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System Misspecification Testing and Structural
Change in the Demand for Meats

Anya McGuirk, Paul Driscoll, Jeffrey Alwang, and Huilin Huang

A misspecification testing strategy designed to ensure that the statistical assumptions
underlying a system of equations are appropriate is outlined. The system tests take into
account information in, and interactions between, all equations in the system and can be used
in a wide variety of applications where systems of equations are estimated. The system
testing approach is demonstrated by modeling U.S. consumer demand for meats. The
example illustrates how the approach can be used to disentangle issues regarding structural
change and other forms of model misspecification.

Key words: econometric modeling, misspecification testing, regression diagnostics, systems
of equations

Introduction

The statistical adequacy principle first proposed by R. A. Fisher asserts that to evaluate any
theory using econometrics, the theory must be viewed in the context of a valid statistical
model.' A valid statistical model is one whose underlying assumptions are appropriate for
the data being analyzed. In econometrics these assumptions usually relate to the (conditional)
distribution and moments of the observable random variables (Spanos 1989). Although
published research does not always reflect full appreciation of this principle, most re-
searchers are aware that tests of economic theory have no statistical validity unless model
assumptions are valid. Test statistics will not have their expected distributions when
underlying model assumptions are inappropriate.

Verifying that model assumptions are adequate for the data being analyzed is not
necessarily trivial. For example, Alston and Chalfant (199 la) illustrate that researchers can
be misled by isolated tests of model assumptions as often as 100% of the time. McGuirk,
Driscoll, and Alwang (MDA) recently proposed a practical misspecification strategy de-
signed to help researchers confirm that a single-equation linear regression model is statisti-
cally valid. Their strategy helps minimize the erroneous conclusions often reached when, as
is typical in applied econometric studies, only one or two assumptions are checked in
isolation. They advocate checking all testable statistical assumptions underlying a model
using a battery of individual- and joint-misspecification tests and interpreting these tests as
a whole, rather than separately.

Statistical adequacy is as important for systems of equations as it is for single-equation
models. Even so, misspecification tests for systems are conducted even less frequently than
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single-equation tests. When "system" tests are conducted, they are usually single-equation
tests performed equation by equation.2 While such tests can be useful in detecting misspe-
cifications, they do not take into account information in and interactions between other
equations in the system. For example, (single equation) Durbin-Watson tests will not detect
correlations between residuals from different equations. Similarly, single-equation ho-
moskedasticity tests do not examine heteroskedasticity in the contemporaneous covariance
between residuals of different equations. These misspecifications can only be detected using
system tests.

The purpose of this article is to propose and demonstrate a misspecification strategy
designed to ensure that the statistical assumptions underlying a system of equations are
appropriate. The testing strategy incorporates system tests suggested by Spanos (1986,
1995a) and is a natural extension of the single-equation testing regime advocated by MDA.
To demonstrate the proposed strategy, consumer demand for U.S. meat products is modeled.
This example illustrates how the proposed approach can disentangle issues regarding the
existence of structural change and other forms of model misspecification. Numerous authors
have examined the issue of structural change in U.S. meat demand, but most have tested for
structural change without considering the wide variety of other potential model misspecifi-
cations.' The statistical adequacy principle challenges inferences drawn from models that
may be misspecified; in fact, it is likely that the different conclusions regarding whether and
to what extent structural change has occurred are due to inappropriate model specifications
(Alston and Chalfant 199 lb).

Statistical Assumptions Underlying Systems of Equations

The purpose of this section is to discuss briefly the statistical assumptions underlying
systems of equations. A system of equations can be nonsimultaneous or simultaneous.
Nonsimultaneous systems of equations, henceforth called multiequation linear regression
models (MLRM), are considered first, as they represent the most straightforward extension
of the single-equation linear regression model (LRM).

The Multiequation Linear Regression Model

Definey, as a q-vector of endogenous variables andXt as a (K+ 1)-vector including a constant
and K exogenous or predetermined variables, all at time t. The multiequation linear
regression model can be formulated as y, = B'Xt + u,, where B is a (K + 1) x q matrix of
unknown parameters, and ut is a q-vector of random disturbances. In this formulation all
regressors are assumed to appear in all equations. Restricted versions of this most general
model can be tested once the assumptions underlying the MLRM are verified for the data
being examined. By first establishing that the MLRM is statistically appropriate, valid
inferences regarding which regressors appear in which equation are ensured.

For example, both Heien and Durham and Moschini and Meilke test for autocorrelation and only use single-equation tests
despite the fact they estimate systems of equations. Theil and Shonkwiler, on the other hand, describe and examine a "system"
Monte Carlo test ofautocorrelation. However, their test is based on a simple average of the equation-by-equatoin Durbin-Watson
tests and, thus, is not a full-system test in the spirit described below. We are only aware of three empirical studies which have
examined the assumptions underlying a system of equations using full-system tests: Alston and Chalfant (1991a) employ a
system Chow test, and Spanos (1990) and Assarsson et al. conduct various system tests of several model assumptions.

3See Capps and Schmitz and Smallwood, Haidacher, and Blaylock for a review of recent meat demand studies.
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The MLRM assumptions can be summarized as follows:
a. Normality: J(ytlt; 0) - multivariate normal-the distribution of yt conditional on

Xt is normal, where 0 = (B, Q) and Q is the (q x q) conditional variance-covari-
ance matrix;

b. Functional Form: E(yIX, = x,) = B'x, or the functional form of the conditional
mean is linear;

c. Homoskedasticity:
i. Static: the conditional variance, var(ytX = xt), does not depend on xt;

ii. Dynamic: var(ytX t = xt) does not depend on the past history of ut, Yt, or xt;
d. Parameter Stability: 0 = (B, Q) is stable. That is, the parameters of the conditional

mean and variance do not vary with t;
e. Independence: Y - ( 1,Y2, ... YT)' represents an independent sample sequentially

drawn from f(y Xt;),t = 1, 2,..., T.
f Weak Exogeneity: The marginal distribution of Xt does not contain relevant informa-

tion for the estimation of 0. Thus, it can be ignored; and
g. No Perfect Collinearity: Rank(X) = K + 1.

If these assumptions hold, then ordinary least squares (OLS) estimation yields minimum
variance, linear unbiased estimators of B and Q; the OLS estimator of B(P ) is normally
distributed; and TO (where Q is the OLS estimator of Q) follows a Wishart distribution
(Spanos 1986).4 Just as in the LRM, only (a)-(e) are directly testable and any violation of
these assumptions invalidates all finite and most asymptotic tests of B and Q (MDA, p.
1045). Consequently, each of these assumptions should be tested and verified before
conducting any specification tests such as standard t-tests of parameter significance or tests
of theoretical restrictions (e.g., symmetry and homogeneity). We refer to a model satisfying
(a)-(e) as "statistically adequate."5

Assumptions (a)-(e) relate to a system of equations, and thus, system misspecification
tests should be conducted (Spanos 1986, 1990). As noted earlier, these tests differ from
single-equation tests conducted equation by equation as they assess the appropriateness of
assumptions relevant to each individual equation as well as cross-equation assumptions. In
the MLRM, the relevant cross-equation assumptions pertain to the cross-equation error
covariances; these covariances are assumed to be homoskedastic, independent, and nonvary-
ing over the index t. Before describing the MLRM misspecification tests, we consider how
the statistical assumptions underlying simultaneous systems of equations differ from those
of the MLRM.

4For this system of equations, OLS estimators of B and Q (obtained equation by equation) are equivalent to generalized
least-squares estimators. Note also that these MLRM assumptions (and the tests outlined below) are applicable to models
incorporating time series and or cross-sectional data. That is, the index t does not necessarily refer to time. It can represent any
dimension over which it makes sense to order observations. For example, when using cross-sectional data, the relevant orderings
over which independence, parameter stability, and dynamic homoskedasticity should hold may be "space" and/or "size of unit"
(Spanos 1995a, Chapter 13).

All of the assumptions underlying the MLRM are statistical assumptions. The first step in any modeling exercise is to find
a statistical model that adequately summarizes the information in the data. Issues regarding errors in variables, latent or omitted
variables, and simultaneity are considered theoretical rather than statistical. They are important when initially defining the data
whose relevant features the statistical model is supposed to model and again when identifying the theoretical model from within
the statistical model. For a more in-depth discussion of this distinction see Spanos (1986, 1989, 1990, 1995b).

McGuirk, Driscoll, Alwang, Huang
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Simultaneous Systems of Equations

Traditionally, estimation and testing with simultaneous systems of equations are different
from single-equation or nonsimultaneous system models. In the case of simultaneous
systems, a structural model is usually specified and then estimated using one of the many
simultaneous systems estimators (for instance, three-stage least squares). These estimators
are designed to purge the right-hand-side endogenous variables of their "stochastic" com-
ponents, assumed to be correlated with the structural equation error. Occasionally, though
infrequently, researchers check for correlation among the errors of the structural equation
(e.g., report a Durbin-Watson test). However, more often than not, researchers immediately
begin interpreting parameter estimates, conducting tests of theory, and perhaps, investigating
simultaneity issues.

The current approach to estimating simultaneous systems of equations will not, generally,
lead to valid statistical inferences (Spanos 1990). This follows because few, if any, steps are
taken to ensure that the structural model is statistically valid. To ensure statistical validity,
and thus safeguard against erroneous conclusions, Spanos (1986, pp. 608-21; 1990) suggests
first estimating the reduced form implied by the structural model of interest and verifying
that its underlying statistical assumptions are met. A statistically adequate reduced form is
critical since it is, by construction, the statistical model from which the structural model is
derived. Consequently, if the statistical assumptions underlying the reduced form are invalid,
statistical inferences drawn from the structural model will be invalid as well.

To see the motivation behind this alternative approach, notice first that the reduced form
is simply a MLRM, whose underlying statistical assumptions are straightforward and well
known [see (a)g) above]. Further, once the assumptions underlying this model are verified,
the distributions of the reduced-form parameter estimators are known. If every equation in
a simultaneous system is just identified, the parameters of the structural model can be easily
recovered as unique functions of the reduced-form parameters. Once the statistical properties
of the reduced-form parameter estimators are verified, the properties of the structural
parameter estimators have also been implicitly verified. In this case, testing for misspecifi-
cation in the reduced form is equivalent to testing for misspecification in the structural model.

Usually, however, the equations constituting simultaneous systems are overidentified.
That is, there is more than one combination of reduced-form parameters that yields the same
structural parameter. Thus, estimation of an overidentified structural equation or system is
equivalent to estimation of a restricted reduced form-a reduced-form system where
different combinations of the reduced-form parameters are forced to yields the same
structural parameter (Spanos 1986, p. 630). This correspondence presents an obvious way
to assess the relevance and statistical adequacy of overidentified structural models. Initially,
an unrestricted reduced form should be estimated and its statistical validity assessed. Once
the MLRM is statistically adequate, the appropriateness of the theoretical (structural) model
can be assessed by testing the implied (overidentifying) restrictions imposed on the reduced
form. Because the statistical assumptions underlying the unrestricted reduced form have
been verified, valid inferences about the overidentifying restrictions are ensured. Finally, if
the structural model is not rejected (i.e., the overidentifying restrictions are not rejected),
and if further inferences are to be drawn from this model, Spanos advocates checking to
verify that the MLRM is still valid once the restrictions are imposed.

As a consequence of the correspondence between the reduced form and the structural
model, assessing the statistical adequacy of a system of equations, whether simultaneous or

4 July 1995
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not, boils down to initially assessing the appropriateness of the statistical assumptions
underlying the relevant MLRM. In the next section, we outline a practical set of misspeci-
fication tests similar to those advocated by MDA but designed to verify that a MLRM is
appropriate for the data being analyzed. Following this, we demonstrate their practical
application by modeling the demand for meat.

System Misspecification Tests

MDA demonstrate that a practical set of single-equation tests should check the relevance of
all testable model assumptions using various versions of individual and joint tests. The
individual tests are designed to check a single assumption, while the joint tests simultane-
ously assess the relevance of multiple assumptions. Although both types of tests should be
conducted, MDA illustrate that joint tests, which require fewer maintained hypotheses, are
often instrumental in finding the misspecification's source. System versions of the single-
equation individual and joint tests examined by MDA are advocated here. As will become
evident, most of the system tests differ from their single-equation counterparts only by the

Normality

The skewnes of etra rrssors and k coefficients of arandom q x 1 vectpo ua with mean 0 and

covariance, of are defined by as tio3 = n. E (u Te o i and as4 = E(u stluct)2 r espectively.

These coefficients can b e estimated by = (/) and 4 =(/T) , whereThese coefficients can be estimated by 3 / and (1 / T)Etg where

gts = u2-us, t,s = 1, 2,..., T. The null hypothesis of multivariate normality is a 3 = and
a 4 = q(q + 2), which can be tested jointly using the C,2 (small sample approximation)
omnibus test proposed by Mardia and Foster.

In addition to this multivariate test, the univariate D'Agostino-Pearson K2 omnibus test
described in MDA can be used to examine the normality assumption in each separate
equation. If multivariate normality is rejected, the univariate tests provide insight into which
equations are likely to be responsible for system nonnormality.

Functional Form

System functional form tests are multivariate versions of the RESET and Kolmogorov-Ga-
bor functional form tests examined by MDA. These system tests are based on the significance
of rF, ap x q matrix of unknown parameters in the q-equation auxiliary regression system,

t =B B;x+r + vt, t =l, 2,..., T.

6 With the exception of the normality test, most of the system tests proposed in Spanos (1986) and employed here use what
Godfrey refers to as "locally equivalent alternatives" (Assarsson et al.).

McGuirk, Driscoll, Alwang, Huang
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In the multivariate RESET2 test, 't 1
2

, . .. Y Y2 -lq) where 2 is(,Y2t, ·... Yqt,Yt.2t , · , Yq-ltq t ), where YiU is
the fitted value from the ith equation. Thus, the number of regressors (p) in PF, is (½2)q(q +
1). The significance of rF is examined using the small-sample-adjusted likelihood-ratio
test proposed by Rao (p. 556).8 The Rao test statistic, F = [(1 - l/')/(A)][(rt - 2zlpq] is
distributed approximately F(pq, rt - 2z), where A = IQI/llI, the ratio of the determinants of
the unrestricted and restricted variance-covariance matrices, r= v - (p - q + 1)/2, v is the
degrees of freedom for the error, z = (pq - 2)/4, and t = [(p2 q2 - 4)/p2+ q - 5)]5 if (p2 + q2

- 5) > 0 or t = 1 otherwise.
In addition to the Rao test which simultaneously assesses the appropriateness of all pq

coefficients in Fr, the significance of the relevant p coefficients in each equation can be
examined separately using F-tests. As in the equation-by-equation normality tests, these
separate F-tests often provide insight into the source of problems if the "full-system" Rao
test is rejected. For example, it may be that a particular equation is the sole cause of system
misspecification. The equation-by-equation system tests will be useful in identifying the
culprit in this case. Notice that these equation-by-equation system tests differ from their
single-equation counterparts described in MDA, in that, the latter only include transforma-
tions of the fitted values from the particular equation being examined.

A second-order Kolmogorov-Gabor polynomial test (KG2) is conducted in addition to
the RESET2 test. In the KG2 test, TFt includes Xicjt, i j, i,j = 2,... ., K + 1, where xit is
the ith element ofXf, the (K + l)-vector of regressors in the MLRM. As above, a Rao test is
used to examine the significance of F,, and separate F-tests can be conducted to examine
the significance of the relevant coefficients equation by equation.

Homoskedasticity

The system homoskedasticity tests are based on the significance F H in the auxiliary
regression system:

t = co + rIHt + V,, t = 1, 2,..., T,

where w U2,, U(t, t 2u 2u ,..., Uql u t)' and u, is the residual ofthe ith equation.

This system of auxiliary equations includes ('2)q(q + 1) equations and is used to investigate
whether the variances and covariances of residuals from the different equations are ho-
moskedastic.

We propose two static homoskedasticity tests. These include a multivariate RESET2-type
test where THt- (Y t, Y2t ,..., Y 2t... Yt t, q-ltYqt) and a multivariate WHITE test where

H, (only) includes the terms xijt, i >j, i,j = 2,... , K + 1.9 The dynamic homoskedasticity
test used is a system autoregressive conditional heteroskedasticity (ARCH) test (Engle). It

71f q is large relative to the sample size, a degrees of freedom problem can occur. In this case, the tests proposed (here and
throughout the paper) can be easily varied. For example, in the RESET2 functional form test, the crossproducts can be left
out. Several such simplifications had to be made in the illustrative example given below (e.g., see table 2, footnote b).

Many other small-sample adjustments to the likelihood ratio test have been proposed. We use Rao' s test as Monte Carlo
studies indicate it is a consistent performer (see Seber, pp. 414-15; and Rao, p. 556).

9The RESET2-type homoskedasticity test described here is sometimes referred to as a Breusch-Pagan test (see, for example,
Assarsson et al.).

6 July 1995
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differs from the static tests in that H, _ w1 l. As in the full-system functional form test, the
significance of rH is assessed using a (full-system) Rao test and separate F-tests can be
conducted to examine the relevance of the homoskedasticity assumption equation by
equation. Notice that conducting these equation-by-equation system tests is different from
conducting LRM tests equation by equation in that the system tests check whether the
relevant covariances are homoskedastic, and the system RESET2-type test includes extra
terms in each auxiliary equation.

Parameter Stability

The stability of B, the MLRM conditional mean parameters, can be assessed using a
multivariate version of the single-equation Chow test.1° Because this mean-stability test
assumes that the conditional variance-covariance matrices from the two prespecified sample
periods (composed of the first T, and last T2 observations, respectively) are equal,
(Q1 = Q2 = ), this latter hypothesis should also be tested. A Rao test can be conducted in

both instances, A = (Inl/ I/I 2l T/T )/l QI and A = (li l + U2IU)/l U i' for the variance and

mean tests, respectively. To gain insight into the relevance of the parameter-stability
assumption for each equation in the system separately, the single-equation Chow and
variance-stability test used in MDA are also conducted.

Independence

Independence can be examined using a Rao test to assess the significance of in the q-equation
auxiliary regression system

= B'x, + + v, t = I, 2,..., T,

where Yt t- _. This test is a system equivalent of the Breusch-Godfrey test. As above,
equation-by-equation F-tests can be conducted to help identify specific problems if the
full-system test is rejected. These equation-by-equation system tests differ from the single-
equation independence test in MDA as each auxiliary equation includes lagged residuals
from all equations in the system.

Joint Conditional Mean Test

The system joint-mean test simultaneously checks the appropriateness of functional form,
independence, and the stability of B as each of these assumptions refer to aspects of the
conditional mean. The test is based on the auxiliary regression system:

A = B' +x + ,F + rsst +v t, 1,2,..., T,

°Obviously, there are many possible tests of parameter stability including much more general tests which treat the
"breakpoint" as endogenous (see, for example, Zivot and Andrews). We use a multivariate extension of the commonly used
Chow test simply to illustrate the possibilities of converting single-equation tests to system tests.

McGuirk, Driscoll, Alwang, Huang
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where Ft -( ^^Ylt "Y2, · · YqItYl2t,' ',Yq-ltYqt), allowing for alternative functional forms,

,t = u-i, a 3 [E(u Q- , )3 ] to capture nonindependence, and st includes a trend and

trend squared to model possible instability in B. Other specifications of Tst are possible
(e.g., the inclusion of slope and intercept shifters) but are not illustrated here due to limited
degrees of freedom (see example). The null hypothesis that the conditional mean is properly
specified is TF = TF = Fs =0, which can be examined using a Rao test as well as equation-
by-equation F-tests. The most likely cause of a rejection, if it results, can be investigated by
assessing the significance of TF, F,, and Fs separately.

Joint Conditional Variance Test

The full-system joint variance test simultaneously checks for static and dynamic het-
eroskedasticity as well as stability of Q. It is based on the auxiliary regression system:

wt= rF;SW t + FrDHDt + FS + v,, t=1,2,..., T,

where wt and Tst are defined as above, HDt - wt_ capturing potential dynamic het-
eroskedasticity, and H st (i,2 ,..., ^ 9Yt2t .. * , q-ltqt)' allowing for possible static
heteroskedasticity. The null hypothesis that the conditional variance is properly specified is
rFHS = = HD = 0. As in the mean test, this hypothesis can be examined using a Rao test
and equation-by-equation F-tests. The most likely cause of a rejection can also be investi-
gated by assessing the significance of FHt, FHD, and Fs individually.

The System Testing Approach

Following the recommendations of MDA, we conduct each of the individual and joint tests
described above; the resultingp-values are interpreted as the weight of evidence against the
assumption(s) being tested-the smaller the p-value the more evidence against the assump-
tion(s) holding. As discussed in MDA, exactly what constitutes a "small" value should
depend on the overall level of significance desired (a subjective decision) as well as the
number of tests conducted. In the following example, p-values lower than 0.05 are inter-
preted as "weak" evidence against the null, and values less than 0.01 as "strong" evidence."
However, by reporting all p-values, readers can freely interpret the test evidence.

After conducting all tests, the p-values from the full-system tests are examined. If an
overall testp-value indicates a problem, the equation-by-equationp-values are examined to
help determine the problem source. Following the recommendations of MDA, no single test
is interpreted in isolation. That is, before any conclusions are drawn regarding possible
misspecification source, all test results are examined. Furthermore, once a conclusion is

lAlthough the choice is subjective, MDA argue that an overall test size of 20-25% may be necessary to achieve decent
power when conducting multiple misspecification tests. Given that we are conducting 11 separate system misspecification
tests, the corresponding (approximate) overall level of significance (X) associated with individual p-values 0.01 and 0.05 are
10% and 43%, respectively (where ois calculated using the Sidak approximation described in MDA). For useful discussions
and additional references on the choice of appropriate significance levels see Maddala or Assarsson et al.

2All tests were conducting using programs written in GAUSS. Most were performed using SAM, An Interactive Regression
Program, written in GAUSS, by Robertson, McGuirk, and Spanos.
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drawn and the model respecified, the same battery of tests is conducted to ensure that the
misspecification problems have been remedied. To clarify and demonstrate the recom-
mended approach we now introduce the example.

Model Specification, Data, and Assumptions

Variants of the Almost Ideal Demand System (ALIDS) of Deaton and Muellbauer have been
employed in many recent meat demand studies (e.g., Moschini and Meilke; Eales and
Unnevehr 1988, 1993). We use the static linear approximation ALIDS as our point of
departure:

W) it = c i + ZY i logP/t + P log(xt / P),
i=l,2...; 1 ,2,...T,

where wit and pi represent budget share and price for the ith good, respectively; xt is total
expenditures on meats; Pj is the ALIDS price index, approximated with the Stone index; and
a, y, and 3 are the model parameters.

We examine the annual demand for beef, pork, and chicken from 1960 to 1988. Retail
price and per capita disappearance data (quantity) for beef, pork, and chicken are obtained
from the U.S. Department of Agriculture's Livestock and Poultry Situation and Outlook
Report. These data have been used in many studies of U.S. meat demand (e.g., Capps and
Schmitz; Chavas; Dahlgran; Moschini and Meilke).

The static ALIDS model described in (1), with the usual adding up, symmetry, and
homogeneity restrictions imposed, is the theoretical model of interest. Model (1) with no
theoretical restrictions imposed is the relevant statistical model a MLRM. Thus, in this
example, "solving" for the underlying statistical model is trivial.

As indicated, we begin by estimating and testing the unrestricted static ALIDS model
(MLRM) describing the demands for beef, pork, and chicken. All of the system tests outlined
above are conducted. For the multivariate Chow test, we define T. = 1960-76 and T2 =
1977-88. This breakpoint was selected based on the finding of many researchers that
structural change occurred in the late 1970s. 3 As usual, one share equation is omitted to
avoid a singular variance-covariance matrix; thus, q = 2. All of the full-system tests described
above are invariant to the equation dropped, except the RESET-type heteroskedasticity tests.
To obtain an invariant test in these cases, the fitted values from all equations, including the
omitted one, compose the RESET terms. Despite these invariant system tests, the system is
estimated three times (omitting a different equation each time) to obtain all the relevant
equation-by-equation test results.

13By conducting a multivariate Chow-like test we assume we know when the structural change occurred. By basing our
decision to test this breakpoint on results of studies using the same or very similar data, it is possible that the p-value of this
test is biased in favor of rejection (Christiano). However, by reporting the p-value for this (and all other) tests, the readers are
free to interpret the p-value evidence themselves.

McGuirk, Driscoll, Alwang, Huang
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Table 1. U.S. Meat Demand Models: Thep-values for Full-System Misspecification Tests

Item Model A Model B Model C Model D

Individual Tests

Normality 0.022 0.161 0.475 0.011
Functional Form:

RESET2 0.000 0.119 0.016 0.026
KG2 0.001 0.175a 0.110a 0.199a

Heteroskedasticity:
Static: RESET2 0.710 0.997 0.997 0.982

WHITE 0.947 0.982a 0.991a 0.878a
Dynamic 0.005 0.074 0.061 0.046

Autocorrelation 0.000 0.648 0.326 0.046
Parameter Stability:

Variance 0.000 0.015 0.000 0.000
Mean 0.000 0.709 0.070 0.019

Joint Tests

Overall Mean Test 0.000 0.088 0.024 0.013
Parameter Stability 0.003 0.073 0.056 0.096
Functional Form 0.454 0.207 0.081 0.552
Autocorrelation 0.019 0.550 0.562 0.150

Overall Variance Testb 0.146 0.538 0.931 0.276
Parameter Stability 0.351 0.736 0.797 0.300
Static Hetero. 0.865 0.900 0.954 0.527
Dynamic Hetero. 0.068 0.119 0.656 0.078

Note: Model A is a static ALIDS model; Model B is a static ALIDS model augmented with CHOL and WWOM; Model C is
a static ALIDS model augmented with B&S and WWOM; Model D is an interrelated partial-adjustment model.
aKG2 and WHITE tests only include squares of independent variables since degrees of freedom are limited.
bn the joint variance test, the RESET terms incorporate the fitted values from the beef and pork equations only (regardless of
which equation is omitted), due to limited degrees of freedom.

Results

Static ALIDS

The results from the static ALIDS misspecification tests are reported in tables 1 and 2 (Model
A). Thep-values from the full-system tests are reported in table 1 and equation-by-equation
p-values in table 2. The full-system p-values indicate possible violation of all assumptions,
except perhaps homoskedasticity. The equation-by-equation results confirm that the model
is severely misspecified. It is impressive that multiple misspecifications are detected, given
that we are using what can be considered a relatively small sample size (T = 29).

Specifically, the system tests of individual misspecification indicate possible problems
with functional form, misspecified dynamics (autocorrelation), parameter instability, and
dynamic heteroskedasticity (all p-values < 0.005). The equation-by-equation tests indicate
that all equations exhibit these symptoms, the severest in beef and chicken equations.
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Table 2. U.S. Meat Demand Models: Thep-values for Equation-by-Equation System Misspe-
cification Tests a

Model A Model B
Item Beef Pork Chicken Beef Pork Chicken

Individual Tests
Normality

Functional Form:
RESET2
KG2

Heteroskedasticity:b
Static Beef
RESET2 Pork

Chicken
Static Beef
WHITE Pork

Chicken

0.164 0.448 0.516

0.011 0.047 0.001
0.001 0.014 0.000

0.234 0.286 0.191
0.335 0.263

0.157
0.305 0.381 0.250

0.492 0.322
0.231

Dynamic Beef 0.000 0.000 0.000
Pork 0.001 0.000
Chicken 0.000

Autocorrelation 0.000 0.000 0.000
Parameter Stability:

Variance 0.220 0.417 0.111
Mean 0.000 0.000 0.000

0.658 0.151 0.162

0.998 0.740 0.025
0.637a 0.391 0.100

0.853 0.878 0.852
0.905 0.923

0.940
0.838a 0.884 0.817

0.910 0.965
0.643

0.786 0.814 0.152
0.813 0.058

0.053
0.643 0.862 0.330

0.319 0.306 0.483
0.697 0.750 0.455

Joint Tests
Overall Mean Test

Parameter Stability
Functional Form
Autocorrelation

Overall Variance Test:b
Beef
Pork
Chicken

Parameter Stability:
Beef
Pork
Chicken

Static Heteroskedasticity:
Beef
Pork
Chicken

Dynamic Heteroskedasticity:
Beef
Pork
Chicken

0.000 0.000 0.000
0.015 0.018 0.016
0.886 0.378 0.360
0.005 0.029 0.040

0.003 0.004 0.003
0.009 0.004

0.006

0.144 0.096 0.249
0.071 0.184

0.402

0.564 0.410 0.769
0.289 0.669

0.881

0.002 0.002 0.003
0.004 0.003

0.008

0.497 0.205 0.121
0.093 0.035 0.475
0.497 0.270 0.267
0.740 0.718 0.338

0.956 0.964 0.278
0.964 0.270

0.164

0.521 0.492 0.819
0.544 0.735

0.384

0.804 0.833 0.511
0.869 0.855

0.391

0.757 0.850 0.112
0.869 0.064

0.072

Note: Model A is a static ALIDS model; Model B is similar but also includes CHOL and WWOM to model possible changes
in structure.
aKG2 and WHITE tests only include squares of independent variables since degrees of freedom are limited'
bThe results from all 0.5q(q + 1) equations are reported. The column and row titles identify the variance or covariance being
tested. For example, the test result in the beef row under the pork column is for the equation assessing assumptions regarding
the covariance between residuals from the pork and beef equations. The RESET terms in this test incorporate the fitted values
from the beef and pork equations only (regardless of which equation is omitted), due to limited degrees of freedom.
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Table 2. Continued

Model C Model D
Item Beef Pork Chicken Beef Pork Chicken

Individual Tests
Normality

Functional Form:
RESET2
KG2

Heteroskedasticity:b
Static Beef
RESET2 Pork

Chicken
Static Beef
WHITE Pork

Chicken
Dynamic Beef

Pork
Chicken

Autocorrelation

Parameter Stability:
Variance
Mean

Joint Tests
Overall Mean Test

Parameter Stability
Functional Form
Autocorrelation

Overall Variance Test:b
Beef
Pork
Chicken

Parameter Stability:
Beef
Pork
Chicken

Static Heteroskedasticity:
Beef
Pork
Chicken

Dynamic Heteroskedasticity:
Beef
Pork
Chicken

0.946 0.376 0.091

0.773 0.633 0.003
0.356a 0.360 0.058

0.986 0.975 0.712
0.957 0.854

0.815
0.727a 0.824 0.877

0.921 0.935
0.818

0.298 0.906 0.010
0.901 0.030

0.013
0.466 0.806 0.113

0.161 0.823 0.377
0.422 0.313 0.008

0.336 0.178 0.033
0.069 0.026 0.481
0.244 0.222 0.087
0.895 0.615 0.517

0.952 0.968 0.510
0.974 0.456

0.652

0.472 0.479 0.909
0.550 0.575

0.598

0.837 0.855 0.602
0.867 0.901

0.477

0.699 0.782 0.386
0.842 0.218

0.589

0.165 0.368 0.003

0.800 0.465 0.032
0.481a 0.504 0.121

0.898 0.853 0.895
0.648 0.906

0.946
0.484a 0.291 0.730

0.221 0.885
0.863

0.071 0.002 0.507
0.022 0.115

0.516
0.015 0.048 0.125

0.403 0.488 0.410
0.476 0.965 0.001

0.087 0.173 0.013
0.129 0.680 0.096
0.724 0.550 0.552
0.031 0.055 0.150

0.098 0.010 0.453
0.137 0.354

0.520

0.047 0.165 0.071
0.708 0.221

0.117

0.153 0.169 0.225
0.495 0.521

0.329

0.120 0.004 0.606
0.049 0.203

0.442

Note: Model C is a static ALIDS model but also includes B&S and WWOM to capture possible changes in structure. Model D
is an interrelated partial-adjustment model.
aKG2 and WHITE tests only include squares of independent variables since degrees of freedom are limited.
bThe results from all 0.5q(q + 1) equations are reported. The column and row titles identify the variance or covariance being
tested. For example, the test result in the beef row under the pork column is for the equation assessing assumptions regarding
the covariance between residuals from the pork and beef equations. The RESET terms in this test incorporate the fitted values
from the beef and pork equations only (regardless of which equation is omitted), due to limited degrees of freedom.
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The joint tests seem to help pinpoint the possible problem(s) in the static ALIDS model
(Model A). The full-system joint conditional-mean test (table 1) suggests that the misspeci-
fication problems may stem from trending parameters (p-value = 0.003) and/or misspecified
dynamics (p-value = 0.019), rather than inappropriate function form. The equation-by-equa-
tion joint-mean tests support this finding. They indicate that all equations suffer from these
(likely) problems.

The relative magnitude of the p-values on separate test components in the joint-mean
tests provides evidence that parameter instability may be the main problem: the parameter
instability p-values are lower than those for the autocorrelation tests in two of the three
equations (Model A, table 2). However, the evidence is not conclusive and any conclusions
regarding the existence or nonexistence of structural change is premature. Dynamic misspe-
cification in all three equations could plausibly result, for example, from unmodeled habit
persistence as discussed by Heien and Durham. In fact, many meat demand studies have
specified dynamic models (e.g., Moschini and Meilke; Eales and Unnevehr 1993; Chavas).
At this point, we can only conclude that the statistical assumptions underlying the static
ALIDS model are not satisfied for these data, and thus, any hypothesis tests based on this
model, including those regarding simultaneity, will be of questionable validity.

Two approaches to dealing with the misspecifications found in the static ALIDS model
seem reasonable. The first approach, "modeling" structural change, considers the possibility
that problems stem from structural change in the demand for meat, resulting in unstable
parameters. Structural change may have caused the other misspecification tests to indicate
problems, although more evidence is needed to draw this conclusion. The only way to assess
the plausibility of this explanation is to "model" the structural change such that a model with
stable parameters is obtained. If in doing so, the other misspecification tests are "fixed," it
can tentatively be concluded that structural change has occurred. 14

The second approach, enhanced dynamics, assumes that at least some, perhaps all, of the
statistical problems arise because the dynamics of adjustment in meat demand are not
adequately modeled with a static ALIDS. One possible means of modeling these dynamics
is to employ a first-difference ALIDS model. This model is commonly used to "solve"
autocorrelation problems in the context of the ALIDS model (e.g., Eales and Unnevehr 1988,
1993; Moschini and Meilke). A less restrictive specification, which is still relatively
parsimonious, is employed here. This alternative is a variant of the interrelated partial-ad-
justment model of Anderson and Blundell. This variant, proposed by Alessie and Kapteyn,
is

(2) wit = a, + E^iOJt 1 + jI log +y logit + i log(xt / P), i = 1,, q +

where 0ii = 0 for identification (Assarsson et al.). [Note that the possibility of "true"
autocorrelation is not even considered as a possible source of the misspecification problems.
Spanos (1987) illustrates why "true" autocorrelation is unlikely for most time-series mod-
els.]

The second approach (enhanced dynamics) can be compared to the first (modeling
structural change) by assessing the extent to which each approach "cures" the problems
indicated by the individual- and joint-system misspecification tests.

4The conclusion is only "tentative" because there may be another model which is also statistically adequate but leads to other
conclusions (see below). This possibility s particularly plausible here since our sample is relatively small, and thus the
misspecification tests may not have much power.
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"Modeling" Structural Change

Structural change can be modeled in many different ways. It is commonly modeled by
incorporating some function of time as a regressor and/or allowing the intercept and/or slope
coefficients to change over the sample period by including binary shifters (dummy vari-
ables). Incorporating some measure of the phenomena responsible for the change is a better
means of modeling change. Researchers who argue that structural change has occurred in
the demand for meat often contend that information about saturated fats and cholesterol is
a major determinant of the change. Some authors cite increased participation of women in
the labor force and changes in income distribution, age distribution, and racial composition
of the population as possible sources of change (Capps and Schmitz). Here we incorporate
a measure of the concern for cholesterol and the increased participation of women in the
labor force to explain the potential structural change.

The index of cholesterol awareness used is new and differs from the popular Brown and
Schrader (B&S) index, which has been used to explain changing patterns of meat demand,
apparently with some success (Capps and Schmitz). Our index was created by counting
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Figure 1. A comparison of the Cholesterol Index, CHOL, with that of Brown and Schrader
(B&S)
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articles (weighted by readership) cited in the Reader s Guide to Periodic Literature address-
ing health problems associated with dietary cholesterol. A cumulative count of subscription-
weighted articles was created.' 5 This variable (CHOL) is contrasted in figure 1 with the B&S
index, which measures the number of articles in medical journals linking cholesterol to
health (minus those refuting the link) lagged six months.' 6 The pattern demonstrated by the
CHOL index suggests that the general public may not have been aware of the cholesterol
issue until much later than the B&S index suggests. Furthermore, the B&S index is close to
a linear time trend, while the CHOL index is less smooth. We contend (and later "test") that
the subscription-weighted count of popular press articles is a better representation of
consumer cholesterol awareness than the count of articles in professional journals.

The increased participation of women in the work force is captured by using the
percentage of women with children under 18 years of age who have been or are married and
working. This variable (WWOM) was obtained from Handbook of Labor Statistics.

To "model" structural change in the context of the ALIDS model, the equation intercepts
are allowed to change as CHOL and WWOM vary.'7 Thus, the relevant statistical model
becomes

(3) wit =a +± y, logp, +P log(x, P)+ 6 iCHOL, + WWOMt, i=1,...,q+l.

The p-values from the misspecification tests of the static ALIDS model augmented with
the structural change variables (CHOL and WWOM) are reported in tables 1 and 2 (Model
B). The full-system p-values indicate that all assumptions, except perhaps stable variance-
covariance matrix (p-value = 0.015), are reasonable for this model. The equation-by-equa-
tion tests shown in table 2 suggest that all tested assumptions are appropriate as the
variance-stability tests indicate no problems. There are two possible explanations for the
difference in results for the variance tests. First, the cross-equation residual covariances may
not be stable. Second, the results may simply reflect the fact that the full-system test often
gives an inflated measure of departures from covariance homogeneity (Seber, p. 449). Since
the suspect variance test is the only full-system test to indicate possible problems, this model
is judged to be statistically adequate. Consequently, unstable parameters due to changing
preferences may have been responsible for the poor misspecification test results of the static
ALIDS model. The proxies for concerns over cholesterol (CHOL) and increased participa-
tion of women in the work force (WWOM) adequately model these changing parameters.

Before examining the extent to which misspecified dynamics can also account for the
problems in the static ALIDS model, we compare our new cholesterol index with the B&S
index by reestimating Model B, replacing our index with that of B&S. The misspecification
results for this modified model are also reported in tables 1 and 2 (Model C). The results
suggest that Model C is misspecified. Not only is thep-value on the system variance-stability
test low, but the small p-values for the RESET2 functional form and joint conditional-mean
tests indicate further problems. The equation-by-equation test results suggest that the
chicken equation may be the sole source of these problems.

'5A quarterly circulation variable (measured in millions) was initially constructed. The annual index is obtained by averaging
the quarterly index each year.

16 Both indices have been standardized so that they can be viewed on the same graph.
7This means of incorporating the structural change variables is consistent with the entering of demographics in an expenditure

system found in other studies. It is akin to the demographic translation technique discussed by Pollack and Wales (1981). This
is a parsimonious approach that allows the price and expenditure elasticities to vary with the variables CHOL and WWOM.
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These findings do not necessarily mean that the B&S index does not adequately reflect
concerns for cholesterol, since the use of the B&S index with another functional form, or
with a different dynamic specification, could lead to another statistically adequate model.
However, use of the B&S index, in contrast to the CHOL index, within the augmented static
ALIDS framework, cannot be justified with these data. No claims can be made regarding
the existence of structural change using results from Model C. Furthermore, any other
inferences drawn from this misspecified system will be invalid.

Modeling the Dynamics ofMeat Demand

The possibility of finding another model that passes all misspecification tests is not precluded
by the fact that a statistically adequate model was obtained by "modeling" structural change
within an augmented static ALIDS framework (Spanos 1986). 18 Thus, we estimate the
interrelated partial-adjustment model (without variables modeling structural change) in
order to establish the extent to which misspecified dynamics could account for the problems
of the static ALIDS model. The results are reported in tables 1 and 2 (Model D). The
full-system tests indicate that this model is not statistically adequate. Although autocorrela-
tion no longer appears to be a real problem, the full-system tests indicate parameter instability
in the mean and variance, and possible violations of normality and of functional form. The
equation-by-equation tests confirm these findings. They indicate that the symptoms are most
severe in the chicken equation and that parameter instability is the most likely problem. If
we had not already estimated the structural change model (Model B) above, these results
may have led us to try to fix these problems by "modeling" the structural change at this point.

If tests of autocorrelation alone had been conducted, the modeler would have concluded
that the dynamic misspecifications identified in the static ALIDS model are largely "cured"
by the partial-adjustment specification. In contrast, when all model assumptions are exam-
ined this dynamic specification is found to have serious misspecifications. 19 These very
different conclusions illustrate the pitfalls associated with interpreting a single misspecifi-
cation test in isolation and highlight the benefits of conducting a full battery of tests.

Testing Theoretical Restrictions

Because Model B is statistically adequate, valid tests of restrictions implied by consumer
theory can be conducted. 20 A test (Rao) of homogeneity leads to a rejection (F221 = 13.04;
p-value = 0.0002). Next, homogeneity and symmetry were imposed and jointly rejected (F3, 42
= 7.02; p-value = 0.0006). Thus, neither of these theoretical restrictions is supported by the
data.

The rejection of the restrictions from demand theory is not surprising. The data are
constructed using total disappearance of meat from national stocks and average retail prices.
There is good reason to doubt that such data are consistent with the theory of a representative
utility-maximizing consumer. Problems such as aggregation over consumers, together with
the measurement problems inherent in disappearance data, would invalidate theoretical
restrictions.

19It is for this reason that Spanos uses the term "a statistically adequate model" rather than "the statistical model."
19Although not reported here, a first-difference ALIDS model was estimated and found to exhibit similar problems.
2Parametric tests of theory can always be conducted, however, unless a valid statistical model is used as a basis of such tests,

the underlying distributions of the test statistics are unknown.
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Simultaneity problems, leading to biased and inconsistent estimates of the theoretical
parameters of interest, could also potentially explain why the theoretical restrictions are
rejected. LaFrance, for example, shows that (meat) expenditures will not be exogenous under
reasonable assumptions, and Eales and Unnevehr (1993) question the exogeneity of prices.
To examine these issues carefully and in a statistically coherent manner, one should first
specify a system of supply and demand equations, solve for the reduced form, ensure that
the reduced form is statistically adequate, and then conduct a Durbin-Wu-Hausman (DWH)
test. Such an approach would ensure the validity of the DWH test (Simultaneous Systems of
Equations above; Spanos 1986, pp. 653-54). Although desirable, this exercise is beyond
the scope of this article. As a second-best solution, we examine the two simultaneity issues
raised above by conducting two separate DWH tests using Model B.21 The endogeneity of
expenditures is examined using log(CDIt /P) as an instrument for log(x, IPt ), where CDIt
denotes per capita disposable income (Edgerton), and the endogeneity of all prices and
expenditures is examined using the instruments employed by Eales and Unnevehr (1993). 2

The F-statistics (Rao approximation) for these two tests are F2 20 = 0.644 (p-value = 0.536)
and F8 34 = 2.201 (p-value = 0.052), indicating little evidence of simultaneity.

Implications for Meat Demand

Even though the theoretical restrictions of homogeneity and symmetry are rejected, the
implied elasticities of Model B, the statistically adequate model, can be interpreted as
percentage changes in aggregate disappearance resulting from changes in the independent
variables. The unrestricted coefficient estimates, their t-statistics, and the implied elasticities
at the data means are presented in table 3. The point estimates of the price and expenditure
elasticities are within the range of estimates reported elsewhere (Smallwood, Haidacher, and
Blaylock, pp. 108-11). All own-price elasticities (conditional on meat expenditures) are
negative, and the beef own-price and expenditure elasticities are most elastic.

The concern for cholesterol (CHOL) effect on consumption (disappearance) is striking.
Although the cholesterol elasticities at the mean of the data (table 3) are low, the same
elasticities evaluated at the 1988 cholesterol awareness level (and the means of the other
variables) are much higher. The 1988 cholesterol elasticities for beef, pork, and chicken are
-0.08, 0.08, and 0.12, respectively. Increases in cholesterol awareness negatively affect the
consumption of beef and positively affect pork and chicken consumption, the largest being
for chicken consumption.

Increased cholesterol awareness has a substantially greater impact on predicted shares
of meat expenditures. If prices and income are held at their mean values, and CHOL varies
from its low in 1960 to its high in 1988, the predicted share of beef decreases 8.5% (0.575

2System extensions of the artificial regression DWH test outlined in Davidson and MacKinon (p. 239, eq. 7.62) are used.
Note that by following this second-best approach, we cannot be sure that our DWH tests are statistically valid (Spanos 1986,
pp. 653- 54).

22The instruments used by Eales and Unnevehr include (logs of) price of corn (calendar year), average beef carcass dressed
weight, pork carcass fat removed per 100 pounds, broiler-feed conversion ratio, 90-day Treasury Bill yields, an energy price
index, meat-packing wages, price of nonfoods, and per capita personal consumption expenditures, as well as, a linear time
trend. Data on these instruments, originally obtained from Eales and Unnevehr, were "updated" to include data on these same
variables in 1960 and 1961. All instruments are used except the corn price series which was replaced with a (complete) season
average price series found in Agricultural Statistics.

23The theoretical argument that consumer meat demands and consumer expenditures on meat are simultaneously determined
is sound. However, using these aggregate disappearance data and an arguably ad hoc set of instruments, we do not find strong
evidence of simultaneity.
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Table 3. Parameter Estimates and Elasticities from Static ALIDS Model with Structural
Change

Beef Equation Pork Equation Chicken Equation
Parameter Parameter Parameter

Variable Estimatea Elasticityb Estimate Elasticity Estimate Elasticity

Constant -1.150 1.621 0.529
(-4.81) (7.13) (5.07)

log Beef Price 0.082 -1.138 -0.015 -0.318 - 0.067 -0.221
(4.12) (-0.79) (-7.71)

log Pork Price 0.016 - 0.121 -0.002 -0.813 -0.014 0.075
(0.88) (-0.14) (-1.70)

log Chicken Price -0.010 - 0.049 - 0.050 - 0.114 0.060 -0.420
(-0.37) (-1.97) (5.12)

log(X/P) 0.288 1.447 - 0.211 0.424 - 0.076 0.402
(6.68) (-5.17) (-4.06)

CHOL - 0.110 -0.012 0.072 0.014 0.038 0.022
(-2.97) (2.04) (2.37)

WWOM - 0.435 - 0.393 0.154 0.361 0.281 1.409
(-4.05) (1.51) (5.99)

R 2 0.895 0.863 0.951

aThe t-statistics are in parentheses.
bBecause a linear approximation ALIDS model is used, the corrected price elasticity formulae suggested by Green and Alston
are used. In the case of the expenditure elasticities and the elasticities with respect to CHOL and WWOM, cases not covered by
Green and Alston, the formulae are derived in a similar fashion. The elasticities are calculated as follows:

(a) Price elasticities: £ = -+ + -- -[W / + - W log Pk(E +5 6/)];
Wi Wi

(b) Expenditure elasticities: l, = 1 + - - [Z w. IogPk(qk - )];
Wi Wi

(c) Cholesterol elasticities: Ci = 5 , CHOL _- k Ckk ogP;
Wi Wi

WWOM(d) Proportion of women working elasticities: i) = 6 i, Wi L kWk 1g P i
w w.Wi Wi

where 6,, = Kronecker delta; Pi, y/, i, and 6i, are model parameters. The parameter 8i, (ip) is the coefficient of CHOL
(WWOM) for the ith equation.
CCirculation in millions. Reported coefficient estimate is actual times 1,000.

to 0.526), while the predicted shares of chicken and pork increase 9.8% (0.317 to 0.348) and
15.6% (0.109 to 0.126), respectively. Thus, changes in CHOL alone have large predictable
impacts on budget shares.

Changing cholesterol awareness also affects the estimated price and expenditure elas-
ticities, although in a minor way. All three goods become slightly more expenditure elastic
as cholesterol awareness increases, while holding prices and expenditures constant. The
largest changes occur in the chicken and pork elasticities, with the chicken elasticity
increasing by 20% (from 0.387 to 0.469) and pork by 14.6% (from 0.414 to 0.468) from the
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low to high range of information about cholesterol.24 Own-price elasticities changed by less
than the expenditure elasticities. The only sizable change occurs in the own-price elasticity
of chicken, which declines from - 0.40 to - 0.48 (down 17.3%) as cholesterol awareness
increases.

Increases in married females in the labor force also tend to lower beef demand and raise
the consumption of chicken. Before drawing specific conclusions based on this variable,
however, it is important to point out that 98% of the variability in WWOM (measured around
a constant mean) can be modeled by a linear time trend. The significance of this variable
may thus reflect the importance of a variety of factors that have trended over time in a similar
fashion. The factors captured by this trending variable are important determinants of the
demand for meats and have their largest impact on the demand for chicken. The elasticity
suggests that a 1% increase in the proportion of married women working leads to a 1.4%
increase in chicken consumption.

Conclusions

In this article, we illustrate how the single-equation misspecification testing strategy
advocated by McGuirk, Driscoll, and Alwang can be extended to systems of equations. This
extended approach is applicable to any system of equations, simultaneous or not. We outline
how the correspondence between a simultaneous system and its reduced form can be used
to examine the statistical assumptions underlying a structural model. A complete battery of
individual- and joint-system misspecification tests for linear models is proposed. These
system tests differ from usual single-equation tests in that they take into account information
in, and interactions between, all equations in the system.

We then demonstrate the proposed approach to system misspecification testing by
modeling the annual demand for beef, pork, and chicken in the United States. In doing so,
we show how the proposed misspecification testing approach can be used to disentangle
issues regarding structural change and other forms of model misspecification.

The misspecification tests reveal that the static ALIDS model of U.S. meat consumption
is misspecified for the data we use and that the problems are likely to be related to unmodeled
dynamics and/or changing parameters. The fact that we conclusively find model misspeci-
fications with a small sample indicates that the misspecifications may be serious. Any tests
of theory based on this or similarly misspecified models, including those of simultaneity,
homogeneity, and/or symmetry, have no statistical validity.

When changes in meat consumption are expressed as a function of concern for
cholesterol and changes in the labor force, a statistically adequate model is found. The results
suggest that increases in cholesterol awareness and the proportion of married working
females have significantly depressed beef consumption and caused people to switch to
chicken and pork.

An interrelated partial-adjustment ALIDS model apparently "cures" the autocorrelation
problems found in the static model but is still not statistically adequate. Other problems
causing model misspecification persist. These results highlight the importance of conducting
a full battery of misspecification tests on respecified models.

24To calculate these changes, prices and expenditures are held constant and CHOL is varied from its low to its high value.
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The use of misspecification tests illustrated here has wide applicability for empirical
modeling. As long as we use statistics to draw conclusions from econometric models, we
owe it to ourselves and those who use our work to ensure, as best we can, that our models
are appropriate. Without doing so, results will be at best suspicious and at worst completely
erroneous. While there is no exact formula on how to use the tests advocated here to diagnose
sources of misspecification, we illustrate how a careful modeler can find some very useful
information in them.

[Received May 1994; final version received October 1994.]
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