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Dynamics and Price Volatility in Farm-Retail
Livestock Price Relationships

T. Kesavan, Satheesh V. Aradhyula, and Stanley R. Johnson

This study uses an error correction model (ECM) to investigate dynamics in
farm-retail price relationships. The ECM is a more general method of incor-
porating dynamics and the long-run, steady-state relationships between farm
and retail prices than has been used to date. Monthly data for beef and pork
are used to test the time-series properties for the ECM specification. The model
is extended to study price volatility through the generalized autoregressive
conditional heteroskedasticity (GARCH) process. Accommodation of the
GARCH process provides a useful way of analyzing both mean and variance
effects of policy or market structure changes.

Key words: cointegration, error correction models, GARCH process, long-
run, unit root.

Introduction

Knowledge of farm-retail price relationships is important for many contemporary policy
and commodity market analyses. Traditionally, this relationship has been specified by
using a markup model (see Ward 1982; Heien; Lyon and Thompson; and Wohlgenant
and Mullen, among others) or a reduced-form framework (e.g., Wohlgenant; Brorsen,
Chavas, and Grant). Among these, Heien may have been first to formulate a dynamic
model for agricultural pricing relationships. More recent studies have extended the em-
pirical linkage between farm and retail prices to include dynamics and lag adjustments
in the price determination process (e.g., Bailey and Brorsen; Schroeder and Goodwin;
Babula and Bessler; Brorsen, Chavas, and Grant). These latter studies are based generally
on a vector-autoregressive or a time-series framework and have established the importance
of dynamics and lag adjustments in farm-retail price relationships, especially with shorter
time period data.

Whereas past studies have highlighted the importance of short-run dynamics, the long-
run structure of farm-retail price relationships has been neglected or studied in a limited
context. Typically, the long-run behavior in agricultural pricing relationships has been
inferred from time-series models identifying short-run dynamic behavior. Specifically,
data are differenced to achieved stationarity, and the long-run effects are calculated as
ratios of short-run parameters. This approach is restrictive in the sense that the long-run
information is lost through differencing and does not account for the short-run nonsta-
tionary aspects of time-series data that are commonly observed. Furthermore, the standard
errors of the long-run estimates, defined as the ratios of regression estimates, are difficult
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to compute. Because moments of ratios of regression coefficients may not exist, approx-
imation methods often are necessary.

Given that dynamics also are used to identify the long-run structure, one need not
restrict econometric methods and techniques to merely identifying short-run dynamic
adjustments. Instead, long- and short-run economic relationships can be estimated directly
in an internally consistent systematic manner by adopting the error correction method.
The error correction model (ECM) approach allows for direct estimation of the long-run,
steady-state equilibrium condition implied by theory along with the short-run dynamic
adjustments based on nonstationary properties of data. Thus, the model provides an
opportunity to study retail-to-farm linkages in a framework accommodating both equi-
librium hypotheses (e.g., Wohlgenant) and short-run dynamics (e.g., Brorsen, Chavas, and
Grant) simultaneously.

Another feature of agricultural pricing relationships is the presence of price volatility
in certain periods. Aradhyula and Holt reported that retail meat prices have become
relatively volatile in recent periods. Such a phenomenon violates the basic assumption
ofhomoskedastic variance resulting in a loss of efficiency among the estimated parameters.
Modeling heteroskedasticity within the time-series framework not only overcomes this
problem, but also provides information useful for evaluating the effects of external factors
or shocks on both conditional means and the variances of farm and retail prices.

This study investigates farm-retail price relationships for beef and pork by using an
estimation strategy that incorporates short-run dynamics, the steady-state relationship,
and price volatility within a unified framework. The first two aspects are accommodated
by extending the idea of cointegration1 to link it to the error correction mechanism (Engle
and Granger). The result is a dynamic econometric model that includes both short- and
long-run effects. Price volatility, in the form of conditional heteroskedasticity, is incor-
porated by using the GARCH process developed by Engle and Bollerslev. The empirical
analysis is carried out for beef and for pork, both of which have been studied extensively
in terms of the factors affecting farm-retail price spreads (e.g., Wohlgenant; Holloway),
but neither of which has been studied within a general dynamic framework.

Cointegration, Error Correction Models, and Price Dynamics

Time-series models often are used to analyze dynamic properties of price systems (Bessler;
Bessler and Brandt) and interactions among farm, wholesale, and retail prices (e.g., Bror-
sen, Chavas, and Grant; Babula and Bessler). Vector autoregression (restricted and Bayes-
ian) and transfer functions are used frequently in price analysis. These techniques were
originally developed under standard statistical theory as it applies to stationary time-
series data sets. If nonstationarity is observed, individual time series must be transformed
to stationarity by using deterministic trends and seasonals, and/or differencing.

Differencing filters motivated by such stationarity requirements do not contain infor-
mation on long-run, steady-state structure (Granger 1986; Harvey) that is of economic
interest.2 Furthermore, it is not necessary for all the variables in the regression equation
to be stationary. All that is required is that the conditional distribution of the regression
error be stationary (Hendry and Mizon). To overcome these problems, new methods have
been suggested that accommodate nonstationarity properties of time-series data by means
of cointegration systems.

Before proceeding further into model development, it is useful to set out certain ter-
minologies and definitions. A variable, xt, is said to be integrated of order d if it achieves
stationarity after differencing d times, and is denoted as x, ~ I(d). Formally, a series xi
is integrated of order d, Xi, I(d), if and only if (I - B)dxi has a stationary, invertible,
nondeterminsitic ARMA representation (see Engle and Granger), where B indicates the
back lag operator. Thus, by definition for xit I(0), xit is stationary, and for xi I (1),
the first difference of the series is stationary.

The concept of cointegration for integrated series is provided formally in Granger (1981,
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1986) and Engle and Granger. The cointegration concept states that an individual time
series can wander extensively, yet, when paired with another series (or a set of series), the
pairs will tend to move together consistently. Formally, N series in the vector xt are
cointegrated of order d [i.e., x, - CI(d - b)] if all the N series are integrated of order d
and there exists a linear combination of the N series Yt = r'Xt such that Yt = r'xt - I(d -
b) with b > 0, where r (known as the cointegrating vector) denotes the equilibrium
condition between the elements of x. In this study, we deal with series that are only I(1)
and I(0). For our purpose, it is simply stated that a set of variables integrated of order
one, I(1), are cointegrated if there exists a linear combination of these variables that are
integrated of order zero, I(0).

Under these conditions, Engle and Granger have shown that the time-series vector xt
can be modeled equivalently in the form of:

(a) a multivariate Wold representation, (I - B)xt = C(B)et;
(b) a vector autoregressive (VAR) representation, A(B)xt = et; and
(c) an error correction representation, A*(B)(I - B)xt = -or'xt_ + et = -rt 1 + et,

where

A(B) = I + A1B + A2B2 + ... + ApBP,

A*(B) = I + A*B + A*B 2 + ... + A*BP,

p

A=- Aj,
j=i+

C(B)= I + A1B + A2B 2 +... + AnBn,

yt = r'Xt; r = Or, and

et is the error term.

This result is due to the Granger representation theorem (Engle and Granger). An
interesting result to note from the above equivalent representations is that cointegration
implies the presence of levels of the variables in the error correction formulation. 3 Thus,
the VAR models in differences may be misspecified if the variables are actually cointe-
grated.

A particularly appealing feature of the ECM is that the short-run responses of prices
with respect to exogenous variables [A*(B)] and their long-run relationships (r) are de-
termined in a unified estimation framework. However, a linear steady-state structure is
implied by the ECM. Given that agricultural pricing relationships usually are studied
within a linear framework, the ECM attempts to reconcile time-series models and eco-
nomic theory by merging short- and long-run effects.

A Dynamic Modelfor Price Relationships

The static relationship between farm and retail prices for livestock commodities can be
specified as

(1) y, = ao + bxlt + cx2t,

where y, is the logarithm of farm price; xlt is the logarithm of retail price; x2t is the
logarithm of the marketing cost index; ao, b, and c are parameters; and t refers to time
period. Equation (1) is a markup type of model,4 augmented with a marketing cost variable,
which has been used widely in empirical studies (e.g., Kinnucan and Forker; Wohlgenant
and Mullen). Imbedded in this relationship is the assumption that retail prices determine
farm prices.

Equation (1) is static and does not account for short-run dynamic adjustments in farm-
retail price relationships. Because lag adjustments in price transmission and determination
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are important (Heien; Bessler; Babula and Bessler; Bailey and Brorsen), the dynamic
aspects are represented by a general distributed lag specification,

m n p

(2) Yt = ao + o aiyt-i + bjx t-j + - CkX2t-k,
i=l j=o k=O

This autoregressive, distributed lag model forms the basis for many analyses of dynamic
schemes and long-run responses (Hendry, Pagan, and Sargan).

The error correction formulation is derived by transforming the general distributed lag
model in equation (2) to incorporate explicitly the long-run, steady-state relationship
between y and the exogenous variables (xs), along with the short-run dynamics. By repeated
substitution, the steady-state relationships between y and other exogenous variables (xl,
x2) can be deduced from (2) as (Harvey):

a0 b +X Ck x2

i-S m ) J° (- , ) k=o (-S"

= o + 01xl + 02x2.

A number of (linear) transformations on the autoregressive-distributed lag model (2) are
possible so as to directly identify the long-run, steady-state structure defined in (3) (Ba-
nerjee, Galbraith, and Dolado). Based on the original autoregressive distributed lag model
in (2), the particular restrictions used for identifying the long-run structure in (3) are
given by

(4) 1 - 0 = 1 - a1 , 0o= a 0/(l - 0),
i=l

n P

0i = 2 bj/(l - 0), and 2 = 2 Ck/(l - 0).
j=O k=O

Subtracting y,_ from both sides of equation (2), and manipulating algebraically 5 to derive
0, 0o, 01, and 2,, as defined in (4), we get

m n

(5) Ayt= - ai(y - Yt-) + bolxlt - b(xl,_i - xl,_j)
i=2 j=2

p

+ CoAx2, - Ck(x2t_1 - x2tk)
k=2

+ (o - l)[yt-1 - 0 - Xl-1 - 02x2t-,] + Vt,

disturbance term. The unknown steady state parameters, 00, 0i, and ( 2, can be estimated
directly from equation (5) and inferences drawn on the long-run properties of the model.

Intuitively, the model in (5) states that the change in farm price is a function of both
levels of and differences of dependent (farm price) and independent (retail price and
marketing cost) variables. The salient feature of the error correction formulation can be
found in the term within the square brackets in equation (5). This term reflects the past
period's deviation from the steady-state solution in (3). Under stable conditions, this
disequilibrium is corrected to the steady-state solution; hence, the term within the square
brackets represents the mechanism for error correction (Harvey; Hendry, Pagan, and
Sargan).

Although the error correction mechanism usually is captured with variables at lag t -
1, it could be introduced at another lag following a different normalization. In this respect,
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the transformation adopted to derive the ECM is not unique. However, some researchers
have argued that alternative transformations would produce numerically equivalent rep-
resentations of the long-run multipliers (Banerjee, Galbraith, and Dolado). In the context
of livestock price analysis with monthly data, an error correction mechanism at lag t -
1 seems reasonable. Also, the ECM provides a consistent analytical framework that com-
bines short-run dynamics and the long-run, steady-state relationships among farm price,
retail price, and marketing costs.

Time Series Properties of Livestock Prices

Dynamics of farm-retail price linkages are investigated for beef and pork commodities
based on (5) using monthly data from January 1965 to December 1989. Both farm6 and
retail prices were collected from Livestock and Meat Statistics [U.S. Department of Ag-
riculture (USDA) 1983, 1988] and from Livestock and Poultry Situation (USDA, various
issues). Following Wohlgenant and Mullen, a marketing cost index was computed as the
average of two indexes: the index for wage rates in the meat-processing industry and the
producer price index for fuel related products and power. The data for wage rates were
collected from Employment and Earnings [Bureau of Labor Statistics (BLS)], and data
for the fuels products and power index were gathered from the Survey of Current Business
(BLS).

Before estimating ECM, time-series properties of the data are examined to ensure the
appropriate conditions for specifying ECM. As described earlier, the sufficient conditions
for ECM specifications are that variables are integrated of the order of one and that they
are cointegrated. The presumption that the variables are integrated of order one can be
examined by using the unit root testing procedures.

Unit Root Tests

The presence of a unit root in economic time series commonly is tested by means of
Dickey-Fuller (DF) or augmented Dickey-Fuller (ADF) tests (Dickey and Fuller; Fuller;
Perron). The DF and ADF test statistics are derived for autoregressive (AR) models with
lags of first differences of the series included as regressors. These test statistics are derived
under the assumption that the sequences of innovations are identical and independent
(normally) distributed with common variance. It has been shown that if a moving average
representation of the series is important (instead of AR), a large number of lags of first
differences of the variable are needed as regressors in the autoregressive correction of the
ADF test (Schwert). This approach, therefore, involves the estimation of additional nui-
sance parameters reducing the effective number of observations.

Recently, Phillips, and Phillips and Perron derived testing procedures for the (null) unit
root hypothesis under more general (weaker) conditions. In the current study, Phillips-
Perron tests, referred to as Z-tests, are applied to the logarithm of each price series.
Accordingly, the null hypothesis of a unit root is tested by using the following ordinary
least square (OLS) regressions:

(6) Yt,= aYt-1 + ,

(7) Yt = * + a*Yt_ e + e*, and

(8) Yt= = + 3(t - T/2) + &Yt_, + e,

where Y, denotes the economic time series and T denotes the sample size.
Equation (6) contains neither a constant nor a trend, whereas equation (7) has a constant

term. The test statistic for the hypothesis that a = 1 in equation (6) is represented by
Z(t). In equation (7), two test statistics are calculated, z(t,*) and Z($1), respectively, for
the null hypotheses a* = 1 and A* = 0, a* = 1. Equation (8) contains constant, trend,
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Table 1. Unit Root Tests on Farm and Retail Prices for Beef and Pork

Z-Test Statistics

Variable Z(ta) Z(t..) Z(a ) Z('t Z() Z(Ž3)

Null hypothesis: & = 1 a* = 1 a* = 1; = 1 = 1; = 1;
, *=0 f=o0 f=l=0

Beef farm price 1.18 -. 89 4.08 -2.93 3.45 3.49
Beef retail price 2.27 -. 48 5.79a -2.10 3.61 4.02
Pork farm price -. 20 -2.18 2.47 -3.43 3.96 4.26
Pork retail price 1.21 -. 67 2.84 -3.29 4.31 5.48
Marketing cost 1.54 -. 97 3.43 -.89 2.08 2.21
Critical valueb -1.95 -2.88 4.68 -3.43 4.73 6.32

a Indicates statistical significance at the 5% level.
b Critical values are given for 95% probability level.

and lag terms; correspondingly, three hypothesis tests are performed. The test statistics
Z(t), Z(Q3), and Z(12) are computed for the null hypotheses that & = 1; A = 0, & = 1;
and A = 0, / = 0, & = 1, respectively. See Perron for the precise form of the algebraic
expressions for these test statistics.

Unlike ADF tests, these test procedures do not require the estimation of additional
nuisance parameters (differenced lagged terms) saving valuable degrees of freedom. The
approach to calculating these tests also takes into consideration the correlation structure
of the residuals (es) in a nonparametric way.

The Z-test results for presence of a unit root in farm and in retail prices of beef and
pork, and the marketing cost variable are presented in table 1. The results are computed
by using a maximum lag of 16 for the autocovariances of the residuals, according to a
weighting pattern suggested by Newey and West.7 If the value of the calculated test statistic
is smaller than the critical value, the null hypothesis of a unit root is not rejected. Only
one out of the total of 30 statistics reported is significant at the 5% level. Thus, the null
hypothesis of a unit root is rejected in only one case, the Z(,1 ) statistic for retail price of
beef. Therefore, the results support the presence of a unit root in the farm and the retail
prices of beef and pork, as well as the marketing cost variable.

Cointegration Tests

A number of tests for cointegration of series are available (Phillips and Ouliaris). Among
these, the residual based tests are popular because of their ease and convenience in
empirical applications. Residual based tests involve estimating the cointegration regres-
sion

(9) Yt = Xo + X1xl, + X2x2, + et,

where et indicates the residual (all other variables are as defined previously), and performing
unit root tests on the estimated residuals, et. The null hypothesis of no cointegration is
tested through an equivalent form of the null hypothesis of a unit root in the residuals.

In this study, since more than one exogenous variable is involved, the cointegration
system is of higher order. Engle and Granger recommend the augmented Dickey-Fuller
(ADF) test for higher order systems, whereas Phillips developed two other residual based
tests, known as Z, and Zt tests, that might have power properties superior to the ADF.
However, the ADF and Zt tests are asymptotically equivalent and are based on t-ratio
procedures, whereas the Z, test is a direct coefficient test. All three residual based tests,
namely ADF, Za, and Zt statistics, are employed in this study to test for cointegration
between the dependent variable (farm price) and the independent variables (retail prices
and marketing cost).
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Table 2. Tests of Cointegration Between Farm and Retail Prices
of Both Beef and Pork

Test Statistic Beef Pork

ADF(1) -5.76* -4.36*
ADF(2) -5.68* -3.76
ADF(3) -5.59* -3.45
Z. -52.15* -36.98*
Z, -5.36* -4.39*

Notes: Asterisk indicates statistical significance at the 5% level. The coin-
tegration regression contains an intercept and two exogenous variables. The
critical values for ADF statistics at the 5% level of significance are -3.78
(Engle and Yoo, table 3) and -3.77 (Phillips and Ouliaris, table IIb), re-
spectively, for 200 and 500 degrees of freedom. The approximate critical
values at the 5% level for Ze and Z, statistics are, respectively, -26.09 and
-3.77 (Phillips and Ouliaris, tables Ib and IIb).

The ADF test statistics are derived from the residuals based on (9) by means of the
regression

p

(10) Ac, = -pet_1 + 6 3-I + it
/=1

The ADF test statistics are computed by dividing the estimated p by its standard error.
For details on the calculation of Za and Z, test statistics, see Phillips and Ouliaris. It
should be pointed out that the residual based tests are numerically dependent on the
precise formulation of the cointegration regression, that is, whether it is mean corrected
or detrended. In other words, these tests are not invariant to the normalization of the
cointegration regression. However, to be consistent with the long-run, steady-state rela-
tionship specified in (3), only a constant term is included in the cointegration regression
(9).

The null hypothesis of no cointegration between variables is rejected when the calculated
values are smaller than their respective critical values. The results for cointegration of
farm price with retail price and marketing cost are presented in table 2. The ADF statistics
are reported for different lag lengths, up to a maximum of three. The ADF statistics for
beef indicate that the null hypothesis of no cointegration is rejected at the 5% level of
significance. For pork, one of the ADF statistics is significant. The ADF(2) statistic is
approximately equal to its critical value. On the other hand, the Z, and Zt tests support
the alternate hypothesis of cointegration between farm price and retail price and marketing
cost at the 95% probability level. Overall, test results support the hypothesis of cointe-
gration for the specified farm-retail price relationships, implying that the price relation-
ships for both pork and beef commodities can be represented adequately by an ECM.

ECM and Garch Error Process

Having established the conditions for ECM specification between farm and retail prices,
the next step is to identify the appropriate lag lengths for each commodity in equation
(2). In choosing the appropriate lags for each commodity, one must keep parsimony in
mind. A maximum of 24 lag lengths is considered, with the lag coefficients not contributing
significantly to statistical performance of the model omitted. Once a model that adequately
reflects the data generating process is identified, the ECM specification corresponding to
equation (5) is derived. The ECM's parameters are estimated by maximum likelihood,
and the results for both beef and pork are presented in tables 3 and 4, respectively. The
subscripts to the parameters a, b, and c reported in tables 3 and 4 indicate the order of
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Table 3. Maximum Likelihood Estimates of ECM and ECM/
GARCH Models for Beef

ECM ECM/GARCH

Param- Estimated Asymptotic Estimated Asymptotic
eters Coefficient t-Values Coefficient t-Values

a2 -. 009 -. 913 -. 053 -. 913
a,, .020* 6.186 .235* 6.186
a3 -. 150* -4.491 -. 173* -4.491
bo 1.286* 10.187 1.141* 10.187
b2 .173* 3.396 .176* 3.396
b,, -. 337* -5.265 -. 359* -5.265
b,3 .109 1.653 .117 1.653
Co .104 .334 .273 .334
c2 2.645 1.516 1.751 1.516
C4 -2.167 -1.449 -1.584 -1.449
c5 1.706 1.647 1.308 1.647
0- 1 -. 100* -5.269 -. 104* -5.269
10 -. 073 -. 071 -. 031 -. 071
AI

l
.740* 2.141 .668* 2.141

· 2 .238 1.111 .308 1.111
ao .001* 13.460 .001* 2.109
a, .086* 2.449

,1 .848* 18.056

Log (L)a 848.867 857.537

Q-Statistics:b
Q(12) 11.42 10.96
Q(24) 27.09 29.18

Q2(12) 46.35* 23.92
Q2(24) 53.43* 28.94

Note: Asterisk indicates significance at the 5% probability level.
a Log (L) denotes the log-likelihood values, up to a constant.
b The Q-statistics denote Box-Pierce-Ljung portmanteau tests for auto-
correlation, which are distributed as chi-squares with degrees of freedom
equal to the lag provided within the parentheses. The critical values at the
5% level of significance are 21.03 and 36.42, respectively, for 12 and 24
degrees of freedom.

lag length included in the model. For instance, lags 2, 4, and 5 are used for the marketing
cost variable in the beef ECM models.

The results indicate that retail prices have a positive and significant effect on the long-
run farm prices of both beef and pork. The long-run elasticities of farm price with respect
to retail price are .74 and 1.28, respectively, for beef and for pork. In the Wohlgenant
study, elasticities of farm price with respect to the retail demand shifter were 1.320 and
1.963, respectively, for beef and for pork.

Further information about the validity of the estimated ECM models is obtained by
examining Box-Pierce portmanteau Q-statistics associated with fitted residuals (V ). Tables
3 and 4 report Q-statistics for the residuals associated with beef and pork ECMs, respec-
tively. In both instances, the Q-statistics are smaller than the critical value 21.03 (36.42)
at 12 (24) degrees of freedom. Thus, the null hypothesis that the residuals from the
estimated ECMs are white noise cannot be rejected.

A different picture arises, however, when squared residual series, P2, are examined. As
McLeod and Li report, the portmanteau test statistic Q2(m) associated with the first
m-squared innovations will be distributed asymptotically as a x2(m) under the null hy-
pothesis of no heteroskedasticity. In both beef and pork ECMs, Q2(12) is significant, while
Q2(24) also is significant for pork at the 5% level. This indicates the presence of heteroske-
dasticity of some form in the farm-retail pricing relationships. As Bollerslev suggests, the
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absence of serial correlation in the conditional first moments, coupled with the presence
of serial correlation in the conditional second moments, is one indication of the presence
of a GARCH error process.

Modeling Price Volatility and the GARCH Process

The GARCH process provides a convenient form of representing heteroskedasticity of
unknown form in time-series data. Under GARCH, the conditional variance of a time
series follows an autoregressive moving average (ARMA) representation of the squared
residuals of the random process (Engle; Engle and Bollerslev). Let Q t- be the set of all
relevant and available information at time t - 1. The GARCH process for a normally
distributed innovation series, vt, is given by

(11) Vt Qt-- N(O, ht),
q P

(12) ht = ao + ayV2- + C jhtj,
-i= 1 j=1

where

p> O, q> 0,

ao > 0, ai 0, i= 1,...,q,

fI- 0, j=,...,p, and
q P

;ai++ ij< 1.
i=l j=1

The conditional variance equation in (12) describes a GARCH(p,q) process whereby the
time-dependent, conditional variance is specified as a function of lagged squared inno-
vations, v2_i, and the past behavior of the variability, ht-j. The nonnegativity restrictions
on the a and f parameters and the requirement that the sum of all ais and fis is less than
one in equation (12) are necessary to guarantee that the conditional and unconditional
variances associated with the GARCH model are positive-valued. It should be noted that
for p = 0, the process reduces to an autoregressive conditional heteroskedasticity (ARCH)
process. Also, the f coefficients in equation (12) indicate the persistence effect in the
variance of a GARCH process. Thus, the GARCH process not only provides a way to
model heteroskedasticity of an unknown form, but also captures persistence in the con-
ditional variances of time-series data sets.

Although time-series methods can be used to chose p and q, as Bollerslev suggested, a
GARCH(1,1) process is probably appropriate in most empirical situations. Accordingly,
this study adopts a GARCH(1,1) process for the innovations associated with the farm-
retail price relationships.

The results of combining the ECM with GARCH(1, 1) error process (referred to as ECM/
GARCH) are obtained by using maximum likelihood methods to estimate the parameters
of equations (5), (11), and (12) simultaneously. The log likelihood function used to estimate
an ECM/GARCH model for a sample of T observations is given by

T

(13) log(L) = (-T/2)log(27r) - 0.5 C [log(ht) + (vt/ht)].
t=l

Estimation is carried out using the Davidson-Fletcher-Powell (DFP) algorithm with nu-
merical derivatives after conditions for the nonnegativity of GARCH parameters are
imposed. Following Cecchetti, Comby, and Figlewski, the nonnegativity constraint of the
GARCH process was maintained by squaring the parameters in (12).

The results of the ECM/GARCH process for farm prices of beef and of pork are presented
in the right-hand columns of tables 3 and 4, respectively. Note that the ECM is nested
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Table 4. Maximum Likelihood Estimates of ECM and ECM/
GARCH Models for Pork

ECM ECM/GARCH

Param- Estimated Asymptotic Estimated Asymptotic
eters Coefficient t-Values Coefficient t-Values

a4

a5asa,1
a12

al3

bo
b4
b12
b,3
Co

C2

C4

C5

0 -
Io

D2
ao

o1
/3i

Log (L)a

Q-Statistics:b
Q(12)
Q(24)

Q2(12)
Q2(24)

-. 016
.087*
.151*
.036

-. 153*
2.209*
-. 206
-.272

.422*
-2.345

1.464
-1.581

.527
-. 208*
-. 335
1.284*

-. 403*
.003*

-. 380
2.208
2.596

.497
-2.699
16.630

-1.054
-1.065

2.886
-1.657

.734
-. 871

.426
-3.772
-1.072

6.771
-2.669
13.714

698.623

19.02
28.26

21.36*
27.87

-. 001
.056
.186*
.042

-. 120*
2.284*
-. 321
-. 248

.391*
-2.706

1.319
-1.286

.406
-. 211*
-. 016
1.206*

-. 353*
.001
.106
.718*

-. 012
1.355
3.076

.578
-2.005
16.584

-1.689
-1.013

2.847
-1.920

.677
-. 660

.296
-3.862
-. 461
6.281

-2.368
1.893
1.620
5.649

703.750

14.45
25.31

4.73
9.74

Note: Refer to notes to table 3.

with ECM/GARCH(1,1) when aE = /1 = 0 in equation (12). Statistics for the likelihood
ratio tests of the null hypothesis of constant conditional variances are computed by using
the estimated ECM and the ECM/GARCH. This test statistic is asymptotically distributed
as a chi-square with two degrees of freedom. The calculated likelihood ratio test statistics,
17.34 for beef and 10.25 for pork, are greater than the critical chi-square value of 5.99
(at the .05 level), indicating that the null hypothesis of constant conditional variances is
rejected in favor of the ECM/GARCH model for beef and pork farm prices. The Box-
Pierce Q-test statistics also are reported for the standardized residuals (v,/V/,) along with
the square of the standardized residuals (v2/h,) from the estimated ECM/GARCH models.
In each case, the calculated values for Q and for Q2 are smaller than the critical values
of the chi-square distribution at the 5% level; thus, no further first- or second-order serial
dependence is observed in the estimated ECM/GARCH models.8 However, the estimated
long-run parameters differ only marginally from those of the ECM model without the
GARCH process.

Discussion and Implications

The results of this study are useful for drawing inferences about many features of livestock
price relationships. Time-series analysis of farm and retail prices of beef and pork and of
the marketing cost variable suggested that individual economic series are nonstationary,
and that farm prices are cointegrated with retail prices and marketing costs. This brings
out two related issues in modeling farm-retail price linkages, namely dynamics and long-
run structure.

Kesavan, Aradhyula, and Johnson
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Figure 1. Estimated conditional variances in farm prices using ECM/GARCH models

Note: The h, values are multiplied by 100 for convenience in presentation.
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Unlike previous efforts where short-run dynamics and long-run relationships were treat-
ed separately, this study employed an alternative method of modeling time-series dynam-
ics. The ECM framework used in this study provides a convenient form of deriving the
long-run structure, while accounting for nonstationarity in the individual time series.

Albeit a sufficient condition, the cointegration results conform to the existence of a
long-run, steady-state relationship between the farm prices of beef and pork and the retail
prices and marketing costs of these goods. The empirical results indicate that own retail
prices have a significant and positive effect on the respective farm prices of beef and pork
in the long run. This finding suggests that agricultural policies such as price stabilization
or food stamp programs directed at consumer demand may have a significant effect on
long-run farm prices through movements in retail prices. The long-run effects of a 1%
change in retail price were estimated at .67% and 1.2%, respectively, for farm prices of
beef and pork. However, the long-run effect of the marketing cost variable on farm price
was significant only for pork. For a 1% change in the marketing cost index, the farm price
of pork changed by only .35%.

The lack of long-run estimates based on other dynamic schemes for beef and pork
commodities makes it difficult to compare the estimates based on our ECM/GARCH
models. Simulation studies have indicated that long-run estimates are sensitive to the
magnitude of the lag coefficients and the assumptions about stationarity of independent
variables (Bewley and Fiebig). Given that prices and marketing cost series are nonsta-
tionary, the long-run estimates derived based on the ECM/GARCH model are appealing.
Further, since the dynamic model adopted here provides direct estimates of the long-run
parameters, it is useful for hypothesis testing on the long-run performance of farm price
determination.

Another aspect of the dynamic framework is the speed of adjustment toward the long-
run equilibrium. This is reflected by the relative magnitude of the 0 parameter. Estimated
values for 0 are .9 (table 3) and .8 (table 4), respectively, for beef and pork. Thus, for
shocks within the system, farm prices of beef adjust more rapidly toward the long-run
equilibrium than pork farm prices. For both commodities, the 0 parameters are significant,
indicating the importance of the error correction mechanism. Studies also have demon-
strated that the speed of adjustment may be affected by the degree of competition and
the market structure (Weaver, Chattin, and Banerjee). Inasmuch as different adjustment
measures are available, the dynamic model presented here provides a direct method of
estimating adjustment parameters to perform such analysis.

The empirical results also reveal that the innovations for farm-retail price relationships
follow a GARCH(1,1) process. This shows that the conditional variances for farm prices
of beef and pork are not constant. Figure 1 shows the temporal nature of the conditional
variances in farm prices of beef and pork. The conditional variances of the beef farm
price showed two distinct periods of high volatility-the mid-1970s and 1980s. Pork farm
prices were highly volatile during the early 1970s. Although several jumps in pork price
volatility were observed during the 1980s, the levels were not as high as for the early
1970s. In contrast, the price volatility in beef during the mid-1980s was very close to the
level observed during the mid-1970s.

The GARCH process for prices also implies persistence in the price volatility. This
may be important in some policy analyses. For instance, there is considerable debate over
the effect of changing market structure on price volatility (Carlton; Ward 1988). Fur-
thermore, there is continuing concern over the issues of structural change in the meat
industry due to higher concentration in the processing sector, changes in eating habits
and demographs, and increased health awareness and nutrition education programs.

Concluding Remarks

This study investigates dynamics in farm-retail price relationships within a general frame-
work based on an Error Correction Model (ECM). A specification based on the ECM was
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applied to monthly data for farm prices of both beef and pork and was found valid and
appropriate for the study of farm-retail price linkages. The estimated ECM model was
extended to model the time-varying, conditional variance of prices by using a GARCH
error process.

In a changing environment such as the livestock market, a model is needed that combines
the desirable aspects of dynamics, static equilibrium, and price volatility. The ECM/
GARCH model is a step toward such a unified approach.

[Received February 1992; final revision received August 1992.]

Notes

1 The concept of cointegration is described in the next section.
2 In a differenced specification, the long-run elasticities tend to be infinite, which is of limited value for the

purpose of long-term agricultural planning and policy evaluations.
3 However, presence of cointegration is only a sufficient condition for ECM formulation.
4 Wohlgenant's model includes both supply and demand shifters in farm and in retail price determination.

Our specification is similar to the reduced-form equation in Brorsen, Chavas, and Grant, with no supply shifters.
Since the purpose of this study is to investigate the dynamics of farm-retail price linkages, the commonly used
markup model augmented with a marketing cost index is used. The analysis can be extended easily to other
more refined models dictated by theory.

5 As one reviewer correctly pointed out, the manipulation involved in the transformation imposes the following
normalization:

ao = (1 - 0)00; a, = - ) a;
i=2

b, = (1 - 0)01 - bo -c bj;
j=2

cl = (1 - 0)02 - Co - cj
k=2

to identify the long-run structure with variables at lag t - 1.
6 The data for farm prices are measured by the gross farm value in cents-per-pound equivalent to one pound

of retail weight.
7 The weighting procedure basically ensures a nonnegative estimate for variance. Perron also recommended

a check on the sensitivity of the results to various lag lengths. Accordingly, the test statistics are calculated for
lag lengths of 8, 12, and 20, and the results regarding unit roots are insensitive to these lags.

8 For a GARCH(1,1) process, the fourth-order moment exists if 3a 2 + 2afi + f2 < 0. Checks of the estimated
GARCH parameters indicate that the fourth-order moment of v, exists for each model. The estimated GARCH
parameters also satisfy the stationarity conditions, al + fi < 1. Hence, the asymptotic properties of the maximum
likelihood estimates are established.
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