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Abstract This study assesses the impact of the adoption of natural resource management (NRM)
technologies on sorghum production in the drought-prone areas of Indian state of Karnataka, using plot-
level data. The key factors affecting adoption are access to credit, extension services, and social networks.
The bias-corrected technical efficiency scores and the meta-technology ratio indicate that efficiency can
be improved by 30%. The result of endogenous switching regression shows that the average treatment
effect on treated is -0.24, suggesting a 13%. reduction in production efficiency. Adopting NRM technologies
could enhance production and farmer livelihoods in drought-prone areas.
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Soil degradation (Biswas et al. 2019) and climate
change (Krishnakanth and Nagaraja 2020) threaten
agricultural sustainability in Karnataka, one of the most
drought-prone states of the country (Nagaraja,
Somashekar, and Kavitha 2011). Severe to moderate
droughts are frequent in Karnataka (Ray et al. 2015;
KSNDMC 2017); more than 70% of the cultivated area
is rainfed, and the droughts often result in partial or
complete crop failure (Biradar and Sridhar 2009).

The crop production potential is limited also by erratic
and uncertain rainfall, with higher degree of spatial
temporal variability; depleting groundwater resources;
inadequate infrastructure; low input use and technology
adoption; and eroding natural resources. The average
yield of most common crops is between two and five
times less than their optimal yield level (Wani et al.
2011). The crop loss due to water erosion alone is INR
32,429 million (at 2014–15 prices), the second highest
in the country after Madhya Pradesh (TERI 2018).

Natural resource management (NRM) technologies
enhance productivity by conserving soil moisture,
improving soil health, and encouraging the use of
quality inputs and improved seeds (Kerr and Sanghi
1992; Gebrernichael et al. 2005; Rajkumar and
Satishkumar 2014; Bhattacharyya et al. 2015; Wolka,
Mulder, and Biazin 2018). The NRM technologies
recommended in the region are broad bed and furrow,
contour bunding, graded bunding, compartment
bunding, ridges and furrows, contour cultivation, and
set-furrow cultivation (Pathak, Laryea, and Singh 1989;
Vittal et al. 2004; Sharma and Guled 2012; Mishra,
Singh, and Kumar 2018).

Contour bunding is the most widely practised technique
in the semi-arid tropics (Bhattacharyya et al. 2015;
Narayan, Biswas, and Kumar 2019; Naveena, Shivaraj,
and Nithin 2019; Pathak et al. 1989). Soil bunds help
in reducing soil loss and run-off and in improving soil
moisture and fertility and, in turn, increasing crop
productivity (Gebrernichael et al. 2005; Kerr and
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Sanghi 1992; Rajkumar and Satishkumar 2014). Using
soil bunds positively influences crop productivity.

The state government has been trying to scale the
adoption of conservation technologies, but private or
voluntary adoption has been low (Reddy, Hoag, and
Shobha 2004; Bhattacharyya et al. 2015), and there is
a need to understand the factors that affect the adoption
of conservation technologies and their effect on
production performance. Few studies have used plot-
level data and the meta-frontier approach to compare
the technical efficiency (TE) of adopters and non-
adopters in India, however, to the best of our
knowledge.

This study assesses the impact of the soil bunds
technique on efficiency and explores the linkages
between NRM and technical efficiency (TE). We use
the endogenous switching regression (ESR) model to
control for the heterogeneity effects of observed and
unobserved factors. To estimate the bias-corrected TE
scores, we use the double bootstrap data envelopment
analysis (DEA) technique (Simar and Wilson 2007).
To identify the factors affecting the TE for each group,
we use bootstrapped regression.

This paper will help policymakers to design
programmes for increasing the adoption rate of NRM
technologies and, thereby, sustain the natural resources
and livelihoods of resource-poor farmers in the region.

Data and study area
We purposively selected a region of Karnataka that is
a drought hotspot and where the frequency of drought
is projected to increase in the future (BCCI-K 2011).
We randomly selected four districts—Tumukuru,
Koppal, Bidar, and Gadag—as first-stage sampling
units. At the second stage, we selected a sub-watershed
from each district. From each watershed (treated area),
we randomly selected plots from net planning reports
(a net planning report forms part of a detailed project
report/feasibility report, which contains information on
all the plots of the farmers in a watershed). Sorghum is
an important food and fodder crop in drought-prone
areas; this way, we chose 193 sorghum-growing plots
for a detailed survey (including household-level
features), and we also randomly selected 251 control
plots (untreated areas) in the vicinity of treated areas.
The variables selected for this study are guided by the
relevant literature and the understanding of watershed
management in the region.

Methodology

Generally, to estimate TE, the two-step DEA approach
is used, but Simar and Wilson (2007) argue that it does
not account for the underlying data-generating process
(DGP), and its efficiency estimates are serially
correlated and these lead to statistically invalid
inferences. The implication is that the efficiency
estimates of the two-step DEA approach are biased,
and these positively exaggerate the level of efficiency
within a sample.

Double bootstrap data envelopment analysis (DEA)
method

In the double bootstrap DEA method, the estimates of
efficiency scores are bias-corrected–the idea underlying
bootstrapping is simply to simulate the sampling
distribution of interest by mimicking the DGP—and
policymakers can view the results with more
confidence. Therefore, we use the double bootstrap
DEA method.

The DEA can be formulated with the assumption of
either constant returns to scale (CRS) λkj ≥ 0 or variable
returns to scale (VRS) Σn

j=1 λkj = 1, λkj ≥ 0. Similarly,
we can define an input-oriented DEA for meta-frontier
efficiency estimation and use a bootstrapping technique
to correct biased efficiency scores (δkj):

Where b^ k is bias, the bias-corrected TE scores can be
given as
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Estimation of meta-frontier efficiency

The meta-frontier is ‘the envelope of commonly
conceived classical production functions’ (Hayami and
Ruttan 1971). The meta-frontier model groups all
farmers by their level of adoption. The model indicates
the sources of technological heterogeneity and enables
the estimation of comparable technical efficiencies for
firms operating under different technologies (Battese,
Rao, and O’Donnell 2004).

The meta-frontier is an envelope—it considers all the
group frontiers (Moreira and Bravo-Ureta 2010; Le,
Vu, and Nghiem 2018)—therefore, the TE estimated
employing the meta-frontier model is lower than the
TE estimated using the group-specific frontier. One
implication is that there exists a non-negative
distance—known as the meta-technology ratio (MTR),
and defined as the ‘gap in technology access to a given
group relative to technology available to all groups
taken together, i.e. global or meta-frontier efficiency’.

Higher the value of the MTR, less the gap between the
group frontier and the meta-frontier (O’Donnell, Rao,
and Battese 2008). Therefore, there is a need to shift
to a higher-MTR technology or group or increase
production by switching to a higher-MTR group.

where, δ
=

G is bias-corrected meta-frontier or global TE,
and δ

=
K is bias-corrected group-specific TE.

Determinants of technical inefficiency

Efficiency scores are not generated by a censoring DGP
but are fractional data-generating processes; therefore,
it is not appropriate to use Tobit to explain the
determinants of efficiency (Banker and Natarajan 2008;
McDonald 2009). Unbiased parameter estimates can
be yielded by bootstrapped truncated regression:

δ
=

kj = α + Ζjφ + μj; j=2; μj~N(0,1)

Where,
δ
=

kj = group-specific efficiency
Zj=set of variables expected to be influencing efficiency

Endogenous switching regression model for impact
assessment

The decision to adopt NRM technologies is a standard
dichotomous choice model assuming that the farmer

is risk-neutral and they compare the net benefit from
the NRM technologies in making their decision.
Assume that TIE iNRM indicates the technical
inefficiency—the inverse of technical efficiency—of
a farmer with the adoption of NRM technologies,
TIEiNA indicates technical inefficiency with non-
adoption, and a farmer will choose NRM if TIEiNRM <
TIEiNA.

Adopter: TIEiNRM = XiβNRM + μiNRM ; μiNRM iid
→ Ν(0,1)

... (1)

Non-adopter: TIEiNA = XiβNA + μiNA ; μiNA iid→ Ν(0,1)

... (2)

where, Xi is a vector of explanatory variables including
personal and household-level characteristics, plot
features, perception (risk of crop failure and benefits
of NRM technologies), inputs of crop production, and
other institutional variables; βNRM and βNA are vectors
of parameters to be estimated.

Assume that T*
i is a latent variable that indicates that

adopting NRM technologies yield positive net benefits.
It can be expressed as a function of farmers’
characteristics, say W, as given below:

T*
i  = γ′W + εi; εi ND

→ (0, σ2
ε)

Ti = 1 if T*
i  > 0

Ti = 0 if T*
i  < 0 ...(3)

where, T*
i  is a dichotomous variable, taking value 1 for

the adopter of NRM technologies and 0 for non-
adopters. The γ′ is a vector of parameters to be
estimated. The  captures measurement errors as well
as unobservable factors influencing technical
inefficiency.

This study aims to estimate the impact of the adoption
of NRM technologies on TE; however, in cross-section
data, there is a problem of counterfactuals–the baseline
data for adopters is absent. Another problem is the
selection bias, which stems from the inability to observe
the managerial and technical abilities of farmers
(Abdulai and Huffman 2014). If the unobservable
factors influence the error terms of outcome (μi) and
selection equation (εi), the influence will lead to a non-
zero correlation coefficient—corr(ε,μ) = ρ ≠ 0—and
the estimates of the ordinary least squares method will
be biased.
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In assessing impact, dealing with selection bias is
critical; therefore, to examine the determinants of the
adoption of NRM technologies and the impact of
adoption on technical inefficiency, we employ the
endogenous regime switching(ERS) model—a
parametric approach that accounts for selection bias
from observed as well as unobserved variables
(Maddala 1986). To capture the differential impact in
the ESR model, we group all the observations by
adopters of NRM technologies and non-adopters. Two
regimes can be given as follows:

Regime 0: TIEiNA = XiβNA + μiNA; Ti = 0

Regime 1: TIEiNRM = XiβNRM + μiNRM; Ti = 1 …(4)

Are Equations 1, 2, and 4 the same? In Equations 3
and 4, all the variables could be the same, but for the
identification of the selection equation from the
outcome equations, there should be at least one variable
(instrumental variable, IV) W in which is not included
in X. When there is non-zero correlation between the
error terms ..... and μiNRM, μiNA, these error terms follow
a trivariate normal distribution with zero mean and
variance and covariance matrix (Lokshin and Sajaia
2004):

…(5)

where, the diagonal terms are variances and off-
diagonal terms are co-variances. The selection bias
arising due to observable variables is taken care of in
Equation 4, but we need to estimate and test the inverse
Mills ratio (IMR) for both adopters and non-adopters
for selection bias from the unobserved variables. The
expected values of truncated error can be obtained as
follows:

…(6)

…(7)

where, φ is the standard normal probability density

(PDF) function and Φ is the standard normal
cumulative distribution function (CDF). λNA is the IMR
for non-adopters and λNRM is the IMR for adopters,
representing selectivity. To account for selectivity bias,
IMRs are added in Equation 8:

Regime 0: TIEiNA = XiβNA + σNAελNA + μiNA ; Ti = 0

Regime 1: TIEiNRM = XiβNRM + σNRMελNRM + μiNRM; Ti = 1
…(8)

The residuals in the two-stage estimation method are
heteroscedastic, and it is difficult to get consistent
standard errors without performing a complex
weighting procedure (Lokshin and Sajaia, 2004);
therefore, we use the full information maximum
likelihood estimation (FI-MLE) method for the
simultaneous estimation of the selection and outcome
equations. Moreover, the FI-MLE method yields
consistent and asymptotically efficient parameters
(Maddala, 1986), and the signs and significance levels
of the correlation coefficient of the error terms between
the selection and outcome equations have an economic
interpretation.

If ρNAε and/or ρNRMε is significantly different from 0,
the presence of selectivity bias is indicated, and the
use of ESR is appropriate. If ρ>0, the selection bias is
negative; it indicates that farms at above-average
technical inefficiency are less likely to adopt NRM
technologies. If ρ<0, the selection bias is positive; it
indicates that farms at below-average technical
inefficiency are more likely to adopt NRM technologies
(Abdulai & Huffman, 2014). If the correlation
coefficients have the same sign, hierarchical sorting is
indicated: adopters have below-average technical
inefficiency compared to non-adopters—irrespective
of the adoption decision. An alternate sign indicates
that farmers adopt NRM technologies according to
comparative advantage (Alene and Manyong 2007).
The expected value of outcome for an adopter is given
by:

E(TIENRM|Τ = 1) = XiβNRM - σNRMελNRM …(9)

Term σNRMελNRM shows sample selectivity, indicating
that farms that adopted NRM technologies may behave
differently from average farms with identical features
because of unobserved variables (Maddala 1986). If
the same farm had not adopted NRM technologies, the
expected outcome would have been
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E(TIENA|Τ = 1) = XiβNA - σNAελNRM …(10)

Now, the average treatment effect on the treated (ATT)
can be given (Lokshin and Sajaia 2004):

ATT = E (TIENRM|Τ = 1) − (TIENA|Τ = 1) = Xi(βNRM -
βNA) + λNRM (σNRMε − σNAε) …(11)

Similarly, the average treatment effect on the untreated
(ATU) can be given:

ATU = E (TIENRM|Τ = 0) − (TIENA|Τ = 0) = Xi(βNRM -
βNA) + λNA (σNRMε − σNAε) …(12)

Further, the base heterogeneity effects can be estimated:

BH1 = E (TIENRM|Τ = 1) − E(TENRM|Τ = 0) …(13)

BH2 = (TIENA|Τ = 1) − E(TENA|Τ = 0) …(14)

Results and discussion
There is no difference between adopters and non-
adopters on most household-level characteristics
(except the number of livestock units, access to credit,
and off-farm income) (Table 1). The number of
livestock units is higher for adopters than non-adopters
because the availability of fodder is better in treated
areas—soil bunds are stabilized by growing grass
species, which supply additional fodder (Arya, Panwar,
and Yadav 2011). Also, project implementing agencies
(PIA) distribute cross-breed cows in watershed areas.
Higher access to credit also can be attributed to efforts
made by PIAs to create awareness about ongoing
financial assistance schemes and link farmers in self-
help groups (SHG) to formal banks.

In the case of plot-level features, adopters differ from
non-adopters in terms of slope, soil erosion, and fertility
levels. The plots of around 90% of non-adopters and
64% of adopters had a high slope and soil erosion was
high.  The perception of the risks of crop failure and
the benefits of conservation technologies differed
between adopter and non-adopter farms. Extension and
training services officers had conducted more exposure
visits and training programmes for adopter farmers than
non-adopters, because before watershed activities are
executed—and in the capacity-building phase—PIAs
try to persuade farmers of the benefits of NRM
technologies by taking them to visit model watersheds,
and they conduct training programmes during the
phases of watershed development. At the time of
watershed activities, many committees and groups are

formed for the effective execution of conservation
measures, and the social networks of adopter farmers
are better than that of non-adopters. Further, the input
utilization of adopters is statistically different than that
of non-adopters.

Distribution of technical efficiency

The mean group-specific technical efficiency (GSTE)
is 0.83 for adopters and 0.84 for non-adopters (Table
2). The meta-frontier technical efficiency (MFTE) is
0.68 for adopters and 0.53 for non-adopters. The MFTE
is less than the GSTE because, in the case of the GSTE,
an individual farm faces only the group frontier but, in
the case of the meta-frontier, the farm is compared with
the global frontier. The MTR for adopters is 0.82,
higher than the 0.63 for non-adopters, and it shows
that a shift in technology can enhance efficiency by
30.16% (Table 2).

The two-sample Kolmogorov–Smirnov test rejected the
CRS model (0.61712, p-value <0.00); therefore, we
discuss the results of the VRS model. Moreover, with
the plot-level data, the VRS model seems more realistic
than the restrictive CRS model. The frequency
distribution of the GSTE shows that the efficiency
scores of around 79% of the adopter plots and 84% of
the non-adopter plots lie in the 70–100% range. The
efficiency score exceeds 90% for around 46% of the
adopter plots and 42% of the non-adopter plots in the
GSTE (Table 3).

Factors affecting technical inefficiency

The results of the factors affecting the technical
inefficiency of sorghum production (Table 4) show that
age, dependency ratio, number of livestock units, farm
assets index and access to credit are associated with
less technical inefficiency; these factors enhance
production efficiency. The farm assets index shows the
ownership of farm implements; farmers who rank high
on the higher farm assets index can carry out
agricultural operations in time, particularly at critical
growth stages, which in turn positively affects
efficiency. Our results are in line with Vortia et al.
(2019), which reports a positive relationship between
farm mechanization and efficiency. Access to credit
has a positive and statistically significant effect on
efficiency as it enables farmers to utilize improved or
new technologies and a better mix of quality inputs
for crop production (Laha 2013).
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Table 1 Sample plots (descriptive summary)

Sample Adopter Non-Adopters p-value
(N=444) (N=193) (N=251)

Household-level characteristics
Head (male=1; otherwise 0) 0.82(0.39) 0.79 (0.41) 0.84 (0.37) 0.269
Age (years) 50.0 (12.3) 50.2 (11.7) 49.8 (12.8) 0.717
Education (number of schooling years) 5.3 (4.5) 5.3 (4.3) 5.3 (4.6) 0.983
Family size (number of members) 5.1 (1.8) 5.1 (1.8) 5.0 (1.8) 0.716
Size of landholding (ha) 2.5 (2.0) 2.4 (1.9) 2.5 (2.1) 0.903
Livestock (number of animals) 4.0 (2.7) 5.0 (2.9) 4.0 (2.5) 0.001
Off-farm income (if yes=1; otherwise 0) 279 (62.8) 166 (86.0) 113 (45.0) <0.001
Dependency ratio (area per capita) 0.5 (0.5) 0.5 (0.4) 0.5 (0.5) 0.601
Farm asset index# 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.902
Access to credit 271 (61.0) 144 (74.6) 127 (50.6) <0.001
Farm-/plot-level characteristics
Size of plots 0.8 (0.6) 0.8 (0.6) 0.8 (0.5) 0.562
Number of plots 3.0 (1.9) 3.1 (2.1) 2.9 (1.7) 0.281
Tenure (if own=1; otherwise 0) 310 (69.8) 129 (66.8) 181 (72.1) 0.273
Slope of plot (if high=1; otherwise 0) 309 (69.6) 174 (90.2) 135 (53.8) <0.001
Type of soil (if red=1; otherwise 0) 137 (30.9) 72 (37.3) 65 (25.9) 0.013
Type of soil (if black=1; otherwise 0) 208 (46.8) 92 (47.7) 116 (46.2) 0.835
Soil erosion perception (if high=1; otherwise 0) 262 (59.0) 124 (64.2) 138 (55.0) 0.061
Soil erosion perception (if medium=1; otherwise 0) 92 (20.7) 37 (19.2) 55 (21.9) 0.556
Fertility of plot (if high=1; otherwise 0) 178 (40.1) 96 (49.7) 82 (32.7) <0.001
Fertility of plot (if medium=1; otherwise 0) 246 (55.4) 89 (46.1) 157 (62.5) 0.001
Perception of farmers
Risk perception (chances of crop failure) 4.8 (1.4) 5.4 (1.5) 4.3 (1.1) <0.001
Benefit perception index# (number) 3.3 (0.7) 3.2 (0.7) 3.4 (0.7) 0.01
Extension and training services
Number of visits of KVK and RSK 3.0 (1.6) 3.0 (1.5) 3.0 (1.6) 0.731
Exposure visits (If yes=1; otherwise 0) 1.1 (0.9) 1.5 (0.8) 0.8 (0.9) <0.001
Training (If yes=1; otherwise 0) 284 (64.0) 144 (74.6) 140 (55.8) <0.001
Social network
Interaction 1= sometimes 152 (34.2) 43 (22.3) 109 (43.4) <0.001

2=occasionally 140 (31.5) 61 (31.6) 79 (31.5)
3= very frequently 152 (34.2) 89 (46.1) 63 (25.1)

Usefulness 1 = not useful, 143 (32.2) 23 (11.9) 120 (47.8) <0.001
2=useful 179 (40.3) 92 (47.7) 87 (34.7)
3=very useful 122 (27.5) 78 (40.4) 44 (17.5)

Inputs for production
Variety (If yes=1; otherwise 0) 273 (61.5) 137 (71.0) 136 (54.2) <0.001
NPK (kg per ha) 90.7 (71.6) 89.4 (67.4) 91.7 (74.8) 0.734
Seed (kg per ha) 12.9 (9.7) 12.2 (8.2) 13.5 (10.7) 0.161
Human labour (person-days per ha) 66.4 (23.1) 69.5 (22.1) 64.1 (23.6) 0.014
Bullock labour (person-days per ha) 15.5 (7.8) 16.4 (6.2) 14.9 (8.8) 0.038
Farm machine (hours per ha) 14.9 (7.0) 15.9 (5.7) 14.1 (7.8) 0.008
FYM (tonnes per ha) 2.4 (4.0) 2.3 (3.9) 2.4 (4.1) 0.959

Notes #Benefits perception index is constructed using PCA of benefits of soil bunds perceived by the farmers for reduction in soil loss,
run-off, and improving groundwater table, soil moisture, and fertility.
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Table 2 Group-specific and meta-frontier technical efficiency under variable returns to scale (VRS)

Category Technical efficiency Mean SD Min Max

Adopters GSTE 0.83 0.16 0.39 1.00
MFTE 0.68 0.16 0.35 0.94
MTR 0.82 1.00 0.90 0.94

Non-adopters GSTE 0.84 0.13 0.38 0.97
MFTE 0.53 0.14 0.28 0.84
MTR 0.63 1.08 0.74 0.87

Notes: GSTE is group-specific technical score; MFTE is meta-frontier technical score; MTR is meta-technology ratio.

Table 3 Distribution of group-specific and meta-frontier
of technical efficiency scores (%)

TE class               Group-specific Meta-frontier
Adopters Non-adopters All farms

30–40 0.50 0.40 12.70
40–50 3.60 3.20 21.60
50–60 8.30 6.40 18.00
60–70 8.30 6.40 17.30
70–80 13.50 5.20 16.20
80–90 20.20 36.30 9.20
90–100 45.60 42.20 5.00
Total 193(100) 251(100) 444 (100)

The fertility of the soil in the study area is poor, and its
carbon content is low (Wani 2011). Larger the number
of livestock units, higher the amount of manure; and
the application of manure favourably affects soil health
and, in turn, the efficiency in sorghum production. The
type of soil and the slope of the plot are found to have
a negative influence on efficiency. Generally, higher
the slope, higher the soil erosion—the top, fertile layer
of soil is washed away, reducing the productive
capacity and health of the soil (Sharda and Dogra 2013)
and, in turn, its efficiency.

The infiltration capacity of black soils is very low in
comparison to that of red soils, and the low infiltration
capacity frequently leads to waterlogging and cracking
and lowers productivity and, thereby, efficiency in
sorghum production. The production capacity of fertile
soils is greater than that of less fertile soils. Fertile soils
conserve soil moisture and these are resilient to drought
conditions. Soil fertility is negatively associated with
inefficiency; interestingly, though, fertility has an
insignificant effect on inefficiency in the plots of non-

adopters, because the soil bunds on their plots conserve
soil moisture despite the soil being fertile.

Training farmers had a negative effect on inefficiency.
Training improves farmers’ understanding of the
adverse effects of soil erosion and of the benefits of
adopting conservation measures and the improved
package of practices. Our results are consistent with
the findings of earlier studies (Tipi et al. 2009:
Majumder et al. 2016).

Access to extension service centres had a positive effect
on the efficiency of the plots of adopters and non-
adopters. By visiting extension service centers, farmers
learn of quality inputs (improved seeds, micronutrients,
and fertilizers) and of the improved package of
practices that helps improve efficiency. Visits to model
watersheds to get real, field-level experience of the
effectiveness of conservation measures, or exposure
visits, had a favorable influence on efficiency for
adopters. The influence on efficiency was insignificant
for non-adopters (farmers of untreated areas) because
they did not have the opportunity to make an exposure
visit.

Impact of NRM technologies on technical inefficiency

The results of the falsification test (Table 5) show the
validity of the taken instrumental variables. In the
selection model, the ‘perceived benefits of soil bunds
on reducing the run-off’ are significantly positive, as
are the ‘perceived benefits of soil bunds on enhancing
soil moisture’, but both variables are insignificant in
the non-adopter outcome model, implying that these
have no significant effect on efficiency. Therefore, it
can be stated that the selected instruments are valid.

Among household-specific features, off-farm income,
farm assets, and access to credit are associated



92 Kumar S, Singh D R, Jha G K et al.

Table 4 Factors affecting group-specific technical inefficiency in sorghum cultivation

                                                Adopters                                    Non-adopters
Variables Estimates confidence intervals Estimates confidence intervals

(alpha 0.05) (alpha 0.05)

Intercept 5.415** 3.049 11.842 –3.323 –9.318 1.510
Household-level characteristics
Head –1.087** –2.850 –0.422 0.750** 0.070 1.783
Age –0.087** –0.173 –0.080 0.018 –0.006 0.052
Education 0.045 –0.039 0.155 0.064** 0.004 0.170
Dependency ratio –3.402** –6.682 –3.147 –1.582** –3.140 –0.943
Livestock –0.248** –0.554 –0.153 0.090** 0.017 0.239
Farm asset index –8.208** –17.174 –3.494 4.670** 3.737 9.116
Access to credit –3.280** –6.385 –3.183 0.632 –0.141 1.633
Farm/plot-level characteristics
Tenure 0.569 –0.305 1.772 0.419 –0.207 1.214
Plot size 0.030 –0.795 1.072 –0.254 –0.849 0.280
slope of plot 1.882** 1.618 3.875 1.083** 0.017 2.513
Red soil 0.513 –0.838 2.304 0.578 –0.409 1.767
Black soil 2.865** 2.393 5.760 1.513** 0.745 3.120
Soil erosion (high) 0.744 –0.304 2.221 –0.264 –1.134 0.370
Soil erosion (medium) 0.333 –1.088 1.972 0.852** 0.150 2.203
Fertility of plot (high) –4.822** –9.972 –4.485 1.787 –1.170 4.104
Fertility of plot (medium) –2.806** –6.587 –1.919 1.725 –1.274 4.047
Variety 1.187 0.780 2.713 0.069 –0.656 0.759
Perception of farmers
Risk perception 0.088 –0.536 0.882 –0.369** –0.955 –0.017
Benefit perception index –0.703** –1.504 –0.511 –0.424** –0.841 –0.310
Extension and Training services
Training –2.071** –4.205 –1.692 0.369 –0.369 1.199
Visits to KVK and RSK –0.918** –0.844 –1.788 –0.186** –0.461 –0.048
Exposure visits –0.469** –0.166 –1.283 –0.020 –0.375 0.395
Regional Dummy
Tumkur –0.306 –1.606 0.814 –0.686** –1.751 –0.111
Bidar –1.501** –3.551 –0.798 –0.889** –2.054 –0.302
Gadag –3.970** –7.832 –3.607 –2.280** –4.365 –1.595
Sigma 1.422 1.471 2.427 1.054 1.012 1.686

Note ** If the confidence interval (measured @5%) is devoid of zero, then the coefficient is significant at 5% level of significance.

Table 5 Falsification test for validity of selected instruments

Instrument variables Selection model Non-adopters
outcome model

Estimate Std. Error Pr(>|t|) Estimate Std. Error Pr(>|t|)

Intercept 0.201 0.081 0.013 1.971 0.126 0.000
Perceived benefits of soil bunds on reducing 0.041 0.017 0.016 –0.015 0.026 0.546
the run-off
Perceived benefits of soil bunds on enhancing 0.033 0.020 0.094 0.031 0.031 0.330
soil moisture
χ2(2) 4.993  0.007 0.635  0.531
Observations (plots) 444   251   
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positively with the adoption of NRM technologies
(Table 6). Off-farm income may improve the financial
capacity of resource-poor farmers and, thereby, the
probability of adoption of NRM technologies (Ervin
and Ervin 1982; Lapar and Pandey 1999) or, on the
other hand, negatively affect adoption (Pender and Kerr
1998; Shiferaw and Holden 2000; Gebremedhin and
Swinton 2003; Tenge, De Graaff, and Hella 2004;
Amsalu and De Graaff 2007), as off-farm sources of
income might reduce farmers’ interest in farming and
in investing in conservation measures (Ervin and Ervin,
1982; Bravo-Ureta et al. 2006; Teklewold and Köhlin
2011).

As NRM technologies are capital-intensive, and few
farmers in the region have the capacity to invest, access
to credit helps them overcome their credit constraints
and positively affects adoption. Other researchers
(Pattanayak et al. 2003) report similar findings.

The slope of a plot, level of erosion, and tenure have a
significant and positive bearing on the take-up of
conservation technologies. Slope is one of the
important factors influencing soil erosion. Higher the
slope, higher the soil loss due to water erosion. The
slope of a plot also negatively influences the availability
of soil moisture for crop growth. Numerous studies
report a positive association of slope with the adoption
of NRM technologies (Ervin and Ervin 1982; Shiferaw
and Holden 1998; Bekele and Drake 2003;
Gebremedhin and Swinton 2003; Amsalu and De
Graaff 2007; Dessie, Wurzinger, and Hauser 2012).

The extent of soil erosion, or the loss of productive
soil from the field, is another crucial factor determining
adoption. Adoption is higher for farmers who perceive
that soil erosion is affecting the productivity of their
farm negatively (Norris and Batie 1987; Shiferaw and
Holden 1998; Willy and Holm-Müller 2013).

The effects of the adoption of NRM technologies are
less visible or tangible in the short term than in the
long term, and farmers on short-term leases have less
incentive to invest. Many studies report a positive
relationship between tenure security and the adoption
of NRM technologies (Shiferaw and Holden 1998;
Teklewold and Köhlin 2011b), similar to our results.
We also found that the fertility level negatively affects
adoption.

The plots are relatively flat, and the soil depth is
sufficient for good crop growth; the marginal benefits,

or incremental yield changes, are very low, and farmers
do not consider investing in such plots worthwhile.
Our results are in line with other studies (Amsalu and
De Graaff 2007; Tesfaye et al. 2014).

Training and extension services are associated with a
higher likelihood of adoption of NRM technologies—
which are knowledge-intensive (Barrett et al. 2002)
and require appropriate structural design and location
and stability and durability measures—and inadequate
technical support is a major reason for low adoption
(Bekele and Drake 2003; Dessie et al. 2012). Therefore,
and in conformity with earlier studies (Sidibé 2005),
proper training is positively associated with adoption
of NRM technologies.

Access to extension services informs farmers about
NRM technologies that are suitable and available, and
of the technical know-how, and it helps farmers
understand that soil erosion can potentially reduce
production and that it has negative, long-term
consequences. We found that visits to Krishi Vigyan
Kendras and Raita Samparka Kendras are positively
associated with adoption, as reported by many
researchers (Mbaga-Semgalawe and Folmer 2000;
Adegbola and Gardebroek 2007; Di Falco, Teklewold
and Köhlin 2011; Veronesi, and Yesuf 2011; Mugonola
et al. 2013; Mango et al. 2017). A high perception of
risk is positively associated with adoption, as farmers
who perceive that the risk of crop failure is high try to
minimize their risk by adopting NRM technologies.

Farmers who interact with others about the benefits of
conservation technologies rated such interactions
highly useful and they were associated with a higher
probability of adoption. Social networks positively
influence the chances of the uptake of conservation
measures, as expected. Community- or watershed-level
efforts are needed to improve adoption; therefore, social
networks are critical. Moreover, social networks
encourage cooperative behaviour—a prerequisite for
conservation programmes to succeed—since the flow
of water from plots is interconnected. Our findings tie
up well with earlier studies (Krishna 2001; Nyangena
2008; Teshome, Rolker, and de Graaff 2013)

Treatment effects

Counterfactual analysis shows that the ATT is –0.24,
or soil bunds can reduce technical inefficiency in
sorghum production for adopter farms by around
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Table 6 Full information maximum likelihood estimates of endogenous switching regression model

Selection Adoption Non-adoption
Estimate Std. Error Estimate Std. Error Estimate Std. Error

Intercept –3.785 1.197 0.824 0.466* 0.308 0.129
Household-specific features
Head 0.491* 0.275 0.003 0.065 0.039 0.029
Age –0.004 0.008 –0.001 0.002 –0.001 0.001
Education –0.002 0.023 –0.011* 0.006 0.004 0.002
Dependency ratio –0.354 0.237 –0.053 0.062 –0.001 0.023
Off”farm income 1.170*** 0.215 –0.036** 0.100 –0.023* 0.029
Livestock –0.003 0.036 0.010 0.010 –0.004* 0.004
Farm asset index 0.176* 0.054 0.274 0.200 0.025 0.093
Access to credit 0.071** 0.212 –0.016* 0.064 –0.070*** 0.023
Plot-level features
slope of plot 1.088*** 0.233 0.242** 0.100 0.008* 0.027
Red soil 0.348 0.298 0.011 0.085 0.004 0.031
Black soil 0.234 0.292 0.035 0.082 0.015 0.029
Soil erosion (high) 0.117* 0.055 0.026 0.066 0.013* 0.027
Soil erosion (medium) –0.380 0.304 0.103 0.082 –0.027 0.031
Fertility of plot (high) –0.135 0.525 0.178 0.131 –0.022* 0.055
Fertility of plot (medium) –0.353 0.528 0.179 0.134 0.014 0.053
Tenure 0.285** 0.031 0.007 0.066 –0.015* 0.024
Extension services
Training 0.353* 0.120 –0.118* 0.068 –0.019 0.022
Visits to KVK and RSK 0.114* 0.061 –0.022 0.019 –0.002 0.007
Risk perception 0.296*** 0.079 –0.024 0.021 –0.011 0.011
Social network       
Interaction with other farmers 0.311** 0.120 –0.003 0.039 –0.028* 0.015
Usefulness of interaction 0.636*** 0.136 –0.004 0.050 –0.011 0.017
Inputs for production 
Variety 0.211 0.208 –0.105* 0.060 –0.033 0.022
NPK –0.002 0.001 0.0001 0.004 0.001*** 0.0002
SEED –0.014 0.014 –0.004 0.004 –0.002 0.001
Human labour 0.005 0.005 0.003** –0.001 0.014*** 0.005
Bullock labour –0.015 0.017 0.010** –0.004 0.037*** 0.002
Farm machine –0.072*** 0.016 0.001 –0.006 0.017*** 0.002
FYM –0.209*** 0.050 0.050** 0.016 0.008 0.005
Regional Dummy  
Tukumkur –0.311 0.275 –0.034 0.072 0.020 0.031
Bidar –0.209 0.280 –0.014 0.072 –0.091*** 0.030
Gadag –0.362 0.289 –0.105 0.079 –0.014 0.030
Instrument variables@
PBrunoff 0.067* 0.070     
PBmoisture 0.074 0.088     
sigma   0.160*** 0.009 0.333*** 0.017
rho   –0.536* 0.305 –0.074 0.445
Joint significance of plot-level characteristics df=15, stat= 29.099 0.01562 *
Wald test: X2 = 147.1, df = 38, P(> X2) =0.000

Note PBrunoff indicates the ‘perceived benefits of soil bunds on reducing the run-off; PBmoisture indicated the ‘perceived benefits of
soil bunds on enhancing soil moisture’
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13.33% (Table 7). The ATU indicates that technical
inefficiency can be reduced by 20.29% for non-adopter
farms.

Conclusions
This study assesses the factors affecting the adoption
of NRM technologies—i.e., soil bunds—which are
highly recommended in the drought-prone areas of
Karnataka. We used the double bootstrap DEA method
to estimate the bias-corrected efficiency scores and the
meta-frontier approach to compute the MTR. We used
the ESR model to control for the heterogeneity effects
of observed and unobserved factors.

We observed that the key factors affecting adoption
are access to credit, extension services, and social
networks; therefore, these factors need to be considered
in formulating conservation programmes. We found
that the TE of sorghum production may be enhanced
by improving access to credit, the perception of the
benefits of adopting NRM technologies, training,
exposure visits, and extension services.

The observed MTR is 0.82 for adopters and 0.63 for
non-adopters, or that shifting from non-adopters to
adopters can improve the efficiency of sorghum
production by 30%. The results of the ESR show that
the ATT is “0.24, or that adopting soil bunds would
reduce the inefficiency in sorghum production by
around 13%.

Hence, we construe that the adoption of NRM
technologies (soil bunds) could be an important strategy
to enhance the performance of sorghum production in
the drought-prone areas of the semi-arid tropics of India
and, thereby, sustain the natural resources and
livelihoods of resource-poor farmers.
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