manski, provide consistent estimates only if the number of draws goes
to infinity, an unfortunate property for a probability simulator. Like Stern's simulator,
the GHK simulator is unbiased and consistent (Borsch-Supan and Hajivassiliou). And
perhaps more importantly, the smoothness of the GHK and Stem's simulator keeps the
number of draws required for good approximation in the range of 20 to 40, well below
the 10,000+ draws or so required by other simulators (Geweke, Keane, and Runkle).

One drawback of Stern's simulator is that when error correlation becomes high, the
variance of the simulated probabilities increases, a problem not shared with the GHK
simulator. According to Borsch-Supan and Hajivassiliou, the GHK simulator has sub-
stantially smaller variance than Stern's method when errors are highly correlated.
Because past research has shown high correlation between bid responses over goods, the
GHK simulator will have superior properties to Stern's simulator for evaluating WTP
from referendum data (Riddel and Loomis; Cameron and Quiggin).

Breslaw has suggested a simulator which uses the GHK simulator to estimate a line
integral between a desired point on the CDF and an initial point close to the desired
point. This simulator adds precision to the estimates, but also computational time.
Breslaw recommends this simulator for situations when the inaccuracy of the simulator

9 Hajivassiliou has suggested the following method for generating a draw from the normal constrained to lie between a and
b. Let U- unif(0, 1). Then W = D>-l[(c(b) - c(a)) * U + C(a)] N(O, 1).

Riddel
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causes convergence problems. Convergence problems were not experienced in the follow-
ing application, so the standard GHK method was used.

The Gibbs sampler has also been proposed for evaluating multivariate normal inte-
grals. A simulation experiment by Geweke, Keane, and Runkle found the Gibbs sampling
approach had an advantage for models with large numbers of parameters (>20). The
GHK simulator is preferred when the model contains fewer parameters. The following
model contains 19 parameters; thus we chose the GHK simulator for this reason and due
to the comparative ease of coding the GHK simulator relative to the Gibbs sampling
algorithm.

Simulated Maximum Likelihood

Estimating the parameters of a three-good, double-bounded model is an imposing task
because it involves evaluating as many trivariate normal CDFs as there are observa-
tions for every iteration of the maximization process. SML has the potential to simplify
these calculations substantially. For the four-good model, SML is currently the only
practical option.10 To create the simulated likelihood function, we replace V(I) with <)(.)
in the likelihood function. For example, for the one-good, double-bounded model, indi-
vidual i's contribution to the SML equation is specified as:

(10) LogLi = i, *log()(z2i)) + Ii 0*log(4(z2i) - (zli))

+ i*log((zli) - ((Z 2i)) + i00 *log(1- O(2i)).

Appendix A includes the SML function for the two-good, double-bounded model. A
GAUSS program for the SML of the three-good, double-bounded model is available from
the author upon request.

The GHK simulator provides unbiased estimates of the probability being estimated.
However, the simulated log-likelihood function derived from the GHK simulator is not
unbiased because of the nonlinearity inherent in the logarithm. In fact, the log-likeli-
hood, and the estimated model parameters, may be biased for any positive variance of
the probability simulator. The parameter bias increases at an approximately linear rate
with the variance of the simulator. For this reason, a low-variance simulator, such as
the GHK, is essential for SML parameter estimation. Nevertheless, Borsch-Supan and
Hajivassiliou claim the bias of the simulated log-likelihood function, and hence the bias
in the model parameters, should be small in a well-specified model. Using simulations,
they show that for R = 20 the bias in the log-likelihood function is minor.

Confidence Regions for Expected WTP

Developing confidence regions around estimated WTP amounts is of special interest in
the multiple-good survey. Often, the point of offering multiple goods within a survey is
to decide whether one good is preferred to another. Alternatively, one may be interested
in testing for substitution effects among goods in the survey. Regardless, when WTP

10 The trivariate normal CDF can be evaluated using numerical techniques, although the task is computationally time con-
suming. The GHK, even using small numbers of draws, is also time consuming, but was found to be faster than numerical
procedures for this application.
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is estimated for each good individually, confidence regions surrounding mean WTP

estimates are inaccurate because the correlation structure of the entire coefficient ma-
trix is not considered. 1 When correlation among the model parameters across equations
is present, the confidence region arising from joint estimation is necessarily smaller

than one produced from single-equation estimation. Hence, joint inference using individ-

ually estimated mean WTP values may provide erroneous results. Derivation of the

confidence region surrounding jointly estimated mean WTP for two goods is presented

in appendix B.
The smaller confidence region gained through joint estimation becomes most impor-

tant in the context of estimating differences in the expected WTP. If the ellipse contains

the line where WTP, = WTP2 , then we can infer that the values of the two goods are not

significantly different. Because the area of a correlated confidence ellipsoid is smaller
than the rectangular region inferred when correlation is ignored, it is less likely to

contain points on the line where WTP, = WTP2 . As such, the tighter confidence regions

provide more discernment for evaluating WTP differences among goods.

An Application

To clarify the method and provide concrete examples of applications of the joint estima-

tion method using SML, WTP was estimated for three programs designed to reduce fire

hazard in California and Oregon's spotted owl habitats located in old growth forests. The

data used were obtained from a survey conducted in 1995. A professional telephone

survey company was used and repeated efforts were made to complete contacts.

Respondents were initially contacted and asked to participate. If they agreed, they were

sent an information booklet and an interview was scheduled for a convenient time.
During the interview, respondents were questioned about demographic characteristics

and double-bounded referendum questions were used to obtain bounds on WTP for each

respondent.
Surveyors used random-digit dialing to contact 709 California households. Of these,

499 households agreed to an in-depth interview and were mailed booklets containing

information about the proposed programs. The respondents were then telephoned again

and asked double-bounded WTP questions for these programs. Demographic questions

were also posed at this time. A total of 358 interviews were completed. From those
completed interviews, 343 were used for the analysis; the remaining responses were
dropped due to missing data in the question responses. This provides a final response
rate of 48%.

Three programs were evaluated in the survey. The first program was designed to

reduce high-intensity fires in California spotted owl habitats through fire-hazard reduc-

tion, early fire detection, increased fire protection, and larger fire control response than

the status quo. The second program was targeted at Oregon spotted owl habitat, using

the same fire-control methods. The third program (termed the combined program) would

fund fire-hazard reduction in both California and Oregon.
Information booklets were mailed to the respondents prior to their telephone inter-

view.l2 The booklets contained textual and visual information concerning the different

11 The coefficient matrix is composed of the coefficient vectors for each of the K goods.
1
2 Copies of the interviewer script and program booklet are available from the author on request.
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programs. Respondents were asked to refer to these booklets to assist them in formulat-
ing their WTP for the different programs.l3

WTP was elicited through the standard double-bounded approach. For the California
program, respondents were asked the following:

Q 24. Thinking about program B, which reduces the proportion of high-intensity
fires like program A, and also includes a 20 percent reduction in the acreage of old
growth forest that burns every year: If program B were the only program available
and your household was asked to pay $[fill bid ] each year to help pay for program
B, would you pay this amount?

<1>Yes [goto Q24a]
<2> Refused [go to Q 24b]

Q 24a. What if the costs of program B were higher: Would your household pay
$[fill bid ] to have the program?

Q 24b. What if the costs of program B were lower: Would your household pay
$[fill bid ] to have the program?

Estimation and Results

To illustrate the SML, the mean WTP of each of the three programs was first estimated
individually using Cameron's maximum-likelihood approach. Next, the SML technique
was used to jointly estimate the WTP values. The lognormal distribution is used be-
cause, unlike the normal distribution, it does not imply a range of negative WTP values.
Rather, WTP values arising from lognormal distribution will be strictly positive. The bid
values are transformed to the lognormal distribution by taking the natural log of the bid
values and estimating the equation in appendix A using logged bid values (see Hane-
mann and Kanninen). Thus the system of equations is:14

(11) ln(WTPik) = PkXik + eik for k = 1, 2, ... ,K.

Joint estimation results, together with the results from the single-equation estima-
tion, are reported in table 1. In the single-equation models, two variables were significant
at the a = 0.05 level in explaining variation in WTP for the California and combined
programs. These are OGEXIST, an integer variable measuring the importance of the
existence of old growth forests to the respondent, and EQIMP, another integer variable
measuring the importance of environmental quality. These variables were also signifi-
cant in the Oregon model, but in addition, DONS, a dummy variable indicating whether
the respondent had made any donations or contributions for wildlife or environmental
protection in the last 12 months, is marginally significant at the a = 0.15 level.

1 3The bid design was developed using responses from a single-bound dichotomous-choice CVM survey on northern spotted
owls. Having multiple scenarios will affect the bid design if the follow-on scenario involves higher levels of environmental
quality or a broader basket of environmental goods. In this case, there is a delicate balancing of increasing the bid for the
second scenario, but not by more than the likely increment in value provided by the second scenario. If the bids on the second,
better quality scenario are bumped up too much, the result could be more "no" responses on the better quality program.

14The Greek symbol, P, is used here to distinguish the coefficient matrix obtained by using the lognormal distribution from
that estimated using the normal distribution for WTP.
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Table 1. Estimated WTP Values, Standard Errors, and p-Values: Joint and
Individual Estimation for Oregon, California, and Combined Programs

Joint Estimation Single Estimation

Description Parameter Std. Error p-Value Parameter Std. Error p-Value

Oregon:
Intercept -0.2803 0.6737 0.3387 -0.7024 0.8642 0.2103
OGEXIST 0.4887 0.1459 0.0004 0.4813 0.1923 0.0024
EQIMP 0.5387 0.1678 0.0007 0.6062 0.2743 0.0043
DONS -0.0795 0.0500 0.1256 0.2058 0.2122 0.1545
ao 1.4141 0.0778 0.0000 1.4737 0.1029 0.0000
E(WTP) 3.5763 0.0838 0.0000 3.4854 0.0962 0.0000

California:
Intercept -0.2942 0.8793 0.3690 -0.7250 0.8286 0.1908
OGEXIST 0.5415 0.1580 0.0003 0.5452 0.1585 0.0003
EQIMP 0.4895 0.1835 0.0002 0.6877 0.2166 0.0008
02 1.3144 0.0702 0.0000 1.4349 0.1001 0.0000
E(WTP) 3.9066 0.0756 0.0000 3.7769 0.0927 0.0000

Combined Program:
Intercept 0.4835 0.5467 0.1882 0.1899 0.7020 0.3944
OGEXIST 0.5370 0.1183 0.0000 0.5409 0.1471 0.0002
EQIMP 0.4280 0.1561 0.0031 0.4790 0.2137 0.0800
03 1.3363 0.0691 0.0000 1.3570 0.0836 0.0000
E(WTP) 4.0877 0.0729 0.0000 3.9784 0.0862 0.0000

Correlation Coefficients for Joint Estimation:

P12 0.7907 0.0233 0.0000
P13 0.8862 0.0135 0.0000

P23 0.8129 0.0185 0.0000 - -

n = 343
Log-likelihood Oregon individual = -413.678
Log-likelihood California individual = -414.2934
Log-likelihood Combined Program = -657.89

a OGEXIST = an integer variable measuring the importance of the existence of old growth forests; EQIMP = an
integer variable measuring the importance of environmental quality; DONS = a dummy variable indicating
whether respondent had made any donations or contributions for wildlife or environmental protection in the last
12 months; 01, 02, and 03 = respective standard deviations for Oregon, California, and combined programs.

Given the coefficient matrix for the logged equations, P, one can estimate E [ln(WTPk)]

= PkXk for equation k. Single-equation estimates of E[ln(WTPk)] for the California,
Oregon, and combined programs are 3.7769, 3.4854, and 3.9784, respectively. 15 Using
the relationship between the lognormal and the normal, E[WTP] = $122.29, $96.67, and

$134.17 for the California, Oregon, and combined programs, respectively. California
residents are more likely to express high WTP amounts for California programs because
they are the direct beneficiaries in terms of use-value of the improvements. The WTP
amount for the combined program is substantially less than the sum of the WTP amounts
for Oregon and California programs provided separately, suggesting the possibility of

1
6 Using the formula 1 = exp [I + o/2,1], where WTP - N(i, o2) and ln(WTP) - lognormal(ip, o,), one is able to analyti-

cally transform the mean of a lognormal distribution to that of a normal distribution.

Riddel



Journal ofAgricultural and Resource Economics

substitution effects between the Oregon and California programs. Single-equation esti-
mates do not provide the covariance structure to properly test for substitution between
the California and Oregon programs, so we turn to the jointly estimated WTP model for
such a test.

The first numeric column in table 1 gives the parameter estimates and estimated
E Rn(WTP)] for the three programs estimated jointly using SML. The correlation of the
responses to the programs is quite high: 0.88 between the Oregon and combined pro-
grams and 0.81 between the California and combined programs, and 0.79 between the
Oregon and California programs. The same set of independent variables is significant
in the California and combined programs. However, in the Oregon program, the dummy
variable DONS (representing respondent donations to environmental causes within the
past 12 months) is also significant.

In an uncensored SUR model, the different regressor sets potentially give rise to
smaller standard errors for the parameters of the jointly estimated equation. An analo-
gous outcome is observed in the censored SUR model in table 1:16 standard errors of the
coefficients are 15 to 22% less underjoint estimation than under single-equation estima-
tion, underscoring the precision gains that may be achieved through joint estimation.
Similar gains are seen in the precision of the E[ln(WTP)] estimates.

Under joint estimation, the WTP estimates do not change by much; confidence inter-
vals around all the parameters underjoint estimation contain the single-equation point
estimates. The E[ln(WTP)] amounts for the California, Oregon, and combined programs
are 3.5763,3.9066, and 4.0877, respectively. Translated into dollar amounts, the Califor-
nia, Oregon, and combined programs are worth $117.97, $97.14, and $145.55, respec-
tively. Thus, the man WTP amounts estimated using the SML are not apreciably
different from those estimated using single-equation estimation; the primary advantages
of SML in this application are smaller standard errors and the facility of estimating the
joint confidence regions.

The confidence region for E[ln(WTP California)] and E[ln(WTP combined)] is plotted
in figure 1. The 45° line does not pass through the confidence region, implying the
hypothesis that the expected WTP values for the two programs are equal can be rejected
at the 5% level. The rectangle represents the confidence region associated with single-
equation estimation. As expected, joint estimation provides smaller confidence regions
for testing the hypothesis that the two programs have equal E(WTP) values.

The 95% confidence region for the Oregon and combined programs is illustrated in
figure 2. Because the confidence ellipse under joint estimation does not contain the 45°
line, we can reject the hypothesis that the WTP values for the two programs are equal.
The region under joint estimation is much smaller than under single-equation estima-
tion, verifying joint estimation can provide more precise assessment of the mean WTP
amounts than single-equation estimation. In fact, the joint estimation enables us to
reject the null hypothesis that the two programs are equally valued, while single-equa-
tion variance estimates do not. This is an excellent example of how efficiency gains made
possible by joint estimation could lead to different inferences.

16 According to a simulation study of censored SUR models conducted by Riddel and Loomis, small efficiency gains are
observed from joint estimation even when the regressor sets are identical across equations. The efficiency gains increase as
the error correlation increases.
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Figure 3. The 95% confidence ellipse for E[ln(WTP combined)]
and E[ln(WTP California) + ln(WTP Oregon)]

Examination of figures 1 and 2 also reveals that more uncertainty surrounds WTP
values for the Oregon program than for the California program. This is not surprising,
because only California residents were surveyed. The results indicate California resi-
dents have a lower and less well-defined preference for the out-of-state environmental
amenity. Presumably, California residents derive use and existence value from the Cali-
fornia site. The Oregon site may provide less use value for California residents because
the distance to the site precludes frequent visits.

Finally, joint estimation permits a test for the existence of substitution between the
Oregon and California programs. Specifically, we test the null hypothesis that the sum
of the ln(WTP) for the Oregon and California programs is equal to the ln(WTP) for the
two programs provided simultaneously; in other words:

HO: E[ln(WTP Oregon)] + E[ln(WTP California)] = E[ln(WTP combined)],

HA: E[ln(WTP Oregon)] + E[ln(WTP California)] > E[ln(WTP combined)].

The null hypothesis asserts that when the sum of the stated WTP amounts for the Cali-
fornia and Oregon programs are close to the WTP for dual provision, substitution effects
are negligible. Alternatively, the sum of the stated WTP for the individually provided
program values may be greater than that for the dual program, indicating individuals
substitute between similar programs.

The 95% confidence region for the substitution test is illustrated in figure 3. Because
the region does not contain the 45° line, the null hypothesis of no substitution effects
may be rejected. The data suggest stated WTP amounts do, in this survey, include sub-
stitution between programs.
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Conclusions

This study introduces a simulated maximum-likelihood method for estimating mean
WTP for several nonmarket goods from dichotomous-choice referendum data. Joint esti-
mation is preferred to single-equation estimation because it affords smaller confidence
regions around expected WTP values. Further, when WTP values are estimated jointly,
the covariance of the WTP values may also be estimated, allowing for accurate joint tests
of WTP across goods. This feature ofjoint estimation is especially useful when research-
ers are interested in testing for substitution between goods, or if they are interested in
establishing a preference ordering among nonmarket goods. Gains fromjoint estimation
will increase as the correlation among the WTP values for the goods increases.

We introduce an empirical model for estimating correlated WTP values using the
GHK probability simulator and simulated maximum-likelihood techniques. The empir-
ical model is applied to data from a survey designed to estimate WTP for fire reduction
in spotted owl habitat in California and Oregon. Joint estimation leads to substantial
reductions in the estimated variance of individual WTP amounts. The example illustrates
tests for preference ordering among programs and substitution between programs.
Using such tests, a researcher is able to clearly delineate the preferred program. The
tests give evidence of substitution between potentially competing programs.

[Received November 2000; final revision received October 2001.]
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Appendix A:
Specification of the SML Function for the

Two-Good, Double-Bounded Model

We assume a two-good, double-bounded model, with correlated errors normally distributed as N(O, S).
The corresponding log-likelihood for respondent i is:

LogLi = Ii 1` * log[1 + I(ziup, viup) - (i(ziup) - Q((viup)]

+ Ii 11 * log['(ziup, viinit) - z(ziup, viup) - I(viinit) + D(viup)]

+ Ii 1 01 * log[D(ziup, vilow) - V(Ziup, vimid) - I(vilow) + D(viinit)]

+ Ii 00 * log[D(ziUp) - V(Ziup, vilow) + 0(vilow)]

+ Ii11 * log[D(zimid, viup) - VI(ziup, viup) + D(ziup) - ((ziinit)]

+ Ii010 * log[i(ziup, viup) + D((ziinit, viinit) - D((ziinit, viup) - c(ziup, viinit)]

+ Ii 01 * log[D(ziup, viinit) + (>(ziinit, vilow) - (D(ziinit, vimid) - 'I(ziup, vilow)]

+ i°°° * log[O(ziup, vilow) + '((ziinit) - Q((ziinit, vilow) - D(ziup)]

+ Ii0111 * log[(ziinit) + >D(zilow, viup) + V(zilow) - z(ziinit, viup)]

+ Ii 0110* log[(ziinit, viup) + O(zilow, viinit) - O(zilow, viup) - '(ziinit, viinit)]

+ Ii 0101
* log[D(ziinit, viinit) + D(zilow, vilow) - '>(zilow, viinit) - 'D(ziinit, vilow)]

+ 0Ii 00* log[D(ziinit, vilow) + O(zilow) - (D(zilow, vilow) - >(ziinit)]

+ Ii0011* log[(zilow) + '(viup) - D(zilow, viup)]

+ Ii0°° ° * log[(zilow, viup) + t(viinit) - '(viup) - 4(zilow, viinit)]

+ Ii0001 * log['(zilow, viinit) + 'I(vilow) - '(viinit) - I.(zilow, vilow)]

+ Ii °000 * log[((zilow, vilow) - S(vilow) - D(zilow)],

where ziinit = (biinit - b' Xj)/ol, zup = (bup - b' Xi)/oa, zilow = (blow - b'X l i )/ol,and biinit, bup,

and bilow are the initial, step-up, and step-down bids offered, respectively, to the ith respondent for

good 1; vimid = (ciinit - b2X2i)/ 2, viup = (ciup - b2X2i)/o2, vlow = (cilow - b2X2 )/o2 , and cinit, cup,
and cilow are the initial, step-up, and step-down bids offered, respectively, to the ith respondent for
good 2.
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Appendix B:
Derivation of Confidence Regions for

Expected WTP for Two Goods

Including the off-diagonal element in the error variance-covariance matrix leads to a rotation of the
joint confidence ellipsoid for the two estimates and correct estimation of the major and minor axes. This
provides a smaller confidence region, and a more accurate assessment of the variances ofE(WTP). The
following discussion should make this clear.

Given that b is distributed asymptotically as Np(b, cov[b]), the expected WTP vector for the ith
individual, E(WTP) = b'X, is distributed asymptotically as Nk(b'X, Xcov[b]X'). We can calculate a
100(1 - a)% simultaneous confidence ellipsoid for the Kdifferent WTP values from (1) using the follow-
ing inequality from Johnson and Wichern:

n(b'X - b'X)'(Xcov[b]X')-l(b'X - b'X) <= k(n - 1)/((n - k - p) *Fk,-k-p(a)),

where n = number of observations; p = number of regressors, including the constant term, in the kth
equation; and K = the number of equations in the system.

The ellipse is centered around the estimated mean values for WTP. The lengths and slopes of the
major and minor axes are determined by the eigenvalues and eigenvectors ofXcov[b]X'. The lengths
of the axes are equal to

i F(a)kpn-k-k(n - 1)/n(n - k - p),

where Xi is the ith eigenvalue from Xcov[b]X'. The slopes (directions) of the axes are given by the eigen-
vectors of Xcov[b]X'.

When we assume Xcov[b]X' is a diagonal matrix, the major and minor axes correspond to the vari-
able axes in Cartesian space. When the variances are the same across questions, the region becomes a
k-dimensional hypersphere. If the off-diagonal elements are positive, then the region is flattened in the
direction of the axis corresponding to the relatively smaller variance and the axes are rotated according
to the level of correlation. We recall the formula for the area of an ellipse where Area = tac, with a and c
corresponding to the semi-axis lengths. As the correlation becomes stronger, the area of the confidence
interval becomes smaller relative to one developed without regard to the correlation structure.
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