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Relaxing the Assumptions of
Minimum-Variance Hedging

Sergio H. Lence

The most important minimum-variance hedge-ratio assumptions are (a) that produc-
tion is deterministic and (b) that all of the agent's wealth is invested in the cash
position. Stochastic production greatly reduces optimal hedge ratios. An alternative
investment greatly reduces opportunity costs of not hedging by "diluting" the cash
position. Stochastic production and/or alternative investments render the costs asso-
ciated with hedging relatively more important, yielding almost negligible net benefits
of hedging. Hence, hedging costs typically dismissed in hedging models for being
seemingly negligible are important determinants of hedging behavior.
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Introduction

Minimum-variance hedge ratios (MVHs) have a prominent place in the applied hedging
literature and are one hedging strategy often recommended by extension economists.
Benninga, Eldor, and Zilcha have shown that MVHs are consistent with expected-utility
maximization under some relatively plausible conditions.1 MVHs can be identified in a
straightforward manner with simple statistics that can be estimated from observable cash
and futures prices. These two MVH properties, together with the development of more
sophisticated econometric techniques and the advances in computing capacity, have
caused much of the recent hedging research to focus on the econometrics of MVH
estimation (Baillie and Myers; Castelino; Fackler and McNew; Lence, Kimle, and Hay-
enga; Mathews and Holthausen; McNew and Fackler; Myers and Thompson; Viswanath).
In contrast, the research community has paid virtually no attention to issues such as the
potential value of better econometric techniques to estimate MVHs and the practical
conditions that render MVHs a clearly suboptimal hedging strategy. Two exceptions are
Tomek and Lence.

Lence focused on the value of more information about MVHs for individual agents.
Somewhat surprisingly, Lence found that the value of "better" MVH estimates is neg-
ligible and that optimal hedge ratios are substantially different from MVHs when stan-
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Traditionally, MVHs were justified by assuming that agents wanted to minimize the variance of their combined cash-

futures positions. However, hardly anybody would seriously use such an argument to advocate MVHs now. The reason for
this assertion is that variance minimization in the context of the paradigm of expected-utility, maximization is equivalent to
infinite risk aversion. Infinite risk aversion is very unrealistic and unpalatable to most academicians; for example, there is an
intrinsic contradiction in having infinitely risk-averse agents holding risky cash positions. Hence, the analysis by Benninga,
Eldor, and Zilcha is the most accepted justification for adopting MVHs.
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dard MVH assumptions are relaxed to accommodate more realism.2 Furthermore, he
showed that under realistic conditions the optimal hedging strategy was simply not to
hedge. The findings by Lence are important because they suggest that a large proportion
of the current research agenda on hedging is so narrowly concentrated on estimation
problems that issues potentially more significant are being neglected. His findings are

also relevant for applied risk management because they indicate that, in many commonly

encountered practical situations, MVH recommendations are not only (very) suboptimal
but that the best decision may be not to hedge at all.

From both a research and an applied standpoint, one important question is left unan-

swered by Lence: what are the most critical conditions for the consistency of MVHs

with expected-utility maximization in real-world situations? Among other reasons, the

answer to such a question is of interest from a positive perspective because it may help

explain why hedging is more pervasive in some circumstances (e.g., grain dealers) than

in others (e.g., farmers). An answer to that question also can show educators and prac-

titioners when MVH recommendations are valid and when they are not applicable.
The foregoing discussion suggests that investigating the robustness of MVHs to each

of the standard MVH assumptions is a relevant issue. Therefore, the objective of this

article is to extend Lence's analysis by exploring the implications of relaxing the standard
MVH restrictions individually and by assuming realistic values instead. This study uses

the basic apparatus employed by Lence to facilitate comparison with his results and also

to better complement his analysis. In particular, the robustness of MVHs to individual

MVH assumptions is assessed by means of direct (as opposed to indirect) measures of

economic importance.

Theoretical Model

The basic model consists of a risk-averse decision maker with a utility function (U(.),
U' > 0, U" < 0) whose argument is terminal wealth (W1 ).3 At the decision date (t = 0),

the agent engages in an activity that produces Q1 - 0 (possibly random) commodity

units for sale at the terminal date (t = 1) at the random cash price P1. At t = 0, he can

also sell X commodity units in the futures market at price Fo, by agreeing to repurchase
them at t = 1 at the random futures price F1 . The net cash flow from the futures trans-

action occurs at the terminal date, at which time the agent must pay a brokerage fee of
b dollars per commodity unit. To be allowed to open a futures position, he must make

an initial margin deposit equaling a fraction kL of the original futures price multiplied

by the contract size. The decision maker will receive RLL (RL > 1) dollars at the terminal

date if he invests L - 0 dollars in risk-free notes at the decision date; if so desired, risk-

free notes can be used to satisfy the initial margin deposit. At t = 0, he can also borrow
B ' O dollars by promising to repay RBB (RB > RL > 1) dollars at t = 1. In addition,

2 Throughout the article, "standard MVH assumptions" are the assumptions made by Benninga, Eldor, and Zilcha to obtain
the equivalency between MVHs and the hedge ratios that maximize expected utility. These assumptions are discussed in the
next section.

3 A 1-period framework with two dates (period's beginning and period's end) is assumed here for consistency with the
standard MVH model. As pointed out by an anonymous referee, however, this assumption is one of the most suspect parts
of the standard MVH model because of its lack of realism.
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the agent may invest I - 0 dollars in an alternative activity that yields a random return
of RI dollars at t = 1 per dollar invested at t = 0.4

At the decision date, the agent is hypothesized to choose X, B, L, and I to maximize
the expected utility of terminal wealth.5 Terminal wealth is given by:

(1) W, = P1Q1 + (Fo- F,)X-blXJ - RBB + RLL + RI,

subject to the restrictions

(2) Wo + B - v[E(Q,)]E(Q1) + L + I, (budget constraint);

(3) 0 < B • kBv[E(Q1)]E(Ql),

kB 0, (borrowing constraint);

(4) L ' kLFoIXI, kL 0, (initial margin deposit contstraint);

and

(5) I 0, (nonnegative investment constraint);

where WO is initial wealth, E(.) is the expectation operator, v[E(Q1)] (v > 0 VE(Q1) >
0) is the average cost of producing the expected output (E(Q1 )), and kB is the maximum
amount that the agent can borrow expressed as a proportion of his initial wealth invested
in the cash position. Total cost of production (v[E(Q)]E(Q,)) is assumed to be deter-
ministic. Restriction (2) denotes the budget constraint at the decision date. Expression
(3) states that borrowings cannot surpass the agent's borrowing capacity, which is pro-
portional to the value of the cash position. Constraint (4) follows from the initial margin
deposit requirement. Initial margin deposits are always met with risk-free notes rather
than cash; otherwise, agents would lose a risk-free net return of (RL - 1 > 0) dollars

per dollar of initial margin deposit.
Following Lence, simulations are performed by using an equivalent formulation of the

objective function stated in the preceding paragraph. The agent is postulated to choose

h X/E(Q1), SB= B/W, SL L/WO, and s, I/WO at the decision date to maximize the

expected utility of terminal wealth (E[U(W1)]). Quantity h is the hedge ratio; SB is the
proportion of initial wealth being borrowed; and SL and si are the fractions of initial
wealth invested in risk-free notes and in the alternative investment, respectively. Using
these definitions, terminal wealth can be expressed as:

(6) W1 = WoR

= Wo [Rq + (1 - RF -b/F) FQ h - RB]SQ
v[E(Q1)]

+ (RL - RB)S + (R, - RB)S + R,

subject to the restrictions

4 Investment I may also be interpreted as a portfolio of activities other than production and hedging.
5 Following the typical framework of MVH models, it is assumed that the agent has already selected the optimal level of

production. By proceeding in this way, we avoid having to define a specific production technology for the simulations
performed in later sections.

Lence
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(7) SQ + SL + SI - SB = 1, (budget constraint);

(8) 1 -sQ + SL +SI 1 + kBks, kB 0,

(borrowing constraint);

F0
(9) SL kL hSQ, kL 0,

L v[E(Q~) I

(initial margin deposit constraint);

and

(10) s, O, (nonnegative investment constraint);

where R = W1 W0, RP - P1/v[E(Q1)], q - Q/E(Q,), RF = F/Fo, and SQ = v[E(Q1 )].

E(Q1)/Wo. Variable Rp is the ratio of terminal cash price to average production cost, q
represents the units of terminal production per unit of expected production, RF is the
ratio of terminal to initial futures prices, and SQ is the fraction of initial wealth invested
in production. It is straightforward to show that expressions (6) through (10) are equiv-
alent to expressions (1) through (5).

MVHs will usually be different from the hedge ratios that maximize the hypothesized
objective function, that is, MVHs are generally inconsistent with expected-utility maxi-
mization. However, Benninga, Eldor, and Zilcha demonstrated that under certain condi-
tions MVHs are also expected-utility, maximizing hedge ratios. The conditions assumed
by Benninga, Eldor, and Zilcha are that (a) the agent is not allowed to borrow, lend, or
invest in alternative activities (SB = sL = SI = 0); (b) there are neither initial margin
deposits nor futures brokerage fees (kL = 0, b = 0); (c) production is deterministic (Q1
= E(Q1)); (d) random cash prices can be expressed as a linear function of futures prices
plus an independent error term; and (e) current futures prices are unbiased (F0 = E(F1 )).
Throughout this article, the preceding set of assumptions is referred to as the standard

MVH assumptions.
Of special interest for the present study of MVHs and alternative hedging strategies

is the economic importance of the welfare losses resulting from placing suboptimal hedg-
es instead of optimal hedges. Such economic importance is assessed by means of op-
portunity costs (OCs). As measured by net returns per invested dollar, OC is "the pre-
mium that the investor should require over his suboptimal return to bring his welfare to
a level achieved by his optimal return" (Simaan, p. 579). OC is an amount determined
with certainty at the decision date. Denoting by Ropt the return of the expected-utility
maximizing strategy and by Ra,, the return on a particular alternative investment, the OC

of the latter is defined implicitly by

(11) E[U(WoRop)] = E{U[W,(Ralt + OC)]}.

Therefore, OC is the minimum certain net return that the agent requires to accept in-
vesting in the alternative strategy rather than in the optimum investment. For the purposes
of this analysis, OCs have more desirable characteristics than other measures of welfare
changes commonly used in hedging studies [e.g., percentage reduction in variance or in
standard deviation, R2 (Ederington)] or in the portfolio literature [e.g., percentage changes
in expected utility (Pulley; Kroll, Levy, and Markowitz), regression analysis (Levy and

42 July 1996



Minimum-Variance Hedging 43

Markowitz 1977, 1979), percentage changes in certainty equivalents (Kallberg and Ziem-
ba 1984)].

Numerical Simulations

Simulations are performed for decision makers with constant absolute risk aversion, that
is, U = -exp(-AWoR), with A being the coefficient of absolute risk aversion. Constant
absolute risk aversion is helpful in numerical optimization because it yields expected
utilities and OCs with closed-form solutions for most of the probability density functions
used here (see appendix). Furthermore, optimal portfolios are almost identical for utilities
with different functional forms but the same relative risk aversion (AWoR) evaluated at
R = 1 (Pulley; Kallberg and Ziemba 1979, 1984). Three levels of risk aversion are
considered: low (AWo = 1), moderate (AW0 = 3), and extremely high (AW0 = 10)
(Kallberg and Ziemba 1984). Here, the most realistic scenario is represented by (AWo)
= 3. Results for (AWo) = 10 reflect implausibly high risk aversion (Levy and Markowitz
1979, 1977; Markowitz, Reid, and Tew). This latter scenario is presented for complete-
ness rather than realism and should therefore be interpreted with care.

The model is calibrated for grain storage (that is, the productive activity is grain
storage). Hence, unless stated otherwise it is assumed that production is nonstochastic
(q = 1) and that average production costs equal grain cash prices at the decision date
(v[E(Q1 )] = v(Q l) = P0 ). It is further assumed that Fo/v(Q,) = Fo/Po = 1; that the
standard deviations of cash and futures price ratios are SD(Rp) = SD(RF) = 0.065, SD(RP)
= SD(RF) = 0.085, and SD(Rp) = SD(RF) = 0.130 for one-month, one-quarter, and
semiannual holding periods, respectively; that the correlation between cash and futures
is PPF = 0.85 for all three holding periods;6 and that futures are unbiased (E(RF) = 1).7

The expected net return on the cash position is set equal to one standard deviation, that
is, E(Rp) = 1.065, E(Rp) = 1.085, and E(Rp) = 1.130 for one-month, one-quarter, and
semiannual holding periods, respectively. 8

Simulations under the standard MVH scenario require that borrowings, lending, and
alternative investments equal zero (SB = sL s= , SQ = 1) and that brokerage fees as
well as initial margin deposits equal zero (b = kL = 0). To uncover the effect of the
standard MVH restrictions, simulations are conducted for scenarios in which at least one
of such restrictions is relaxed to accommodate realistic values. The values selected to
contrast with the standard MVH assumptions are as follows: (a) ratios of brokerage fees
to current futures prices (blFo) equal to 0.005, 0.0025, and 0.00125; 9 (b) initial margin

6 Results for PPF = 0.95 are similar and are available upon request.
7Values for means, standard deviations, and correlation of Rp (=PIPo) and RF (=Fi/Fo) are based on corn and soybeans

cash prices for North-Central Iowa ("Iowa State University Market News") and prices of the respective nearby futures
contracts at the Chicago Board of Trade (The Wall Street Journal) on each month's last Thursday from 1983 through 1993.
For both corn and soybeans, mean estimates of Rp and RF are not significantly different from unity at either monthly, quarterly,
or semiannual horizons. Standard deviation estimates of Rp and RF for both commodities are about 0.065, 0.085, and 0.130
at monthly, quarterly, and semiannual horizons, respectively. The estimated correlation between Rp and RF ranges from a low
of PPF = 0.75 (semiannual horizon for corn) to a high of PPF = 0.96 (monthly horizon for soybeans).

8 Although the sample estimate of E(Rp) is 1, such value cannot be used because rational risk-averse agents would not
store if they expected zero net returns from doing so.

9 Brokerage fees of $50 per 5,000 bushel contract yield b = $0.01 per bushel or F0 = $2 per bushel if b/Fo = 0.005, F0
= $4 per bushel if b/Fo = 0.0025, and F0 = $8 per bushel if b/Fo = 0.00125. Hence, the values of b/Fo used in the
simulations are representative of typical brokerage fees for agricultural commodities such as oats, barley, corn, wheat, and
soybeans.
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deposits of 5% and 10% of the net futures position's absolute value (kL = 0.05 and kL

= 0.10);1 0 (c) borrowings of up to 100% of the value of the cash position (kB = 1); and
(d) 50%, 25%, and 5% of the initial wealth invested in the cash position (SQ = 0.50, SQ
= 0.25, and SQ = 0.05).

The annual interest rate on the risk-free notes is 4% (RL = 1.04), the annual interest
rate on borrowed funds is 10% (RB = 1.10), and the expected annual net return on the
unrelated risky activity is 12% (E(R,) = 1.12). 1 For consistency with RP, the standard

deviation of R. is set at SD(R1 ) = 0.0095 (=1.121/12 - 1) for the monthly scenario, at
SD(RI) = 0.0287 (=1.121/4 - 1) for the quarterly scenario, and at SD(RI) = 0.0583

(=1.121/2 - 1) for the semiannual scenario. Correlation coefficients between RI and Rp,

and RI and RF are postulated to be 0.30 (ppI = PFI = 0.30).12
To compare with the standard MVH setting which assumes deterministic production,

simulations are also performed allowing for stochastic production. Stochastic production

is represented by q following a beta distribution independent of Rp, RF, and Ri, that is,

1 qa- (qmax - q)'-1
(12) p(q) = q qmax

Beta(a, 3) qamax

where p(q) is the pdf of q, Beta(.) is the beta function, and a > 0, 8 > 0, and qmax > 0

are parameters. Parameter qm, must satisfy the restriction E(q) = 1, which is implied by

the definition of q (=-Q/E(Q1 )). By the properties of the beta pdf, such restriction is met

by setting qm = (a + 13)la. High- and low-production variability scenarios are simulated

by using the combinations of a and 3 values reported by Nelson and Preckel (p. 374)
that yield the greatest (a = 4.5988, 3 = 4.4407) and smallest (a = 6.5248, 3 = 2.1741)

variances for q.
Three alternative bivariate pdfs for Rp and RF are used, namely, bivariate normal,

bivariate gamma, and bivariate log-normal. The base scenario is represented by the bi-
variate normal pdf because this pdf is consistent with the standard MVH assumption of

cash prices being a function of futures prices plus an independent error term. In the two
alternative settings, Rp and RF have the same means, variances, and first-product moments

as in the base scenario, but it is assumed instead that they are either bivariate gamma

distributed or bivariate log-normally distributed. The gamma pdf is used because it vi-

olates the standard MVH assumption of cash prices being a linear function of futures

prices plus an independept error term. The gamma pdf is also probably more realistic

than the normal pdf because it is positively skewed and gamma random variables are

positive. In addition, the gamma pdf coupled with constant absolute risk aversion yields

a closed-form for expected utility (Johnson and Kotz, p. 219). The log-normal pdf is a

popular assumption about price behavior. But expected utility does not exist for constant

absolute risk aversion and log-normally distributed prices (Kotz and Johnson, p. 134).

Therefore, simulations for the log-normal pdf are performed assuming a quadratic utility

function.

'1 Marshall (p. 26) reports that initial margin deposits range generally from 5% to 10% of the contract's value.
n These figures were chosen because they are representative of actual values at the time this study was conducted.
12 Correlations of pP = pE = 0.30 seem realistic in the light of the wide range of correlation estimates reported by previous

studies for agriculture (e.g., Young and Barry; Boehlje and Trede; Musser and Stamoulis; Hazell).
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Discussion of Results

Results from the simulations are reported in tables 1 through 6. Table 1 shows the
standard MVH setting. In this instance, MVHs are also expected-utility maximizing hedg-
es. Given the parameters employed, MVHs are identical to the correlation coefficient
between cash and futures prices (MVH = ppp = 0.85). The OC of suboptimal hedging
increases with the level of risk aversion. For moderate risk aversion (AWo = 3) the OC
of not hedging is large: OC ranges from 3.17% through 5.64% of initial wealth per year
(corresponding to one-month and one-quarter holding periods, respectively). OCs of sub-
optimal hedging strategies increase at an increasing rate with the distance from the op-
timal hedge ratio. For moderate risk aversion and a one-month (one-quarter) holding
period, the OC of reducing the hedge ratio from 0.80 to 0.40 is 1.53% (0.87) of initial
wealth per year, but further reducing the hedge ratio from 0.40 to 0 has an OC of 4.09%
(2.29). It is important to note that, even though OCs of suboptimal hedge ratios can be
very high when such ratios are substantially different from the optimum, OCs are almost
negligible for hedge ratios not far from the optimum. For example, OCs of hedge ratios
between h = 0.80 and h = 0.90 are less than 0.06 cents per dollar of initial wealth per
year. This observation indicates that, even under the standard MVH assumptions, there
seems to be little to lose by departing slightly from MVHs.

Table 2 reports OCs for the same scenario as table 1 but under the assumption of
positive brokerage fees. First, brokerage fees cause optimal hedges to be smaller than
MVHs, sometimes substantially so. For example, optimal hedge ratios for moderately
risk-averse agents facing brokerage fees of only 0.25% of the initial futures price are h
= 0.6528 for one-month holding period and h = 0.7347 for one-quarter holding-period,
in contrast to MVH = 0.85 for either holding period. Second, as a result of brokerage
fees, there is a noticeable reduction in the OC of not hedging. This finding implies that
there is much less to be gained by switching from a zero hedge to an optimal hedge.
For moderate risk aversion and zero hedging, brokerage fees of 0.25% of the initial
futures price cause OCs to fall by 42%, 26%, and 11% for one-month, one-quarter, and
semiannual holding periods, respectively.

Table 3 presents the standard MVH scenario of table 1 but relaxing the assumption of
no initial margin deposits. Comparing tables 1 through 3 reveals that initial margin
deposits reduce both optimal hedge ratios and OCs of not hedging.l3 But the effects of
typical initial margin deposits are generally smaller than those of typical brokerage fees.
Under moderate risk aversion, optimal hedge ratios lie between h = 0.7842 (one-quarter
holding period and 10% margin) and h = 0.8315 (one-month holding period and 5%
margin). For moderately risk-averse agents, 5% initial margin deposits reduce OCs of
not hedging by 4%, 8%, and 7% for one-month, one-quarter, and semiannual holding
periods, respectively.

Initial margin deposits have the largest relative impacts on the one-quarter holding
period scenario. In contrast, brokerage fees exert the largest relative changes on the
setting with one-month holding period. Therefore, no generalizations can be made as to
which holding period scenario is the most affected by relaxing standard MVH assump-
tions.

13 Blank provides an alternative analysis of hedging capital requirements with similar findings regarding optimal hedge
ratios.

Lence
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Table 2. Optimal Hedge Ratios and OCs under MVH Assumptions with Positive
Brokerage Fees

Broker-
age Fee
(% ofiii( Holdin. p.t im Opportunity Cost of Hedging
initial Holding Optimal

uinitial Holding Optimal H(annual net return as percentage of initial wealth)
futures Period Risk Hedge
price) (months) Aversion Ratio h = 0 h = 0.5 h = 0.85a h = 1

0.125 1 Low 0.5541 0.78 0.01 0.22 0.50
0.250 1 Low 0.2583 0.17 0.15 0.89 1.40
0.500 1 Low 0.0000 0.00 1.49 3.32 4.31
0.125 1 Moderate 0.7514 4.38 0.48 0.07 0.47
0.250 1 Moderate 0.6528 3.29 0.18 0.30 0.92
0.500 1 Moderate 0.4555 1.59 0.02 1.19 2.28
0.125 1 High 0.8204 18.46 2.63 0.02 0.82
0.250 1 High 0.7908 17.06 2.16 0.09 1.12
0.500 1 High 0.7317 14.45 1.37 0.36 1.84
0.125 3 Low 0.6770 0.66 0.04 0.04 0.15
0.250 3 Low 0.5040 0.37 0.00b 0.17 0.36
0.500 3 Low 0.1580 0.04 0.17 0.69 1.03
0.125 3 Moderate 0.7923 2.75 0.37 0.01 0.19
0.250 3 Moderate 0.7347 2.36 0.24 0.06 0.31
0.500 3 Moderate 0.6193 1.67 0.06 0.23 0.63
0.125 3 High 0.8327 10.40 1.61 0.OOb 0.40
0.250 3 High 0.8154 9.96 1.44 0.02 0.49
0.500 3 High 0.7808 9.10 1.14 0.07 0.70
0.125 6 Low 0.7760 1.02 0.13 0.01 0.08
0.250 6 Low 0.7021 0.84 0.07 0.04 0.15
0.500 6 Low 0.5541 0.52 0.00b 0.15 0.34
0.125 6 Moderate 0.8253 3.48 0.54 0.OOb 0.16
0.250 6 Moderate 0.8007 3.28 0.46 0.01 0.20
0.500 6 Moderate 0.7514 2.88 0.32 0.05 0.31
0.125 6 High 0.8426 12.36 1.99 0.OOb 0.42
0.250 6 High 0.8352 12.14 1.91 0.0Ob 0.46
0.500 6 High 0.8204 11.70 1.74 0.02 0.55

Note: Low, moderate, and high risk aversion are represented by AWo = 1, AWo = 3, and AWo = 10,
respectively. Random variables Rp and RF are bivariate normally distributed with PPF = 0.85. One-month
holding period assumes E(Rp) = 1.065 and SD(Rp) = SD(RF) = 0.065; one-quarter holding period
assumes E(Rp) = 1.085 and SD(Rp) = SD(RF) = 0.085; and semiannual holding period assumes E(Rp)

= 1.130 and SD(Rp) = SD(RF) = 0.130. Values for other unspecified parameters correspond to the
standard MVH assumptions (i.e., SQ = E(RF) = 1 and SL = kL = kB = 0).
a A hedge ratio of h = 0.85 is equal to the MVH.
b Amount positive but smaller than 0.005%.

In table 4, the MVH assumption of deterministic production has been dropped. Be-

cause production is not known with certainty at the time of decision making, the hedge

ratio is the ratio of the futures position to the expected production level. Similar to the

effect of brokerage fees and initial margin deposits, stochastic production reduces optimal

hedges and decreases OCs of not hedging. In contrast to the scenarios with brokerage

fees or initial margin deposits, however, optimal hedge ratios decrease with risk aversion

Lence
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Table 3. Optimal Hedge Ratios and OCs under MVH Assumptions with Positive
Initial Margin Deposits

Initial
Margin
Deposit
(% net
futures
position's Holding Optimal Opportunity Cost of Hedgingposition's Holding Optimal .
absolute Period Risk Hedge (annual net return as percentage of initial wealth)

value) (months) Aversion Ratio h = 0 h = 0.5 h = 0.85a h = 1

5 1 Low 0.7944 1.61 0.22 0.01 0.11
10 1 Low 0.7388 1.39 0.14 0.03 0.17

5 1 Moderate 0.8315 5.39 0.84 0.0Ob 0.22
10 1 Moderate 0.8129 5.14 0.75 0.01 0.27

5 1 High 0.8444 19.65 3.05 0.0Ob 0.62
10 1 High 0.8389 19.37 2.95 0.0Ob 0.66

5 3 Low 0.7513 0.82 0.09 0.01 0.09
10 3 Low 0.6526 0.62 0.03 0.06 0.17

5 3 Moderate 0.8171 2.93 0.44 0.OOb 0.14
10 3 Moderate 0.7842 2.69 0.35 0.02 0.20

5 3 High 0.8401 10.60 1.68 0.0Ob 0.37
10 3 High 0.8303 10.34 1.58 0.01 0.42

5 6 Low 0.7642 0.99 0.12 0.01 0.09
10 6 Low 0.6784 0.78 0.05 0.05 0.18

5 6 Moderate 0.8214 3.45 0.52 0.0Ob 0.16
10 6 Moderate 0.7928 3.21 0.44 0.02 0.22

5 6 High 0.8414 12.32 1.98 0.0Ob 0.42
10 6 High 0.8328 12.07 1.88 0.00b 0.47

Note: Low, moderate, and high risk aversion are represented by AWo = 1, AWo = 3, and AWo = 10,
respectively. Random variables Rp and RF are bivariate normally distributed with PF = 0.85. One-month
holding period assumes E(Rp) = 1.065 and SD(Rp) = SD(RF) = 0.065; one-quarter holding period
assumes E(Rp) = 1.085 and SD(Rp) = SD(RF) = 0.085; and semiannual holding period assumes E(Rp)
= 1.130 and SD(Rp) = SD(RF) = 0.130. Initial margin deposits are assumed to be met with borrowed
funds. Values for other unspecified parameters correspond to the standard MVH assumptions (i.e., sQ =
E(RF) = 1 and b = 0).
a A hedge ratio of h = 0.85 is equal to the MVH.
b Amount positive but smaller than 0.005%.

in the presence of stochastic production. 14 Also, for moderate and high risk aversion, the
reduction in OCs due to stochastic production is much larger than that caused by either
brokerage fees or initial margin deposits. For example, for moderate risk aversion and
one-quarter holding period, OCs of not hedging fall by 81% (87) in the presence of low
(high) production variability.

Table 5 summarizes the simulation results from gamma and log-normal pdfs. The top
half of column 4 reveals that, albeit always smaller, the optimal hedge ratios for the
gamma pdf are almost the same as the optimal hedge ratios for the normal pdf (which
are identical to the MVHs). Optimal hedges for a gamma pdf and moderate risk aversion
range from h = 0.8484 through h = 0.8490, which compares to MVHs of 0.85. The

14 This observation implies that, in the presence of stochastic production, infinite risk aversion cannot be used to advocate
MVHs.
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Table 4. Optimal Hedge Ratios and OCs under MVH Assumptions with Stochastic
Production

Produc-
Prtion Holdi Optimal Opportunity Cost of Hedging

(annual net return as percentage of initial wealth)
Varia- Period Risk Hedge
bility (months) Aversion Ratio h = 0 h = 0.5 h = 0.85a h = 1

Low 1 Low 0.8169 0.14 0.02 0.OOb 0.01
High 1 Low 0.7635 0.12 0.02 0.0Ob 0.01
Low 1 Moderate 0.7390 0.35 0.04 0.01 0.04
High 1 Moderate 0.6060 0.23 0.01 0.04 0.10
Low 1 High 0.4489 0.43 0.01 0.34 0.65
High 1 High 0.3041 0.20 0.08 0.63 1.03
Low 3 Low 0.8162 0.24 0.04 0.00b 0.01
High 3 Low 0.7620 0.21 0.02 0.OOb 0.02
Low 3 Moderate 0,7369 0.59 0.06 0.01 0.08
High 3 Moderate 0.6025 0.40 0.01 0.07 0.17
Low 3 High 0.4445 0.73 0.01 0.60 1.14
High 3 High 0.3007 0.33 0.14 1.10 1.79
Low 6 Low 0.8148 0.56 0.08 0.00b 0.03
High 6 Low 0.7586 0.49 0.06 0.01 0.05
Low 6 Moderate 0.7322 1.37 0.14 0.04 0.18
High 6 Moderate 0.5951 0.90 0.02 0.17 0.42
Low 6 High 0.4366 1.69 0.04 1.51 2.80
High 6 High 0.2945 0.76 0.37 2.69 4.33

Note: Low, moderate, and high risk aversion are represented by AWo = 1, AWo = 3, and AWo = 10,
respectively. Random variables Rp and RF are bivariate normally distributed with PPF = 0.85. One-month
holding period assumes E(Rp) = 1.065 and SD(Rp) = SD(RF) = 0.065; one-quarter holding period
assumes E(Rp) = 1.085 and SD(Rp) = SD(RF) = 0.085; and semiannual holding period assumes E(Rp)
= 1.130 and SD(Rp) = SD(RF) = 0.130. Random variable q is independently distributed as beta, with
parameters a = 6.5248 (4.5988) and /3 = 2.1741 (4.4407) for the low (high) production variability
scenario. Values for other unspecified parameters correspond to the standard MVH assumptions (i.e., SQ

= E(RF) = 1 and b = s, =kL k = 0).

a A hedge ratio of h = 0.85 is equal to the MVH.
b Amount positive but smaller than 0.005%.

similarity between the optimal hedge ratios from gamma and normal pdfs is even more

evident when OCs are considered. For moderate risk aversion, the maximum absolute

difference between gamma and normal OCs is merely 0.12% (=3.70 - 3.58) of initial

wealth per year, achieved at zero hedging and a semiannual holding period. OC difference

between gamma and normal scenarios become noticeable only under very suboptimal

hedges and extreme risk aversion. The maximum absolute difference in OCs between

gamma and normal pdfs is 1.26 cents per dollar (= 12.58 - 11.32) of initial wealth per

year (attained at zero hedging, a semiannual holding period, and extreme risk aversion).

The bottom half of table 5 reports the results from simulations using a log-normal

pdf. Although optimal hedge ratios under log-normally distributed prices are generally

different from MVHs, here they are identical because a quadratic utility function is being

used. Therore, caution should be exercised when comparing the log-normal figures

with those of the other simulations. Most of the comments made about the normal pdf

results in table 1 apply to the log-normal pdf results as well. The major difference

between the two sets of simulations is that OCs are almost always smaller under the log-
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Table 5. Optimal Hedge Ratios and OCs under MVH Assumptions with Alternative
Probability Density Functions for RP and RF

Opportunity Cost of Hedging

Probability Holding Optimal (annual net return as
Density Period Risk Hedge percentage of initial wealth)
Function (months) Aversion Ratio h = 0 h = 0.5 h = 0.85a h = 1

Gammac 1 Low 0.8497 1.84 0.31 0.00b 0.06
Gammac 1 Moderate 0.8490 5.58 0.93 0.0Ob 0.17
Gammac 1 High 0.8467 19.27 3.06 0.00b 0.60
Gammac 3 Low 0.8496 1.04 0.18 0.00b 0.03
Gammac 3 Moderate 0.8487 3.12 0.52 0.0Ob 0.10
Gammac 3 High 0.8453 10.30 1.71 0.OOb 0.35
Gammac 6 Low 0.8495 1.21 0.21 0.00b 0.04
Gammac 6 Moderate 0.8484 3.58 0.61 0.0Ob 0.12
Gammac 6 High 0.8442 11.32 1.94 0.00b 0.42
Log-normald 1 Low 0.8500 0.16 0.03 0.00 0.00b
Log-normald 1 Moderate 0.8500 0.58 0.10 0.00 0.02
Log-normald 1 High 0.8500 3.04 0.84 0.00 0.14
Log-normald 3 Low 0.8500 0.29 0.05 0.00 0.01
Log-normald 3 Moderate 0.8500 1.07 0.18 0.00 0.03
Log-normald 3 High 0.8500 5.88 1.83 0.00 0.71
Log-normald 6 Low 0.8500 0.70 0.12 0.00 0.02
Log-normald 6 Moderate 0.8500 3.26 0.52 0.00 0.09
Log-normald 6 Highe 0.8500 10.72 4.23 0.00 1.80

Note: Low, moderate, and high risk aversion are represented by AWo = 1, AWo = 3, and AWo = 10,
respectively. Random variables Rp and RF are bivariate normally distributed with PPF = 0.85. One-month
holding period assumes E(Rp) = 1.065 and SD(Rp) = SD(RF) = 0.065; one-quarter holding period
assumes E(Rp) = 1.085 and SD(Rp) = SD(RF) = 0.085; and semiannual holding period assumes E(Rp)
= 1.130 and SD(Rp) = SD(RF) = 0.130. Values for other unspecified parameters correspond to the
standard MVH assumptions (i.e., SQ = E(RF) = 1 and b = sL = k, = k = 0).
a A hedge ratio of h = 0.85 is equal to the MVH.
b Amount positive but smaller than 0.005%.
c Random variables Rp and RF follow a bivarate gamma pdf.
d Random variables RP and RF follow a bivariate log-normal pdf. Utility function is hypothesized to be
quadratic.
e A value of AWo = 7.5 is used because OCs are not positive real numbers when AWo > 7.5.

normal pdf than under the normal pdf. In summary, the findings from the simulations
employing gamma and log-normal pdfs suggest that the effect of relaxing the assumption
of normally distributed prices is negligible.

The results from slackening the assumption that all the initial wealth is invested in the
cash position are shown in table 6. From looking at the effects of dropping each of the
standard MVH assumptions individually, it is clear that letting decision makers have a
large alternative investment has the greatest impact on OCs. Because of the presence of
a large alternative investment (e.g., other crop or livestock enterprises, or mutual funds),
OCs decrease so much that the OCs of not hedging often become almost negligible. By
reducing the cash position to 5% of the initial wealth, the OC of not hedging drops by
99% (98, 96) to only 0.05 cents per dollar (0.08, 0.15) of initial wealth per year for
moderate risk aversion and one-month (one-quarter, semiannual) holding period.

The total impact of the alternative investment on OCs can be conceptualized as the
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Table 6. Optimal Hedge Ratios and OCs under MVH Assumptions with an
Alternative Investment

Cash
Position's
Share of
Initial Holding Optimal Opportunity Cost of Hedging

Wealth Period Risk Hedge (annual net return as percentage of initial wealth)
(%) (months) Aversion Ratio h = 0 h = 0.5 h = 0.85a h = 1

50 1 Low 0.8938 0.51 0.10 0.00b 0.01
25 1 Low 0.9814 0.15 0.04 0.0Ob 0.00b
5 1 Low 1.6821 0.02 0.01 0.0Ob 0.00b

50 1 Moderate 0.8938 1.53 0.30 0.00b 0.02
25 1 Moderate 0.9814 0.46 0.11 0.01 0.00 b

5 1 Moderate 1.6821 0.05 0.03 0.01 0.01
50 1 High 0.8938 5.18 0.99 0.01 0.07
25 1 High 0.9814 1.54 0.37 0.03 0.00b

5 1 High 1.6821 0.18 0.09 0.04 0.03
50 3 Low 0.9514 0.33 0.07 0.0Ob 0.0Ob

25 3 Low 1.1543 0.12 0.04 0.01 0.00
b

5 3 Low 2.7771 0.03 0.02 0.01 0.01
50 3 Moderate 0.9514 0.98 0.22 0.01 0.00b
25 3 Moderate 1.1543 0.36 0.12 0.02 0.01

5 3 Moderate 2.7771 0.08 0.06 0.04 0.03
50 3 High 0.9514 3.31 0.74 0.04 0.01
25 3 High 1.1543 1.21 0.39 0.08 0.02

5 3 High 2.7771 0.28 0.19 0.13 0.11
50 6 Low 0.9845 0.41 0.10 0.01 0.00

b

25 6 Low 1.2536 0.17 0.06 0.02 0.01
5 6 Low 3.4062 0.05 0.04 0.03 0.02

50 6 Moderate 0.9845 1.23 0.30 0.02 0.00 b

25 6 Moderate 1.2536 0.50 0.18 0.05 0.02
5 6 Moderate 3.4062 0.15 0.11 0.08 0.07

50 6 High 0.9845 4.14 0.99 0.08 0.00b
25 6 High 1.2536 1.67 0.60 0.17 0.07

5 6 High 3.4062 0.49 0.36 0.28 0.24

Note: Low, moderate, and high risk aversion are represented by AWo = 1, AWo = 3, and AWo = 10,
respectively. Random variables Rp, RF, and R. are trivariate normally distributed with ppE = 0.85 and
PP = P, = 0.30. One-month holding period assumes E(Rp) = 1.065, SD(Rp) = SD(RE) = 0.065, and
SD(R) = 0.0095; one-quarter holding period assumes E(Rp) = 1.085, SD(Rp) = SD(RE) = 0.085, and
SD(R,) = 0.0287; and semiannual holding period assumes E(Rp) = 1.130, SD(Rp) = SD(RF) = 0.130,
and SD(R1) = 0.0583. Values for other unspecified parameters correspond to the standard MVH as-
sumptions (i.e., E(RF) = 1 and b = SL = kL = kB = 0).
a A hedge ratio of h = 0.85 is equal to the MVH.
b Amount positive but smaller than 0.005%.

sum of two separate effects, namely, a "diversification" effect and a "dilution" effect.
The diversification effect is attributable to the risk reduction achieved by having returns
from the cash position less than perfectly associated with returns from the alternative
investment. In contrast, the dilution effect is due to the fact that, because the cash position
in the presence of an alternative investment is only a fraction of the initial wealth, the
OC of suboptimal hedging is also a fraction of the OC found when all initial wealth was
invested in the cash position. In the present simulations, the diversification effect can be
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measured as the OC obtained when pp. - 1 minus the OC calculated with ppi = 0.30;

the dilution effect is simply the difference between the total effect and the diversification
effect. Contrary to what intuition might suggest, it can be shown theoretically that all of
the reduction in OCs from the alternative investment is caused by dilution as opposed
to diversification (see appendix).

Interestingly and somewhat paradoxically, table 6 shows that optimal hedge ratios in
the presence.of an alternative investment are larger than MVHs. Optimal hedge ratios

for diversified agents with SQ = 0.25 are 0.9814, 1.1543, and 1.2536 for one-month, one-
quarter, and semiannual holding periods, respectively, in contrast to MVHs of 0.85 for
all three holding periods. The reason why diversification actually increases optimal hedge
ratios is that in this example the returns on the alternative investment are assumed to be

positively correlated with the returns on futures (pI = 0.3). Hence, futures contracts can

be used to reduce total risk because they partly offset the riskiness of the alternative
investment. Proof of this assertion is that optimal hedge ratios increase as the cash
position's share of initial wealth decreases. Had it been assumed a negative (zero) cor-
relation between returns on futures and returns on the alternative investment, the optimal

hedge ratio in the presence of an alternative investment would have been lower than

(equal to) the MVH.1 5

Relaxing standard MVH assumptions one at a time allows us to conclude that all of
the constraints investigated thus far tend to reduce the OCs of not hedging when slack-

ened individually. Our results suggest that, in terms of affecting the OCs of not hedging,

the most important MVH restrictions are that production is deterministic and that there

are no alternative (large) investments. In particular, the dilution due to a large alternative
investment seems to have the greatest impact on OCs. Our analysis also indicates that

relaxing standard MVH constraints one at a time yields optimal hedge ratios smaller
than MVHs, except for the scenario with a positively correlated alternative investment.
In this instance, optimal hedge ratios are actually greater than MVHs because of the
alternative investment's positive correlation with futures.

Further insight can be gained by dropping more than one MVH constraint at a time.
The major findings of such an exercise can be summarized as follows.16 First, typical

brokerage fees may greatly reduce optimal hedge ratios and OCs of zero hedging for
agents holding an alternative investment. The reason for this effect is that the OCs of
hedging suboptimally are much lower in the portfolio context. Therefore, typical bro-
kerage fees are relatively far more important when agents hold an alternative invest-
ment.17 Second, when coupled with an alternative investment, typical initial margin de-
posits have an impact qualitatively similar to, but quantitatively smaller than, that of
typical brokerage fees. This finding is not surprising, given the individual effect of bro-

kerage fees and initial margin deposits in the scenario without an alternative investment
(tables 2 and 3). Third, as expected from the individual effect of stochastic production
(table 4), random production in the presence of an alternative investment reduces both
optimal hedges and OCs of not hedging. Fourth, compared with having an alternative

investment without borrowings (table 6), allowing for debt either increases or leaves

15 This means that an alternative investment generally renders MVHs invalid even under the old justification of infinite
risk aversion.

16 Specific results are not reported because of space limitations, but they are available from the author upon request.
17 In other words, brokerage fees seem small in absolute terms but become large relative to the OCs of not hedging, which

yields an almost negligible net benefit from hedging.
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unchanged both optimal hedges and OCs of not hedging. This effect occurs because

agents borrow to enlarge their holdings of the alternative investment. These added hold-

ings increase the agents' risk exposure, which can be partly offset by additional hedging. 18

Extremely risk-averse agents, however, find it optimal not to borrow under some circum-
stances; in these instances the optimal hedge and the OCs are the same as if borrowings
were not allowed.

Conclusions

Relaxing the standard MVH assumptions one at a time reveals that the most important

of such assumptions are that (a) production is deterministic and that (b) all of the agent's

initial wealth is invested in the cash position. Stochastic production causes important
reductions in both optimal hedges and OCs of not hedging, particularly so for higher
levels of risk aversion. Allowing decision makers to hold an alternative investment results
in optimal hedge ratios that are larger (smaller) than MVHs if the alternative investment
is positively (negatively) correlated with futures. At the same time, however, an alter-

native investment greatly reduces the OCs of not hedging, mostly because the alternative

investment "dilutes" the cash position, that is, the latter becomes less important to the

agent in economic terms.
By greatly decreasing the OCs of zero hedging, allowing for an alternative investment

or for stochastic production has far-reaching implications for hedging behavior. The re-
duction in the OCs of zero hedging renders the costs associated with hedging (e.g.,
brokerage fees) much more important in relative terms, thus yielding the net benefits of
hedging almost negligible. This means that the costs associated with hedging, typically

ignored in hedging models because of their seemingly negligible size, are important

determinants of hedging behavior when agents hold only a fraction of their wealth as

the cash position or when production is random.
Our analysis may help explain why most farmers do not hedge. Most farmers are

involved in a set of activities that have imperfectly correlated returns and usually face
great production variability. In addition, hedging costs for typical farmers are relatively
high because they not only include brokerage fees and initial margin deposits but also
other costs more difficult to measure but equally relevant. Examples of such costs are

the opportunity cost of the time employed to follow the futures market, the additional

complexity of tax returns when entering futures transactions, and the possibility of facing
margin calls. Under this scenario, our model predicts that the costs of hedging quite
likely outweigh its benefits, thus rendering hedging unattractive.

Our findings may also help explain why specialized firms such as grain elevators find
it more attractive to hedge than not to hedge. Such firms hold most of their wealth in
the form of inventories, and these are characterized by little randomness. At the same

time, their "true" hedging cost is only slightly above brokerage fees and margin re-

quirements because of their specialized resources. In addition, they usually face smaller

brokerage fees (for example, they can negotiate fees as a result of their large volume of

operations). Under such conditions, our model predicts that in most likelihood a sub-

stantial portion of the cash position will be hedged.

18 Recall that returns on futures are positively correlated with returns on the alternative investment.
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In addition to being helpful at explaining actual hedging behavior, our analysis is
useful in that it points out limitations of MVH recommendations. In particular, it shows
that MVHs are likely to be far from optimum when agents hold alternative investments
along with the cash position, or when production is stochastic. Furthermore, in such
contexts optimal hedges are extremely sensitive to the costs associated with hedging. In
fact, seemingly low hedging costs may well cause expected-utility, maximizing hedge
ratios to be zero.

[Received March 1995; final version received January 1996.]
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Appendix: Closed-Form Solution for OCs

For constant absolute risk aversion, OC is given by

I - E[-exp(-AWoRot)]
(Al) OC = AWo lnE[-exp(-AWoRPal)]}

By assuming additionally that q is deterministic, SL = kL = kB = 0, and Rp, Rp, and R,
follow a trivariate normal pdf, the expression for expected utility becomes

(A2) E[-exp(-AW R)] = -exp{[E(Rp) + (1 - E(R,))hFov(Q1 )]gQ + E(R,)g,}

exp{ [(a - a2 h2F/v(Q,)2)gQ + ajgf]/2}

exp{ [pp po rigi - (ppF opgQ + pF FiIgi) oFhFlv(Q1 )]gQ},

where gQ - AWOSQ, g, - AWos, and or - SD(Ri)(i = P, F, I). After some manip-

ulation, substituting (A2) into (Al) yields

I F W
(A3) OC = -2 a, AWOQ (h2lt + h2t)

°v(QL) W os

- [1 - E(RF) + F(ppIoISQ + p sI)AWoAWo] AWoQhalt
v(Q1

where hopt is the optimum hedge ratio and halt is any alternative hedge ratio. The optimum
hedge ratio is obtained by setting the derivative of (A2) with respect to h equal to zero

and solving the resulting expression for h, which yields

1 - E(R,) U a sv(Q1)
(A4) hop= ~AWo + PPF + PF' S -Fo

It is clear from (A3) and (A4) that both OC and hopt are independent of ppi. Therefore,
the diversification effect (which is measured as the OC obtained when ppi -> 1 minus
the OC calculated with pp, = 0.30) is also independent of pi.
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