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Importance of Melon Type, Size, Grade, Container,
and Season in Determining Melon Prices

Russell Tronstad

Classification and Regression Trees (CART), a computer intensive nonparametric classifi-
cation method, was used to model weekly Los Angeles wholesale prices (1990-93) for
twelve different melon types. CART explained more of the variation in melon prices than
did an ordinary least squares (OLS) regression with dummy variables. Explanatory variables
ranked as the most-to-least important by CART are as follows: week, type of melon, year,
size, grade, and shipping container. The most notable price change occurs when prices fall
after 13 May.

Key words: binary split, CART, hedonic, relative importance, terminal node

Introduction

Weekly melon prices vary greatly across melon types (e.g., red-flesh watermelons versus
seedless watermelons). Melons also receive a premium or discount depending on other
"quality characteristics," such as size, grade, and shipping container. Consumers prefer some
melons over others according to types and characteristics. For example, during the last week
of January 1994, "one-label" grade honeydews received twice the price of good grade
honeydews.

In his work with vegetables, Waugh was one of the first to consider the influence quality
had on prices. Subsequent research has often used hedonic price analysis to determine the
value of quality characteristics for agricultural goods (e.g., Bowman and Ethridge; Brorsen,
Grant, and Rister; Goodwin et al.; Lenz, Mittelhammer, and Shi; Unnevehr and Bard;
Veeman; and Wahl, Shi, and Mittelhammer). As noted by Epple, the two main goals of
hedonic studies are to determine discounts and premiums and to estimate the demand and
supply functions for attributes of the product. The focus here is on discounts and premiums.!

Collette and Wall identified the importance of timing, or seasonality, for the prices of
cucumbers, eggplant, peppers, and tomatoes in Florida. Prices changed dramatically in just
a few weeks, particularly in the spring. Tronstad, Huthoefer, and Monke argue for including
seasonal factors in hedonic analysis since seasonal factors can influence the supply of quality
characteristics. Ethridge and Davis and Wilson account for temporal price changes with a
linear time trend and dummy variables for month or year.

Data availability is often a problem in hedonic analyses. For example, Goodwin et al.
detected positive autocorrelation when analyzing factors that affect fresh potato prices. Four
different varieties of potatoes were analyzed from 1982 to 1985 and the time periods of
available data for each potato type differed by so much that it was not possible to follow
appropriate autocorrelation adjustment techniques. Brorsen, Grant, and Rister were unable
to find a "weekly farm price" for rice so they included a base mill price to account for changes

The author is an assistant specialist in the Department of Agricultural and Resource Economics at The University of Arizona.
Quantity data are not available for melons with the quality characteristics considered. This precludes an analysis that estimates

demand and supply functions.
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in the rice bid/acceptance market. A nonparametric approach of Classification and Regres-
sion Trees (CART) is used in this analysis to avoid problems associated with limited price
quotes and restrictive model specifications. 3

The objective of this article is to determine discounts and premiums due to various
characteristics of wholesale melons. Characteristics considered are melon type, size, grade,
shipping container, week, and year. CART results are described graphically and are probably
easier for lay audiences to understand than parametric regression results. Using this infor-
mation, grower and shipping practices may be altered to take advantage of price premiums
or to avoid price discounts.

Data and Modeling Considerations

Weekly price data were obtained from the Los Angeles Wholesale Fruit and Vegetable
Report, published by the U.S. Department of Agriculture, Federal State Market News
Service. Data are from 3 January 1990 through 28 December 1993. Earlier price quotes for
the Los Angeles market were unavailable. Monday price quotes were used unless a holiday
preempted the weekly report, in which case, Tuesday was used for a price quote. The report
often gives a price range for a particular grade, size, region, and type of melon. If a price
range was given, the midpoint was used. Region of production is sometimes reported in
specific terms (Imperial Valley) or sometimes in broad terms (California/Arizona). Due to
the inconsistency of regional notation and the strong correlation between region and week
of year, region was not considered as an explanatory variable.

Twelve different melon types were considered: cantaloupes, honeydews, red-flesh wa-
termelons, seedless watermelons, plus canary, casaba, crenshaw, mayan, orange-flesh,
persian, santa claus, and sharlyn "specialty melons." A total of 5,186 price quotes were
available. The number of observations for each melon type was: canary 138; cantaloupes
1,358; casaba 202; crenshaw 453; honeydews 1,217; mayan 31; orange-flesh 324; persian
84; santa claus 110; sharlyn 45; red-flesh watermelons 712; and red seedless watermelons
512.

A size is specified for almost all of the melon price quotes. The number given for size
refers to the number of melons required to fill a standard carton. Thus, a size 18 for
cantaloupes is a smaller melon than size 12. To standardize the size variable for all melons,
size was standardized as

(I) Ss=- (Smq -Sm)
mq

where Sstd is the standardized size for the qth observation of melon type m, Sq is the size
mq

number recorded, S,,t is the mean size for melon type m, and a ,, is the sample standard
deviation in size. Size was not given for regular and seedless watermelons in over half the
price quotes. These watermelons were always sold in either bins or crates. Size was given

2CART is a computer package that is a trademark of California Statistical Software Inc., Lafayette, California, copyright
1984.

3In general, equilibrium prices cannot be linearly decomposed (Jones) and the demand functions for product characteristics
cannot be consistently estimated (Epple) as modeled by OLS. The functional form of CART is less restrictive.

Tronstad
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on 507 of 1,224 price quotes, or about 41%. CART provides procedures for handling missing
data.

Grades of "one-label," "good quality," "fair quality," "fair condition," and "poor quality"
are recorded. Over 90% of the price quotes (4,735) are "good quality," and 254 or almost
5% are of the highest grade, "one-label." Only 61, 131, and 5 price quotes are given for "fair
quality," "fair condition," and "poor quality," respectively. Watermelon and honeydew price
quotes are only reported for a grade of "good quality." Most of the grade variation occurs
for cantaloupes and the specialty melons. The skin of cantaloupes and some specialty melons
are much softer than watermelon and honeydews; thus, bruises or soft spots are much more
likely to appear in the softer-skinned melons.

Watermelon prices are reported in cents per pound with about half of the price quotes for
the shipping container of cartons and the rest for bins, crates, or mixed containers (cartons-
crates or bins-crates). Bins, crates, and mixed containers are reported in 254, 276, and 103
price quotes, respectively, for both regular and seedless watermelons. All melon types except
seedless and red-flesh watermelons are quoted in dollars per carton. To calculate the price
per pound for other melons, a weight of 40 Ibs. per one-half of a carton was used for
cantaloupes and 30 Ibs. per two-thirds of a carton of honeydew and specialty melons, as
reported in the Los Angeles Wholesale Fruit and Vegetable Report.

To look at seasonality effects, week of year for the qth observation (wq) was calculated
as follows:

(2) Wq=-,
7

where dq is the day of the calendar year (1 to 365) for the qth observation or price quote.
Seasonality should be strong in the data since melons are a perishable product with a short
shelf life. The 1993 Produce Services Sourcebook (The Packer) reports the post-harvest life
for cantaloupes at 10 to 14 days, 14 to 21 days for watermelons and "specialty melons," and
21 to 28 days for honeydews that heave been C2 4 treated. Melon production is very seasonal;
most winter melons are shipped from Mexico and Central America, and some U.S. areas
supply melons for only a one- to two-week period. Year was also included as an explanatory
variable since weather conditions and resultant supply for a given week can vary dramati-
cally from one year to the next.

The hedonic price model proposes that consumers derive satisfaction or utility from
characteristics that goods possess, rather than just the goods themselves (Lancaster; Lucas;
Rosen). Following Lucas, hedonic price functions are of the form

(3) Pi =f(C, , Co; i),

where Pi is the observed price of commodity i, Ci, measures the "intrinsic value" of thejth
quality characteristic for commodity i, and g, is a random error term. Epple argues that in

general hedonic estimations should also include supply response functions. But given

production and transportation lags, and the limited post-harvest life of melons, supply is
assumed to be perfectly inelastic for a given week. Hence, there is no identification problem
(Hanemann) and the hedonic-price estimates identify demand for quality characteristics.

34 July 1995
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Classification and Regression Trees

CART was used to analyze how the independent variables of melon type, size, grade,
container, week, and year influence the dependent variable of melon price. To help under-
stand the algorithm of CART, think of a jar full of marbles with each price quote representing
one marble in the jar. Each marble or price quote has time, type, and quality characteristics
stamped on it. The first question CART addresses is what variable and accompanying
magnitude can be used to split the marbles into two jars (defined as a binary split) so that
the prices in each jar are as close to one another as possible. The best split is weighted
according to the number of marbles that are split left or right into separate jars. Then,
subsequent binary splits occur using the same logic until all price quotes are placed into a
terminal jar or "node." A predictor value is then assigned for each terminal node. Collec-
tively, all binary splits and predictor values are referred to as the predictor tree.

For large data sets like this one, CART randomly picks two-thirds of the data as a
"learning sample" and sets aside the other one-third (default and what was used for this
analysis) of the data for testing the predictor tree constructed from the learning sample. Given
a learning sample, three rules are needed to construct a predictor tree for a large data set: (a)
a criterion for selecting a binary split at each node, (b) a rule for assigning a predictor value
to every terminal node, and (c) a rule for determining when a node is terminal or optimal
predictor tree size.

The classical measure of model accuracy is mean-squared error.4 When using the criterion
of minimizing mean-squared error, the first binary split of the learning sample is determined
by iteratively searching all levels of independent variables as a possible split. The split that

5reduces the weighted sum of squared errors the most is the split chosen by CART. For every
node t, the sum of squared errors for each node is simply (yq -y(t))2, where yq is the

qEt

qth observation in node t, and y(t) is the average of all melon prices selected for node t. The
number c which minimizes (y q - c)2 is simply c = Zyq / Q, where Q is the number of

qer t qet

observations in node t.6 Subsequent nodes are split following the same criterion until a very
large tree is grown. This tree has no more than five observations (default number) in each
terminal node or all values (e.g., melon prices) in a terminal node are equal.

CART selectively prunes branches off this large tree grown from the learning sample to
select the right-sized tree. That is, the apparent error rate based on the learning sample will
always appear small for the largest tree, since each observation could ultimately be classified
in its own terminal node as a "perfect fit." But this tree would likely give spurious results
when making predictions. Test sample data, selected at random in the beginning and not
used in constructing the tree, are used to obtain a more reliable estimate for the "true error
rate." The estimated true error rate of a predictor-tree, R(d), is simply the mean-squared
difference between the actual values of the test set and their predicted values from the
constructed tree (based on the learning sample). More formally R(d) is

Alternative criteria that are less sensitive to outliers such as least absolute deviations are available in CART but yielded
similar results to those presented.

5Weighted according to the number of observations going left and right, respectively.
6Splits could also be based on a linear combination of variables in CART. But this algorithm has a "limited search" and could

get trapped on a local maxima so that there is no guarantee of a global optimum for the split. The simplicity of interpretation
is also reduced with linear combinations and computation requirements are increased by at least a factor of five.
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i Ns

(4) R(d)= Nts (y' - d ))2,

where NI is the number of observations in the test sample, yt is the ith observed value in
the test sample, and d(yfs) is the predicted terminal node value for the ith observation
constructed from the learning sample. The estimate in (4) provides an unbiased estimate of
R(d) since observations for the learning and test sample are drawn independently from the
same underlying probability distribution. R(d) is generally large for very small trees,
decreases as the tree size grows with a long flat valley, and then increases again as the tree
becomes very large. The tree with the minimum true error rate is often referred to as R(d)*,
the "optimal tree." However, in order to select a more conservative tree, the Standard Error
Rule (SER) was adopted. The standard error of the estimate for R(d) is7

1 1 Ns I
N's(5) SE(R(d))= -- [-Z(y ts -d(y- )) 4 - R(d)2 ]

Then, the tree with an expected risk or R(d) closest to R(d)* + y SE(R(d)* ), where y is the
SER, is the smaller and more conservative tree selected. A SER of 5 was used here. The SER
portrays a trade-off between tree complexity and accuracy. If the estimated true error rates
from the sequence of pruned trees are relatively flat, a larger SER can be justified than when
the true error rate rises steeply for smaller predictor trees. A "flat function" implies that little
predictive accuracy needs to be given up for a much smaller tree. Regression trees con-
structed from a continuous variable are generally much "flatter" than classification trees
constructed from a discrete dependent variable. This is because all values must be equal or
below a small number before splitting ceases. Equality is much more likely with a limited
number of discrete outcomes (classification) than a continuous variable (regression).

The missing observation algorithm of CART was used since some watermelons had no
specified size. As above, the algorithm first determines the best split (s*) of a node by testing
splits for all variables. If a variable, say x4 is missing some values, then the best split for x4
is determined only from observations that contain a value for x4. Suppose that the best split
for x4 is whether x 4< 2 or x4 > 2. Then CART searches through all possible splits on xI until
it finds the split on xI that is most closely associated with x4 < 2 or x 4 > 2. It repeats this
procedure for all variables except x4 until it ranks all splits that are most closely associated
with the split of x4 <2 or x4 > 2, defined as a surrogate split. Suppose the best surrogate split
for x4 < 2 orx 4 > 2 is whetherx6 < 5 orx 6 > 5. If the value ofx4 is missing then it sends a case
to the left if x6 < 5 and to the right otherwise. This procedure is analogous to replacing a
missing value in a linear regression model by the nonmissing value with which it is most
closely correlated. But Breiman et al. propose that CART is more robust than regression.
When missing values are filled in by regressing on nonmissing values with linear regression,
coefficients are computed by inversion of the covariance matrix. Thus, estimates are
sensitive to these smaller eigenvalues, and a covariance matrix that is nearly singular is
commonly the result if numerous observations are missing. An error associated with

7The proof of this derivation follows from the individual observations in (4) being independent of one another for a fixed
learning sample. Thus, the variance is the sum of all the individual terms. Breiman et al. provides a proof.
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assigning a case left or right with CART, due to a poor surrogate split, can be corrected in
lower splits.

In determining which variables are most important for explaining melon prices, CART
ranks variable importance by using surrogate splits. As alluded to above, the surrogate split,
s,, is the split for each variable x that most accurately predicts the action of the best linear
split, s, at each node. The probability that sx predicts sx correctly is PLL(Sx,Sx)+

PRR (S, sx ), where PLL (.) and PRR(') are the probability that both sx and Sx send a case left
and right, respectively. The measure of importance for variable x, M(x), is

(6) M(x) = 'AI(x, t),
teT

where T is the optimal tree selected from the test sample and SER, AI(-) is the change in
sum of squared errors (described as "node impurity" in CART terminology) from using the
surrogate split (sr) instead of the optimal split (s) for variable x at each node t, and other
variables are as described above. Because the relative importance for ranking variables is
more important than the actual level, values are normalized so that the most important
variable has a ranking of 100. For further information on the CART method see Breiman et
al., Efron and Tibshirani, Horowitz and Carson, and Tronstad and Gum.

Results

Figure 1 shows the predictor tree estimated by CART for describing how time variables and
quality characteristics of melons sold in the Los Angeles wholesale market have influenced
historical prices. Week of the year is the first variable to split price quotes: branch left if
week is less than or equal to 18.9 and branch right if week is greater than 18.9. Panel A of
figure 1 describes prices from 21 November (week 46.3) through 13 May (week 18.9), a
period primarily supplied by imports from Mexico and the Caribbean and Central American
countries. The remainder of the year is described in panel B of figure 1, a season when most
melons are from the U.S. Between 1990 and 1993, shipments of U.S. grown melons have
started as early as the first of May and ended as late as the last week of December.

A price estimate is obtained by branching left or right to fit the conditions specified until
a terminal node is reached. For example, in figure 1, say production is targeted for a
"one-label" cantaloupe with week 14 delivery to the Los Angeles market. In following the
bolded line path, week 14 is less than 18.9 so branch left to the next criterion of grade. A
grade of "one-label" requires a branch right to the next criterion of melon type. Number 2
defines the melon type of a cantaloupe and the next level falls into terminal node 10 with a
price prediction of $0.60/lb. Table 1 gives the learning sample and test sample values for all
the observations or cases that fall into each terminal node in figure 1. For example, node 10
has 40 cases in the learning sample with an average value of $0.598 and a learning sample
standard deviation of $0.150. The test sample has similar values with an average of $0.573
and standard deviation of $0.130.

Terminal node 12 has only three observations in the learning sample and zero observa-
tions in the test sample. This node represents price quotes for three "one-label" canary
melons sold in the spring of 1990 (no orange-flesh melons were in this node). The split
between terminal nodes 11 and 12 indicates that the three observations in 12 with an average
price of $0.55/lb. were "outliers" from the other 22 prices in the learning sample with an

Tronstad
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Table 1. Number of Cases, Average Values, and Sample Standard Deviations by Terminal
Node for Learning and Test Sample Values Given in Figure 1

Learning Sample Test Sample
Avg. SD Avg. SD

Node No. Cases ($/lb.) ($/lb.) No. Cases ($/lb.) ($/lb.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Total

160

40

308

80

60

137

82

109

41

40

22

3

298

125

188

160

13

61

332

484

52

17

59

133

48

60

39

58

77

51

43

12

11

11

69

3483

0.293

0.580

0.403

0.322

0.437

0.545

0.394

0.602

0.472

0.598

0.892

0.550

0.156

0.204

0.267

0.325

0.714

0.425

0.186

0.257

0.327

0.496

0.253

0.313

0.310

0.441

0.460

0.279

0.396

0.345

0.484

0.689

0.311

0.543

0.617

0.060

0.150

0.077

0.084

0.120

0.150

0.086

0.150

0.160

0.150

0.150

0.024

0.052

0.073

0.080

0.100

0.170

0.100

0.060

0.067

0.050

0.048

0.054

0.073

0.052

0.073

0.110

0.110

0.130

0.097

0.100

0.072

0.090

0.044

0.120

61

20

161

40

44

65

48

60

21

26

16

0

144

67

100

76

7

29

137

208

22

12

22

54

25

45

22

21

34

30

21

7

9

5

44

1703

0.308

0.561

0.394

0.328

0.402

0.523

0.401

0.596

0.473

0.573

0.825

0.157

0.179

0.282

0.358

0.568

0.429

0.189

0.261

0.333

0.461

0.310

0.325

0.330

0.421

0.441

0.320

0.378

0.331

0.463

0.576

0.346

0.588

0.626

0.093

0.150

0.085

0.087

0.160

0.140

0.081

0.160

0.150

0.130

0.170

0.050

0.070

0.097

0.120

0.160

0.087

0.050

0.071

0.051

0.110

0.100

0.066

0.054

0.068

0.086

0.120

0.120

0.088

0.085

0.039

0.081

0.016

0.180
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average price of $0.892/lb. Given the small number of cases, it is not surprising that no cases
were found in the test sample. A procedure such as least absolute deviations rather than
least-squares regression removes these "outliers" from being in their own node. But these
outliers are salient features of the data by regression criteria since they were sorted into their
own terminal node, even though their relative numbers are small.

Figures 2, 3, and 4 plot estimated CART terminal nodes versus average cantaloupe,
honeydew, and watermelon prices by week of calendar year.8 These figures illustrate the
importance of seasonality for melon prices. Both the average price and CART terminal nodes
plotted demonstrate how prices can plummet after 13 May. This sharp drop reflects the first
large influx of new crop shipments from temperate areas of California, Florida, and Texas,
plus continued imports from Mexico and Central America. It is not surprising that growers
seek out warmer microclimates and use mulches or foams in an effort to achieve a harvest
one or two weeks ahead of the spring price drop.

Red-flesh watermelon and mayan melon prices bottom out for all years after week 18.9
at around $0.16/lb. and remain there until late fall. CART gives these two melon types the
same price for all years between weeks 18.9 and 46.3, the longest period for all melons.
Prices continue to drop for other melon types until week 27.2, 11 July, when they hit bottom
for the year. Prices are most stable from year to year during the midsummer season, between
weeks 27.2 and 39.7. During this period, terminal price nodes for all melons (i.e., 13, 19,
20, 21, and 22) are the same for all years. Yearly price uncertainty is lower for these weeks
than any other period, but prices are least favorable then too. In considering all melon types,
when week is less than 18.9 or greater than 46.3 (i.e., panel A), several terminal nodes yield
a price-predictor that is greater than $0.50/lb. But for the period dominated by U.S.
production (i.e., between 13 May and 21 November, which is presented in panel B), only
one terminal node is above $0.50/lb., node 17. This node only includes "specialty melons"
(canary, casaba, crenshaw, orange-flesh, persian, and santa claus) and is for a very short
window, between 13 May and 1 June, in 1990 and 1991.

Melon prices start to increase in the fall around 6 October (week 39.7), albeit more
gradually than the price drop in the spring. Terminal nodes for shorter time periods in the
fall than spring reflect the more gradual price increase. U.S. melon supplies increase in the
spring more sharply with the new crop than production drops off in the fall. Melons are
planted only after minimum soil temperatures have been reached. Few heat units accumulate
in early spring so that most melons are ready for harvest at about the same time, even if
plantings are a few weeks apart. Also, a light freeze in the spring would kill most seedlings,
but many vines may keep producing after a light freeze in the fall. Post-harvest life also
appears to affect how quickly prices increase in the fall. Cantaloupes have the shortest
post-harvest life and they exhibit the sharpest price increase in the fall.

A price premium was most consistently exhibited for crenshaw, orange-flesh, and sharlyn
melons. Red-flesh watermelons and mayan melons were at the lowest price level ($0.156/lb.
for node 13) for most of the U.S. harvest season. Seedless watermelons receive a premium
relative to red-flesh watermelons, except after week 46.3. For other weeks, the premium
ranged anywhere from a high of $0.25/lb. (weeks between 4.85 and 13.1 for 1990 and 1992)
to a low of $0.05/lb. (weeks between 18.9 and 27.2 for 1992 and 1993).

Cantaloupe prices plotted are for a size number less than 21.58 [i.e., 16.064 + (1.07)(5.155)] and all grades except "one-label."

Honeydew and watermelon prices reflect a good quality grade with a size number less than 8.80 for honeydews and all sizes
for watermelons. Average prices were calculated by first taking the average of all price quotes for each week of a year. Then
the average of each week for all years was taken so that each year would have equal weight.
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CART classified honeydew and cantaloupe prices in the same terminal nodes, except
for a few cases, as shown in figures 1,2, and 3. In May and June of 1992 and 1993, honeydew
prices are estimated slightly higher than cantaloupes (i.e., nodes 15 vs. 14). But in the late
fall of 1990, 1991, and 1992, cantaloupe prices are estimated higher (i.e., nodes 26 vs. 25,
and nodes 29 vs. 28). The first diversion is probably from the earlier maturity of some
cantaloupe varieties, while the latter probably reflects a shorter post-harvest life of canta-
loupes than honeydews.

Price splits for grade occur only for "one-label" versus all "other grades." Splits occur
when week is less than 18.9, or between weeks 27.2 and 39.7. This result suggests that
"one-label" grades receive a premium only for limited time periods, and no detectable
discount is received for grades that are worse than good quality. Because little grade variation
occurs (recall that only 3.8%, or 197 price quotes make up the three poorest grades), price
sensitivity to poorer grades may have been overwhelmed by sheer numbers. But CART can
isolate a few price quotes, as in terminal node 12, suggesting that price quotes for the poorer
grades were not overwhelmed by absolute numbers.

Following all "one-label" versus "other-grade" splits is a binary split associated with
melon type. Crenshaw, orange-flesh, and sharlyn show a significant premium for "one-label"
over other grades. A premium for "one-label" orange-flesh appears for weeks less than 18.9
but not for weeks between 27.2 and 39.7. No "one-label" sharlyn melon price quotes were
given for week less than 18.9. CART arbitrarily places these and other categorically missing
melon types "left." Arbitrarily placing absent categories from the learning sample to the left
causes no harm as long as the specified categories continue to remain nonexistent. But this
is a shortcoming of the data and CART approach if melon production were targeted for
"one-label" sharlyn melons when week is less than 18.9. The data have no "one-label"
sharlyn when week is less than 18.9, and the CART algorithm fails to associate the price
premium for weeks 27.2 to 39.7 with week less than 18.9. Due to this lack of association
and nonlinear flexibility inherent in the CART method, special caution needs to be given for
making extrapolations beyond the data. Price predictions are denoted in brackets, in figure
1 for node characteristics specified that have no price quotes in the learning or test samples.
This happens only for specialty melon types during specific time periods in the late fall,
winter, and early spring months.

A price split for size was identified only when week was less than 18.9 and for crenshaw,
mayan, and orange-flesh melon types. The two size splits identified were both for a size
number that was almost one standard deviation (0.792 and 1.33) above their respective
average sizes. This indicates that no price premium was identified for melons larger than
average size, size, nce smaller numbers reflect larger melons. A binary split associated with a
size number less than zero in figure 1 would be necessary for melons larger than average to
receive a premium. A discount for small size does not occur until some specialty melons are
about one standard deviation in size less than average. Size appears not to have a major
influence on melon prices.

The relative importance of variables for explaining melon prices is as follows: week
(100), type of melon (76), year (45), size (40), grade (34), and container (18). As depicted
in the predictor tree and relative importance ranking, seasonality or week is the most
important factor that determines melon prices with melon type not far behind. Year is next,
reflecting that plantings and weather vary significantly from one year to the next. Both size
and grade splits occur only twice in the price-predictor tree. But the relative importance
variable is higher for size than grade, indicating that size has better surrogate splits than
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grade. Shipping container ranks at the bottom, and this is consistent with no container splits
identified in the price-predictor tree.

How good is the overall fit of the nonparametric CART procedure? The coefficient of
determination orR2 (Kmenta) was calculated at 0.6795 for all melon prices using the learning
sample predictors from figure 1 or table 1.9 This compares favorably with an R2 of 0.6061
calculated from a parametric ordinary least squares (OLS) regression equation with dummy
variables for melon type, year, week rounded to the nearest integer (0 to 53), grade, container,
and the continuous size variable. In total, 73 dummy variables, size, and a constant term
were included in the OLS regression.' The number of dummy variables in the OLS
regression are more than double the binary splits (34) or terminal nodes (35) in the CART
predictor tree. The mean absolute percent error was calculated at 22.71 for CART and 27.27
for the OLS regression. CART performed better since it allows for interactions between
variables. For example, the premium for seedless watermelons relative to other melon types
can be higher for some weeks than other weeks. Without interactive dummy variables in the
OLS regression, the premium for seedless watermelons is fixed constant for every week of
the year.

Similarly, if the overall price level for cantaloupes starts out high as in January 1991, this
is no indication that weeks to follow for 1991 will be at a seasonally higher or lower price
than previous years. Prices for a year are never always above or below the seasonal price
quotes of other years (figs. 2, 3, and 4). Supply shifts from one week to the next, reflecting
the perishable nature of the crop, changes in geographic production, and relatively inelastic
supply for a given week. Prices are grouped together for all years only between the weeks
of 27.2 and 41.2 (terminal nodes 19,23, and 13). Dummy variables are much more amenable
for capturing yearly effects of crops that are on an annual production and storage cycle rather
than a commodity like fresh melons. Thus, a strength of the CART approach appears to lie
with its ability to identify interactions between discrete variables without requiring an unduly
large number of dummy variables as may be the case for a parametric regression equation.

Concluding Comments

CART, a computer intensive nonparametric regression procedure, was used to determine
how melon type, size, grade, shipping container, week, and year influence melon prices. The
"relative importance" of variables calculated by CART ranked week (100), type of melon
(76), year (45), size (40), grade (34), and shipping container (18) as the most-to-least
important factors. Given the importance of time variables, parametric procedures may be
justified in focusing only on seasonality for a longer series of data, even if the data represent
just one grade, size, and type of melon.

A price-predictor tree constructed by CART with 34 binary splits, or 35 terminal nodes,
explained melon prices favorably to an OLS regression equation with 73 dummy variables,
size, and a constant term. The mean absolute percent error was 22.71 for CART and 27.27
for the OLS regression. Similarly, the R2, or coefficient of determination, was 0.6795 for
CART and 0.6061 for the OLS regression. CART performed better since it allows for

9R2 values are 0.6051 and 0.7600 for predictor trees with 19 (SER of 7) and 89 (SER of 3) terminal nodes, respectively.
10When size specifications were missing from watermelon quotes, the average size for all watermelons was used instead.

Results were the same as regressing size on all other variables and then using these estimates of size for missing values.
Interaction dummy variables (e.g., week multiplied by year) would have been unmanageable if all were considered as

variables in the OLS regression.
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interactions between discrete variables. Allowing for these interactions in the OLS regres-
sion would have required an unduly large number of interaction dummy variables.

Crenshaw, orange-flesh, and sharlyn melons exhibited the most consistent premiums for
melon type, while red-flesh watermelon and mayan melons generally received a discount.
No premium was found for melons larger than average. Discounts for small sizes were found
only for limited melon types and time periods. The only grade price differential detected
was for a "one-label" grade associated with limited melon types and time periods. Year was
an important factor for all time periods except between 11 July and 6 October.

Melon prices show their first big price drop in the spring after 13 May. Most melon prices
drop further until they reach bottom at around 11 July. Prices are the lowest and most
predictable between 11 July and 6 October. After 6 October, prices start to increase, but more
gradually than they drop in the spring. Most melon prices peak in mid-December.

[Received June 1994; final version received January 1995.]
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