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On the Estimation of Separable Demand Models

David L. Edgerton

Alternative stochastic specifications of conditional demand models are con-
sidered. The results of LaFrance concerning the inconsistency of least squares
are supported, but the class of models that allow standard instrumental variable
estimation is broadened considerably.

Key words: conditional demand models, instrumental variables, weak sepa-
rability.

Introduction

The problems connected with the estimation of conditional demand models have been
addressed by a number of authors, with somewhat contradictory results. The block re-
cursivity of separable systems has sometimes been cited as an argument for using least
squares (LS)' (see, for example, Bieri and de Janvry, p. 21). Other authors (e.g., Deaton,
p. 167) have stressed the interrelations between the conditional and unconditional error
terms as a reason for expecting LS to be inconsistent. 2

In an important paper, LaFrance clarified many of the issues that had previously caused
confusion in the literature. Starting from a plausible stochastic generalization of usual
demand theory, he showed, among other things, (a) that LS estimation of the conditional
demand model will in general be inconsistent, and (b) that standard instrumental variable
(IV) techniques will also yield inconsistent results in nonlinear models. He suggested using
an iterative estimation method proposed by Anderson to obtain consistency.

In this article we will show that the stochastic generalization suggested by LaFrance is
not unique. While it seems unlikely that an alternative specification would invalidate
LaFrance's results concerning LS, it is easy to show that another plausible specification
will enable standard IV methods to yield consistent estimates in certain nonlinear models.
It is thus important to formally incorporate the stochastic specification and estimation
methodology into the modeling process.

Conditional and Unconditional Demand Systems

Consider a vector of commodities of interest x with corresponding prices p. The goods x
are assumed to be weakly separable from all other goods z, whose prices are given by q.
The unconditional demand for x will be a function of all prices and total expenditure (y),
which can be expressed in nonstochastic form as

(1) x = h(p, q, y).

Defining group expenditure as

(2) x = p'x = (p, q, y)
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we can utilize separability, and write the conditional demand function as

(3) x = a(p, Yx).

Separability thus implies, and is implied by, the relation h(p, q, y) = h(p, k(p, q, y)).

Since economic theory tells us little about the stochastic nature of the econometric
model, LaFrance suggests expressing a stochastic demand model in terms of the condi-
tional expectations of x and yx, i.e., replacing (1) through (3) by

(4) x = E(x Ip, q, y) = h(p, q, y),

(5) Y. =p'x = q(p, q, y),

and

(6) = h(p, yx),

where (6) follows from (4) and (5). If we write x = x + Ex and y, = :y + vx, then it follows
that E(x Ip , , ) = O, E(vx Ip, q, y) = 0, and p'x = vx. The conditional demand function
can now be expressed with the observable level of group expenditure on the right-hand
side, that is

(7) x = h(p, y,) + Zx,

where

(8) x= E + h(p, yx) - i(p, Yx + vx).

LaFrance uses these relations to prove, among other things, the following:

Lemma 1: Given that E(ex) = 0 and E(vx) = 0, then E(Zx) = 0 if and only if either
p'Ex = 0 or A is linear in yx (LaFrance, lemmas 1 and 2).

The first condition is equivalent to I 2x I = 0, where 2x is the covariance matrix of the
unconditional errors cx. Note that this matrix is in general nonsingular, since adding-up
merely implies that p'x + q'fz = 0 and p'x = 0. A second result is that

(9) Cov(yx, Zx) = xxp - E[h(p, Yx + P'ex)ex],

from which the following can be obtained:

Lemma 2: Cov(yx, -x) = 0 if and only if (a) I Z I = 0; (b) 2xx is constant and A is
linear in yx, with its coefficient equal to a specific function ofp and 2xx; or (c) i is
linear in yx, and the unconditional errors satisfy the generalized rational random
errors hypothesis (LaFrance, lemmas 1, 3, and 4).

The above equality holds approximately in cases (b) or (c) when A is nonlinear in yx, as
long as the first-order Taylor approximation of A satisfies the given restrictions.

These results are very strong. LaFrance interprets the second result as showing that LS
will only yield consistent estimates of (7) under very restrictive conditions. The first result
is interpreted as implying that standard IV methods (see Amemiya, or Bowden and
Turkington) will only be consistent when A is linear in yx. The estimation method suggested
by LaFrance is an iterated generalized least squares method proposed by Anderson.

All the above results are dependent, however, on the stochastic generalization of the
deterministic demand system given by (4) and (5). The definitions given there seem both
natural and plausible, but an obvious question is whether there exist other plausible
definitions that lead to different results.

Consider, for example, Deaton and Muellbauer's Almost Ideal Demand System. The
conditional demand function for this model explains the within group budget shares3 (wi
= xpi/yx) as a linear function of prices and the logarithm of group expenditure (7x = In

x). It is thus reasonable to assume that w, and x are the variables of primary interest in
the model, rather than x and yx. In this case it is more convenient to assume a stochastic
specification based on the conditional expectations R = E(w IP, q, y) and 7x = E(nx IP, q,
y), instead of (4) and (5).
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An Alternative Stochastic Specification

Let us now consider quite general transformations of x and yx,

(10) w = f(x, P. Y),

and

(11) x = g(Yx)

where the inverse functions of g and f (for given p and yx) both exist. Using the deter-
ministic demand functions (1) through (3), we can write

(12) w= f(h(p, q, y), p, I(p, q, y)) = k(p, q, y),

(13) x = g(p'x) = g(p(p, , y)) = (p, q, y),

and

(14) w = f(h(p, yx), P, Y) = f(h(p, g-'(rx)), P, g-(rx)) = k(p, 7x),
where k(p, q, y) = k(p, '(p, q, y)), and 4 p'x = p'f-(w, p, g- 1(x)) = g-l(x). Note that we
can also write w = f(x, p, p'x) = f(x, p), but that f need not be invertable for given p.

A stochastic generalization of the deterministic model, in terms of the conditional
expectations of w and 77, can now be constructed. Equations (4) through (6) will become

(15) · = E(w Ip, q, y) = k(p, q, y),

(16) (, q, Y),

and

(17) = k(p, x)

If we now write w = w + ew and 77 = xi + vw, then ,w and vw have conditional expectations
equal to zero. Defining x = f- l( , p, g-'(i)) implies that ,x = g(p'x), but x is no longer
the conditional expectation of x if f - is nonlinear in w or 7x. Note that there no longer
exists any simple relationship between vw and Ew.

Equations (15) through (17) and (4) through (6), respectively, comprise mutually ex-
clusive alternatives when either g or f is nonlinear. They thus represent two distinct
stochastic models. Both are quite plausible generalizations of the deterministic model,
but they have somewhat different implications. Estimation of LaFrance's specification (if
it is correct) yields unbiased predictions of x and y,, while the specification given here
yields (if correct) unbiased predictions of w and 7,. This is quite a normal situation when
comparing budget-share and expenditure models, and is not usually a cause for concern.

We can continue our analysis by developing the conditional demand function as for
(7), namely

(18) w = k(p, 7x) + Ew,

where

(19) = Ew + k(p, I) - k, 7x + VW).

The following result is now directly comparable to lemma 1:

Lemma 3: Given that E(Ew = 0 and E(vw) = 0, then E(w) = 0 if and only if either
p'(x - x) = 0 or k is linear in 7x.

Thus if k is linear in 7x, then usual nonlinear IV estimation will yield consistent estimates.5
The first condition in lemma 3 has a similar interpretation to that in lemma 1, namely

that the vector of unconditional demand errors, ex = x - X, has a singular distribution
(although ,x does not have zero conditional expectation here). Note also that the conditional
budget share errors, Ew, has a singular distribution, due to adding up, whether or not p'(x
- ) = 0.6

As previously, LS will not be consistent, since

Edgerton
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(20) Cov(nx, ,w) = E(vx,) - E[k(p, x + vx)vx]

can only be zero under very special conditions, analogous to those in lemma 2.

An Example and Some Implications

The Almost Ideal Demand System is usually written in determinstic form as

(21) wi = ai + ,, In pj + fi(ln Y, - In P,),

where w = xipi/yx, and In PI is a price index to be estimated (as a nonlinear function of
p and the a and y parameters) or approximated (e.g., as Stone's price index, 2 kWk In Pk).
The group expenditure function for yx can be given by

(22) x .= ,(P, Y; 0),
which may, or may not, be in Almost Ideal form, and where p and q may, or may not,
form group price indices.

Using LaFrance's specification of the stochastic Almost Ideal model, we obtain the
following conditional demand system expressed in terms of observed expenditures:

(23) xi= ai(yp 1) + 2j(yxp- 1)n pj + fi(yxp, - )(ln yx - In P,) + xi,

Since E(Ex) 0 in general, the model to estimate would be

(24) xi = a,(yxp; - 1) + , (yxp- 1 )ln p + (yp)(ln - In PI) + ex)

(25) Yx= (P, q, y; 0) + vx,
and Anderson's method (or double regression nonlinear TSLS) will yield consistent es-
timates. Note that the function r has to be specified.

The alternative stochastic specification used in this article yields, for x = In yx,

(26) Wi = ai + yij In p + fi(7 - In Pi) + wi,
which, being linear in nx, implies that E(ew) = 0. Using y or In y in the instrument set for
7x will yield consistent estimates. Note that we do not need to specify the group expenditure
function when applying this method. If, however, we estimate

(27) 1x= '(P, q, y; 0) + v,,

then this can be used explicitly to form instruments (this is called the method of internal
instruments by Bowden and Turkington, p. 166). LS will not be consistent, except in
exceptional circumstances. The bias introduced by using LS may be small, however, and
the usual Hausman-Wu test could be used to detect this.

The specification (26) seems more convenient than (24)-(25), but the choice between
them must be an empirical matter. Some form of nonnested test seems to be called for,
although the necessity of different estimation methods in the two models will cause
complications. An alternative approach could be to test for specification error in each of
the two models, using some IV generalization of Ramsey's RESET test. Note also that
the two models given above are not the only possible stochastic generalizations of the
Almost Ideal Demand System. The following model,

(28) wi = a + Zi j In p, + Ai(ln x - In P,) + E,

together with (25), will have to be estimated by Anderson's method, but will yield different
estimates than those given by (24). Note that reformulating (28), so that the right-hand
side is expressed in terms of yx, will imply

(29) w = ai + y In p + fi (ln y - In P) + Zwi,

which only differs from (26) as regards the formulation of the error terms. That is,
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(30) w = E, + ((ln - ln(yx + Vx)),

while

(31) = Ew + #vW.

Conclusions

The importance of the stochastic specification of demand systems is often overlooked.
The implications of separability on the specification of conditional demand models have
only recently been investigated, and the article by LaFrance concerning exogeneity is of
crucial importance in empirical analysis. Some of the conclusions drawn in that article
are, however, dependent on the specific stochastic form that was assumed. Other speci-
fications, which are at least equally plausible, lead to other conclusions.

In particular, conditional demand systems that are linear in some (linear or nonlinear)
function of the group expenditures can be specified so that usual IV methods are consistent.
Other specifications, which demand a double regression interpretation of TSLS, are also
always possible. The choice of which specification to use will be an empirical matter,
which generally can be difficult to separate from other misspecification problems such as
choice of funcational form, etc.

The automatic use of LS in conditional demand systems cannot be justified. The matter
of finding a consistent estimation method to use as a yardstick, seems, unfortunately, still
to be unresolved.

[Received April 1993;final revision received July 1993.]

Notes

' We use the notation LS here to denote all estimation methods that are based on a theoretical zero correlation
between regressors and errors, e.g., ordinary LS, nonlinear LS, seemingly unrelated regressions (SUR), iterated
SUR, etc.

2 Deaton argues that the asymptotic bias in using LS should be small, however.
3 LaFrance mentions budget-share models in his footnote 2, but in his case, he considers the unconditional

budget shares xipi/y.
4 The notation f-'(w, p, yx) is used loosely here to mean the inverse of w = fix, p, yx) for given p and yx.
5 Anderson's method is equivalent to iterated generalized two-stage least squares performed as a double

regression method. Both Kelejian and Edgerton (1972) have shown that in nonlinear sitautions, the double
regression and IV interpretations of TSLS cannot both be consistent for the same stochastic specification. In
linear models the two forms are, of course, numerically identical. Edgerton (1973) has shown how a nonlinear
form of Wold's fix-point method (which is equivalent to iterated double regression TSLS) can be applied if, in
the present notation, E(Qw) = 0.

6 In the case of simple functions, such as expenditures, budget shares, or uniform transformations of quantities
demanded, the results of Lau are of interest. Note also that if we consider uniform simple functions of quantities,
expenditures,- or budget shares, then lemmas 1 and 3 restrict us to rank 2 conditional demand models in order
that the error terms should have the requisite properties.
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