
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Journal of Agricultural and Resource Economics 29(3):387-403 
Copyright 2004 Western Agricultural Economics Association 

Efficiency of Weather 
Derivatives as Primary Crop 

Insurance Instruments 

Dmitry V. Vedenov and Barry J. Barnett 

This study analyzes efficiency of weather derivatives as primary insurance instru- 
ments for six crop reporting districts that are among the largest producers of corn, 
cotton, and soybeans in the United States. Specific weather derivatives are con- 
structed for each cropldistrict combination based on analysis of several econometric 
models. The performance of the designed weather derivatives is then analyzed both 
in- and out-of-sample. The primary findings suggest that the optimal structure of 
weather derivatives varies widely across crops and regions, as does the risk-reducing 
performance of the optimally designed weather derivatives. Further, optimal weather 
derivatives required rather complicated combinations of weather variables to achieve 
reasonable fits between weather and yield. 

Key words: agricultural risk management, crop insurance, index insurance, weather 
derivatives 

Introduction 

The failure of private insurance markets to provide affordable and comprehensive crop 
insurance is well documented in the literature [see Glauber and Collins (2002) for a 
recent survey]. In particular, high systemic risk and agency problems are often cited as 
major obstacles to viable crop insurance (Ahsan, Ali, and Kurian, 1982; Chambers, 1989; 
Nelson and Loehman, 1987; Goodwin and Smith, 1995; Skees and Barnett, 1999). 
Weather events that impact crop yields are often spatially correlated, thus creating 
problems for traditional insurance, which is designed to pool a large number of small, 
uncorrelated risks rather than widespread systemic losses (Miranda and Glauber, 1997). 
Moral hazard and adverse selection problems (Skees and Reed, 1996; Quiggin, 
Karagiannis, and Stanton, 1994; Smith and Goodwin, 1996; Coble et al., 1997; Just, 
Calvin, and Quiggin, 1999) result in rather high transaction costs of selling and servicing 
crop yield insurance policies. Insurers typically pass these expenses on to the buyers by 
loading premium rates. Consequently, crop yield insurance is heavily subsidized by 
governments in the United States and other countries. Yet, government premium 
subsidies are often inefficient and come at high social cost (Skees, Hazell, and Miranda, 
1999). 

An emerging trend has been the development of new financial instruments (catastro- 
phe options, catastrophe bonds) that allow insurers to securitize correlated risks and 
circumvent the limitations oftraditional insurance markets. With regard to agricultural 
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insurance, the innovations include area-yield insurance (Miranda, 1991; Skees, Black, 
and Barnett, 1997) and various exchange-traded area-yield contracts. A characteristic 
feature of these instruments is that their payoff depends on values of a specially designed 
measure, or index, which is related to the risk being hedged against. 

Index contracts potentially may offer many advantages compared to traditional crop 
yield insurance. Since payoffs are based on a widely available and objectively measured 
index, there is no need for farm-level loss adjustment. This greatly reduces transaction 
costs relative to crop yield insurance. The value of the index does not depend on the 
individual actions of market participants. Thus, there is no adverse selection or moral 
hazard involved. Since index contracts are designed to provide efficient means of risk 
transfer rather than risk pooling, systemic risk is not a problem. In fact, index contracts 
work even better when the risk being transferred is somewhat systemic.' Finally, port- 
folio managers and other investors should be attracted to index-based contracts because 
the returns on these instruments are largely uncorrelated with returns on traditional 
financial instruments (stocks, bonds, etc.). 

Weather derivatives are a type of index contract whose payoff depends on occurrence 
or nonoccurrence of specific weather events. While weather risk markets have grown 
rapidly (Lancaster, 2001; Dischel, 2002), current market participants are largely drawn 
from the energy sector, although firms in other sectors, such as construction, enter- 
tainment, and leisure, have recently purchased weather index instruments. Thus far, 
weather derivatives in the United States have not been used in agricultural risk manage- 
ment. Applications of other index instruments have been limited to a very small market 
for area-yield contracts, most likely due to crowding-out by highly subsidized farm-level 
crop yield in~urance .~  

Other countries, however, have shown interest in weather indexes as risk management 
tools for agricultural production. The Canadian provinces of Ontario and Alberta have 
used weather index instruments to cross-hedge forage production risk. AGROASEMEX, 
the state agricultural reinsurance company in Mexico, has used weather derivatives to 
transfer part of its weather-related crop insurance risk. Argentina and Morocco are 
currently developing rainfall index instruments for use in agriculture (Skees et  al., 
2001). 

Recently, weather derivatives have received considerable attention in the literature 
as potential risk management instruments for agricultural production (Skees, 2000; 
Skees et al., 2001; Mahul, 2001; Martin, Barnett, and Coble, 2001; Miranda and Vedenov, 
2001; Turvey, 2001a,b; Dischel, 2002). The major focus of these and other papers, 
however, has been on developing actuarially-fair pricing mechanisms for the contracts 
(Mahul, 2001; Martin, Barnett, and Coble, 2001; Turvey 2001a,b) and institutional 
frameworks that would be required to introduce weather-based insurance, especially in 
developing countries (Miranda and Vedenov, 2001; Skees et al., 2001). While research 
in this area is an important part of developing weather derivatives for agricultural risk 
management, it primarily addresses the seller's side of the market. 

Indeed, a higher systemic component increases the possibility of correlation between index and losses, thus decreasing 
basis risk and improving efficiency of weather instruments. 

While there is evidence that area-yield insurance contracts can be quite attractive for corn and soybean producers in the 
Midwest WARM, 2004; Schnitkey, Sherrick, and Irwin, 2003), even the subsidized area-yield products such as Group Risk 
Plan and Group Risk Income Protection are not as popular as other alternatives offered by the USDA's Risk Management 
Agency (RMA), with both plans together accounting for only 1.6% of the total book of business in 2002. 
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Potential purchasers of weather derivatives, on the other hand, are concerned not only 
with the price but also with how well the contract performs in reducing risk exposure. 
In other words, the crucial property of a weather derivative as a risk management tool 
is how well its payoffs are correlated with losses. However, this aspect of weather deriv- 
atives has not received serious attention in the literature. 

The analysis presented here adds to the existing literature on agricultural applica- 
tions of weather derivatives by moving beyond pricing issues to consider the efficiency 
of weather derivatives as risk management instruments for crop production. More 
specifically, weather derivatives are designed for three different crops (corn, cotton, and 
soybeans) grown in six crop reporting districts or CRDs (two districts per crop). The 
efficiency of each instrument is then evaluated for typical crop producers in each district 
using various risk-reduction measures. 

The considerations behind our choice of analysis units are presented in the next sec- 
tion, followed by a discussion on weather-yield relationships. In the subsequent section, 
a pricing methodology for weather derivatives is described. Results from an efficiency 
analysis are then presented, and the implications of our findings are discussed. The final 
section offers concluding comments. 

Experimental Design 

Various combinations of weather variables, crops, and weather measuring stations create 
an enormous number of potential weather derivatives, which obviously cannot be analyzed 
in a single paper. Therefore, an attempt was made to narrow the list to represent typical 
crop-producing areas for three major crops: corn, cotton, and soybeans. 

A major disadvantage of weather derivatives is the basis risk, reflecting the fact that 
the underlying weather variables are measured at specific locations and may differ from 
realizations of the same variables at different locations. Since weather phenomena such 
as rainfall tend to be fairly localized, even a relatively small distance between the mea- 
suring station and the crop field may result in drastic discrepancies between realized 
losses and weather derivative payoffs. 

Ideally, a weather derivative should be written on an index measured at the same 
location where the derivative is used as a risk management instrument, thereby com- 
pletely eliminating basis risk. From a practical standpoint, however, this is obviously 
an unrealistic proposition that would negate the major advantages of the index contracts 
such as lower transaction cost (relative to traditional crop insurance) and the possibility 
of risk transfer to capital markets. A contract written on weather measured at a specific 
farm in Iowa would hardly attract a Wall Street investor or otherwise generate adequate 
volume of trade. 

For practical purposes, a weather derivative contract should be designed for a relatively 
large geographic area. The level of aggregation one step above a single farm is a county. 
However, weather derivatives designed at the county level would still face difficulties 
with both availability of weather data and a limited market for the contracts. Therefore, 
crop reporting districts (CRDs) have been chosen as the primary analysis units.3 In 
particular, for each of the three crops included in the analysis, two CRDs were selected 

CRDs are statistical units which typically include eight to ten counties and provide a reasonable intermediate aggregation 
level between an individual county and a whole state. 
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Table 1. Crops, Crop Reporting Districts, and Weather Stations Selected for 
Analysis 

Harvested Expected Expected 
Acreage Yield Price" Revenue Weather Station 

Crop State / District (2001) per Acre ($) ($/acre) Name County 

Corn IA / D50 Central 1,708,000 147.59 bu $2.05/bu $302.56 Marshalltown Marshall 

Corn IL / Dl0 Northwest 1,654,000 143.56 bu $2.05/bu $294.30 Dixon lNW Lee 

Cotton MS / D40 Lower Delta 684,500 869.39 lbs $0.34Ab $295.59 Belzoni Humphreys 

Cotton GA / D80 South Central 546,000 712.70 lbs $0.34Ab $242.32 Tifton Exp. Sta. Tift 

Soybeans IA / Dl0  Northwest 1,785,000 46.32 bu $4.56/bu $211.22 Sanborn O'Brien 

Soybeans IL / D70 East Southeast 1,666,000 41.15 bu $4.56/bu $187.64 Windsor Shelby 

"The price for corn is the 2001 Chicago Board of Trade (CBOT) November average price on the December contract. 
The price for soybeans is the 2001 CBOT October average price on the November contract. The price for cotton is 
the 2001 New York Board of Trade November average price on the December contract. These are the harvest-time 
prices used to settle 2001 Crop Revenue Coverage federal crop insurance contracts as reported by the RMA. 

based on acreage planted and total production in 2001. The selected CRDs, along with 
2001 production data, are presented in table 1. 

The next step in designing a weather derivative contract is to specify the location 
where the underlying indexis to be measured. The National Weather Service maintains 
an extensive network of weather stations across the United States, with historical data 
on various weather variables available in some cases for more than a hundred years. 
These stations provide a natural choice of reference points that can be used for 
settlement ofweather contracts. In addition, because the stations are supervised by 
a government agency, the recorded measurements could be trusted to be reliable and 
objective. 

For each CRD, a centrally located weather station was selected as an official source 
of weather data. An  effort was made to ensure that the necessary historical weather 
data were available for the station for at least 30 years. Names of the specific weather 
stations and their county locations are also provided in table 1. 

Weather and Yield 

Temperature and precipitation are arguably among the most important factors contri- 
buting to yield variability. However, establishing a link between yields and weather is 
not a simple task. Part of the problem stems from the tendency of this relationship to 
be localized and crop dependent. For the crops considered in this investigation, there is 
a general consensus that temperature and precipitation in summer months (June, July, 
and August) tend to influence yields. However, the agronomic literature does not 
provide a single consistent model which can be used to relate climatic conditions and 
crop  yield^.^ Hence, for purposes of this analysis, an attempt was made to establish the 
weather-yield relationships for the selected crops and CRDs by employing an econo- 
metric approach. 

'Teigen and Thomas (1995)present a fairly comprehensive attempt to relate weather and yields at the state level. Unfortu- 
nately, the high goodness of fit exhibited by their models is mostly due to inclusion of a time trend term rather than the 
explanatory power of weather variables. 
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Theoretically, one could create a variety of rather complex models incorporating 
different weather variables measured over different periods of time, and thus achieve 
fairly high goodness of fit. However, there are several factors which must be considered 
in specifying weather-yield models. As the complexity of the model increases, so does the 
number of variables. While historical weather data can go back as far as a hundred years, 
the reliable yield series are typically shorter. In addition, a large portion of earlier yield 
data does not adequately represent variability of yields due to the major technological 
shifts that occurred in U.S. agriculture, as well as the wave of farm consolidation in the 
1950s and 1960s. Even with the appropriate detrending (Ker and Coble, 2003), a data 
set suitable for estimation would be limited to 30 to 40 observations, creating identifi- 
cation problems for models with a large number of independent variables. 

To address the problems identified above, we selected five model types (see appendix), 
which incorporate weather variables used previously in the literature (e.g., Teigen and 
Thomas, 1995; Turvey, 2001a). The models were estimated using historical district-level 
yield data collected from the USDA's National Agricultural Statistics Service for the 
period 1972 to 2001 (USDANASS, 2002). In order to account for the temporal component, 
a simple detrending procedure was implemented by fitting a log-linear trend model: 

The detrended yields were then calculated as: 

The weather data used for analysis were observations5 of average monthly temper- 
atures and total precipitation for the three summer months (June, July, and August), 
as well as cumulative rainfall and cumulative cooling degree daysYCDDs) over the 
entire period from June 1st to August 31st. Data for each weather station were collected 
from databases of the National Climatic Data Center (NCDC, 2002). 

Insignificant variables were dropped from all models, and models with the highest 
adjusted R2  have been used to derive the weather indices for each cropldistrict combin- 
ation. The selected models and their corresponding statistics are presented in table 2. 
The goodness of fit of selected models ranges from 86.6% (Illinois corn) to 35.5% (Iowa 
soybeans). Note, in all cases, the indices resulted in rather convoluted combinations of 
individual weather variables with no apparent relation between models for the same 
crop or within the same state. This finding points to potential difficulties that may arise 
in designing and marketing weather derivatives. In particular, underlying indices would 
have to be designed separately for each croplgeographic unit combination. In addition, 
potential buyers may find it difficult to relate their yield experience to the synthetic 
model behind the index. However, for purposes of this research, we adopt the indices 
presented in table 2 in order to analyze performance of weather derivatives in the best- 
case scenario. 

Both absolute values and deviations from long-term averages have been considered. 
6Turvey (2001a) used cumulative CDDs with a basis of 50"Ffor his analysis of agricultural weather derivatives in Ontario. 

Since growing conditions in the United States differ from those in Canada, we considered CDDs in two variants, one with 
a basis of 50°F and the other with a basis of 65°F. 
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Table 2. Selected Weather-Yield Models by Crop and District 

Adjusted 
Crop / District Index /Model R 

Corn / IA, D50 Y,, = 657.002 + 16.746RAl - 91.239RAw - 4.112TJu1 - 1 . 4 8 0 ~ ; ~ ~  0.568 
(0.000) (0.001) (0.017) (0.026) (0.000) 

Corn / IL, Dl0 Yhr = -4,053.340 - 42.755RJun + 10.716R,, + 119.430TJu, - 0 . 7 9 1 ~ ; ~ ~  0.866 
(0.000) (0.003) (0.000) (0.000) (0.000) 

Cotton / MS, D40 Yht = -1,048.120 + 22.393ARAw + 28.589ATJun - 34.676ATJU1 
(0.000) (0.036) (0.029) (0.029) 

Cotton /GA, D80 Y,, = 820.999 - 48.061ATAw - 6.396ARju1 - 1 6 . 6 3 3 ~ ~ : ~  
(0.000) (0.001) (0.067) (0.000) 

- 16.442hRJUnATJun + 28.405ARAwATAw 
(0.002) (0.001) 

Soybeans / IA, Dl0 Y,, = 46.642 - 0.600ATJun - 0.488ATAw + 0.376hRJunATJun 0.355 
(0.000) (0.059) (0.093) (0.030) 

+ 0.323ARAwATAw 
(0.007) 

Soybeans l IL, D70 Y,, = 197.669 - 28.884RAw - 2.136TAw + 0.399RA,TA, 
(0.000) (0.030) (0.000) (0.026) 

Notes: Y,, is the detrended district yield. Numbers in parentheses arep-values. Temperature is in degrees Fahren- 
heit, rainfall is in inches, yield is in bushelslacre for corn and soybeans and pounds/acre for cotton. Independent 
variables are described in the appendix. 

Design and Pricing of Weather Derivatives 

In order to formally evaluate the efficiency of weather derivatives in reducing produc- 
tion risk, a particular contract structure must be selected. While an index contract may 
be structured in many different ways with different coverage layers and provisions, we 
focus our attention on a specific class of elementary contracts. An elementary contract 
pays an indemnity conditional on realization of an index according to the following 
schedule (figure 1): 
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I 
J O.S+strikc strike 

Index 

Figure 1. Payoff structure of an elementary contract 

In other words, the contract triggers (i.e., starts to pay) whenever the index i falls below 
a specified strike i*, with indemnity proportional to the difference between the index and 
the strike. The maximum indemnity (equal to $x) is paid whenever the index falls below 
the limit Ai*, where 0 < A < 1. Thus, an elementary contract can be uniquely identified 
by f i n g  three parameters: strike, limit, and maximum indemnity. Note, the use of the 
terms "strike" and "limit" reflects the fact that an elementary contract may be inter- 
preted as both an insurance contract and a European option on the index. 

As an example, consider a hypothetical elementary contract written on the total 
amount of rainfall measured a t  a specific weather station during the month of July. 
Suppose the contract has a strike of 5 inches, the limit of 2 inches ( A  = 0.4), and the 
maximum indemnity of $100. The actual indemnity is then determined by the obsemed 
level of rainfall. If, for example, the actual rainfall in the month of July were measured 
at 6 inches (i.e., above the strike), the contract would pay nothing. In contrast, if the 
total rainfall were only 1.5 inches (i.e., below the limit), the contract would pay the 
maximum indemnity of $100. Finally, if the actual amount of rainfall were 4 inches (i.e., 
between the strike and the limit), the contract would pay $100 x (5 inches - 4 inches)/ 
(5 inches - 2 inches) = $33.33. 

Elementary contracts are convenient for analysis, yet offer enough flexibility to con- 
struct more complicated instruments. By combining elementary contracts with different 
triggers i*, limit parameters A, and maximum indemnities x, one can recreate or other- 
wise approximate more complicated, multi-layered indemnification schedules that may 
enhance risk protection whenever expected losses are not linearly related to the index. 
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The elementary contract also contains the simple "all-or-nothing" contract as a special 
case. Specifically, when A = 1, the contract pays the maximum indemnity if the index 
falls below the trigger level i*, but pays nothing otherwise. Additional treatment of the 
elementary contract can be found in Martin, Barnett, and Coble (2001). 

In order to price an elementary contract, we need to know contract parameters as well 
as the probability distribution of the underlying index. For weather derivatives, the 
distribution can be derived based on historical data either by fitting a standard para- 
metric distribution or by using a nonparametric approach (empirical distribution with 
kernel-smoothing). Regardless of the particular method used, if h(i) is a probability 
density function of the index, the expected payoff (and hence the actuarially-fair price) 
of the contract can be determined by: 

i * - i  
= xlOAi*h(i)di + xJ i '  h(i) di. 

G *  i *(1 - A) 

Note that for any strike i* and limit parameter A, if x is the price of a contract with 
maximum indemnity of $1, then xn is the price of a contract with maximum indemnity 
of $x. Therefore, without loss of generality, we can restrict further analysis to the class 
of elementary contracts with maximum indemnity of $1, so that the contract price n is 
effectively the premium rate. Buyers of the contracts can then purchase the number of 
$1 contracts necessary to satisfy their risk management needs. 

Pricing equation (4) assumes that the underlying index has a stationary distribution. 
Alternatively, the index may be treated in the framework of stochastic processes, and 
stochastic calculus may be used to price the contract (Turvey, 2001b). While one may 
argue about advantages and disadvantages of each pricing methodology, the issue is 
somewhat irrelevant from the standpoint of efficiency analysis,7 and therefore the 
simpler method represented by (4) is used here. 

Selection of Contract Parameters 

Indices determined by models in table 2 were used to calculate payoffs of weather con- 
tracts. Strikes were selected as the levels of indices at which the predicted yields were 
equal to the corresponding long-time averages-i.e., the contracts were designed to pay 
at  least some indemnity whenever predicted yields dropped below the average.' The 
remainingparameters of the contract, namely the limit parameter and the optimal num- 
ber of $1 contracts, were selected for each analysis unit so as to minimize an aggregate 
measure of downside loss or semi-variance (Markowitz, 1991) over a historic periods 
(1972-1986). Formally, the parameters x and A were chosen to solve: 

2 

min x,A t=1972 ( r n a x ( ~ - [ ~ & ~ + f ( i ~ ~ x , i * , ~ )  - x ( x , i 8 , ~ ) ] , 0 ] )  , 

' Indeed, any change in the contract price would uniformly shift the ex post revenue of the buyer up or down in all states 
of nature, but would not affect the payment schedule and thus the correlation between losses and payoffs embedded in the 
contract structure. 

In terminology of traditional insurance, the strike was set so as to provide 100% coverage. 
The second half of the data (1987-2001) was used for out-of-sample performance analysis presented later in the paper. 



Vedenov and Bamett Efjciency of Weather Derivatives 395 

where Kdet denotes detrended historical yields; Yis the long-term average (target) yield; 
it represents historical realizations of the index; instrument payoff f (.) and price IT(.) are 
given by (3) and (41, respectively; and summation is over the historic period 1972-1986. 

Note, the decision process in (5) imitates that of a farmer who attempts to select an 
optimal instrument so as to minimize the expected net loss with the contract based on 
his or her knowledge of historical relationship between yields and weather. This approach 
is in line with an argument often used in the literature on weather derivatives (Turvey, 
2001a): individual producers have the best information regarding the relationship 
between their yields and specific weather variables, and thus should be able to choose 
the parameters of the contract offering the best protection against their specific losses. 

Minimization of the semi-variance instead of full variance is chosen because only 
downside losses are of major concern to crop producers (Miranda, 1991; Miranda and 
Glauber, 1997). This approach has been developed in the literature as an alternative to 
the traditional mean-variance analysis for situations where reduction of losses or failure 
to achieve a certain target is of importance (Hogan and Warren, 1972). It has also been 
shown to be consistent with the expected utility maximization (Selley, 1984). 

In order to compute contract prices used in (51, the following approach was imple- 
mented. For each of the weather models presented in table 2, realizations of the index 
were calculated based on historical weather observations at the corresponding weather 
stations.1° Each realization was assigned an equal probability weight to construct 
empirical distributions. A kernel-smoothing methodology was then used to arrive 
at  continuous probability density functions h(i). Formally, for index realizations it, 
t = 1, . . . , T, the index density function was calculated as: 

where K(.) is a kernel function, and A is a degree of smoothness or bandwidth1' (Hardle, 
1991). The prices of weather contracts for a given set of parameters {x, i", I )  in (5) were 
then calculated according to (4) and (6). In order to convert yields into monetary units, 
the harvest-time prices reported by the RMA in 2001 were used.12 The commodity prices, 
expected yields, and corresponding expected revenues have been summarized earlier in 
table 1. The strikes, limits, and maximum liabilities for optimal contracts are reported 
in table 3. 

The variety of indices and contract types presented in tables 2 and 3 indicate that 
weather derivatives cannot be designed in a one-size-fits-all manner, even for the same 
crop (e.g., cotton in Mississippi vs. cotton in Georgia) or within the same state (e.g., Iowa 
corn vs. Iowa soybeans). Differences in growing conditions, location, and agricultural 
practices translate into the need for different weather derivatives. Table 2 also suggests 
that even fairly sophisticated models fail to completely capture the relationship between 

lo The historical series used to derive index distributions do not have to be of the same length as those used to establish 
weather-yield relationship. Therefore, all available weather data have been used, with some of the series going as far back 
as 1903. 

l1 Normal kernel and optimal bandwidth have been used for practical computations. 
l2 The harvest-time price for corn is the 2001 Chicago Board of Trade (CBOT) November average price on the December 

contract. The harvest-time price for soybeans is the 2001 CBOT October average price on the November contract. The harvest- 
time price for cotton is the 2001 New York Board of Trade November average price on the December contract. These are the 
harvest-time prices used to settle 2001 Crop Revenue Coverage (CRC) federal crop insurance contracts as reported by the 
RMA. Note that the prices act simply as scale multipliers similar to price election parameters of traditional APH contracts. 
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Table 3. Parameters of Optimal Weather Instruments 

Limit Maximum 
Absolute % of Liability Premium Premium 

Crop / District Strike Value Strike ($/acre) ($/acre) Rate " 

Corn / IA, D50 147.59 bu/ac 110.69 bulac 75.0% $124.05 $26.88 21.7% 

Corn / IL, Dl0 143.56 bulac 108.10 bu/ac 75.3% $91.24 $20.71 22.7% 

Cotton / MS, D40 869.39 lbs/ac 866.78 lbsfac 99.7% $141.88 $64.18 45.2% 

Cotton / GA, D80 712.70 lbs/ac 463.97 lbs/ac 65.1% $145.39 $33.88 23.3% 

Soybeans / IA, Dl0 46.32 bu/ac 46.00 bu/ac 99.3% $33.80 $12.51 37.0% 

Soybeans / IL, D70 41.15 bulac 31.65 bu/ac 76.9% $60.05 $10.37 17.3% 

"The premium rate is the ratio of premium to maximum liability. 

weather and yield for some district/crop combinations (e.g., Iowa soybeans). As seen 
from table 3, the premium rates associated with the weather contracts turned out to be 
surprisingly high, ranging from 17.3% for Illinois soybeans to 45.2% for Mississippi 
cotton. 

Efficiency Analysis 

The efficiency analysis was performed under the assumption that the contracts were 
bought by a representative farmer who produced only one crop, used weather deriva- 
tives to decrease his or her exposure to yield risk on that crop, and did not purchase any 
other risk management instruments such as subsidized crop insurance, futures, or 
options. Further, the representative farmer's yields were assumed to exactly match the 
crop reporting district (CRD) yields. Obviously, the actual farm-level yields may differ 
significantly from the district yields both in magnitude and especially in variability, and 
the effect of weather derivatives on risk exposure at  an individual farm may be different 
from the effect experienced at  the district level. However, the additional variability of 
actual farm yields would only decrease the risk-reducing efficiency of weather deriva- 
tives in practical applications compared to their performance for the representative 
farmer. 

Methodology 

The risk-reducing performance of weather derivatives was analyzed both in- and out-of- 
sample by comparing producers' revenues with and without the contract. Three different 
criteria were used to measure the change in risk exposure experienced by producers who 
bought the designed contracts-the mean root square loss (MRSL), value-at-risk (VaR), 
and certainty-equivalent revenues (CERs). 

The yieldlindex series from 1972 to 2001 was split into two equal subsets with 15 
observations each. The first subset was used to derive the parameters of optimal 
contracts (as described in the previous section) and to measure the in-sample perform- 
ance. The second subset was used to evaluate out-of-sample efficiency of the designed 
weather instruments. For each of the subsets, the revenues without the contract were 
calculated as 
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while revenues with the contract were calculated as 

wherep is the corresponding commodity price (table 3). 
The mean root square loss, which is a simple function of the semi-variance used in (5) ,  

was calculated for revenues without and with the contract as follows: 

MRSL,, = I-. 
For a given distribution of revenues R, the value-at-risk at  an a% level is defined as 

a level of revenue VaR, (Manfred0 and Leuthold, 1999), such that 

and can be found by using the cumulative density function of R. For purposes of analysis, 
the series of revenues without and with contract in (7a) and (7b), respectively, were used 
to generate the corresponding empirical distributions by assigning each realization an 
equal weight l/T and applying a kernel-smoothing procedure (6). Value-at-risk was then 
calculated for both distributions at  5%, lo%, and 20% levels both in- and out-of-sample.13 

Finally, the certainty-equivalent revenues were calculated by using a negative expo- 
nential utility function: 

where the risk parameter y was calibrated separately for each revenue distribution to 
correspond to a prespecified risk premium 8 (Babcock, Choi, and Feinerman, 1993; 
Schnitkey, Sherrick, and Irwin, 2003). First, the expected revenue ER without a 
contract has been calculated using the kernel-smoothed empirical distribution in (7a). 
Then, for a given level of risk premium 8, the parameter y has been computed numer- 
ically so that the expected utility of the revenue without the contract is equal14 to the 
utility of certain revenue (1 - 8) x ER, i.e., 

EU(R) = ER(l  - exp(-yR)) = 1 - exp(-y x (1 - 8) x ER) = U((1 - 8) x ER). 

Once the risk parameter of the utility function has been determined, the certainty- 
equivalent revenues (CERs) without and with weather contract were calculated from the 
conditions 

l3 If the change in value-at-risk resulting from the purchase of the weather derivative is positive (negative), the weather 
derivative is risk-reducing (risk-enhancing). This is in contrast to the mean root square loss measure where a positive 
(negative) change implies the weather derivative is risk-enhancing (risk-reducing). 

l4 The interpretation of this procedure is that a risk-averse producer would be willing to sacrifice 0% of his or her expected 
revenue to eliminate the uncertainty. 



398 December 2004 Journal of Agricultural and Resource Economics 

Table 4. Efficiency of Weather Derivatives as Measured by Mean Root Square 
Loss (MRSL) 

In-Sample (1972-1986) 

Without With 
Contract Contract Percent 

Crop 1 District ($/acre) ($/acre) Change 

Corn / IA, D50 $9.20 $5.16 -43.91% 
Corn / IL, Dl0  $7.22 $1.65 -77.10% 
Cotton / MS, D40 $11.45 $3.79 -66.88% 
Cotton / GA, D80 $13.01 $6.59 -49.32% 
Soybeans / IA, Dl0 $4.03 $2.53 -37.20% 
Soybeans / IL, D70 $5.80 $4.10 - 29.35% 

Out-of-Sample (1987-2001) 

Without With 
Contract Contract Percent 
($/acre) ($/acre) Change 

$10.92 $4.46 -59.16% 

$10.88 $6.80 -37.45% 

$7.83 $11.30 44.41% 

$7.36 $9.07 23.35% 
$5.68 $4.74 - 16.56% 
$3.86 $2.51 -34.98% 

Note: Decrease (increase) in MRSL corresponds to lower (higher) risk exposure. 

U(CERWithut) = ERU(R) and U(CERwith) = ERU(R') 3 

respectively, where the distributions of R and R' again were derived from the series of 
revenues in (7a) and (7b). The above procedure was performed for the risk premium levels 
of 0% (risk-neutrality), 5%, and 10%. Tables 4-6 report the results of the analysis. 

Results 

Risk-reducing efficiency ofweather derivatives as primary insurance instruments varies 
significantly both across crops and districts (table 4). There also appears to be no con- 
sistent relationship between contract performance in- and out-of-sample. The contract 
for Iowa corn performed better out-of-sample than in-sample, while the contract for 
Illinois corn was not as effective out-of-sample as in-sample. With soybean contracts, the 
situation reversed itself and performance of the Illinois contract was better out-of- 
sample than in-sample. Contracts for both Georgia and Mississippi cotton, on the other 
hand, showed excellent in-sample performance (second only to Illinois corn) but actually 
increased the producer's risk exposure in out-of-sample tests. 

Note also that the performance of weatherlyield models does not necessarily translate 
into performance of weather derivatives based on these models. For example, models for 
Iowa corn and Mississippi cotton exhibited close explanatory power (56.8% and 55.9%, 
respectively, table 2), while the corresponding weather derivatives exhibited drastically 
different performance, especially out-of-sample (59.2% decrease in MRSL for Iowa corn 
vs. 44.4% increase in MRSL for Mississippi cotton, table 4). 

Efficiency analysis based on the value-at-risk criterion (table 5) and certainty-equiva- 
lent revenues (table 6) generally produced results similar to those obtained with MRSL. 
In-sample, all contracts reduced value-at-risk for all districtlcrop combinations (with the 
exception of Iowa corn at 20%) and increased certainty-equivalent revenues for risk- 
averse producers (with the exception of Georgia cotton). Out-of-sample, contracts for 
both Georgia and Mississippi cotton increased producers' risk exposure regardless of the 
VaR levels or risk-aversion levels assumed. The degree of risk protection provided by 
the contracts generally tends to increase with the degree of risk aversion and decrease 
with the value-at-risk level. 
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Table 5. Efficiency of Weather Derivatives as Measured by Value-at-Risk (VaR) 
In-Sample (1972-1986) Out-of-Sample (1987-2001) 

Without With Without With 
Contract Contract Change Contract Contract Change 

Crop / District ($/acre) ($/acre) ($/acre) ($/acre) ($/acre) ($/acre) 

<--------- - - - - - - - - - - - - - - - -  v a  ------------------------- 
0.05 > 

Corn / IA, D50 $190.10 $239.85 $49.75 $182.99 $255.84 $72.84 

Corn / IL, Dl0 $213.78 $272.69 $58.92 $156.55 $222.19 $65.65 

Cotton / MS, D40 $178.20 $250.47 $72.27 $215.82 $190.08 ($25.74) 

Cotton / GA, D80 $103.81 $176.73 $72.92 $159.57 $145.85 ($13.73) 

Soybeans / IA, Dl0 $168.73 $185.12 $16.39 $132.32 $152.95 $20.64 

Soybeans / IL, D70 $128.18 $135.56 $7.38 $144.00 $160.35 $16.35 

<--------- - - - - - - - - - - - - - - - -  v a  . . . . . . . . . . . . . . . . . . . . . . . . .  
0.10 > 

Corn / IA, D50 $246.95 $252.28 $5.33 $198.98 $262.94 $63.96 

Corn / IL, Dl0 $226.40 $277.74 $51.34 $238.19 $249.13 $10.94 

Cotton / MS, D40 $200.97 $262.35 $61.38 $231.66 $208.89 ($22.77) 

Cotton / GA, D80 $132.98 $188.74 $55.77 $175.02 $164.72 ($10.30) 

Soybeans / IA, Dl0 $176.02 $189.37 $13.35 $191.80 $180.87 ($10.93) 

Soybeans / IL, D70 $138.20 $164.57 $26.37 $160.88 $165.10 $4.22 

<- - - - - - - - - - - - - - - - - - - - - - - - -  v a  ------------------------- 
o.ao > 

Corn / IA, D50 $272.71 $267.38 ($5.33) $277.16 $273.60 ($3.55) 

Corn / IL, Dl0 $280.27 $283.64 $3.37 $259.23 $262.59 $3.37 

Cotton / MS, D40 $229.68 $282.15 $52.47 $253.44 $231.66 ($21.78) 

Cotton / GA, D80 $174.16 $203.33 $29.17 $193.89 $189.60 ($4.29) 

Soybeans / IA, Dl0 $188.15 $195.44 $7.28 $202.11 $196.65 ($5.46) 

Soybeans / IL, D70 $160.35 $175.12 $14.77 $170.37 $170.90 $0.53 

Note: Higher (lower) VaR corresponds to lower (higher) risk exposure. 

Implications 

While most of the literature to date has focused on the pricing of agricultural weather 
derivatives, this analysis emphasizes the importance of considering the efficiency of 
these instruments as risk reduction tools. The results of this study indicate that for the 
districttcrop combinations considered, weather derivatives may indeed provide fairly 
substantial decreases in risk exposure regardless of the particular criterion used. 
However, rather complicated combinations of weather variables must be used in order 
to achieve reasonable fits of the relationship between weather and yield. This makes 
contracts less transparent and may complicate marketing the products to potential 
buyers. In addition, high predictive power of weatherlyield models does not necessarily 
translate into high performance of corresponding weather derivatives. 

The in-sample performance did not necessarily translate into out-of-sample perform- 
ance, as contracts for both Georgia and Mississippi cotton resulted in increased risk 
exposure out-of-sample. Inconsistency between in- and out-of-sample performance also 
creates a potential problem in designing and marketing the contracts. At any given 
point in time, efficiency analysis can only be implemented based on historical data that 
may not always adequately reflect correlation between the yields and weather indices. 
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Table 6. Efficiency of Weather Derivatives as Measured by Certainty Equiva- 
lent Revenues (CERs) 

In-Sample (1972-1986) Out-of-Sample (1987-2001) 

Without With Without With 
Contract Contract Change Contract Contract Change 

Crop / District ($/acre) ($/acre) ($/acre) ($/acre) ($/acre) ($/acre) 

<--------- - - - - - - - - - - -  RiskPre&umOo/o --------------------> 

Corn / IA, D50 $307.69 $300.99 ($6.70) $296.80 $301.41 $4.61 

Corn / IL, Dl0 $302.43 $297.71 ($4.71) $285.72 $280.21 ($5.51) 

Cotton / MS, D40 $290.78 $317.32 $26.54 $299.83 $287.35 ($12.48) 

Cotton / GA, D80 $239.45 $236.80 ($2.65) $242.99 $236.11 ($6.87) 

Soybeans / IA, Dl0  $210.24 $207.88 ($2.36) $212.02 $208.54 ($3.47) 

Soybeans / IL, D70 $190.14 $188.00 ($2.14) $184.92 $185.58 $0.65 

<-- - - - - - - - - - - - - - - - - - -  RiskPre&-5% - - - - - - - - - - - - - - - - - - - -> 

Corn / IA, D50 $292.74 $294.69 $1.96 $282.35 $296.97 $14.63 

Corn / IL, Dl0  $287.55 $295.90 $8.35 $271.84 $276.75 $4.91 

Cotton / MS, D40 $290.75 $317.31 $26.56 $299.82 $287.33 ($12.49) 

Cotton / GA, D80 $239.41 $236.79 ($2.62) $242.97 $236.10 ($6.87) 

Soybeans / IA, Dl0 $199.82 $204.51 $4.69 $201.54 $202.33 $0.79 

Soybeans / IL, D70 $180.83 $183.20 $2.37 $175.76 $180.94 $5.18 

<--------- - - - - - - - - - -  RiskpI:emium -------------------> 

Corn / IA, D50 $277.26 $289.76 $12.50 $267.42 $293.51 $26.08 

Corn / IL, D l 0  $272.38 $294.39 $22.01 $257.46 $273.95 $16.48 

Cotton / MS, D40 $290.72 $317.31 $26.58 $299.81 $287.30 ($12.50) 

Cotton / GA, D80 $239.37 $236.78 ($2.59) $242.95 $236.08 ($6.87) 

Soybeans / IA, Dl0  $189.30 $201.00 $11.70 $190.93 $197.46 $6.53 

Soybeans / IL, D70 $171.30 $177.40 $6.10 $166.50 $177.53 $11.03 

The optimal contracts varied across districts and crops considered. Such lack of 
consistency in indices across the crops and geographical units should be of concern in 
practical applications of weather derivatives. Based on these results, the contracts have 
to be highly localized, which comes a t  additional cost and raises questions about 
potential markets for the contracts. Stated differently, any practical application of 
weather derivatives in agriculture will require an in-depth analysis, similar to that 
reported here, for each croplregion combination under consideration. The results 
presented here clearly caution against blanket assessments of the feasibility of weather 
derivatives in agricultural applications. Rather, the analysis must be conducted on a 
case-by-case basis. 

Conclusion 

The efficiency of weather derivatives was analyzed for three major crops in six crop 
reporting districts. The analysis was conditioned on a number of unrealistically favor- 
able assumptions. For each cropldistrict combination, the relationship between yield and 
selected weather variables was estimated for five alternative functional forms, and a 
weather derivative was constructed based on the function which best fit the data. The 
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strike on the weather derivative was set at an unrealistically high level whereby it 
began to pay an indemnity whenever weather events were such that the predicted yield 
was less than the average yield. Since the weather derivatives were assumed to have 
actuarially-fair prices, an unrealistically high strike implies an unrealistically favorable 
assessment of the risk reduction provided by the weather derivative. The limit 
parameter and the number of $1 contracts purchased were optimized so as to minimize 
the aggregate losses in-sample. This extremely unrealistic assumption implies that the 
purchaser knows the exact value of these parameters for maximizing the risk-reducing 
capability of the weather derivative. Finally, this analysis was conducted using yields 
measured at  the crop reporting district (CRD) level. I t  seems reasonable to assume that 
weather variables measured a t  a point central to the CRD should be more highly 
correlated with CRD-level yields than with yields on most individual farms located 
within the CRD. The constructed weather derivatives provided risk protection against 
yield shortfalls. However, the contracts did not perform consistently out-of-sample, and 
in some cases actually increased overall risk exposure for the crop/district combinations 
considered. 

Further research should investigate the potential of weather derivatives as agricul- 
tural risk management tools for other crops and regions. In addition, future research 
could focus on the potential for using weather derivatives to reinsure traditional farm- 
level yield or revenue insurance products. 

[Received May 2003;final revision received August 2004.1 
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Appendix: 
Weather-Yield Models 
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Table Al. Families of Weather-Yield Models Used in Estimations 

Model Type Functional Form 

Monthly Observations: 

Quadratic i n  absolute values Ydet = a, + a l R  + a2T + a,R2 + a4T2 + a5RT + E 

Log-log i n  absolute values log(Y,,) = a, + a,log(R) + a210g(T) + E 

Quadratic i n  deviations Ydet = a, + alAR + a2AT + a3AR2 + a4AT2 + a5ARAT + E 

Cumulative Observations: 
2 

Quadratic i n  absolute values = 
+ a l R ~ u m  + ~ 2 ~ ~ ~ 6 5 1 5 0  + a~R:um + ~ 4 ~ ~ ~ 6 5 1 5 0  

+ a5RCumCDD65150 + 

Log-log i n  absolute values 10g(Y,,) = a, + ~r , l~g(R~, , )  + O~~~O~(CDD, ,~ , , )  + E 

Variables are defined as  follows: 

Yder is the detrended district yield; 

R,, is cumulative rainfall between June 1st and August 31st; 

R = {RJun,RJu,,RA,) is a vector of monthly rainfall observations for June, July, and August; 

AR = I AR ,, , AR,,, , AR,,) is a vector of the same observations expressed as  deviations from the corres- 
ponding long-time averages; 

CDDS5150 is a number of cumulative cooling degree days with either 65°F or 50°F base measured between 
June 1st and August 31st; 

T = (TJun, TJu,, T,,) is a vector of average monthly temperatures for June, July, and August; 

AT = {ATJun, ATJu,, AT,,) is a vector of the same observations expressed as  deviations from the corres- 
ponding long-time averages. 

Note: All products in models 1 and 3 are element-by-element; e.g., the last term in model 1 is a vector, 
RT = { R J ~ ~ T J ~ ~ ,  RJU~TAL, RA,'TA,). 


