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Information Diffusion and Spillover Dynamics  
in Renewable Energy Markets 

 
 

Abstract 
 
The aim of this paper is to analyze the connectedness between renewable energy (RE) sectors, 
the oil & gas sector and other assets using time-scale spillover approach. We find that the RE 
bioenergy firms are the most connected to oil & gas firms and oil prices. The bond market 
transmits spillover to the RE sectors, while it receives spillover from the oil & gas sector. 
Moreover, short-run connectedness drives the dynamic total connectedness. Since changes in 
bond rates mainly spillover to RE firms and not to oil & gas firms, policy makers should also 
be aware that changes in interest rates may impact the societal transition to a RE based energy 
system. Since a shock that increases connectedness in the short run will deter investors from 
investing in RE assets, it is important for climate policy makers to develop policies that reduce 
the effect of increased connectedness on RE investments. 
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1. Introduction 

The recent geopolitical turbulence and the breakup of the OPEC+ alliance has caused a 

substantial amount of turmoil in the oil market. Geopolitical turbulence in the form of the 

Persian Gulf crisis lead to Brent oil futures in London seeing the largest one-day percentage 

increase since the contract trading began (Bloomberg, 2019). The breakup of the OPEC+ 

alliance lead to oil prices crashing at a record pace (JPT, 2020). The recent turbulence is 

evidently impacting oil prices and the volatility of the oil market. The increased risk in the oil 

market can make investors more hesitant to invest in this market (IEA, 2019a). Alternative 

energy sources, such as renewable energy (RE), could therefore be more attractive from an 

investor perspective. The attractiveness of investing in RE is further amplified by the fact that 

RE is projected to meet 50% of the energy demand in 2040, while oil demand is predicted to 

flatten by 2030s (IEA, 2019b). Figure 1 presents the investments in RE sub-sectors every year 

during the time period 2004-2018 in US billion dollars. We can see that the total investments 

in RE have substantially increased since 2004. Investments in RE have grown by 242,1 billion 

dollars from 2004 to 2018. We can also note that the investment growth rate in RE has 

decreased after 2011 and that the investment levels have remained constant with some notable 

exceptions. Dips in investments occurred during the financial crisis in 2008 and 2009 and the 

Euro debt crisis around 2011 and 2012.  

 

Insert Figure 1 

 

The low interest rate condition which has prevailed in the recent years has benefited 

investments in the RE industry more than investments in the oil & gas industry, since debt 

financing is crucial in the more capital-intensive RE industry (IEA, 2019a).  The purpose of 

this paper is to analyze the connectedness between RE sectors, oil & gas sector and other assets. 

From the previous literature (see Section 3) there is a lack of studies that consider firm level 

returns when investigating connectedness between RE sectors, the oil & gas sector and other 

assets, as previous literature has mostly focused on the usage of RE indices. Another gap in the 

literature is that there has been no consideration of firm level data when investigating energy 

market connectedness at different time-frequencies. We expand on previous literature by 

investigating static and dynamic frequency connectedness between several RE sectors and the 

oil & gas sector at the firm level and how uncertainties drive this connectedness. 

Specifically, we focus on the following main research questions: 
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I. Is there a difference in connectedness results between using aggregated RE market and 

RE firm level data? How are RE sectors connected to the oil & gas sector and other 

assets? 

II. Is there any difference in connectedness between frequencies in the dynamic frequency 

connectedness? Which frequency drives the total connectedness? 

 

To answer our research questions we use weekday daily data, with 2279 observations that span 

from May 18, 2011 to February 10, 2020. Our sample consists of two RE indices, nine RE 

firms, nine oil & gas firms and six other assets. The methods we use to measure the 

connectedness between RE sectors, the oil & gas sector and other assets are the Diebold and 

Yilmaz (2012; 2014) full sample and rolling window spillover approach and Barunik and 

Krehlik (2018) dynamic frequency spillover technique.  Our first main finding is that the RE 

bioenergy firms are the most connected to oil & gas firms and oil prices. The second main 

finding is that the bond market transmits spillover to RE sectors while it receives spillover from 

the oil & gas sector. The last main finding is that short-run connectedness drives the total 

dynamic connectedness.  

Our results have important policy implications for investors and climate policy makers. Since 

changes in bond rates mostly spillover to RE and not to oil & gas sector, policy makers should 

also be aware that changes in interest rates may impact the societal transition to a RE based 

energy system. Since a shock, which increases connectedness in the short run, will deter 

investors from investing in RE assets, it is important for climate policy makers to develop 

policies that reduces the effect of increased connectedness on RE investments.  

 

The paper is organized  as follows. Section 2 presents a review of the relevant literature. Data 

and descriptive statistics are illustrated in Section 3. Section 4 describes the methodology, 

whereas Section 5 discusses the empirical findings from the connectedness analysis. Section 6 

proposes some conclusions and policy implications. 

2. Related Literature review 

There is a vast literature on the relationship and spillovers between RE assets and other assets. 

Previous literature can be divided into three research strands: (1) the relationship between RE 

stock indices and other assets; (2) the market and firm-specific determinants of stock market 
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returns for energy companies; (3) the risk spillover and the connectedness between RE, oil and 

technology markets. 

From these three research strands we conclude that RE returns are affected by global and 

technology stock prices, oil prices, bond and foreign exchange rates. We can also conclude that 

firm specific factors, such as size, leverage and value affect energy company returns. For RE 

companies, oil prices and technology stock prices also have an impact on returns. A summary 

of the reviewed literature, including methods and results, can be found in the Appendix. 

In the first research strand, Henriques and Sadorsky (2008) investigate the relationship between 

interest rates, oil prices, technology stock prices and alternative energy stock prices. They find 

that oil prices, interest rates and technology stock prices affect stock prices of alternative energy 

indices. These results are also supported by Kumar, Managi and Matsuda (2012). Bondia, 

Ghosh and Kanjilal (2016) find that interest rates, oil prices and technology stock prices affect 

alternative energy index stock price in the short-run, but not in the long-run. In contrast, 

Kocaarslan and Soytas (2019) show the existence of both short- and long-term effects. They 

find that increasing oil prices in the short run lead to increased investments in clean energy 

stock indices. However, in the long-run, clean energy stock indices are instead negatively 

affected by increasing oil prices. They also find that interest rates have an impact on clean 

energy stock indices in the long-run. Reboredo, Rivera-Castro and Ugolini (2017) support the 

findings of a short- and long-run relationship between oil prices and RE stock indices, both for 

global RE stock indices and RE sub-sector indices. However, the effects are stronger in the 

long-run than in the short-run. Non-linear effects of energy prices on returns of clean energy 

stock prices are investigated by Uddin et. al. (2019). They find that RE returns are impacted by 

oil prices, but this effect is only found for lower quantiles, i.e. extreme negative market 

conditions. Exchange rates have a positive impact on RE returns, but only during extreme 

market conditions.  

In the second research strand, Bianconi and Yoshino (2014) find that company size, leverage, 

market premium, exchange risk and changes in oil prices have an effect on oil & gas company 

returns. In a similar fashion Mohanty and Nandha (2011) use U.S. gas and oil companies to 

study the oil and gas sectors stock returns in U.S. The main findings are that changes in oil 

price and stocks, size, book-to-market value, and market factors determine the stock returns of 

the gas and oil companies. These findings are supported by Sanusi and Ahmad (2016), who 

study gas and oil companies in the U.K. Few studies have investigated which factors affect the 

returns of RE companies. Sadorsky (2012a) investigates the determinants of risk in RE firms. 

He finds that increasing oil prices have a positive impact on company risk, while company 
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sales growth has a negative impact on company risk. Instead of studying determinants of risk, 

Gupta (2017) studies the financial performance of alternative energy companies. The results 

show that stock returns of alternative energy firms are positively affected by increases in 

technology stock prices, oil prices, company size and price to book value. 

In the third research strand, Sadorsky (2012b) analyzes volatility spillovers from oil prices to 

stock prices of technology indices and clean energy indices. There is no evidence of spillover 

from oil to technology or clean energy, but long-run negative spillover from technology to 

clean energy indices is found. He concluded that stock prices of clean energy indices have a 

higher correlation with technology stock prices than with prices of oil. The strong connection 

between technology and clean energy is supported by the findings of Ahmad (2017), who 

shows that the stock of technology companies plays an important role in determining volatility 

and return spillovers between oil prices and RE stocks. In contrast to Sadorsky (2012b), Ahmad 

does find strong evidence of volatility spillovers. A result is that the indices of clean energy 

and technology stocks are the emitters of volatility and return spillovers to the prices of crude 

oil. Connectedness between technology and clean energy is further found by Reboredo (2015), 

but only in the short-run. That the volatility spillover can vary over time is demonstrated by 

Xia et al. (2019), who find that there is a strong and time-varying volatility over time from 

changes in fossil energy prices to the returns of RE stocks. Volatility and return connectedness 

between oil prices and RE stocks being time-varying is also demonstrated by Ferrer et al. 

(2018). They conclude that the volatility and return connectedness is mostly generated in the 

very short-run (5-day movements) rather than the long-run. The connectedness between oil and 

RE market has also been studied at a sub-sector level by Pham (2019). The main finding is that 

there exists a variation in the relationship between the price of oil and clean energy stocks. The 

least connected stocks to oil price are fuel cells, geothermal and wind stocks and the most 

connected stocks to oil price are energy management and biofuel stocks. 

3. Data description 

The data used in this paper is based on 2279 weekday observations from May 18, 2011 to 

February 10, 2020. We base our sample period on the availability of data. The main variables 

are the RE stock price indices, RE firm stock prices and oil & gas firm stock prices. We 

transform these and all other variables to first difference logarithmic form, which gives us the 

percentual change of the variables. A definition of all the variables used in the empirical 

analysis is reported in Table 1. 
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Insert Table 1 

3.1 RE and oil & gas firms 

Micro level data allow us to explore heterogeneity in connectedness between RE indices and 

RE firms. The RE firms and oil & gas firms we use are based on the top 25 energy sub-sector 

honorees appointed by Thomson Reuters (2020a), which are firms regarded as the leaders in 

each of their sub-sectors. Thomson Reuters (2020b) uses several criteria to choose which 

energy firms are global leaders in each of their sub-sector. The criteria measure factors such as 

investor confidence, legal compliance, financial performance, innovation and robustness to 

shocks. The details of which criteria are used can be found at Thomson Reuters (2020b). Out 

of the top 25 firms that Thomson Reuters (2020a) include in the RE sector, we choose to include 

three RE firms from each RE sub-sector. The three sub-sectors are solar, wind and bioenergy. 

We also choose nine oil & gas firms, which represented the oil & gas sector. The reason for 

why we choose firms that are leaders in their sub-sectors is that these firms should be the ones 

leading the societal transition to RE based energy systems. Understanding investments in these 

firms is therefore of outmost importance. 

3.2 Descriptive statistics 

Table 2 shows the descriptive statistics for all variables included in the analysis. The mean 

return per day is negative for the RE indices. Observing the standard deviations, we can see 

that the risk for the RE indices are well above one percent. The RE industry being riskier is in 

line with theory and previous literature. All return indices are skewed to the left, which 

indicates that extreme negative values dominate over extreme positive values. The RE indices 

show lower skewness and kurtosis than other return indices, which means that extreme market 

conditions are not as common. So, while the RE industry is riskier in our sample, extreme 

market conditions are not as frequent.  

Looking at the mean daily returns for the RE firms, we note that six RE companies have higher 

mean returns compared to the RE indices in Table 2.  The standard deviations show that the 

risk is quite similar between companies. Five companies show a positive skewness while four 

show a negative skewness. The bioenergy sector has the largest amount of positive skewness. 

The high kurtosis levels indicate that the presence of extreme market conditions is quite 

common for the wind sector. Most of the oil & gas firms have positive mean returns. The risk 

in the form of standard deviations shows that the oil & gas firms all have lower risk than the 



8 
 

RE firms. Most of the oil & gas firms show negative skewness. The kurtosis values for the oil 

& gas firms are not as high as for the RE firms, which indicates that extreme market conditions 

for oil & gas firms are not as common as for RE firms.   

No variable is normally distributed as indicated by the high Jarque-Bera (JB) test values, which 

is common for stock market returns. The Autoregressive Conditional Heteroskedasticity 

(ARCH) and Ljung-Box (LB) tests show that there exists heteroskedasticity and 

autocorrelation in all variables. The existence of heteroskedasticity and autocorrelation is 

expected in financial data and is not a problem for our estimations. The Augmented Dickey-

Fuller (ADF) unit root tests show that all variables are stationary in first differences.  

 

Insert Table 2 

 

In Figure 2 we present the unconditional correlations between our variables. Correlations 

indicate co-movement and financial interaction, which is why these correlations can give an 

indication of how spillover effects between the variables look like. In Figure 2 (a) all stock 

return indices are highly correlated with each other. For both Figure 2 (a) and  (b) we observe 

that the RE indices and firms have low correlations with other assets. The oil & gas firms in 

Figure 2 (c) and (d) have in general low and positive correlations with each other and with RE 

firms. The oil & gas firms also have in general low correlations with other assets. In general, 

oil & gas firms correlate positively with other assets. 

 

Insert Figure 2 

 

From Figure 3 we can observe that the MSCI, ESG, OIL and PSE indices have a large drop 

around 2019, which can also be observed for the RE indices. We can observe in Figure 4 that 

MSCI, ESG, OIL, FX, DGS5 and PSE all have high volatility at the beginning of the sample 

period. MSCI, ESG, OIL and PSE show high volatility in the beginning, middle and the end of 

the sample period. FX shows a high volatility throughout the entire sample period, while DGS5, 

on the other hand, has higher volatility during the beginning and the middle of the sample 

period.  

 

Insert Figure 3 

 

Insert Figure 4 
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4. Methodological framework 

To assess the connectedness among the RE market, oil & gas firms and the other assets, we 

proceed as follows: (1) we measure the full-sample connectedness by using the variance 

decompositions framework developed by Diebold and Yilmaz (2012); (2) we use the 

framework developed by Barunik and Krehlik (2018) that is based on spectral representations 

of variance decompositions. This allowed us to measure connectedness between our variables 

in the short-run, medium-run and long-run; (3) we combine the spectral representations with 

the rolling estimation window framework developed by Diebold and Yilmaz (2012; 2014), 

which allows us to measure time-varying connectedness. 

We start estimating RE indices with other assets and then move to estimating RE firms with 

other assets. By doing this we are able to see if heterogeneity between RE indices and RE firms 

exist. Next, we estimate RE firms with oil & gas firms and finally we include other assets with 

RE firms and oil & gas firms. The last two steps allow us to see whether the inclusion of other 

assets impact the connectedness between RE firms and oil & gas firms.  

4.1 Variance decomposition  

Variance decompositions are helpful when a researcher wants to investigate how shocks in 

variable j affect future uncertainty of variable i, and how much of this uncertainty in variable i 

is originating from variable j. Diebold and Yilmaz (2012) show that, through variance 

decompositions in a Vector AutoRegression (VAR) model, system connectedness could be 

distinguished. By including variance decompositions for several variables, it is possible for us 

to investigate the interconnectedness of an entire system. 

The variance decomposition matrix of a VAR is the basis of our measure of connectedness. 

This measure can be obtained by estimating a VAR of lag-length p that is a covariance 

stationary process with N variables, as  

 

𝑥𝑥𝑡𝑡 = 𝛷𝛷1𝑥𝑥𝑡𝑡−1 + 𝛷𝛷2𝑥𝑥𝑡𝑡−2+. . . +𝛷𝛷𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡 ,    (1) 

 

where xt,…,xt-p are Nx1 vectors of variables, 𝛷𝛷1, . . . ,𝛷𝛷𝑝𝑝 stand for the corresponding coefficient 

matrices and 𝜖𝜖𝑡𝑡 stands for the white noise covariance matrix. Every variable in the system is 

not only lagged on its own p lags, but also regressed on the p lags of the other variables included 

in the same system. We estimate four VAR models, the first formed by the RE indices and 

other assets (N = 8), the second including the RE firm stocks and other assets (N = 15), the 
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third composed by the oil &gas firm stocks and the RE firm stocks (N = 18), the fourth made 

by RE firm stocks, oil & gas firm stocks and other assets (N = 24). Each VAR model had four 

lags (p = 4), based on previous VAR residual autocorrelation analysis and in the line with the 

results by Diebold and Yilmaz (2012). 

In order to identify the shocks when estimating variance decompositions, it is necessary to 

orthogonalize the shocks. This is important since shocks to a specific variable do not appear 

alone, which makes it necessary to distinguish between the different kinds of shocks. To 

orthogonalize the shocks we use generalized variance decompositions. According to Pesaran 

and Shin (1998), this procedure is unaffected by the ordering of the variables in the system. 

The generalized variance decomposition can be presented as  

  

(𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘 = 𝜎𝜎𝑘𝑘𝑘𝑘
−1𝛴𝛴ℎ=0

𝐻𝐻 ((𝛹𝛹ℎ𝛴𝛴)𝑗𝑗,𝑘𝑘)2

𝛴𝛴ℎ=0
𝐻𝐻 (𝛹𝛹ℎ𝛴𝛴𝛹𝛹ℎ

′ )𝑗𝑗,𝑗𝑗
,    (2) 

 

where 𝜎𝜎𝑘𝑘𝑘𝑘 = (𝛴𝛴)𝑘𝑘,𝑘𝑘, 𝛹𝛹ℎat lag h is a (N × N) matrix of moving average coefficients and where 

the contribution of the kth variable to the variance of the forecast error of element j at horizon 

h is represented by (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘. The matrix of the variance decomposition 𝜃𝜃𝐻𝐻 and its rows do not 

necessarily sum up to one, which means that every entry can be normalized by the sum of the 

rows 

 

(𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘 = (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘 /∑  𝑁𝑁
𝑘𝑘=1 (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘,   (3)  

 

where the summation of all the components in 𝜃𝜃𝐻𝐻 becomes equal to N and where 

𝛴𝛴𝑗𝑗=1𝑁𝑁 (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘  = 1. The pairwise connectedness at horizon H from j to i is measured by (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘. 

By aggregating this information, it becomes possible to quantify the total connectedness in the 

system. 

The measure of connectedness can then be described as a part of the forecasts variance that is 

contributed from errors besides the own errors or the sum of the off-diagonal components ratio 

to the sum of the whole matrix. This can be presented as 

 

   𝐶𝐶𝐻𝐻 = 100 ⋅ 𝛴𝛴𝑗𝑗≠(𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘

𝛴𝛴𝜃𝜃𝐻𝐻
= 100 ⋅ (1 − 𝑇𝑇𝑇𝑇{𝜃𝜃𝐻𝐻}

𝛴𝛴𝜃𝜃𝐻𝐻
),   (4) 
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where the denominator denotes the 𝜃𝜃𝐻𝐻 matrix and the sum of all its components and where the 

trace operator is represented by Tr {⋅}. This shows that the contribution of the connectedness 

from the variables in the system to the forecast variances is relative.  

4.2 Spectral representation  

Barunik and Krehlik (2018) argue that the size of shocks related to economic activity and its 

effects on other variables differ across frequencies. The different frequencies represent 

different types of connectedness that create systemic risk in the short-run, medium-run and 

long-run. Therefore, it is suggested that when investigating the fundamental systemic risk it is 

important to study the connectedness and linkages throughout different frequencies. The 

authors further argue that the difference in connectedness across frequencies arises due to the 

different investment horizons of investors, these different investment horizons are in turn 

formed by investor preferences.  

We use the spectral representation of variance decomposition that was developed by Barunik 

and Krehlik (2018).  In the spectral framework, a Fourier transform of the coefficients 𝛹𝛹ℎ with 

𝑖𝑖 = √−1 is used to obtain the frequency response function,  𝛹𝛹(𝑒𝑒−𝑖𝑖𝑖𝑖) = 𝛴𝛴ℎ𝑒𝑒−𝑖𝑖𝑖𝑖ℎ𝛹𝛹ℎ. A Fourier 

transform of MA(∞) can be used to define at frequency 𝜔𝜔 the spectral density of 𝑥𝑥𝑡𝑡 such as a 

filtered series  

 

  𝑺𝑺𝒙𝒙(𝝎𝝎) = ∑  ∞
ℎ=−∞ 𝑬𝑬(𝑥𝑥𝒕𝒕𝒙𝒙𝒕𝒕−ℎ′ )𝑒𝑒−𝒊𝒊𝝎𝝎𝒉𝒉 = 𝜳𝜳(𝑒𝑒−𝒊𝒊𝝎𝝎)𝜮𝜮𝜳𝜳′(𝑒𝑒+𝑖𝑖𝑖𝑖), (5) 

 

where 𝑆𝑆𝑥𝑥(𝜔𝜔) shows how the variance of 𝑥𝑥𝑡𝑡 is allocated over the frequency elements 𝜔𝜔 and is 

the most relevant quantitative measure to understand the frequency dynamics. By using 

covariance spectral representation such as, 𝐸𝐸(𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡−ℎ′ ) = ∫  𝜋𝜋
−𝜋𝜋 𝑆𝑆𝑥𝑥(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖ℎ𝑑𝑑𝜔𝜔, it is possible to 

proceed to define components of the frequency variance decomposition. Over the frequencies 

𝜔𝜔 𝜖𝜖 (−𝜋𝜋,𝜋𝜋) the generalized causation spectrum can be defined  

 

    (𝑓𝑓(𝜔𝜔))𝑗𝑗,𝑘𝑘 ≡
𝜎𝜎𝑘𝑘𝑘𝑘
−1|(𝛹𝛹(𝑒𝑒−𝑖𝑖𝑖𝑖)𝛴𝛴)𝑗𝑗,𝑘𝑘|2

(𝛹𝛹(𝑒𝑒−𝑖𝑖𝑖𝑖)𝛴𝛴𝛹𝛹′(𝑒𝑒+𝑖𝑖𝑖𝑖))𝑗𝑗,𝑗𝑗
,   (6) 

 

where the Fourier transformed impulse response 𝛹𝛹ℎ is represented by 𝛹𝛹(𝑒𝑒−𝑖𝑖𝑖𝑖) = 𝛴𝛴ℎ𝑒𝑒−𝑖𝑖𝑖𝑖ℎ𝛹𝛹ℎ, 

and where the spectrum of the jth variable because of shocks in the kth variable at a specific 

frequency is represented by, (𝑓𝑓(𝜔𝜔))𝑗𝑗,𝑘𝑘. Since the spectrum of the jth variable at a specific 
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frequency 𝜔𝜔 is held by the denominator, i.e. by the on-diagonal component of the cross-spectral 

density of 𝑥𝑥𝑡𝑡, it becomes possible to interpret this quantity as within-frequency causation. 

Proceeding with weighting (𝑓𝑓(𝜔𝜔))𝑗𝑗,𝑘𝑘 with the frequency share of the variance of the jth 

variable, we can obtain a natural decomposition of variance decompositions to frequencies. 

This weighting function can be presented as 

 

𝛤𝛤𝑗𝑗(𝜔𝜔) = (𝛹𝛹(𝑒𝑒−𝑖𝑖𝑖𝑖)𝛴𝛴𝛹𝛹′(𝑒𝑒+𝑖𝑖𝑖𝑖))𝑗𝑗,𝑗𝑗
1
2𝜋𝜋∫  𝜋𝜋

−𝜋𝜋 (𝛹𝛹(𝑒𝑒−𝑖𝑖𝑖𝑖)𝛴𝛴𝛹𝛹′(𝑒𝑒+𝑖𝑖𝑖𝑖))𝑗𝑗,𝑗𝑗𝑑𝑑𝑑𝑑 ,   (7) 

 

which shows at a given frequency the effect of the jth variable, and sums through frequencies 

to a constant value of 2𝜋𝜋.  

Assuming that 𝑥𝑥𝑡𝑡 is wide-sense stationary with the properties of, 𝜎𝜎𝑘𝑘𝑘𝑘−1𝛴𝛴ℎ=0∞ |(𝛹𝛹ℎ𝛴𝛴)𝑗𝑗,𝑘𝑘| <

+∞,∀𝑗𝑗, 𝑘𝑘, then 

 

    (𝜃𝜃∞)𝑗𝑗,𝑘𝑘 = 1
2𝜋𝜋 ∫  𝜋𝜋

−𝜋𝜋 𝛤𝛤𝑗𝑗(𝜔𝜔) (𝑓𝑓(𝜔𝜔))𝑗𝑗,𝑘𝑘 𝑑𝑑𝜔𝜔,   (8) 

 

which is the effect of the relationship, weighted by the strength of the series, on a given 

frequency, since (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘 at H → ∞ can be interpreted as the average weighted generalized 

causation spectrum (𝑓𝑓(𝜔𝜔))𝑗𝑗,𝑘𝑘 . The theoretical value of the original (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘becomes rebuilt by 

the integral over allowed frequencies. It is rather the aggregated information through 

frequencies than the heterogenous frequency responses that is regarded as measuring the 

connectedness in the time domain given that (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘 at H → ∞. Further, (𝜃𝜃𝐻𝐻)𝑗𝑗,𝑘𝑘 also becomes 

influenced by the effects the whole range of frequencies. 

In the next step, bands of frequencies are estimated, which can be determined as the quantity 

of forecast error variance created on a collection of frequencies that are convex. By integrating 

over the demanded frequencies 𝜔𝜔 𝜖𝜖 (𝑎𝑎, 𝑏𝑏) it becomes possible to obtain the quantity. The 

frequency band can be defined as 𝑑𝑑 = (𝑎𝑎, 𝑏𝑏):𝑎𝑎, 𝑏𝑏 𝜖𝜖 (−𝜋𝜋,𝜋𝜋),𝑎𝑎 < 𝑏𝑏 and the generalized 

variance decomposition on the frequency band d can be presented  

 

    (𝜃𝜃𝑑𝑑)𝑗𝑗,𝑘𝑘 = 1
2𝜋𝜋 ∫   

𝑑𝑑 𝛤𝛤𝑗𝑗(𝜔𝜔) (𝑓𝑓(𝜔𝜔))𝑗𝑗,𝑘𝑘 𝑑𝑑𝜔𝜔,   (9) 

 

where the original variance decomposition becomes recovered through the summation of the 

disjoint intervals that cover the range (−𝜋𝜋,𝜋𝜋). 
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By presenting the scaled generalized variance on the frequency band, 𝑑𝑑 =

(𝑎𝑎, 𝑏𝑏):𝑎𝑎, 𝑏𝑏 𝜖𝜖 (−𝜋𝜋,𝜋𝜋),𝑎𝑎 < 𝑏𝑏,  

 

    (𝜃𝜃𝑑𝑑)𝑗𝑗,𝑘𝑘 = (𝜃𝜃𝑑𝑑)𝑗𝑗,𝑘𝑘 / ∑   
𝑘𝑘 (𝜃𝜃∞)𝑗𝑗,𝑘𝑘,  (10) 

 

then the frequency connectedness on the frequency band d can be defined  

 

    𝐶𝐶𝑑𝑑𝐹𝐹 = 100 ⋅ (𝛴𝛴(𝜃𝜃𝑑𝑑)
𝛴𝛴(𝜃𝜃∞)

− 𝑇𝑇𝑇𝑇{𝜃𝜃𝑑𝑑}
𝛴𝛴𝜃𝜃∞

),   (11) 

 

where the sum of all the components of the 𝜃𝜃𝑑𝑑 matrix is represented by 𝛴𝛴𝜃𝜃𝑑𝑑 and the trace 

operator is represented by 𝑇𝑇𝑇𝑇{⋅}. The frequency connectedness divides the original 

connectedness measure into different parts by decomposing the overall connectedness. 

The frequency bands that we include in our estimations are 1 to 2 days, 2 to 5 days, 5 to 21 

days and 21 to 252 days. Through these frequency bands we get daily, daily to weekly, weekly 

to monthly and monthly to yearly connectedness in our spillover estimations. The short-run is 

represented by 1 to 2 days and 2 to 5 days, the medium-run is defined by 5 to 21 days and the 

long-run is defined as 21 to 252 days. 

4.3 Rolling window estimation  

Diebold and Yilmaz (2012; 2014) use a rolling estimation window as a framework to measure 

dynamic connectedness, which allows for time-varying parameters in the approximating 

model. The estimation is based on a uniform one-sided window with a width that in each period 

sweeps through the whole sample by using solely the recent periods to calculate measures of 

connectedness and to estimate the approximating model. This rolling estimation window can 

be represented as 

 

    �̂�𝐶𝑡𝑡 = (𝑥𝑥,𝐻𝐻,𝑀𝑀𝑡𝑡−𝑤𝑤:𝑡𝑡(𝜃𝜃�)),    (12) 

 

and shows that the sample connectedness �̂�𝐶𝑡𝑡 is dependent on the set of variables 𝑥𝑥, the 

predictive horizon 𝐻𝐻 and the time-varying parameters in the approximating model 𝑀𝑀𝑡𝑡−𝑤𝑤:𝑡𝑡(𝜃𝜃�). 

By using VARs with p = 4, we conduct a rolling estimation window of 756 days, with a forecast 

horizon of 252 days. This corresponds to three years of trading days and one year of trading 
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days, respectively. We have approximately nine years of trading day data, which can be 

considered as a long-time horizon and allow us to choose a window of appropriate length for 

our analysis.  

5. Connectedness and spillover between energy markets 

Connectedness values describe the amount of spillover, or how much of the share of error 

variance in one variable can be explained by shocks in other variables. All connectedness 

estimations in this section are based on cross-sectional correlations, since Barunik and Krehlik 

(2018) have shown that not considering cross-sectional correlation may bias connectedness 

measures. 

5.1 Full-sample total connectedness 

Table 3 shows the full sample connectedness between the RE return indices and the other 

assets. The total connectedness is 57,73% which means that 57,73% of the total variance in RE 

returns can be explained by shocks in these variables. The highest connectedness values are 

seen in the diagonal of the matrix which consist of the variables own connectedness, i.e. how 

much of the error variance in one period can explain the error variance in the subsequent period. 

When observing the “TO” and “FROM” row and column, we see that unsurprisingly, the global 

stock indices MSCI and ESG both transmit and receive the highest amount of spillover. The 

RE indices, together with the PSE technology index, all transmit and receive a similar share of 

spillover. OIL and FX transmit and receive low amounts of spillover. Investigating net spillover 

row, we can see that SPGCE, OIL, FX and DGS5 are net receivers of spillover, where OIL is 

the asset that is the largest net receiver of spillover. ECO, MSCI, ESG and PSE are net emitters 

of spillover. 

Looking at individual connectedness we can see that OIL receives more spillover from the RE 

indices than it transmits to the RE indices. The finding is in line with Ahmad (2017). We also 

observe that shocks in the RE indices spill over to a large degree to PSE at 14,46% and 9,89%. 

The impact of technology shocks also affect the RE indices to a large degree. The 

connectedness between RE and technology is stronger than the connectedness between RE and 

crude oil prices, which is in line with Sadorsky (2012b). 

 

Insert Table 3 
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Table 4 shows the full sample connectedness between the RE firms and the other assets. The 

total connectedness is 38,88%, which means that 38,88% of the total error variance in returns 

can be explained by shocks in our variables. The total connectedness is 19% lower than in the 

sample with the RE indices, which is not surprising since indices consist of an aggregate of 

several companies which enables higher connectedness. We can see that there is a higher self-

connectedness compared to the Table 4. Observing the “TO” and “FROM” row and column 

we can see that the spillovers are low in general, they are quite much lower compared to Table 

4. Again, MSCI and ESG show the highest amount of spillover received and transmitted. The 

RE sub-sectors receive and transmit spillover quite similarly. In a similar fashion to Table 4, 

MSCI, ESG and technology transmit the highest amount of spillover. Looking at the net 

spillovers we see that every RE firm and OIL, FX and DGS5 are net receivers of spillover. The 

global stock indices MSCI and ESG, and the technology index PSE are net transmitters of 

spillover.  

Looking at individual connectedness of the RE sub sectors, we observe that the bioenergy sub 

sector seems to have the highest connectedness with the oil prices, which confirms the findings 

of Pham (2019). The net pairwise connectedness shows that two solar and two bioenergy 

companies receive more spillover from OIL than they transmit to OIL. Two wind energy 

companies transmit more spillover to OIL than they receive from OIL. A conclusion is that 

crude oil prices transmit more spillover than they receive from RE firms. This is in contrast 

with the findings of Reboredo, Rivera-Castro and Ugolini (2017) and Table 4 where OIL 

received more spillover from RE indices than it transmitted to them. Since wind energy 

companies transmit more spillover than they receive from crude oil markets, it could be that 

this sub sector is driving the spillover results in Table 4 for the renewable indices. Technology 

stocks transmit more spillover to RE firms than they receive from them. Compared to the RE 

indices in Table 4, the firms do not transmit as much spillover to the technology sector.  

 

Insert Table 4 

 

Table 5 shows the full-sample total connectedness between oil & gas firms and RE firms. The 

total connectedness is 43,50%, which is a higher total connectedness compared to the total 

connectedness between RE firms and the other assets. This can be argued to be a reasonable 

result since both type of firms is in the energy sector and because RE is a substitute to fossil 

fuel, which should yield a high connectedness. The “TO” and “FROM” row and column show 

us that the spillovers for each firm is low. The oil & gas firms transmit more and receive less 
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spillover compared to the RE firms. The net pairwise connectedness tells us that oil & gas firms 

transmit more spillover to bioenergy firms than to wind and solar energy firms. We observe 

that RE firms transmit spillover mostly to other RE firms. The net spillover row indicates that 

all RE firms are net receivers of spillover while most oil & gas firms are net transmitters. One 

explanation for this directional spillover could be that oil & gas sector is a competitor to RE 

sector. The returns of oil & gas firms, who dominate the energy market, should affect the 

returns of the competing RE companies. Another explanation could be that several oil & gas 

companies are trying to transition to integrated energy companies by investing in RE. 

According to Lu, Guo and Zhang (2019) acquisitions and investments in RE technology are 

two types of investments that are common. Returns for oil & gas firms, which could affect their 

investments in RE, could in turn affect the return for RE firms.     

 

Insert Table 5 

 

Table 6 shows the full-sample total connectedness between oil & gas firms and RE firms, but 

several other assets are now also included. As expected, the total connectedness is higher with 

other assets included, as the connectedness is 55,30%, which is around twelve percent higher 

than in Table 6 without other assets. The spillover patterns between RE firms and oil & gas 

firms are similar to Table 6. Looking at the pairwise connectedness we see that RE and oil & 

gas firms seem to be equally connected with FX. Wind energy, bioenergy and oil & gas sector 

seem to be more connected with bond market, compared with solar energy. Solar energy, 

bioenergy and oil & gas sector are more connected with technology market, compared to wind 

energy. Looking at net pairwise connectedness, we observe that RE and oil & gas sectors 

receive more spillover from technology than they emit. We also observe that RE sectors receive 

more spillover from bond market than it emits, while the oil & gas sector emits more spillover 

to the bond market than it receives. RE being affected by interest rates confirms previous 

literature (Henriques & Sadorsky, 2008; Kumar, Managi & Matsuda, 2012; Bondia, Ghosh and 

Kanjilal, 2016; Kocaarslan & Soytas, 2019) and oil & gas firms not being affected by interest 

rates confirms the findings of Mohanty and Nandha (2011). 

 

Insert Table 6 
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5.2 Dynamic connectedness - total and frequencies 

In Figure 5 (a) we observe the dynamic total connectedness when the RE indices are included. 

The total connectedness starts at a very high level, between 66 and 70 percent at 2014 and then 

drops down to 50% in the end of 2015. From around 2016 to 2017 the connectedness increases 

slightly and lies on a constant level until around 2018 where it after that year slightly decreases. 

Barunik and Krehlik (2018) argue that financial crises through its uncertainty transmission 

channel increases total connectedness. By this reasoning, the explanation for the sudden drop 

in total connectedness in the period around 2014 and 2015 could be due to the end of the 

European debt crisis. The oil price plunge of 2014-2016 did not seem to increase the total 

connectedness during this time period. The slight increase from 2016 to 2017 coincides with 

the American presidential election and the Brexit referendum in 2016, and the U.S withdrawal 

from the Paris climate agreement in 2017.  

In Figure 5 (b) we present the frequency connectedness, where the sum of each frequency band 

is equal to the total connectedness in Figure 5 (a). We can observe that it is the short-term 

connectedness in the form of 1 to 2 days and 2 to 5 days that is mainly driving the total 

connectedness. The finding of short-term connectedness driving total connectedness supports 

the findings of Ferrer et al. (2018). The medium-term connectedness between 5 and 21 days is 

also substantial, but the long-term connectedness from 21 to 252 days is almost zero. The 

implication of short-term connectedness dominating is that the market processes information 

quickly, i.e. that shocks diminish after a few days and that investors expect that shocks to 

uncertainty have a short-term impact. Thus, investors expected the uncertainty between 2016 

and 2017 that stemmed from the American presidential election, the Brexit referendum and 

U.S withdrawal from the Paris climate agreement to have a short-term impact on the RE 

market. The low connectedness in the long run implies that investors have a belief of long-term 

stability in RE investments. Furthermore, this belief of a long-term stability could stem from 

the belief that RE is a market that will receive constant growth due to society wanting to 

transition from fossil fuel to RE dependence. Shocks not having an impact in the long run could 

also be due to RE being regarded by investors as ethically, socially and environmentally 

beneficial to invest in regardless of financial shocks.  

 The 1 to 2 days connectedness move similar to the 2 to 5 days connectedness, with the 

exception that the former seems to be increasing between 2016 and 2018 while the latter is 

constant. This tells us that during this time period, investors increasingly believed that shocks 

in uncertainty would have a short-term daily impact on the RE market. We can also note some 
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asymmetry between the two frequency bands at peaks and drops. For example, between 2014 

and 2015 there is one small dip in the first mentioned band while there is a peak in the latter 

mentioned band. Between 2015 and 2016 the 1 to 2 day band has a slight peak and sudden 

drop, while the 2 to 5 day band has a slight decrease and sudden peak. This asymmetry is also 

evident between 2018 and 2019. So, when connectedness in the 1 to 2 day band peaks (drops), 

the connectedness in the 2 to 5 day band drops (peaks), hence peaks and drops seem to transmit 

between the two frequencies. The interpretation of the asymmetry is that investors beliefs are 

impacted by shocks in such a way that they believe that the impact of a uncertainty shock today 

will transmit to the rest of the week, if the 1 to 2 day connectedness is declining and the 2 to 5 

day connectedness is rising. The reverse is true if the 1 to 2 day connectedness is rising while 

the 2 to 5 day connectedness is declining. However, the asymmetrical peaks and drops are not 

seen in the end of the time period from 2019 to 2020, the 1 to 2 day band is relatively constant 

while the 2 to 5 day band drops quite significantly. 

 

Insert Figure 5 

 

In Figure 6 (a) we can observe the dynamic total connectedness when RE firms are included 

instead of RE indices. The level of total connectedness for RE firms is lower than the RE 

indices, which is not strange since the aggregated market for RE should lie in a higher level of 

total connectedness than separate firms. Even here we can observe that the total connectedness 

starts at a high level at 2014, and then suddenly drops down around the end of 2015. However, 

the difference is that the connectedness starts to increase at a much higher rate, from 36 percent 

around the end of 2015 to return to the initial total connectedness between 44 and 48 percent 

around 2017. The connectedness drops more sharply by 2019 in this firm sample than in the 

indices sample. 

A reason for the sharp increases and decreases for the RE firm sample connectedness could be 

that uncertainty in market specific factors affect individual RE firms more than the aggregated 

RE market. When the market uncertainty and connectedness increased between 2016 and 2017 

due to the U.S presidential election, the Brexit referendum and the U.S withdrawal from the 

Paris climate agreement, this could have increased connectedness more for individual RE 

firms. Another reason could be that firm specific uncertainty increases the upward and 

downward swings. For example, when the market uncertainty and connectedness increased 

between 2016 and 2017, uncertainties in renewable firm specific factors, such as leverage and 
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revenues, could have been impacted at the same time, which increases the connectedness even 

more.  

In Figure 6 (b) we present the frequency connectedness. In the figure we can again observe that 

it is the short-term connectedness in the form of 1 to 2 days and 2 to 5 days connectedness that 

is mainly driving the total connectedness. The medium-term connectedness between 5 and 21 

days is relatively higher here than in the figure 4 plot (b) for the renewable indices. The long-

term connectedness from 21 to 252 days is again almost zero. Focusing on the 1 to 2 days and 

2 to 5 days connectedness again we can see that there exists a higher heterogeneity of 

movements in this sample. Some asymmetrical patterns for peaks and drop exist but only from 

2015 to 2016. The 1 to 2 day and the 2 to 5 day connectedness have more sharp drops compared 

to the previous sample. The 2 to 5 day connectedness drops significantly two times in the end 

of the sample. In contrast, at the end of the sample, the 1 to 2 day band only drops once.  

From our results we can conclude that there exists heterogeneity in total dynamic 

connectedness when one uses RE indices and when one on the other hand uses firm level 

returns. The heterogeneity is showcased by that there are sharper swings in total connectedness 

between RE firms and other assets. We conclude that there is a justification in taking returns 

at the firm level into consideration when measuring connectedness, which is why we proceed 

with measuring dynamic connectedness between RE firms and oil & gas firms. 

 

Insert Figure 6 

 

In Figure 7 (a) we can observe the dynamic total connectedness between RE firms and oil & 

gas firms. The level of total connectedness is, throughout the sample, somewhat higher here 

compared to the total connectedness between RE firms and other assets in figure 6 (a). This 

higher connectedness is in line with our result for full-sample connectedness in table 6. The 

total connectedness starts at almost the same high level, 48 percent in 2014, and then suddenly 

drops down to around 39 percent around 2015. This is similar to figure 5 (a), except that the 

drop was not interrupted during a short time period in 2015. A contrasting result is that the 

connectedness between RE and oil & gas firms starts to rise again in 2015 while a new period 

of connectedness downturn starts in figure 6 (a). The connectedness rises in 2015 is short lived, 

connectedness starts to drop just like the connectedness in figure 6 (a). Between the end of 

2015 and 2017 connectedness increases sharply and then lies at a constant level to then drop 

after 2018. This is in line with the dynamic of figure 6 (a). The main difference between 

connectedness dynamics between RE firms and oil & gas firms, and the connectedness 



20 
 

dynamics between RE firms and other assets, is the time period from 2015 to 2016. The 

increase in connectedness for the former and decrease in connectedness for the latter, indicates 

that an uncertainty is increasing the connectedness for one but not for the other. The explanation 

for the increase could be that the oil price plunge in 2014-2016, which increased crude oil price 

uncertainty, was overshadowed by the decreased uncertainty from the end of the Euro debt 

crisis in 2015. When the Euro debt crisis ended and the oil plunge was still ongoing, the total 

uncertainty increased which increased the connectedness during the first half of 2015. The oil 

price plunge starts to ebb away at the latter half of 2015 which decreases uncertainty and the 

connectedness until 2016. The connectedness between RE firms and other assets should not 

have been impacted as much by the oil price plunge which is why the uncertainty and 

connectedness did not increase during 2015 in figure 6 (a).  

In Figure 7 (b) the frequency connectedness is shown. We again observe that it is the short-

term connectedness in the form of 1 to 2 days and 2 to 5 days connectedness that is mainly 

driving the total connectedness. The 2 to 5 days connectedness was the frequency that was 

mainly impacted by the decreased uncertainty from the end of the Euro debt crisis. We also 

note that the decrease in connectedness from 2014 to 2020 was also driven by the 2 to 5 day 

connectedness, in fact the 1 to 2 day connectedness increased slightly during this time period.  

We conclude that the dynamics of total connectedness between RE firms and assets, and RE 

firms and oil & gas firms is similar. The main difference is that it seems that the latter was 

impacted by an uncertainty that did not impact the former. This could mean that oil & gas firms 

are the reason to why connectedness increased during 2015. The oil price plunge of 2014-2016 

is a possible source of uncertainty. 

 

Insert Figure 7 

 

In Figure 8(a) we can observe the dynamic total connectedness between RE firms and oil & 

gas firms, but this time with other assets included. An almost identical pattern to Figure 7 (a) 

appears. The only difference is that the level of connectedness is higher in this figure. Figure 8 

(b) which shows the frequency connectedness is also almost identical to its counterpart in 

Figure 7 (b). These results indicate that the inclusion of other assets does not affect the dynamic 

pattern of connectedness between RE firms and oil & gas firms that was observed in Figure 7 

(a), which is in line with our findings in the full-sample connectedness, see Table 7. In other 

words, market factors do not seem to have a large impact on the dynamic connectedness 

between RE and oil & gas firms, but they have an impact on the level of connectedness. 
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Insert Figure 8 

7. Conclusions & policy implications 

Applying the full-sample and rolling-window framework developed by Diebold and Yilmaz 

(2012, 2014) and dynamic frequency connectedness framework developed by Barunik and 

Krehlik (2018), we investigate the connectedness and spillover between RE sectors, the oil & 

gas sector and other assets.  

The answers to our research questions are: (I) there is a difference in connectedness results 

between using aggregated RE market and RE firm level data. We also find that RE firms are 

net receivers of spillover from oil & gas firms. The bioenergy sector seems to be the most 

connected to oil & gas firms and oil prices. Bioenergy, solar and oil & gas energy sector are 

the most connected sectors to technology. Wind, bio and oil & gas sector are more connected 

to bond market, compared to solar sector. RE receives spillover from the bond market while 

oil & gas firms emit spillover to the bond market; (II) there is a clear difference in 

connectedness between frequencies in our dynamic frequency connectedness results. The total 

dynamic connectedness is driven by short term connectedness, i.e. high frequency 

connectedness.  

Our results have several policy implications. Since changes in bond rates mainly spillover to 

RE sectors and not to the oil & gas sector, policy makers should also be aware that changes in 

interest rates may impact the societal transition to a RE based energy system. Short term 

connectedness driving the total connectedness provides a greater understanding for climate 

policy makers regarding designing the optimal climate policies to reduce environmental 

degradation. The benefits of diversifying the portfolio through RE assets will not be available 

in the short run, since a shock that affects oil & gas firms would likely affect RE assets too. 

Climate policy makers can prioritize policies that reduce the effect of increased connectedness 

in the short run, since the high short run connectedness can deter investors from investing in 

RE assets. 

The main findings of our investigation could be unique for the specific firms that are included 

in our estimations, and hence there could be firm specific characteristics that affect the result. 

It would also be interesting to include more firms in other RE sub-sectors and to include firms 

that are chosen by other criteria than the ones mentioned by Thomson Reuters (2020b). Lastly, 

it would be interesting to measure asymmetric connectedness since it will enable investigation 
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of spillovers due to negative and positive returns and hence tell if the information transmission 

is symmetric or not. 
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Table 1. Variables, definitions and sources. 

Variable Definition Source 
RE indices   
ECO WilderHill Clean Energy price index  Thomson Reuters Datastream 
SPGCE S&P Global Clean Energy price index Thomson Reuters Datastream 
Solar energy firms   
CASO Canadian Solar stock price  Thomson Reuters Datastream 
RIEN Risen Energy stock price Thomson Reuters Datastream 
MOTE Motech Industries stock price Thomson Reuters Datastream 
Wind energy firms   
SGRE Siemens Gamesa RE stock price Thomson Reuters Datastream 
SUZN Suzlon Energy stock price Thomson Reuters Datastream 
VEST Vestas Windsystems stock price Thomson Reuters Datastream 
Bioenergy firms   
CREN CropEnergies stock price Thomson Reuters Datastream 
GREP Green Plains stock price Thomson Reuters Datastream 
PATH Pacific Ethanol stock price Thomson Reuters Datastream 
Oil & gas firms   
BHAR Bharat Petroleum stock price  Thomson Reuters Datastream 
BP British Petroleum stock price  Thomson Reuters Datastream 
CHEV Chevron Corporation stock price  Thomson Reuters Datastream 
CONO ConocoPhilips stock price  Thomson Reuters Datastream 
EXMO ExxonMobil stock price  Thomson Reuters Datastream 
GAZP Gazprom stock price  Thomson Reuters Datastream 
INOIL Indian Oil stock price  Thomson Reuters Datastream 
RDS Royal Dutch Shell stock price  Thomson Reuters Datastream 
EQUI Equinor stock price Thomson Reuters Datastream 
Other assets    
MSCI MSCI World price index Thomson Reuters Datastream 
ESG MSCI World ESG Leaders price index Thomson Reuters Datastream 
OIL NYMEX Light Crude Oil futures settle price Thomson Reuters Datastream 
FX Euro to US Exchange rate  Thomson Reuters Datastream 
DGS5 5-Year Treasury Constant Maturity Rate (bond) Federal Reserve Bank of S.T Louis 
PSE NYSE Arca Technology 100 price index Thomson Reuters Datastream 
   
Notes: All 2279 observations of the data are daily over the period 2011-05-18 to 2020-02-10.  

 

 

 



Table 2. Summary Statistics 

 Mean (%) Max Min Std. dev (%) Skewness Kurtosis JB ARCH (10) 𝐋𝐋𝐋𝐋 (10) ADF (c) ADF (ct) 
Indices            
ECO −0.008 0.082 −0.102 1.618 −0.292 2.589 670.656*** 367.190*** 816.307*** -21.827[4]*** -21.937[4]*** 
SPGCE −0.013 0.071 −0.081 1.200 −0.410 3.888 1510.888*** 399.170*** 912.773*** -17.232[6]*** -17.376[6]*** 
Solar energy firms            
CASO 0.037 0.288 −0.203 4.017 0.149 4.824 2223.764*** 44.163*** 57.421*** -32.604[1]*** -32.597[1]*** 
RIEN 0.002 0.095 −0.114 3.008 −0.161 2.768 740.025*** 264.060*** 598.363*** -33.528[1]*** -33.540[1]*** 
MOTE −0.108 0.095 −0.105 2.634 0.037 2.411 554.652*** 103.020*** 139.633*** -31.085[1]*** -31.080[1]*** 
Wind energy firms            
SGRE 0.038 0.181 −0.194 2.696 −0.079 5.952 3374.293*** 32.248*** 41.611*** -33.313[1]*** -33.308[1]*** 
SUZN −0.134 0.256 −0.415 3.741 0.033 12.109 13948.970*** 150.970*** 188.035*** -30.937[1]*** -30.932[1]*** 
VEST 0.065 0.212 −0.278 2.893 −0.391 11.111 11802.830*** 39.647*** 52.808*** -28.484[2]*** -28.494[2]*** 
Bioenergy firms            
CREN 0.027 0.133 −0.153 2.372 −0.299 4.959 2374.763*** 48.659*** 53.773*** -15.757[7]*** -15.781[7]*** 
GREP 0.006 0.248 −0.146 2.940 0.164 4.577 2005.212*** 38.803*** 48.169*** -31.789[1]*** -31.798[1]*** 
PATH −0.188 0.503 −0.415 5.414 0.856 10.240 10254.443*** 59.739*** 81.085*** -33.529[1]*** -33.526[1]*** 
Oil & gas firms            
BHAR 0.068 0.110 −0.222 2.082 −0.582 7.734 5819.576*** 245.270*** 332.360*** -33.900[1]*** -33.894[1]*** 
BP 0.002 0.069 −0.091 1.403 −0.093 2.784 741.574*** 337.180*** 590.955*** -16.183[8]*** -16.180[8]*** 
CHEV 0.003 0.061 −0.078 1.317 −0.187 2.806 763.373*** 471.850*** 998.190*** -23.303[4]*** -23.302[4]*** 
CONO 0.002 0.093 −0.097 1.706 −0.074 3.436 1126.341*** 494.310*** 940.092*** -33.819[1]*** -33.812[1]*** 
EXMO −0.014 0.054 −0.064 1.166 −0.185 3.033 889.124*** 554.400*** 1246.866*** -23.559[4]*** -23.603[4]*** 
GAZP 0.005 0.152 −0.150 1.602 0.224 8.634 7111.756*** 473.690*** 428.395*** -32.360[1]*** -32.407[1]*** 
INOIL 0.016 0.101 −0.173 1.928 −0.276 5.032 2438.749*** 171.560*** 215.025*** -34.838[1]*** -34.832[1]*** 
RDS −0.002 0.065 −0.080 1.296 −0.247 3.786 1387.902*** 384.240*** 731.794*** -24.701[3]*** -24.701[3]*** 
EQUI 0.003 0.087 −0.076 1.555 0.141 2.602 652.417*** 340.380*** 621.271*** -36.063[1]*** -36.056[1]*** 
Other assets             
MSCI 0.024 0.041 −0.053 0.789 −0.649 5.166 2672.364*** 356.700*** 857.777*** -23.494[4]*** -23.492[4]*** 
ESG 0.026 0.039 −0.050 0.776 −0.635 4.980 2549.469*** 347.450*** 847.247*** -23.594[4]*** -23.594[4]*** 
OIL −0.030 0.137 −0.108 2.055 0.104 3.758 1360.192*** 214.990*** 454.467*** -34.942[1]*** -34.935[1]*** 
FX 0.012 0.023 −0.026 0.521 −0.012 2.138 441.353*** 134.300*** 227.848*** -34.177[1]*** -34.177[1]*** 
DGS5 −0.013 0.147 −0.199 3.154 −0.074 2.833 769.742*** 151.170*** 295.213*** -19.996[5]*** -19.991[5]*** 
PSE 0.060 0.059 −0.059 1.055 −0.409 3.466 1224.942*** 302.23*** 742.627*** -23.598[4]*** -23.615[4]*** 
            
Notes: All variables contain 2278 daily observations over the period 2011-05-19 to 2020-02-10. All the variables are represented in first differences and all the variables are log 
transformed. JB is the Jarque-Bera. ARCH(10) is the Autoregressive Conditional Heteroskedasticity test with 10 lags. LB (10) is the Ljung-Box test for the squared residuals 
with 10 lags. ADF (c) and ADf (ct) is the Augmented Dickey-Fuller unit root test with a constant and with a constant and trend respectively and includes the optimal lag length 
in the brackets that minimizes the AIC. The notations *, ** and *** indicates significance at 10%, 5% and 1%.  



Table 3. Full-sample total connectedness - RE indices and other assets  

 ECO SPGCE MSCI ESG OIL FX DGS5 PSE FROM 
ECO 29.759 17.190 15.880 15.582 3.709 0.524 2.516 14.835 8.780 
SPGCE 18.303 30.685 16.676 16.553 3.326 2.022 1.793 10.637 8.664 
MSCI 12.977 12.884 23.956 23.783 3.830 2.178 3.150 17.237 9.505 
ESG 12.855 12.911 24.017 24.187 3.738 2.271 3.031 16.986 9.476 
OIL 7.419 6.217 9.327 9.042 59.053 1.106 3.128 4.705 5.118 
FX 1.350 5.235 6.940 7.170 1.519 76.680 0.448 0.653 2.914 
DGS5 5.508 3.932 8.380 7.986 3.378 0.164 64.723 5.926 4.409 
PSE 14.468 9.890 20.878 20.357 2.301 0.323 2.708 29.071 8.866 
TO 9.110 8.532 12.762 12.559 2.725 1.073 2.097 8.872 57.735 
NET 0.330 −0.131 3.257 3.083 −2.392 −1.841 −2.312 0.006  

Notes: The full-sample unconditional connectedness predictive horizon is 252 days. The ij-th entry of the upper-left 8×8 sub-matrix sector represents the ij-th directional pairwise connectedness. 
The net pairwise connectedness is calculated as Ci→j − Cj→i. The FROM column produces directional total connectedness from one sector to another and is defined by the sum of the row, i.e. from 
all others to i. The TO row receives the directional total connectedness to one sector from another and is defined by the sum of the column, i.e. to all others from j. The NET row represents the 
difference between the TO row and the FROM column in the directional total connectedness. The bottom-right cell is representing the total connectedness. 
 
Table 4. Full-sample total connectedness - RE firms and other assets  

 CASO RIEN MOTE SGRE SUZN VEST CREN GREP PATH MSCI ESG OIL FX DGS5 PSE FROM 
CASO 55.609 0.443 1.043 2.501 0.264 1.945 0.759 4.473 1.525 9.508 9.315 3.040 0.353 1.366 7.849 2.959 
RIEN 1.258 90.046 0.474 0.544 0.552 0.273 0.327 0.846 0.225 1.505 1.507 0.550 0.115 0.605 1.166 0.663 
MOTE 2.428 0.685 77.863 1.614 0.682 0.863 0.468 1.327 0.721 4.325 4.351 1.035 0.251 0.626 2.754 1.475 
SGRE 2.352 0.263 0.473 50.705 0.352 14.229 0.581 1.872 0.669 9.806 9.823 1.097 0.233 2.411 5.129 3.286 
SUZN 0.744 0.387 0.267 0.739 90.775 0.416 0.277 0.523 0.085 1.820 1.798 0.863 0.211 0.375 0.711 0.614 
VEST 1.875 0.084 0.334 16.402 0.301 58.272 0.588 2.125 0.275 6.755 6.829 0.741 0.356 1.807 3.247 2.781 
CREN 1.498 0.258 0.330 0.940 0.239 0.756 83.844 0.547 0.214 3.369 3.373 1.417 0.110 0.634 2.464 1.077 
GREP 4.280 0.252 0.266 1.964 0.206 1.511 0.276 52.891 5.042 8.912 8.655 6.072 0.209 1.961 7.496 3.140 
PATH 2.171 0.180 0.186 0.826 0.061 0.358 0.153 7.113 72.922 3.989 3.831 3.269 0.272 1.318 3.343 1.805 
MSCI 4.364 0.253 0.569 4.925 0.370 2.851 0.941 4.281 1.296 25.830 25.647 4.199 2.421 3.477 18.570 4.944 
ESG 4.313 0.252 0.575 4.963 0.375 2.905 0.933 4.180 1.240 25.902 26.083 4.097 2.517 3.357 18.301 4.927 
OIL 3.148 0.251 0.135 1.465 0.428 0.857 0.422 6.434 2.353 9.223 8.946 57.505 1.058 3.012 4.757 2.832 
FX 0.565 0.204 0.368 0.350 0.104 0.641 0.031 0.278 0.107 7.440 7.662 1.547 79.499 0.454 0.742 1.366 
DGS5 1.533 0.152 0.176 2.940 0.277 1.989 0.687 2.333 1.103 8.393 8.027 3.277 0.162 63.015 5.927 2.465 
PSE 4.400 0.188 0.565 3.178 0.225 1.699 0.769 4.397 1.443 22.902 22.329 2.620 0.376 3.033 31.869 4.542 
TO 2.328 0.257 0.384 2.890 0.296 2.086 0.481 2.715 1.087 8.256 8.140 2.255 0.576 1.629 5.497 38.884 
NET −0.630 −0.406 −1.091 −0.395 −0.318 −0.695 −0.595 −0.424 −0.718 3.312 3.212 −0.577 −0.789 −0.836 0.955  
Notes: The full-sample unconditional connectedness predictive horizon is 252 days. The ij-th entry of the upper-left 15×15 sub-matrix sector represents the ij-th directional pairwise connectedness. 
The net pairwise connectedness is calculated as Ci→j − Cj→i. The FROM column produces directional total connectedness from one sector to another and is defined by the sum of the row, i.e. from 
all others to i. The TO row receives the directional total connectedness to one sector from another and is defined by the sum of the column, i.e. to all others from j. The NET row represents the 
difference of the TO row and the FROM olumn in the directional total connectedness. The bottom-right cell is representing the total connectedness.   



 
 
Table 5. Full-sample total connectedness - Oil & gas firms and RE firms 

 BHAR BP CHEV CONO EXMO GAZP INOIL RDS EQUI CASO RIEN MOTE SGRE SUZN VEST CREN GREP PATH FROM 
BHAR 64.859 0.418 0.167 0.143 0.138 0.243 28.910 0.536 0.336 0.115 0.015 0.414 0.260 2.571 0.165 0.287 0.211 0.212 1.952 
BP 0.180 32.058 8.870 8.111 8.015 3.327 0.072 16.960 12.470 1.425 0.108 0.195 2.315 0.257 1.354 0.508 2.855 0.921 3.775 
CHEV 0.033 7.278 30.217 16.049 18.775 1.836 0.028 7.658 6.045 2.639 0.114 0.232 1.470 0.075 0.797 0.549 4.888 1.318 3.877 
CONO 0.037 7.226 17.180 32.318 14.977 1.739 0.029 7.404 6.239 2.682 0.099 0.148 1.241 0.161 0.736 0.539 5.871 1.375 3.760 
EXMO 0.012 6.804 19.430 14.504 31.225 2.290 0.032 7.069 6.136 2.540 0.117 0.299 1.785 0.109 1.143 0.311 4.719 1.475 3.821 
GAZP 0.261 6.146 4.319 4.018 4.856 59.260 0.314 5.062 5.740 1.228 0.249 0.259 2.657 0.567 1.769 0.850 1.610 0.836 2.263 
INOIL 28.836 0.317 0.143 0.169 0.062 0.290 64.717 0.384 0.304 0.185 0.047 0.264 0.436 2.908 0.290 0.322 0.198 0.130 1.960 
RDS 0.183 16.775 9.528 8.478 8.490 2.616 0.161 31.399 13.141 1.427 0.159 0.258 1.949 0.193 1.035 0.637 2.748 0.823 3.811 
EQUI 0.092 13.480 8.773 8.587 8.030 3.245 0.050 14.414 33.434 1.609 0.178 0.145 2.157 0.149 1.427 0.395 2.767 1.069 3.698 
CASO 0.118 2.415 5.314 5.257 5.042 1.239 0.281 2.305 2.930 61.292 0.454 1.191 2.567 0.302 2.123 0.862 4.771 1.539 2.150 
RIEN 0.499 0.429 1.062 0.633 0.795 0.368 0.457 0.634 0.683 1.120 90.179 0.439 0.513 0.552 0.243 0.302 0.912 0.177 0.546 
MOTE 0.495 1.523 3.106 2.152 2.692 0.555 0.187 1.585 0.720 2.593 0.647 78.143 1.628 0.681 0.816 0.397 1.350 0.729 1.214 
SGRE 0.184 4.017 2.747 2.102 3.010 2.500 0.390 3.471 3.611 2.466 0.283 0.500 55.547 0.364 15.526 0.593 2.028 0.660 2.470 
SUZN 3.338 0.916 0.625 0.587 0.709 0.645 3.830 0.809 0.491 0.769 0.388 0.289 0.675 84.703 0.382 0.301 0.465 0.078 0.850 
VEST 0.070 2.604 1.681 1.560 2.331 1.711 0.161 2.037 2.541 1.999 0.077 0.283 17.416 0.309 62.080 0.592 2.271 0.277 2.107 
CREN 0.368 1.354 1.726 1.719 1.265 1.287 0.584 1.616 1.201 1.507 0.247 0.321 0.872 0.260 0.706 84.190 0.539 0.238 0.878 
GREP 0.256 3.982 8.091 8.978 7.396 1.369 0.122 3.627 3.188 3.882 0.258 0.260 1.836 0.192 1.448 0.262 49.894 4.960 2.784 
PATH 0.190 2.149 3.527 3.245 3.800 0.850 0.303 1.686 1.958 1.974 0.197 0.196 0.721 0.047 0.334 0.190 7.274 71.359 1.591 
TO 1.953 4.324 5.349 4.794 5.021 1.451 1.995 4.292 3.763 1.676 0.202 0.316 2.250 0.539 1.683 0.439 2.527 0.934 43.507 
NET 0.001 0.549 1.473 1.034 1.200 −0.813 0.035 0.481 0.065 −0.475 −0.344 −0.898 −0.220 −0.311 −0.424 −0.440 −0.257 −0.657  
Notes: The full-sample unconditional connectedness predictive horizon is 252 days. The ij-th entry of the upper-left 18×18 sub-matrix sector represents the ij-th directional 
pairwise connectedness. The net pairwise connectedness is calculated as Ci→j − Cj→i. The FROM column produces directional total connectedness from one sector to another 
and is defined by the sum of the row, i.e. from all others to i. The TO row receives the directional total connectedness to one sector from another and is defined by the sum of 
the column, i.e. to all others from j. The NET row represents the difference of the TO row and the FROM column in the directional total connectedness. The bottom-right cell 
is representing the total connectedness.  
 
 
 
 
 
 
 
 



 
 
Table 6. Full-sample total connectedness - Oil & gas firms, RE firms and other assets  

 BHAR BP CHEV CONO EXMO GAZP INOIL RDS EQUI CASO RIEN MOTE SGRE SUZN VEST CREN GREP PATH MSCI ESG OIL FX DGS5 PSE FROM 
BHAR 63.517 0.394 0.182 0.148 0.143 0.208 28.079 0.513 0.342 0.111 0.016 0.365 0.258 2.452 0.163 0.269 0.182 0.209 0.640 0.647 0.551 0.037 0.154 0.421 1.520 
BP 0.128 24.697 6.940 6.326 6.296 2.558 0.055 12.979 9.706 1.165 0.072 0.144 1.771 0.208 1.042 0.365 2.191 0.691 6.455 6.208 5.259 0.055 1.326 3.364 3.138 
CHEV 0.020 5.008 20.510 10.928 12.765 1.216 0.020 5.261 4.140 1.858 0.083 0.158 1.011 0.046 0.556 0.397 3.317 0.919 8.880 8.591 6.059 0.431 1.486 6.341 3.312 
CONO 0.028 5.082 12.069 22.625 10.539 1.174 0.020 5.237 4.430 1.898 0.074 0.110 0.852 0.107 0.509 0.366 4.086 0.949 7.328 7.151 8.425 0.206 1.668 5.066 3.224 
EXMO 0.008 4.623 12.968 9.711 20.807 1.509 0.024 4.777 4.111 1.733 0.078 0.206 1.214 0.068 0.780 0.218 3.171 1.016 9.376 9.059 5.436 0.351 1.885 6.870 3.300 
GAZP 0.173 4.801 3.306 3.050 3.781 46.310 0.223 3.934 4.424 0.977 0.206 0.199 2.084 0.424 1.429 0.629 1.243 0.658 7.105 7.042 2.434 0.646 1.485 3.436 2.237 
INOIL 28.178 0.300 0.142 0.170 0.056 0.260 63.756 0.353 0.274 0.190 0.040 0.268 0.444 2.857 0.307 0.303 0.195 0.116 0.457 0.451 0.223 0.176 0.094 0.391 1.510 
RDS 0.131 12.852 7.451 6.632 6.649 1.993 0.124 24.207 10.203 1.151 0.105 0.191 1.492 0.159 0.806 0.466 2.140 0.632 6.341 6.105 5.434 0.202 1.154 3.380 3.158 
EQUI 0.077 10.553 6.884 6.751 6.295 2.483 0.043 11.267 25.924 1.280 0.136 0.114 1.754 0.103 1.180 0.291 2.209 0.855 5.765 5.547 6.081 0.225 1.300 2.883 3.087 
CASO 0.087 1.881 4.064 3.923 3.810 0.943 0.206 1.807 2.213 45.234 0.391 0.886 1.947 0.211 1.554 0.610 3.559 1.114 7.756 7.585 2.424 0.338 1.152 6.307 2.282 
RIEN 0.509 0.363 1.027 0.619 0.732 0.370 0.437 0.520 0.645 1.178 85.454 0.436 0.486 0.536 0.246 0.304 0.902 0.175 1.366 1.361 0.574 0.113 0.575 1.070 0.606 
MOTE 0.393 1.365 2.676 1.902 2.403 0.477 0.163 1.392 0.712 2.326 0.581 68.977 1.409 0.626 0.693 0.386 1.160 0.632 3.744 3.761 0.979 0.195 0.524 2.522 1.293 
SGRE 0.137 3.053 2.132 1.587 2.351 1.920 0.307 2.613 2.894 1.922 0.220 0.375 42.525 0.298 11.840 0.436 1.572 0.523 8.031 8.053 0.873 0.189 1.975 4.173 2.395 
SUZN 3.067 0.942 0.604 0.533 0.708 0.572 3.589 0.837 0.464 0.664 0.381 0.261 0.661 80.102 0.401 0.262 0.445 0.059 1.724 1.715 0.766 0.198 0.367 0.678 0.829 
VEST 0.066 2.138 1.434 1.287 1.977 1.466 0.140 1.693 2.247 1.650 0.071 0.243 14.342 0.295 51.330 0.488 1.882 0.231 5.826 5.896 0.657 0.309 1.542 2.790 2.028 
CREN 0.326 1.161 1.677 1.573 1.210 1.100 0.519 1.458 1.007 1.312 0.239 0.287 0.765 0.231 0.640 75.716 0.475 0.195 2.986 2.991 1.323 0.110 0.533 2.166 1.012 
GREP 0.192 2.990 6.123 6.764 5.653 1.028 0.088 2.759 2.495 2.965 0.215 0.182 1.390 0.134 1.089 0.188 37.798 3.648 6.563 6.377 4.284 0.179 1.411 5.486 2.592 
PATH 0.161 1.824 3.165 2.812 3.441 0.748 0.275 1.439 1.766 1.672 0.173 0.159 0.659 0.049 0.296 0.151 6.090 61.491 3.360 3.233 2.768 0.248 1.203 2.818 1.605 
MSCI 0.161 4.123 7.365 5.556 7.629 2.491 0.133 3.981 3.472 2.868 0.162 0.337 3.125 0.248 1.809 0.586 2.873 0.824 16.835 16.715 2.735 1.574 2.242 12.155 3.465 
ESG 0.164 4.017 7.252 5.514 7.504 2.509 0.137 3.872 3.391 2.856 0.161 0.342 3.180 0.255 1.861 0.585 2.832 0.795 17.029 17.147 2.697 1.651 2.180 12.072 3.452 
OIL 0.041 6.098 8.810 11.089 7.781 1.437 0.051 6.337 6.114 1.608 0.143 0.066 0.744 0.227 0.454 0.207 3.308 1.226 4.817 4.680 30.119 0.572 1.559 2.510 2.912 
FX 0.121 0.137 1.461 0.676 1.200 1.022 0.109 0.576 0.400 0.612 0.175 0.357 0.321 0.109 0.593 0.034 0.322 0.100 6.978 7.189 1.493 74.881 0.442 0.691 1.047 
DGS5 0.051 2.444 3.689 3.846 4.497 1.621 0.149 2.154 2.451 1.258 0.115 0.135 2.283 0.248 1.540 0.521 1.867 0.903 6.580 6.282 2.582 0.119 49.937 4.726 2.086 
PSE 0.089 2.614 6.987 5.081 7.449 1.598 0.111 2.453 2.192 3.104 0.134 0.373 2.191 0.160 1.168 0.519 3.216 1.005 16.434 16.007 1.890 0.269 2.180 22.778 3.218 
TO 1.430 3.282 4.517 4.020 4.370 1.279 1.458 3.259 2.920 1.515 0.165 0.258 1.849 0.419 1.290 0.358 2.052 0.728 6.064 5.943 2.748 0.350 1.185 3.847 55.305 
NET −0.091 0.144 1.205 0.796 1.070 −0.958 −0.052 0.101 −0.166 −0.767 −0.441 −1.035 −0.545 −0.410 −0.738 −0.654 −0.540 −0.876 2.599 2.491 −0.164 −0.697 −0.901 0.629  

Note: The full-sample unconditional connectedness predictive horizon is 252 days. The ij-th entry of the upper-left 24×24 sub-matrix sector represents the ij-th directional 
pairwise connectedness. The net pairwise connectedness is calculated as Ci→j − Cj→i. The FROM column produces directional total connectedness from one sector to another 
and is defined by the sum of the row, i.e. from all others to i. The TO row receives the directional total connectedness to one sector from another and is defined by the sum of 
the column, i.e. to all others from j. The NET row represents the difference of the TO row and the FROM column in the directional total connectedness. The bottom-right cell 
is representing the total connectedness.



Figure 1. Global investment in RE 

 
Notes: Data source: IRENA, 2019. Global trend in RE investment 2019. 

 

Figure 2. Correlation heat maps  

(a) RE indices, other assets and uncertainties  (b) RE firms, other assets and uncertainties 

 
(c) Oil & gas firms and RE firms   (d) Oil & gas firms, other 

assets and uncertainties 

 
Notes: All variables contain 2278 daily observations over the period 2011-05-19 to 2020-02-10. All the variables 
are represented in first differences and all the variables are log transformed. 
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Figure 3. Historical prices (level) 

 

 

 
 

Notes: All variables contain 2279 daily observations over the period 2011-05-18 to 2020-02-10. Index values are 
presented on the vertical axis and time period is indicated on the horizontal axis. 
 
Figure 4. Logarithmic returns  
 

 

 

 
 

Notes: All variables contain 2278 daily observations over the period 2011-05-19 to 2020-02-10. All the variables 
are represented in first differences and all the variables are log transformed.  Index values are presented on the 
vertical axis and time period is indicated on the horizontal axis. 
 
 



Figure 5. Dynamic connectedness - RE indices and other assets  

(a) Total connectedness  (b) Frequency connectedness 

 
Notes: The vertical axis shows percentual connectedness and the horizontal axis shows years. Plot (a) shows total 
connectedness over time, represented by the blue line. Plot (b) shows frequency connectedness, where the red line 
represents daily connectedness (1 to 2 days), the blue line represents daily to weekly connectedness (2 to 5 days), 
the green line represents weekly to monthly connectedness (5 to 21 days) and the purple line represents monthly 
to yearly connectedness (21 to 252 days). The rolling window is 756 days while the rolling sample of the predictive 
horizon for the variance decomposition is 252 days. 
 

Figure 6. Dynamic connectedness - RE firms and other assets  

(a) Total connectedness  (b) Frequency connectedness 

Notes: The vertical axis shows percentual connectedness and the horizontal axis shows years. Plot (a) shows total 
connectedness over time, represented by the blue line. Plot (b) shows frequency connectedness, where the red line 
represents daily connectedness (1 to 2 days), the blue line represents daily to weekly connectedness (2 to 5 days), 
the green line represents weekly to monthly connectedness (5 to 21 days) and the purple line represents monthly 
to yearly connectedness (21 to 252 days). The rolling window is 756 days while the rolling sample of the predictive 
horizon for the variance decomposition is 252 days. 
 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7. Dynamic connectedness - RE firms and oil & gas firms 

(a) Total connectedness  (b) Frequency connectedness 

 
Notes: The vertical axis shows percentual connectedness and the horizontal axis shows years. Plot (a) shows total 
connectedness over time, represented by the blue line. Plot (b) shows frequency connectedness, where the red line 
represents daily connectedness (1 to 2 days), the blue line represents daily to weekly connectedness (2 to 5 days), 
the green line represents weekly to monthly connectedness (5 to 21 days) and the purple line represents monthly 
to yearly connectedness (21 to 252 days). The rolling window is 756 days while the rolling sample of the predictive 
horizon for the variance decomposition is 252 days. 
 
Figure 8. Dynamic connectedness - RE firms, oil & gas firms and other assets  

(a) Total connectedness  (b) Frequency connectedness 

 
Note: The vertical axis shows percentual connectedness and the horizontal axis shows years. Plot (a) shows total 
connectedness over time, represented by the blue line. Plot (b) shows frequency connectedness, where the red line 
represents daily connectedness (1 to 2 days), the blue line represents daily to weekly connectedness (2 to 5 days), 
the green line represents weekly to monthly connectedness (5 to 21 days) and the purple line represents monthly 
to yearly connectedness (21 to 252 days). The rolling window is 756 days while the rolling sample of the predictive 
horizon for the variance decomposition is 252 days. 
 
 
 

 



APPENDIX 

Table A1. Summary of literature review 

Article 
(year) 

Period Method Variables Directionality / Key findings 

Henriques 
and 
Sadorsky 
(2008) 

2001-
2007 
(weekly) 

VAR, Generalized 
impulse responses 

Energy stock prices (ECO index), 
technology stock prices (PSE index), 
oil prices (future contract trades 
NYMEX) and interest rates 

Technology & oil prices affects alternative energy prices. 
Shocks to technology prices has larger impact on alternative 
energy prices than shock in oil prices. 

Mohanty 
and 
Nandha 
(2011) 

1992-
2008 
(monthly) 

Fama-French-
Carhart’s four-
factor asset 
pricing model 
augmented with 
oil price and 
interest rate  

Firm-specific variables for oil and 
gas firms, West Texas Intermediate 
(WTI), yield on 10-year Treasury 
bond 

Market, book-to-market, size factors, momentum characteristics 
of firms and changes in oil price affects the returns for oil and 
gas firms. Oil price risk exposure for the oil and gas firms are 
significant, positive and varies over time, across firms and 
industry subsectors. 

Kumar et 
al. (2012) 

2005-
2008 
(weekly) 

VAR Stock index of clean energy (NEX, 
ECO & SPGCE), Technology stock 
index (PSE), Oil prices, carbon 
allowance price (European emission 
trading) and short-term interest rates 

Oil prices and technology stock prices separately affect the 
stock prices of clean energy firms. No significant relationship 
between carbon prices and the stock prices of the firms. 

Sadorsky 
(2012a) 

2002-
2007 
(annual) 

Variable Beta 
Model 

Company stock returns, firm size 
(annual total assets), firm leverage 
(debt to equity ratio), R&D 
expenditure relative to firm sale, 
company sale growth. Market 
returns (U.S Stock market index, oil 
price returns(WTI)) 

Company sales growth has a negative impact on company risk 
while oil price increases have a positive impact on company 
risk. When oil price returns are positive and moderate, increases 
in sales growth offset the impact of oil price returns and this 
leads to lower systematic risk. 

Sadorsky 
(2012b) 

2001-
2010 
(daily) 

VAR, 
Multivariate 
GARCH models 

Clean Energy Index (ECO), 
Technology Index (PSE), Crude oil 
futures contract 

Stock prices of clean energy companies correlate more highly 
with technology stock prices than with oil prices. 

Bianconi 
and 
Yoshino 
(2014) 

2003-
2012 
(daily) 

Multivariate 
GARCH, dynamic 
conditional 
correlation and 
VaR 

Firm-sepcific variables for oil and 
gas firms, market premium, VIX, 
exchange rates (FX), West Texas 
Intermediate (WTI) 

Specific risk factors, such as leverage and company size, explain 
returns of the firms, Common risk factors, such as market 
excess return, VIX, WTI and FX, also explain returns of the 
firms. 

Reboredo 
(2015) 

2005-
2013 
(daily) 

CoVaR Oil priced for Brent oil, Three global 
clean energyindices 
(ECO,SPGCE,ERIX), three sectoral 
clean energy indices (WIND, 
SOLAR, TECH) 

Oil price dynamics significantly contributes around 30% to 
downside and upside risk of renewable energy companies. 

Bondia et 
al. (2016) 

2003-
2015 
(weekly) 

Cointegration, 
Structural breaks, 
Granger causality 

WilderHill New Energy Global 
Innovation Index (ECO), New York 
Stock Exchange Arca Tech 100 
Index (PSE), closing spot prices of 
West Texas Intermediate (WTI), 10-
Year Treasury Constant Maturity 
Rate 

Presence of cointegration among the variables with two 
endogenous structural breaks. Ignoring the presence of 
structural breaks in a long time series data can produce 
misleading results. The stock prices of alternative energy 
companies are impacted by technology stock prices, oil prices 
and interest rates in the short run. There is no causality running 
towards prices of alternative energy stock prices in the long run. 

Sanusi 
and 
Ahmad 
(2016) 

2004-
2015 
(daily) 

Four factor Fama-
French-Carhart 
model augmented 
with lagged 
returns of Brent 
crude oil price 

Returns of oil and gas firms, FTSE 
All Share index, Brent crude oil 
price, risk free rate  

Market risk, oil price risk, size and book-to-market determines 
asset returns of oil and gas firms. Oil price shocks have no 
strong effect on oil and gas firms stock returns. 

Ahmad 
(2017) 

2005-
2015 
(daily) 

Diebold & Yilmaz 
(2009, 2012) 
directional 
spillover/spillover 
index, 
Multivariate 
GARCH model 
(DCC-GARCH) 

WilderHill Clean Energy Index 
(ECO), NYSE Arca Technology 
Index (PSE), futures contracts 
(nearest contract to maturity) of 
West Texas Intermediate (WTI) 

Technology and clean energy indices are the dominant emitters 
of return and volatility spillovers to the crude oil prices. The 
time and event-dependent movements are well captured by the 
directional spillover approach. 

Gupta 
(2017) 

1987-
2014 
(daily) 

Cross-country 
analysis 

Firm-level data, country-specific 
market returns, NYMEX one month 
future oil price, country specific risk-
free rate, NYSE Arca Tech index 
(PSE), cultural dimension scores 

Alternative energy firms are rewarded by the market when 
country-level innovation and technology are well developed. 
Cross-country differences in financial performance of 
alternative energy firms can be explained by cultural 
dimensions. 

Reboredo 
et al. 
(2017) 

2006-
2015 
(daily) 

Continuous and 
discrete wavelets, 
Wavelet 

Oil spot prices for West Texas 
Intermediate (WTI), Wilder Hill 
Clean Energy Index (ECO), S&P 

Dependence between oil and renewable energy returns in the 
short run is weak but gradually strengthened towards the long 
run. Causality tests provide evidence against linear causality at 
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coherence, 
Granger linear 
and non-linear 
causality 

Global Clean Energy Index 
(SPGCE), European Renewable 
Energy index, NYSE Bloomberg 
Global Wind Energy Index, NYSE 
Bloomberg Global Solar Energy 
Index, NYSE Bloomberg Global 
Energy Smart Technologies Index 

higher frequencies and in favour of unidirectional and 
bidirectional linear causality at lower frequencies. Finds 
evidence of non linear causality running from renewable energy 
indices to oil prices at different time horizons and mixed 
evidence of causality running from oil to renewable energy 
prices.  

Ferrer et 
al. (2018) 

2003-
2017 
(daily) 

Return and 
volatility 
connectedness 
time-frequency 
approach by 
Barunik & 
Krehlik (2018), 
The dynamic 
interactions in 
time and 
frequency, 
extension of 
spillover index 
approach by 
Diebold & Yilmaz 
(2012) 

Closing prices of U.S renewable 
energy stocks, high technology 
stocks, conventional energy stocks, 
crude oil futures contracts, U.S. 10-
year Treasury bond yields, the 
default spread and the volatility of 
the U.S. stock and Treasury bond 
markets (VIX and TYVIX.). 

Return and volatility connectedness is generated in the very 
short-term, the long-term plays a minor role. Higher degree of 
interconnectedness across crude oil and financial markets since 
the onset of the U.S. subprime mortgage crisis in summer of 
2007 Crude oil prices not a key driver of the stock market 
performance of renewable energy companies in the short-term 
or the long-term. Crude oil prices are net receiver of financial 
shocks. A significant pairwise connectedness is found, mainly in 
the shortterm between clean energy and technology stock prices. 

Pham 
(2019) 

2010-
2018 
(daily) 

Diebold & Yilmaz 
(2012, 2014) 
directional 
spillovers, 
forecast error 
variance 
decomposition 
from generalized 
VAR, multivariate 
GARCH (DCC, 
ADCC, GO-
GARCH) 

NASDAQ OMX Green Economy 
Index Family, NYMEX continuous 
oil future contracts nearest to 
maturity, spot WTI and the Brent 
crude oil prices. 

The relationship between oil price and clean energy stock varies 
largely across clean energy stock sub-sectors. Biofuel and 
energy management stocks most connected to oil price, while 
wind, geothermal, fuel cell stocks are least connected to oil 
price.  

Uddin et 
al. (2019) 

2003-
2017 
(daily) 

Cross-
quantilogram 

S&P Global Renewable Energy 
Index, S&P Composite index, oil 
futures, gold futures, USD/EUR 
exchange rate 

The relationship between RE stock returns,changes in oil prices 
and aggregate stock returns is not symmetric across quantiles, 
where asymmetry is higher in longer lags. The positive effect of 
exchange rates and gold returns on RE stock returns is observed 
only during extreme market conditions. 

Xia et al. 
(2019) 

2008-
2019 
(daily) 

VaR, 
connectedness 
network, ARMA-
GARCH 

ERIX, Oil, Natural gas, Electricity, 
Carbon, Coal 

The fossil energy-renewable energy network system shows high 
interdependence. connectedness network. Dynamic results from 
fossil energy price changes to renewable energy returns have 
strong time-varying pattern with high volatility over time. Total 
connectedness in the positive returns network is stronger than in 
the negative returns network for the sample period. 

Note: VAR: Vector autoregressive; GARCH: Generalized autoregressive conditional heteroskedasticity; CoVaR: 
Conditional value at risk; DCC-GARCH: Dynamic conditional correlation generalized autoregressive conditional 
heteroskedasticity; GVAR: Global vector autoregressive; NARDL: Non-linear autoregressive distributed lag; 
VaR: Value at risk; ARMA-GARCH: Autoregressive moving average generalized autoregressive conditional 
heteroskedasticity 
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