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Hurdle Count-Data Models in Recreation
Demand Analysis

J. S. Shonkwiler and W. Douglass Shaw

When a sample of recreators is drawn from the general population using a survey,
many in the sample will not recreate at a recreation site of interest. This study focuses
on nonparticipation in recreation demand modeling and the use of modified count-
data models. We clarify the meaning of the single-hurdle Poisson (SHP) model and
derive the double-hurdle Poisson (DHP) model. The latter is contrasted with the SHP
and we show how the DHP is consistent with Johnson and Kotz's zero-modified
Poisson model.

Key words: count-data models, discrete probability, hurdle count-data models, rec-
reation demand

Introduction

Recreation demand modeling has been used by economists since the early 1960s, when
economists began to use travel costs to reveal a recreator's preferences (Smith). Increas-
ingly, sophisticated empirical models are developed for individual recreators rather than
for aggregate groups of individuals. Two of the most popular individual models are the
random utility model (RUM) and the count-data model.'

Data on trips individuals take to recreation sites are usually recorded using a survey
instrument. When the data include the total number of trips taken in a given period (year
or recreation season), and especially when these data are only available for one recreation
site, the count-data model is attractive. Alternatively, if the survey questionnaire obtains
detailed information on each trip (e.g., where, when, length of stay, activities) to many
recreation destinations, the RUM model can be quite useful.

This study focuses on the count-data model's treatment of responses recorded as zero.
We are especially interested here in nonparticipation (i.e., when many of those surveyed
take no trips at all to one site or to any site in a group of recreation sites). Only recently
have economists been able to make inferences about those who make no trips. As shown
by Morey, Shaw, and Rowe, allowing individuals to substitute out of recreation altogether
affects welfare estimates. For example, a particular environmental consequence may be
so severe that those, who would normally recreate at the site, discontinue their activities.
Hellerstein (1992) reviews how nonparticipants have typically been treated in travel cost
analyses. He describes how data sets with individuals providing censored trip data (non-
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negative, but including zero trips) are often converted into truncated data sets by dropping
all those who take zero trips. He notes that the Poisson count-data model allows for zero
outcomes and censoring, but that modifications must be made for truncation. Issues
involving other types of corer solutions are discussed in Morey et al.

Count-data estimators have now been considered which allow for the fact that the data
are truncated due to sampling on-site (Creel and Loomis; Shaw; Englin and Shonkwiler).
Hellerstein (1992) briefly refers to two-stage count-data models, where the transition
from zero to positive trips is handled separately from the probability of choosing the
exact number of positive trips. What he describes is essentially Mullahy's single-hurdle
model.

Though the microeconomic foundations for deriving welfare measures under condi-
tions of discrete demand have been addressed (Hellerstein and Mendelsohn), there ap-
pears to be confusion regarding interpretation of the welfare measures using modified
forms of the count-data models because the connection between the underlying proba-
bility mass function and economic behavior is often not established (Yen and Adamow-
icz). We define a "user" as a person who is currently recreating and a "nonuser" as a
person who has not recreated in the past, is not now, and likely will not recreate in the
future. We define a "potential user" as a person who is not currently recreating but who
might begin recreating with a change in the price of recreating. In steak consumption,
the analogous groups of individuals would be the steak eater (user), the vegetarian (non-
user), and the hamburger eater (potential user). The important distinction to keep in mind
is that the vegetarian will not consume steak even under a drastic price decrease, while
the hamburger eater may start consuming steak under a price decrease or income increase.

We concentrate here on the so-called hurdle count-data models (Mullahy). We dem-
onstrate that by using the double-hurdle (DH) model we can explore the behaviors of
all three types of individuals defined above. While several studies use a DH model to
model behavior when nonzero responses are continuously distributed, apparently no stud-
ies have examined responses generated under a discrete distribution. Further, while some
have discussed "zero" modifications to the Poisson (e.g., Greene), no one has made the
connection between these and the DH model. We first carefully lay out the probability
mass function (PMF) for the simple Poisson model. Next, we do the same for the single-
hurdle model and the double-hurdle model assuming no interdependence between the
hurdle mechanisms. We then develop a double-hurdle model allowing for interdepen-
dence between the hurdles.

The Probability Mass Function in the Basic Count-Data Model

Assume that the ith potential user of a specific recreation site has been randomly drawn
from a relevant population. The relevant population is the population of users plus po-
tential recreators. Let yi denote the number of visits to the recreation site made by the
individual. If the probability function for yi is

(1) Prob(Yi = Yi) = e-Ai Ai/yi!, i = 0,1,2,3, ...

where Yi is a potential integer outcome, then it is well known that E(Yi) = Ai.
Assume we randomly sample the relevant population to obtain information on Yi. As

Hellerstein (1992) notes, different survey methods can lead to different types of individ-
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uals, and one common approach in recreation surveys is to screen the general population
to obtain a sample of the recreators. If the final random sample consists only of users
(known recreators), then qi = YiYi > 0. The use of qi denotes that the underlying pop-
ulation of all users, including potential users from which Yi was drawn, has been trun-
cated. The sample q, of which qi is an element, only provides information about the
population of users; it tells us nothing about the population of users and potential re-
creators unless the probability mass function in (1) has been empirically verified. Since
q is a subset of y (the sample of the population of all known and potential recreators),
knowledge of y can always be used to make inferences concerning known users; however,
as is the typical case in sample inferences, knowledge of q cannot be used to make
inferences about known and potential recreators because there is no means to establish
(1) as the underlying probability mass function.

The probability mass function for the jth individual in the sample of observed recrea-
tors given the Poisson parameter q is

e-i~ q j

(2) Prob(Qj2 = q) = qj = 1, 2, 3,...,

where again Qj is defined so that it is an integer greater than zero and E(Q1 ) = Jq/(l -
e->i). Expression (2) is called the positive Poisson distribution. Because the denominator
in (2) can be interpreted as the probability that qj is greater than zero, some have inter-
preted e-~ as the probability of nonuse. The discussion of Grogger and Carson (p. 230)
regarding this issue fails to stress the assumption that it is known with certainty that the

underlying distribution follows the Poisson with the identical location parameter (Aj =
A>, V). In general, the sample q can tell us nothing about potential recreators because it
contains no information about them. This probability, e- ,, has no economic interpretation
relating to decisions to start recreating or stop. Instead, the denominator in (2) accounts
for the correction necessary when Qj is prohibited from being zero so that (2) is a valid
probability mass function.

Hurdle Count-Data Models

The basic Poisson travel cost model accommodates zero trips. However, if the sample is
drawn from the general population which includes those who are recreators but for some
reason did not recreate in the past season (potential users), as well as those who never

have and never will recreate (nonusers), then it is quite likely that many or most indi-
viduals take no trips at all to a particular recreation site.

Handling data sets which include many individuals who do not participate can be
difficult. Some have used the negative binomial distribution rather than the Poisson in
an attempt to handle the "excess zeros." Modifications include Lambert's zero-inflated
Poisson (ZIP) model, implemented to adjust for the situation where the Poisson under-
predicts the zero values (Greene). However, the hurdle models (Mullahy) do this in a
manner which is perhaps more intuitive and allow decomposing the decision processes
underlying (a) the choice to recreate at all and (b) the choice to recreate n times at a
certain site. The hurdle model has also been deemed the "zero-altered Poisson" or ZAP
model (see Greene's discussion). Pudney suggests that the factors explaining the two
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decisions can be separated into economic variables (travel cost and site quality) and
personal characteristics (physical or athletic ability, household size, marital status, gender,
etc.).

To develop a single-hurdle model, assume that y represents a general population sam-
ple containing known users, potential users, and nonusers. Let yi denote the number of
visits individual i has made to a site over the course of some period (a season). Define
two vectors of variables, x and z, where x contains economic variables most likely bearing
on the decision to visit a given site n times, and z contains personal or demographic
variables pertaining to the decision to recreate at all during the season.2 Let Di represent
the latent decision to recreate at a site. The quantity of recreation at that site is zero if
the random variable Di < 0. 3 As is conventional with a latent variable approach, D i can
be negative. Hellerstein (1992) notes that negative recreational visits (demand) are im-
possible, but we stress here that Di merely indicates whether there are unobserved im-
pediments which preclude the individual from visiting the site during the season.4 Spe-
cifically, we adopt the discrete specification Prob(Di = 0) = exp(- O) where Oi can be
parameterized

(3) Oi = exp(Zi'y),

and y is an unknown vector of parameters. 5

If consumption is positive, then observed consumption equals desired consumption,
y*, so that

(4) Yi = Y*

with

E(y) = Ai= exp(a, + 3pi),

where p is the travel price, /3 is its corresponding parameter, and ai represents socioeco-
nomic measures associated with the ith individual. The sequential (single-hurdle) model
then has a dichotomous probability mass function of the form:

(5) Prob(Di - 0); if yi = 0,

PMF(yilyi > O)Prob(Di > 0); if yi > 0,

which implies that Prob(yj > 0) = 1 - exp(-,i). The likelihood function in the case of
the single-hurdle model with Poisson PMF specification is (Mullahy)

H exp(-O0) 1(l - exp(-Oi))exp(-Ai)Ayi
(6) >

[(1 - exp(-Ai))yi!]

or

2 Note that it is certainly possible that some variables appear in both vectors. Examples of variables that might influence
the two decisions are mentioned by Pudney (see above) and are offered in the conclusion of this article.

3 The distribution of Di may be continuous and defined in the interval (-oo,oo) or discrete and defined over [0, 1, 2, .. ].
In the latter case, consumption is zero if Di = 0.

4 We thank an anonymous referee for forcing us to clarify this point.
5 It is quite possible another approach may better reflect the data generating mechanism. For example, if Di is taken as

normally distributed, then Prob(Di < 0) = nF(-zi'y), where c is the cumulative distribution function for the normal distri-
bution.
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n exp(- i) n (1 - exp(-0,))AY
y=o y>o

[(exp(A) - l)yi!]

This formulation is attractive because if Oi = A;, then the single-hurdle collapses to a
simple Poisson specification. For this model,

- e - 0i)
(7) E(yiyi > 0) = and E(yi) -= A

1 - e- xi 1 - e ' xi

This model implies that the decision to consume an additional trip to a site is inde-
pendent of the probability of observing any trips to that site.6 This is a rather strong
assumption, as it implies that a recreator's preferences. for another (marginal) trip have
nothing to do with the probability of observing a positive number of trips to a recreation
destination. In addition, while this single-hurdle model is empirically tractable and leads
to an expression for expected consumer's surplus, there are certain other disadvantages
to using it to model recreation demand which will be overcome with the double-hurdle
model. To foreshadow the main disadvantage, note that (6) above generates probabilities
of zero trips with a single mechanism. It cannot tell us why this is so, and therefore, the
possibilities that the individual is a nonuser or that the individual is a potential user
cannot be inferred.

Development of the Double-Hurdle Model with Independent Hurdles

Another hurdle model can be developed which allows for two ways of generating zero
trips. This model, the double hurdle, splits the decision into one part which is funda-
mentally noneconomic, and one which is the usual "no-trip" comer solution in recreation
demand (Pudney; Morey et al.). There may be some confusion raised by our suggestion
that use of the double hurdle in a count-data model is novel. For example, the title of
their article and the fact that they use a negative binomial distribution suggest that Lin
and Milon applied the DH approach. However, as they state (p. 726) "empirical analysis
employed a count-data double-hurdle model developed by Mullahy." (Our italics.) As
noted above, Mullahy's model is actually what we categorize as a single- rather than
double-hurdle model.

To begin, we assume there is no interdependence between the two hurdles. The no-
tation from the above continues through in this section. Following in the vein of Blundell
and Meghir, the double-hurdle model (without dependence) specifies the probability of

a zero observation as

(8) Prob(y• ' 0) + Prob(y* > O)Prob(Di, 0).

No consumption will be observed if desired consumption is nonpositive, or if desired

consumption is positive, an additional hurdle (Di - 0) may prevent consumption. The
PMF of a positive observation reflects that both desired consumption is positive and the
additional hurdle is not limiting consumption so that it is of the form:

6 This condition (aProb(yi > O)/aXi = 0) arises because the information matrix is block diagonal, and thus, equivalent
estimates may be obtained using the maximum-likelihood method by separately estimating a binary choice and a truncated
Poisson model.

7 We note, however, that many recreation demand models explicitly or implicitly make this assumption about consumption
decisions. Examples are the simple logit, repeated logit, and repeated nested logit models (Morey, Watson, and Rowe).

214 December 1996



Recreation Demand Analysis 215

(9) Prob(y; > 0)PMF(y;ly; > 0)Prob(D; > 0).

The Poisson likelihood in this case becomes

(10) n [exp(-A,) + (1 - exp(-Ai))exp(-06)] H- (1 - exp(-,O))exp(-Ai)AYi[yi!]-1,
y=O y>o

under the assumption that y, = yi if yi > 0 and Di > 0. In the case of the double-hurdle
model, we have

(11) E(yi Yi > 0) = and E(yi) = A(1 - e-). 8

It is now easier to see the main advantage of the DH model over the single-hurdle
model, as well as over the simple Poisson model. 9 The DH model can provide estimates
of three different probabilities of participation in the market which correspond to our
three regimes, or types of individuals defined in the introduction. The model can predict,
for example, the probability of nonparticipation, e-°i (the chance the ith individual is a
nonuser), the probability of a corner solution, (1 - e-0i)e- i (the ith individual is a
potential user who optimizes by not visiting a particular site), and the probability of a
user visiting a site one or more times, (1 - e-0i)(l - e-Ai).

In addition, the model has a nice statistical interpretation. In essence, the DH model
is the same as the zero-modified Poisson model of Johnson and Kotz. Recognizing that
equation (8) can be rewritten as:

Prob(Di C 0) + (1 - Prob(Di ' 0))Prob(y* 0),

and that our equation (9) can be rewritten as:

(1 - Prob(Di -0))Prob(y; > 0)PMF(y;lyy > 0),

therefore, the transformed distribution in terms of observables is

Prob(Di - 0) + (1 - Prob(Di < 0))PMF(yi = 0),

and

(1 - Prob(D, c 0))PMF(yi = j) j = 1,2 ...

where PMF is the probability mass function of the original distribution. In fact, by
pointing out that all uncentered moments of the modified distribution differ from the
corresponding moments of the original distribution by the factor [1 - Prob(Di, 0)],
Johnson and Kotz provide the means for our model to be extended to virtually any
distribution of interest, including the binomial, negative binomial, and hypergeometric
distributions.

As opposed to the single-hurdle model which only collapses to the original PMF when
the process generating zero probabilities coincides with the implied probability of a zero
outcome from the truncated PMF, the double-hurdle model reduces to the original PMF
when Prob(D O0) is zero. If we specify w = Prob(D < 0) and suppressing the obser-
vational index i in this and the sequel, then for a Poisson model of y, we have the
likelihood being

8 The second relation follows since Prob(y; > 0) = (1 - e-~i)(1 - e-°,).
9 In contrast to the single-hurdle model, the probability of observing positive demand is affected by the level of demand,

that is, aProb(yi > O)/a8i = (1 - e-8 i)e-x > 0.
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n [w + (1 - )e -
A] H (1 - w)e- AAY!]-1,

y=0 y>O

in the case of the double-hurdle model.
To a certain extent it is an empirical issue whether the single- or double-hurdle model

provides the better fit of a particular data set. As a consequence, the analyst may consider

an unrestricted specification which nests both the single- and double-hurdle models. If

co represents the probability of excess zeros as implied by the double-hurdle model and

e- ° represents an alternative to e ~ for generating probabilities of zero observations as

in the single-hurdle model, then the full likelihood for a Poisson count-data model be-

comes

(12) HI [w + (1- w)e- 0] n (1- )(1-e-)e-AAY[(1 - e- )y!]-1
y=0 y>O

The restriction of 0 = A yields a double-hurdle model, the restriction co = 0 yields a

single-hurdle model, and restricting to = 0 and 0 = A yields a simple Poisson count-

data model. Also, care must be exercised in specifying to and 0 because the likelihood

function (12) is not identified when the exogenous variables conditioning co and 0 either

coincide or one set is the subset of the other.
Rejection of all of the above restrictions suggests a hybrid model in which

A (1 - w)(1 - e-0);
E(yly > 0) = and E(y) (1 -- )A

1 - e - 1 e-

While it is clear that the probability of observing positive consumption is Prob(y > 0)

= (1 - o)(l - e-°), it is less straightforward to interpret what constitutes the probability

of nonparticipation and that of a corner solution because two alternative processes, nei-

ther of which is directly linked to the positive Poisson probability model, are accounting

for these probabilities. Nevertheless, from an empirical standpoint, such a hybrid model

may better represent the data generating process than either model alone.

The Double-Hurdle Model with Interdependence

The assumption that the two mechanisms are not related is not always going to be

attractive, nor will it always be true. It is quite plausible that 0[defined in equation (3)]

can depend on the implicit travel price, p. Because the travel price can be solely or

strongly determined by the distance-related cost component, we could easily imagine

situations, for example, where an individual decides they are simply too far away from

any recreation site to take trips during the season. Alternatively, if the travel price in-

cludes the opportunity cost of time, we can again see how an individual with a high

opportunity cost finds recreation trip time too costly to make any trips. With these things

in mind, we now drop the assumption that the two hurdles are unrelated.

If the two mechanisms generating zero outcomes under a DH specification are cor-

related, a bivariate double-hurdle count-data model results when the random variable D i

has a discrete distribution. In the following development, the observation index i has

been suppressed and the reader should note that structural parameters may be parame-

terized to depend on i. The two regimes may be represented for count-data as:
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00

(13) Prob(y = 0) = Prob(y* = 0) + E Prob(y* = k, D = 0),
k=l

and

Prob(y = k) = E Prob(y* = k, D = j) k = 1, 2,...
j=l

assuming that y = y* if y* > 0 and D > 0.
Using Holgate's bivariate Poisson model which is defined as

min(y,d) fj y-j Od-j

Prob(y* = y, D = d) = exp(-A - 0- Smin) j j)y

(Johnson and Kotz), the likelihood function of the double-hurdle count model under
dependence is

(14) I- [exp(-A - ) + exp(-0 - - exp(-A - - ].
y=0

I [exp(-A - )(A + _ exp(-A - - ]AY
y> y! y!

where t represents the covariance between the two Poisson processes. 10 Note that (14)
collapses to (10) when e is zero.

It can be shown that

(15) E(y > = A(1 - Prob(D = 0)) + A + A - Ae-° -_
Prob(y > 0) 1 -e- - - e--E + e- -A- '

so that

(16) E(y) = A + - e-A 0 -. "

Under the case of an independent hurdle mechanism : = 0, expressions (15) and (16)
reduce to their counterparts in expression (11). Similarly, the three categories into which
survey respondents are classified suggest that the probability of nonparticipation is e- - e,
the probability of potential participation is e-A-e(l - e-6), and the probability of reported
participation is 1 - e- ~ -~ - e - -0 + e- A-0- .

'O The marginal distributions of y* and D are Poisson with parameters X + 5 and 0 + i, respectively. To derive Prob(y
0) note that the second term on the RHS of (13) is

e Prob(y* = k, D = 0) = Prob(y* = k, D = 0) - Prob(y* = 0, D = 0)
k=l k=0

= Prob(D = 0)- Prob(y* = 0, D = 0).

So that Prob(y=O) = Prob(y* = 0) + Prob(D = 0) - Prob(y* = 0, D = 0) explaining the first expression in (14). To derive
the second expression in (14), write Prob(y = k) as Prob(y* = k) - Prob(y* = k, D = 0) since the marginal distribution of
y* would result if the summation were begun at j = 0.

k Prob(y = k)
E(yjy > 0) = _i _

k=A 1 -Prob(y = 0)

E k{Prob(y* = k) - Prob(y* = k, D = 0)}
k=l

1 - Prob(y* = 0) - Prob(D =0) + Prob(y* = 0, D = 0)

The numerator then may be written as E(y*)- X exp(- - ) = X + - X exp(- -0 ).

Shonkwiler and Shaw
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Summary and 'Conclusions

This article has focused on count-data models of recreation demand. While multiple-site
models (those that allow the demand for more than one site to be estimated as is true in
a system of equations) are becoming increasingly common, with two exceptions (Shonk-
wiler; Ozuna and Gomez), the count-data models still are single-site models. For this
class of models, we have developed the probability mass function and have derived
several hurdle models that can be used to estimate the demand for recreation at one site,
including a double-hurdle model which corresponds to the excess zero-modified Poisson
model (Johnson and Kotz). The relationship between a double-hurdle model and some
of the modified count-data models (e.g., ZAP, ZIP, ZMP) has perhaps previously not been
made clear. The DH model can be interpreted in the same way that Johnson and Kotz's
zero-modified Poisson model is, but it is not identical to Mullahy's single-hurdle model.
Our model can be extended for use with other probability distributions.

When the population group of interest includes those who are nonusers, as well as those
who are potential users, the double-hurdle model is especially attractive. For example, in an
empirical application, say to water-based recreation, it would be interesting to know when
some individual will e totally unresponsive to water level or other site quality changes.
Such changes are not without economic implications. The individuals who respond to these
sorts of changes are likely quite different from those who respond to the cost of renting a
boat. Or, putting this in terms of another policy which may be controllable by agencies who
manage recreation boat ramps, the potential user doesn't fish because his opportunity cost
of time is too high, and the congestion at the lake increases his time cost of loading and
unloading his boat. Perhaps none of this affects the nonuser.

We stress the point here that a sample which only includes users cannot be used to
infer behavior for these potential users. Further, the double-hurdle models allow explo-
ration into nonuse, as opposed to potential use. The credibility of the hurdle models is
higher than the more conventional count-data models that are limited to a truncated
sample of known recreators, in that the models handle the nonparticipation decision for
some recreators. Our recommendation is that when modelers have the opportunity to
design the survey questionnaire, as well as define the sample group, that they first con-
sider whether some set of price/quality/quantity conditions exist which could cause po-
tential recreators to begin taking trips. Second, we urge these modelers to design the
survey questionnaire to capture nonuser's and other responses which can better explain
the hurdle mechanisms in the models we have illustrated here.

In essence, we need to spend some time and energy thinking (and include some survey
questions asking) about why those who could recreate outdoors do not. Some possible
factors- which influence the decision to stay home or take recreation trips include age,
the total amount of income devoted to recreation, the number of "new" children in the
home, the flexibility of work schedules, and physical ability or characteristics of the
individuals. Unfortunately, while age is often asked of survey respondents, the other
questions are not typical in recreation survey questionnaires. Other factors could be
identified in focus groups conducted to explore recreation participation preferences and
decision making. With these features of the problem being considered carefully, the best
survey implementation plan will likely be much clearer to the investigators who have
the luxury of designing the survey.
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