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Weather-Based Adverse Selection and the
U.S. Crop Insurance Program: The Private

Insurance Company Perspective

Alan P. Ker and Pat McGowan

Surprisingly, investigations of adverse selection have focused only on farmers.

Conversely, this article investigates if insurance companies, not farmers, can generate

excess rents from adverse selection activities. Current political forces fashioning crop

insurance as the cornerstone of U.S. agricultural policy make our analysis particu-

larly topical. Focusing on El Nifio/La Nifia and winter wheat in Texas, we simulate

out-of-sample reinsurance decisions during the 1978 through 1997 crop years while

reflecting the realities imposed by the risk-sharing arrangement between the

insurance companies and the federal government. The simulations indicate that

economically and statistically significant excess rents may be garnered by insurance

companies through weather-based adverse selection.

Key words: adverse selection, crop insurance, El Nifio/La Nifia, Standard Reinsurance

Agreement

Introduction

A wealth of theoretical literature investigating the economics of adverse selection under
various scenarios exists. Empirical studies of adverse selection also abound. With
respect to the U.S. crop insurance program, see Coble et al.; Luo, Skees, and Marchant;
Goodwin; and Quiggin, Karagiannis, and Stanton. The U.S. crop insurance program is

unique among insurance schemes in that three rather than two economic interests are
served. The federal government through the U.S. Department of Agriculture's (USDA's)
Risk Management Agency (RMA), the private insurance companies, and the farmers all

have vested interests. The marketing of crop insurance policies began transferring from

the government to insurance companies in 1980, with the hopes of increasing farmer

participation. While the pricing or rating of these crop insurance policies remains the
responsibility of the RMA, insurance companies receive compensation for administrative
expenses and share, asymmetrically, the underwriting gains and losses of the policies.1

The Standard Reinsurance Agreement (SRA) stipulates the terms for sharing these
underwriting gains and losses between the insurance companies and the RMA.2

Alan P. Ker is associate professor and Pat McGowan is former graduate student, both in the Department of Agricultural and

Resource Economics, University of Arizona, Tucson. The authors thank seminar participants at Purdue University for their

insightful comments. Of course, we accept responsibility for any remaining errors.

The underwriting gain/loss for a set of policies is the total premium less the total indemnity payments.

2 See Ker for a review of the Standard Reinsurance Agreement.
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The above empirical investigations have considered only adverse selection by farmers.
To the best of the authors' knowledge, adverse selection by insurance companies, a more
probable scenario, has yet to be investigated.3 This study addresses the question: Can
insurance companies generate "excess" rents from weather-based adverse selection? 4

This question, and hence our analysis, is particularly topical in light of the increased
prominence of the crop insurance program in the overall U.S. agricultural policy agenda.

The actuarially fair premium rate (denoted it) for a yield insurance contract or policy
that guarantees a percentage (denoted ;) of the expected yield (denoted ye) is defined as:

(1) xT = P(Y < Xye)()Xye - E(Y Iy < Xye)),

where 0 < X < 1 is the coverage level, the expectation operator (E) and probability measure
(P) are taken with respect to the conditional yield density fy(y I I), and I is the infor-
mation set known at time of rating. Equation (1) defines the premium rate (71) as the
probability of a loss times the expected loss given a loss occurs (the unconditional
expected loss).5

We denote the insurance company's information set as IIc and the RMA's information
set as IRA. Standard economic theory suggests that ifIRMA is a subset of Ic, the insurance
company may generate excess rents from adverse selection. With the U.S. crop insurance
program, the RMA estimates premium rates well in advance (in some instances two
years), while the decision of insurance companies to retain or cede a given policy may
be made as late as 30 days after its closing sale date. Clearly, IRMA is a subset of I1 c.

To estimate the extent of excess rents garnered through weather-based adverse
selection, we undertake an empirical case study using Texas winter wheat and El Nifio/
La Nifia weather events. For this case study, IRM = (y 1, , ... ,YT) while II = (y 1, Y2,...,YT;
S1, S2, ... , ST, ST+1). The sequence (y,, ... ,YT) denotes yield realizations for years 1 to T, and
(S1, 2..., , ST+1) denotes realizations from the random variable representing El Nifo/La
Niiia for years 1 to T + 1. We simulate, out-of-sample, reinsurance decisions during the
1978 through 1997 crop years given the differing information sets. Resulting "pseudo"
loss ratios for the program, the RMA, and the insurance company subject to the con-
straints of the 1998 SRA are recovered. 6

Although the convoluted sharing of the underwriting gains and losses of the policies
presents complexities, any relevant empirical analysis must reflect the realities imposed
by the SRA. As such, the following section presents a terse overview of the U.S. crop
insurance program as a backdrop for the subsequent discussion of the SRA. The next
section outlines the data and motivates the chosen empirical application. The chosen
econometric methods are then detailed and justified, followed by a delineation of the
simulation and a review of our findings. In the final section we discuss the policy impli-
cations. Technical details are relegated to the appendices.

3 We use the term "adverse selection" loosely throughout the article.
4 By design, the SRA enables the insurance company to recover a return to capital. Our discussion focuses on the inflated

returns, or "excess" rents.
6 Generally, the premium rate is quoted as the ratio of unconditional expected loss to total liability. Our analysis revolves

around the unconditional expected loss, so we define this as the premium rate. Additionally, we ignore the price guarantee
and deal with bushels/acre; we present our results in terms of loss ratios, which are independent of the price guarantee
assuming each policy has the same price guarantee.

6 The loss ratio equals total claims divided by total premiums. Under the SRA, the loss ratio for the insurance company
and the RMA cannot be calculated. We construct a new measure, termed "pseudo" loss ratio, as the ratio of total annual
underwriting losses to total annual underwriting gains. See appendix A for a thorough examination.

Ker and McGowan
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The U.S. Crop Insurance Program
and the SRA

Federally regulated crop insurance programs have been a prominent part of U.S. agri-
cultural policy since the 1930s. In 1998, more than 1.75 million crop insurance policies
were purchased. These policies carried a total liability in excess of $27.9 billion. In the
past, crop insurance schemes offered farmers the opportunity to insure against yield
losses resulting from nearly all risks, including drought, fire, flood, hail, and pests. For
example, if the farmer's expected wheat yield is 30 bushels/acre (ye = 30), a policy
purchased at the 70% coverage level (X = 0.7) insures against a realization below 21
bushels/acre (0.7 x 30 bushels/acre = 21 bushels/acre). If the farmer realized a yield
of 16 bushels/acre, then an indemnity payment for the insured value of 5 bushels/acre
would be made.

A variety of crop insurance plans and a number of new pilot programs are under
development. Standard crop yield insurance, termed Multiple Peril Crop Insurance,
pays an indemnity at a predetermined price to replace yield losses. "Group-risk" yield
insurance, termed Group Risk Plan, is based upon the county's yield. Insured farmers
collect an indemnity when the county average yield falls beneath a yield guarantee,
regardless of the farmer's actual yields. Three farm-level revenue insurance programs
are available for a limited, but quickly expanding, number of crops and regions: Crop
Revenue Coverage, Income Protection, and Revenue Assurance. These programs guar-
antee a minimum level of crop revenue and pay an indemnity if revenues fall beneath
the guarantee (Goodwin and Ker). The recently developed Group Risk Income Plan, a
variation of the Group Risk Plan, insures county revenues rather than yields (Baquet
and Skees).

Producer Adverse Selection and the U.S.
Crop Insurance Program

As mentioned, empirical investigations to date have considered only adverse selection
by farmers. With respect to weather-based adverse selection, Luo, Skees, and Marchant
found farmers could gain; conversely, Coble et al. found farmers did not consider
preseason weather information in crop insurance decisions. As farmers and insurance
companies have almost identical information sets, if farmers engaged in weather-based
adverse selection, the advantage to the insurance companies is negated because their
insurance pool would only consist of policies with an expected loss.

Given the importance of the latter finding to our analysis, we feel it necessary to
explain why farmers do not exploit weather-based informational asymmetries while
insurance companies will. Producer premium subsidies, risk aversion, and technical
capabilities all play a part. For illustrative purposes, denote ftf as the derived premium
rate from the estimated conditional yield density fy(y I If ), where If is the farmer's infor-
mation set. Since the information set of the farmer equals that of the insurance company,

fy(yI If) = fy(y I Ic) a n d f = ic. Denote iRMA, the price ofthe policy, as the RMA-derived
rate from the estimated conditional yield density fy(y IIRMA) . If f >

fRMA, a non-risk
loving farmer will purchase the policy. Alternatively, if itf < iRMA' the farmer may still
purchase the policy. First, the farmer premium subsidy (denoted r) is of an order of

388 December 2000
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magnitude such that Ay < (ORMA - T) generally. 7 Second, a risk-averse farmer would
purchase the policy if expected utility remained greater in the insured state despite
tf > (IRMA - )'. Finally, the inherent technical abilities of the farmer may be such that,

by default, they set fty = RMA. As Rubinstein notes, "Decision makers are not equally
capable of analyzing a situation even when the information available to all of them is
the same. The differences in their economic success can be attributed to these differences"
(p. 3). In contrast to farmers, insurance companies will process all available weather
information, will be less risk averse, and will not receive a deterministic subsidy. There-
fore, it is most probable that insurance companies will engage in weather-based adverse
selection activities while farmers will not.

Standard Reinsurance Agreement (SRA)

Section II.A.2 of the 1998 SRA states that an insurance company "... must offer all
approved plans of insurance for all approved crops in any State in which it writes an
eligible crop insurance contract and must accept and approve all applications from all
eligible producers." An eligible farmer will not be denied access to an available, federally
subsidized, crop insurance product. Therefore, an insurance company wishing to conduct
business in a state cannot discriminate among farmers, crops, or insurance products in
that state. This creates an unusual situation because the responsibility for pricing the
crop policies lies with the RMA, but the insurance company must accept some liability
for each policy it writes and cannot choose which policy it will or will not write.

Why would insurance companies be involved in such a risk-sharing arrangement? To
elicit their participation, two mechanisms are required that, necessarily, emulate a
private market from their perspective. First, given that insurance companies do not set
premium rates, there needs to be a mechanism by which they can cede the liability, or
the majority thereof, of an undesirable policy. In a private market, the insurance com-
pany would not write a policy deemed undesirable. Second, a mechanism providing an
adequate return to the insurance company's capital and a level of protection against
ruin (bankruptcy) is needed. Premium rates in a private market reflect a return to
capital and a loading factor guarding against ruin. RMA-set premium rates do not reflect
a return to capital, but include a loading factor. The SRA provides these two mechan-
isms which, in effect, emulate a private market from the perspective of the insurance
company. In so doing, the SRA also provides a vehicle by which an insurance company
can exploit informational asymmetries by adversely selecting against the RMA.

Under the SRA, insurance companies cannot cede or retain the total underwriting
gain/loss of a policy, but must place each policy into one of three funds: (a) assigned risk,
(b) developmental, or (c) commercial. For each state in which the insurance company
does business, there is a separate assigned risk fund, developmental fund, and commer-
cial fund. While the structure of risk sharing is identical, the parameters that dictate
the amount of sharing vary greatly across funds. For each fund, the underwriting gain/
loss the insurance company retains is equal to the total underwriting gain/loss for the
fund multiplied by two parameters.

7 See Goodwin for an exposition of the farmer premium subsidy structure.

Ker and McGowan
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Formally,

(2) k =QkxJx4, k k(2) QIC = ] X.1Q x ]12,

where QIC denotes the underwriting gain/loss retained by the insurance company for
fund k, Qk denotes the underwriting gain/loss for fund k, p4 is the first parameter for
fund k, and l2 is the second parameter for fund k. The underwriting gain/loss retained
by the RMA must be:

(3) k = k k
)RMA = k X (1 - 1 X 12),

where £QMA denotes the underwriting gain/loss retained by the RMA. The first parameter,

lp, represents an ex ante choice variable for the insurance company. For k = assigned
risk fund, the company must choose Il such that pi e [0.2, 1.0]. For k developmental
fund, 24 e [0.35, 1.0], while fork - commercial fund, 4 e [0.5, 1.0]. The insurance company
must choose p.4 by July 1 of the preceding crop year. The second parameter, pk, is not a
fixed scalar, but a function of the ex post fund loss ratio.

Graphing the relationship between pt2 and the loss ratio for the three funds, the two
required mechanisms of the SRA become self-evident (figure 1). First, policies the insur-
ance company deems undesirable may be placed in the assigned risk fund where negli-
gible underwriting gain/loss is retained. Second, insurance companies retain a larger
share of the underwriting gains than losses for each fund, which thus provides a return
to their capital (see Ker, and Miranda and Glauber for in-depth analyses of the SRA). The
ability to allocate policies among the three funds provides a means by which insurance
companies can exploit informational asymmetries and engage in adverse selection.

Data

Recall, the objective of this study is to estimate the extent to which weather-based
adverse selection by insurance companies can generate excess rents. Texas winter wheat
and El Nifno/La Nina is the chosen application for the following reasons. First, if insur-
ance companies engage in weather-based adverse selection, this might be their starting
point. Loosely speaking, the forecastability of El Nino/La Nina has been widely publicized
in the climatology literature as well as the popular literature. Additionally, El Nifno/La
Nifia data are easily accessible, and the proximity of Texas to the Gulf of Mexico and the
dependence of winter wheat on rainfall suggest that wheat yields in Texas may be
influenced by El Nifio/La Nina. Finally, this application represents a lower bound in
that conditioning on local weather variables rather than a global weather variable will
lead to more pronounced effects.

El Nino /La Niia

An indication of forthcoming weather and climate patterns can often be seen months in
advance through oceanic and atmospheric anomalies. El Nifio/Southern Oscillation
(ENSO) refers to a fluctuating ocean-atmospheric phenomenon observed in the area of
the equatorial Pacific Ocean. Every few years ENSO reaches an extreme state, La Nina
[El Nino], which is characterized by abnormally cold [warm] surface waters in the eastern

-390 December 2000
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Figure 1. Relationship between k2 and fund loss ratio
for the three funds

and central equatorial region and high [low] overlaying surface air pressure over the
southern Pacific Ocean. The different phases of ENSO have been linked to weather and
climate anomalies throughout much of the globe including the U.S. and the state of
Texas (Ropelewski and Halpert 1986, 1989; Kiladis and Diaz).

An intensification of convection over the western tropical Pacific and subsidence over
the eastern Pacific characterizes La Nifia.8 This leads to a weakening and often northerly
displacement of the jet stream and storm track over west and central North America. 9

A decrease in moisture flow across the southwestern U.S. and a decrease in the
meridional migration of air masses across the North American continent often occur. °1
Thus warm and dry conditions, which tend to be detrimental to wheat production, often
prevail in Texas. Conversely, El Nifio, characterized by an enhancement of the sub-
tropical jet stream resulting in increased moisture flow across the southern U.S. and the
Gulf of Mexico, is typically beneficial to Texas wheat production.

Unfortunately, the climatology literature has varying definitions of what constitutes
an El Nifno event and a La Ninia event. In addition, each El Nifno event and La Nifia
event is unique. Extreme fluctuations in sea surface temperatures (SSTs) define El Nifio
and La Nifia events. We use the underlying SST data as opposed to indicator variables
(i.e., a phase-based approach).11 Monthly SST data over the period of consideration for

8 Convection is the process whereby rising moist air results in cloud formation.
9 The jet stream refers to a band of high-speed upper atmosphere westerly winds that form along the boundary separating

cold northern from warm southern air masses.
10 Meridional airflows are those traveling in the North-South plane.
1 McGowan and Ker find that using indicator variables as opposed to the underlying SST data results in a statistically

significant loss in explanatory power.

Ker and McGowan
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the Ninio3 region of the Pacific Ocean were obtained from the U.S. Department of Com-
merce/National Oceanic and Atmospheric Administration, Climate Prediction Center.
The Nifio3 is a critical region of the Pacific commonly observed to indicate changes in
ENSO. In most empirical work in the climatology literature, SST data are averaged over
a three-month season. The closing date for wheat policies in Texas is September 30, and
insurance companies are afforded an additional 30 days to make decisions regarding
reinsurance. Although SST anomalies typically peak in the season of November-
December-January (which make this the best indicator of year-to-year ENSO variation
and coincidentally most highly correlated with wheat yields), this information will not
be available to the insurance companies prior to the reinsurance deadline. As such, the
July-August-September SSTs are used.

Texas Wheat Yields

Mean yields at the county level for winter wheat during the 1956-97 period were obtained
from the USDA's National Agricultural Statistics Service. We considered the top 55
producing counties, which constituted approximately 86% of the wheat acres for 1997.
In 1997, Texas planted 6,300,000 acres of wheat, ranking it fourth nationally with about
9% of the total wheat-producing land in the U.S. We use yield per acre harvested to avoid
contamination from wheat planted for grazing which goes unharvested.12 Individual
farm data (rather than county level) would be ideal as the majority of crop policies are
sold at the individual farm or subfarm level. However, a credible analysis cannot be
conducted because of insufficient farm-level data (4-10 years), and thus we resign our-
selves to the county-level yield data. Of some advantage is that insurance companies
tend to make reinsurance decisions at the county rather than producer level.

Econometric Methods

We model the technology component or temporal process of yields in the same fashion
as done by the RMA for the county yield-based insurance program (Group Risk Plan),
given county rather than individual yield data must be used. RMA estimates a one-knot
linear spline with once iterated least squares while windsorizing outliers (determined
based on estimates from the first iterations) in the second iteration (Skees, Black, and
Barnett). The one-knot linear spline is specified as:

(4) = a + Pi(txoI(o,6 (t) + 8(1 - I(o,(t))) + P2 ((1 - I(0,o(t))(t - 6)) + t,

where 6 is the knot, t is the year, and I(.) is the indicator function.
Unfortunately, employing the one-knot linear spline when we include SST in the

model may lead to problems. Although the climatology literature has historically
assumed a linear relationship between yields and SST, McGowan and Ker found
statistically significant nonlinearities. Thus nonparametric methods are used to esti-
mate the SST component. However, the use of nonparametric methods presents a minor

12 This differs from convention because we ignore fields that were planted but abandoned due to crop failure. We felt that
grains planted for grazing constituted a more serious contamination of the data.

392 'December 2000
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problem if the one-knot linear spline does not adequately approximate the temporal
process.l3 In such a case, the nonparametric estimate of the SST component may be
contaminated. To circumvent this potential problem, we undertake a two-stage approach
where we initially estimate the generalized additive model, yt = m,(t) + m2 (s) + et. Note
that the temporal process is initially being estimated nonparametrically rather than by
the one-knot linear spline. By doing this, the estimate, r 2(s), is not biased by the
potentially inappropriate use of the one-knot linear spline. Given r 2(s), we estimate
a one-knot linear spline denoted h(t) in the second stage.14 Formally, in stage one we
estimate:

(5) Yt - = m(t) + m2 (s) + et,

while in stage two we estimate:

(6) Yt-- 2(s) = al((tI(,)(t)) + l(1- I(o,(t)))

+ 2 ((1 - I(o)(t))(t - ) + t,

where 'r is the knot. Estimating the generalized additive model is somewhat technical,
and thus the discussion is relegated to appendix B. We discuss the choices of non-
parametric method below, but reference Ker and Coble for discussion of the employed
methodology.

Choice of Nonparametric Methods

There exist many types of smoothing or nonparametric regression methods (e.g., kernel
smoothing, local regression, spline smoothing, super smoothing). We employed the
Isotonic Robust Super Smoother detailed in Ker and Coble. The Isotonic Robust Super
Smoother uses an m-estimator line super smoother which is isotonized. We chose to
smooth with a line rather than the traditional Nadaraya-Watson kernel to avoid end-
point bias as our interest lies in the extremes of SSTs (La Nifia and El Nifio regions). We
employed a robust criterion rather than least squares because mean yields over the
spatial area of interest are generally considered nonnormal due to spatial dependence.
Finally, we isotonized the smoothed estimates to belong to the class of nondecreasing
functions, given economic and agronomic theory suggest that both mi(t) and m2(s) should
be nondecreasing.

Figure 2 depicts the nonparametric estimate of the temporal process, while figure 3
depicts the nonparametric estimate of the SST component, both for Coleman County.l 5

Figure 2 also illustrates the estimated one-knot linear splines for both the RMA and the
insurance company. The two-stage estimation procedure tends to mimic the one-knot
linear splines (not surprising, given independence of technology and SST). Figure 3
pictorially suggests that SST is significant. The statistical significance of m2(s) is tested

13 Moss and Shonkwiler point out that technological innovations and the adoption of those innovations are random events.
Ker and Coble conjectured that the technology component of yields would be erratic but nondecreasing.

'4In a generalized additive model, we assume ml(t) E ,; where Hfis a Hilbert space. Since h(t) E ;, it is a restriction placed
on m1(t) and will be consistently estimated in the two-stage process.

15 Coleman County was chosen as it is representative of the 55 Texas counties.

Ker and McGowan
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using approximate randomization tests.1 6 In 50 of the 55 counties, SST was found to be
significant at the 90% confidence level. The five counties where SST was insignificant
are located in the panhandle of Texas, which is further inland and contains a much
greater portion of irrigated land (dry conditions brought on by low SSTs have signifi-
cantly less impact on irrigated yields). Figure 3 suggests that at low SSTs [La Nifa]
mean yields tend to be significantly lower, while at high SSTs [El Nifio] mean yields
tend to be mildly higher. Our finding is consistent with both climatological and agronomic
theory.

Recovering the Conditional Yield Densities
and Premium Rates

The conditional yield densities can be estimated given the predicted yields and the esti-
mated residuals from the models of the previous subsection. Subsequently, the estimated
premium rates are derived by inputting the estimated conditional yield densities into
equation (1). Denote the sequence (E , ... , ET) as the estimated residuals from the
RMA model [equation (4)] and the sequence (V1, v2, ... , VT) as the estimated residuals
from the insurance company model [equation (6)]. Also, denote the fitted yield values
from the RMA model as (y1,Y2, .. ,3YT) and the fitted yield values from the insurance
company model as (y1, y2, ... , YT). Therefore, a sequence of asymptotically independent
and identically distributed realizations from fy(y IIRMA) is recovered in the following
manner:17

(7) YT+,,t X 9 T+1 + YT+ t 1,...,T.

Similarly, a sequence of asymptotically independent and identically distributed realiza-
tions from fy(y I c) is recovered in the following manner:

(8) YT+1,t - X T+1 + T+1 Vt = 1, ... , T.
YTlt Vt) T+ + YT+

Adaptive kernel density estimation methods are employed using these sequences as
inputs to recover estimates of fy(y IRMA) and fy(y IIZC). These methods have been
employed in Ker and Coble and in Ker and Goodwin to address potential nonnormal-
ities. The interested reader is directed to either of these sources for a thorough review
of the methodology.

Figures 4 and 5 compare estimates of the conditional yield densities of both the RMA
and the insurance company for Coleman County. Figure 4 considers a La Nifia year
(1989), while figure 5 considers a regular (non El Nifo/La Nifia) year (1991). In figure 4,
f(y I II) is located on the lower tail of fy(y I IRA) and has much smaller variance, both
expected for a low SST [La Nifia] year. Conditioning on a low SST produces a downward
location shift and reduces the variance because of the heteroskedasticity correction.
Simply conditioning on SST also played a part in reducing the variance. In figure 5, there

16 A brief explanation of approximate randomization tests can be found in the "Simulation Analysis" section that follows.
The interested reader is directed to Kennedy for a thorough discussion.

17 Both raw and standardized residuals were tested for heteroskedasticity using Goldfeld-Quandt's nonparametric peak
test (Goldfeld and Quandt). The test results indicated the standardized residuals should be used.

Ker and McGowan
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Figure 4. Estimated conditional yield densities for
Coleman County: La Nifia event (1989)
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Figure 5. Estimated conditional yield densities for
Coleman County: Regular year (1991)
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is very little location shift although the variance is marginally smaller from conditioning
on SST, both expected for a regular year.

For a given coverage level, say A, the RMA calculates the premium rate according to
equation (1), where ye comes from equation (4) and the expectation and probability
measure are taken with respect to fy(y IIRMA). Conversely, the insurance company
calculates the premium rate for the policy based on ye, also from equation (4), but the
expectation and probability measure are taken with respect to fy(y I c). For example,
consider the 1989 premium rates for the conditional yield densities in figure 4, where
IRMA = (Y56, *',Y 88) while Ijc = (Y5 6, *..,Y 88; 56, '*, s88, S89). The RMA recovers ye = 20.77
bushels/acre. Assuming the 70% coverage level, the yield guarantee is 14.54 bushels/acre
(Aye). According to fy(y I IRMA) the probability of a loss is 0.169 and the expected loss,
given a loss has occurred, is 3.39 bushels/acre. Therefore, RMA estimates the uncondi-
tional expected loss or premium rate for the policy at 0.57 bushels/acre (0.169 x 3.39).
Conversely, the insurance company estimates the probability of a loss for the policy and
the expected loss, given a loss has occurred, using fy(y I I). The insurance company
estimates the probability of a loss at 0.921 and the expected loss, given a loss has
occurred, at 3.94 bushels/acre for a policy with a yield guarantee of 14.54 bushels/acre.
The insurance company estimates the unconditional loss or premium rate to be 3.63
bushels/acre (0.921 x 3.94), almost an order of magnitude larger than the RMA premium
rate.

Simulation Analysis

Given estimated premium rates from the previous section for both the RMA and the
insurance companies, we simulate, out-of-sample, fund allocation decisions for the 55
counties during the 1978 through 1997 crop years and calculate the pseudo loss ratios
for the program, the RMA, and the insurance company. Note the insurance company
bases its fund allocation decisions on its estimate of the conditional yield density,
fy(y IIc), and the price of the policy, nRMA. For example, consider countyj and year t,
whereIRA = (Y56, '. ,Yt-1) andIjc = (Y5s6., **Yt-1; s56, . .., St, St). GivenIRMA, we estimate
the parameters of the one-knot linear spline model [equation (4)] from which ye is
recovered. We use the resulting estimated residuals (e6, ... , et-) to estimate fy(y IRMA)
from which the premium rate for countyj in year t, ~RMA, is derived. Conversely, we esti-
mate the parameters of equation (6) using IIc. We use the resulting estimated residuals
(956, ..., t-) to estimate f(y IIc). Given fy(y IIc)and i A, the insurance company
makes an allocation decision based on the strategies discussed below. This procedure,
including the estimation, is repeated for each of the 20 years for each of the 55 counties
as IRMA and IIc are updated every year.

Fund Allocation Decision

Recall, under the SRA, the insurance company must place each policy into one of three
funds: assigned risk, developmental, or commercial. The optimal strategy for allocating
policies among funds is not analytically tractable because of dimensionality problems
(see appendix C). As a result, we (as must the insurance company) consider "sub-
optimal," dimension-reducing strategies. In the first strategy, the insurance company
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places policies deemed desirable (fictc < fTRMA) in the commercial fund and policies deemed
undesirable (fIc > nRMA) in the assigned risk fund. This strategy, detailed in appendix
C, assumes the yield of a policy and the loss ratio for the fund in which it is placed are
independent, and henceforth we denote this the "independent" strategy. The second

strategy, also detailed in appendix C, assumes the yield of a given policy and the loss
ratio for the fund in which it is placed are completely dependent. We denote this the
"dependent" strategy. The insurance company assigns each policy to the fund that

maximizes expected underwriting gain subject to the dependence assumption. Both

strategies reduce a large dimensional problem into a single dimension.
We first undertake a simulation ignoring the realities of the SRA by assuming the

insurance company may either retain or cede 100% of the potential underwriting gains/

losses of each policy. We do this for two reasons. First, this simulation provides a back-

drop for the results subject to the SRA. Second, both the loss ratio and pseudo loss ratio

are calculable in this simulation, thereby allowing a heuristic comparison of the two
measures. This simulation contrasts the SRA simulation where the insurance company
allocates policies to one of the three funds and thus retains or cedes a portion, not all,

of the potential underwriting gains/losses of each policy.

Simulation Results: Without SRA

Without the SRA, a risk-neutral insurance company will retain policies deemed desirable

(TIC < tRMA) and cede policies deemed undesirable (tic > IRMA)' Denote E as the universe
set of 1,100 policies (55 counties x 20 years), 7the set of policies the insurance company
retains, and 7Y the set of policies the insurance company cedes. The loss ratio for a set,
say 7, is written as:

max(0, .yje - yj)

(9) Loss Ratio7 = i--,
E RMA,jWj
je3

where j is the policy, yj is the realized yield associated with policy j, X is the coverage
level, yJ is the RMA expected yield associated with policyj, nRMAj is the RMA premium

rate for policyj, and wj is the weight or number of acres insured for policyj. Note, it is
necessary to assume a weighting scheme to aggregate across counties. We weight counties
by their average wheat acres insured between 1995 and 1998 rather than assuming
uniform weights or weights proportional to their total wheat acres. We calculate the loss
ratio for the program and the RMA by summing over E and Y in equation (9).

Tables 1 and 2 contain the simulation results for the 60%, 70%, and 80% coverage
levels. Consistent with expectations, the insurance company retains greater than half
the policies at all coverage levels, with the percentage decreasing as the coverage level
increases (see table 1). Recall the RMA does not condition on SST, while the insurance
company does. Therefore, the mean of fy(y IIC) lies to the right (or left) of the mean

of fy(y I IRMA) for approximately half the policies. Additionally, fy(y I Ic) will tend to
have lower variance.l8 Hence, TIc will tend to be less than fIRMA for greater than half the

1
8 This does not hold almost surely given the heteroskedasticity adjustment. If the mean of f.y( I II) lies to the left of the

mean of fY(Y IRMA), the variance is lower almost surely.
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Table 1. Simulation Results: Retention and Allocation Rates

Without SRA (%) With SRA (%)

Total Assigned Develop-
Coverage Level Contracts Retained Ceded Risk mental Commercial

60% 1,100 88.27 11.73 n/a n/a n/a
70% 1,100 86.45 13.55 n/a n/a n/a
80% 1,100 79.64 20.36 n/a n/a n/a

Independent Strategy:

60% 1,100 n/a n/a 11.73 n/a 88.27
70% 1,100 n/a n/a 13.55 n/a 86.45
80% 1,100 n/a n/a 20.36 n/a 79.64

Dependent Strategy:

60% 1,100 n/a n/a 2.64 0.09 97.27
70% 1,100 n/a n/a 2.91 0.36 96.73
80% 1,100 n/a n/a 3.91 0.91 95.18

Table 2. Simulation Results: Loss Ratios

Program RMA Insurance Co.
Coverage Level Loss Ratio Loss Ratio Loss Ratio p-Value

Without SRA: Pure Loss Ratio
60% 0.90 3.36 0.63 0.000
70% 1.14 2.59 0.92 0.000
80% 1.35 1.92 1.20 0.004

Without SRA: Pseudo Loss Ratio
60% 0.85 6.08 0.45 0.000
70% 1.29 4.13 0.84 0.000
80% 1.94 3.30 1.51 0.008

With SRA: Independent Strategy/Pseudo Loss Ratio
60% 0.85 1.40 0.29 0.001
70% 1.29 2.07 0.51 0.004
80% 1.94 2.86 0.95 0.017

With SRA: Dependent Strategy/Pseudo Loss Ratio
60% 0.85 1.29 0.45 0.008
70% 1.29 2.22 0.57 0.004
80% 1.94 3.13 0.97 0.001

policies, with increasing tendency at lower coverage levels, as variance decreases are
most pronounced in the tails of the density. This is consistent with the simulation results
as evidenced by the percentages retained at the three coverage levels.

Table 2 summarizes the program, RMA, and insurance company loss ratios for the
simulation. The RMA loss ratio is greater while the insurance company loss ratio is lower
than the program loss ratio for all coverage levels. The difference between the insurance
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company loss ratio and program loss ratio represents economically significant gains to

weather-based adverse selection activities. We use approximate randomization tests to
recover the statistical significance. These tests simulate the distribution of a desired
statistic under the null when the null distribution is unknown. Approximate randomi-
zation tests are very intuitive, and although just surfacing in the econometrics literature,
have been commonly employed in the statistical literature.

Our null is that the insurance company loss ratio is not lower from incorporating
SSTs into its reinsurance decisions. That is, SSTs are uninformative, in which case

fY(y IIc) = f(y IRMA). Under this null, the insurance company estimates every policy
to have zero expected gain since tic = RMA, and thus it is indifferent to retaining or
ceding every policy. To retrieve a realization from the null distribution, the insurance
company randomly retains a policy with probability p, where p is set equal to the per-
centage of policies retained in the original simulation (table 2). For example, p = 0.883
for the 60% coverage level. Note, we randomize over which policies are retained, not
over the number of policies retained given the null leads to indifference. We compare the
insurance company loss ratio from the analysis (denoted T*) to 1,000 simulated loss
ratios under the null {I1, 2 , ..., T1 0 0 }. Thep-value for the test equals the percentage of

•i t (see table 2). The tests indicate the insurance company loss ratios are statistically

lower, for all coverage levels, when retention decisions are conditioned on SST. There-

fore, in the absence of the SRA, insurance companies can generate economically and
statistically significant excess rents from weather-based adverse selection.

We also calculated the pseudo loss ratios for this simulation in order to make
comparisons to the standard loss ratios. As expected (see result 1, appendix A), if the
loss ratio is [<, =, >] one, the pseudo loss ratio is [<, =, >] one. Also, as the loss ratio
departs from one, the magnitude of the departure is inflated when using the pseudo loss
ratio (see result 2, appendix A). Most important, and not surprising, our findings do not
differ markedly between the pseudo loss ratio and the standard loss ratio.

Simulation Results: With SRA

Table 1 reports the percentage of policies the insurance company places in each fund
given the constraints of the SRA. For the independent strategy, the policies in the
commercial fund are identical to the policies retained under the non-SRA simulation.
Similarly, the policies in the assigned risk fund are identical to the policies ceded under
the non-SRA simulation. This was expected as both simulations have identical decision
criteria. The commercial fund contains significantly more policies for the dependent
strategy-a strategy which tends to inflate the implicit subsidies underlying each
fund-and the commercial fund tends to yield the largest dollar subsidy.

Table 2 presents the pseudo loss ratios for both strategies. Not surprisingly, insurance
company pseudo loss ratios are lower for the SRA simulation relative to the non-SRA
simulation. The insurance company pseudo loss ratios under the non-SRA simulation
only reflect gains from weather-based adverse selection, while under the SRA simula-
tion they reflect gains from weather-based adverse selection and the implicit subsidies.
Also not surprisingly, the insurance company pseudo loss ratios are lower for the
independent strategy relative to the dependent strategy. Under the dependent strategy,
a policy with an expected loss may be placed in the commercial fund if the implicit
subsidy, as estimated under the dependence assumption, is sufficient such that a
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combined expected gain results. Conversely, the insurance company places policies with
an expected loss in the assigned risk fund for the independent strategy.

Why would the insurance company follow the dependent strategy if the independent
strategy leads to a higher expected return? An insurance company may follow such a
strategy because the total profits of the fund may be larger under the dependent
strategy. Consider two funds where the first has premiums totaling $3 million and
claims totaling $1 million, while the second has premiums totaling $10 million and
claims totaling $5 million. Although the loss ratio of the first fund is lower than the loss
ratio of the second fund (0.333 < 0.5), the profits are greater in the second fund ($5
million versus $2 million). Note, the policies placed in the commercial fund under the
independent strategy must be a subset of the policies placed in the commercial fund
under the dependent strategy. Therefore, although the loss ratio under the independent
strategy will tend to be lower, total profits may be higher under the dependent strategy.

Testing the significance of these results (table 2) parallels the non-SRA simulation;
approximate randomization tests are performed in the same manner but the proba-
bilities are fixed by fund. That is, for the commercial fund using the dependent strategy
at the 70% coverage level, the probability is 96.73%. These tests indicate that if the
insurance company incorporates SST when allocating its policies among the three funds,
the company can realize economically and statistically significant lower pseudo loss
ratios. Therefore, despite the implicit subsidies underlying the SRA, statistically and
economically significant excess rents may be garnered by insurance companies through
weather-based adverse selection.

Three caveats to our results deserve attention. First, the results represent a lower
bound in that conditioning on local weather variables, which to an extent are deter-
mined by SST, necessarily leads to more pronounced results. Second, there exist bounds
on the number of policies that may be placed in the assigned risk fund. For Texas, a
maximum of 75% of the insurance company's total premium (in Texas) may be placed
in the fund. In response, we repeated our analysis assuming the insurance company
could only place policies in the developmental or commercial funds. That is, we assumed
other policies from other crops in the state saturated their assigned risk fund. The
results (available from the lead author) differed very little from the results presented.
Third, winter wheat premium rates in Texas tend to be underestimated, which has led
insurance companies to place most policies in the assigned risk fund. In attempting to
rectify the underestimated rates, the RMA is constrained by bounds on changes in
premium rates from one year to the next. In light of underestimated rates that currently
exist, all simulations were repeated assuming the RMA rates were 70%, 80%, and 90%
of the actuarially fair rates. Results from these simulations may also be obtained from
the lead author. We chose to present the simulations using actuarially fair rates so that
our results will not be dated by actions of the RMA to rectify the current problem.

Policy Implications

The objective of this analysis was to investigate if an insurance company could garner
excess rents from weather-based adverse selection activities. Our investigation is partic-
ularly timely since political forces have fashioned crop insurance as the cornerstone of
U.S. agricultural policy. We focused on Texas winter wheat and El Niflo/La Nifia weather
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events because we conjectured that if insurance companies were to engage in weather-
based adverse selection, this might be their starting point given the forecastability of El
Niiio/La Nifia, and data are easily accessible. We simulated, out-of-sample, reinsurance
decisions during the 1978 through 1997 crop years and calculated pseudo loss ratios for
the program, the RMA, and the insurance company. Although many complexities arose
because of the convoluted sharing of the underwriting gains and losses of the policies,
the empirical analyses reflected the realities imposed by the SRA. By design, the SRA
enables the insurance company a return on its capital through the asymmetric sharing
of the underwriting gains and losses. We focused on inflated returns or excess rents.

Our simulations indicated that statistically and economically significant excess rents
may be garnered by an insurance company through weather-based adverse selection
activities. Recall, however, that these results are unfortunately, but necessarily, condi-
tioned on the use of county rather than individual farm yields. On the one hand, increased
variability at the farm level will lessen the significance of the results, while on the other
hand, conditioning on local climatic variables rather than sea surface temperatures should
increase the significance of the results. Given that medium-term climatic forecasting is
relatively new in the literature, there does not exist a sufficient number of years to
empirically test whether insurance companies have adopted weather-based adverse
selection strategies. Nonetheless, the economic and statistical significance of the results
suggests that such behavior may become prevalent.

In addition to weather, other forms of asymmetric information exist on which an
insurance company can adverse select. Given adverse selection is a zero-sum game, how
can the RMA counter this? There is very little the RMA can do to reduce the informa-
tional asymmetries; to serve the farmers, the RMA must set rates well in advance, while
an insurance company cannot make fund allocation decisions until after the closing sale
date. Alternatively, the RMA could acknowledge, within the parameters of the SRA, that
companies adverse select based on informational asymmetries. While insurance com-
panies require a return on their capital, we illustrated that return may be significantly
inflated through adverse selection based on informational asymmetries. The RMA could
reduce the level of asymmetries in the sharing of the underwriting gains and losses so
that the insurance company's return to capital, without the exploitation of asymmetric
information, is insufficient. However, insurance companies that exploit the asymmetric
information (for example, weather information) will recover a return equivalent to that
of a private market with similar risks. In essence, the RMA could acknowledge that
insurance companies exploit asymmetric information within their fund allocation
decisions by altering the parameters of the SRA.

[Received July 1999; final revision received June 2000.]
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Appendix A: Pseudo Loss Ratio

The purpose of this appendix is to outline the pseudo loss ratio referred to in the main text. In order to
do so, it is necessary to define the following terms:

Qjt indemnity paid for countyj in time period t, which is max(0, Xyt -Yjt);

fjt = RMA estimated premium rate for countyj in time period t; and
wj average number of acres insured over the 1995-98 period.

The loss ratio (LR) for the program over the 20-year period is defined as the ratio of total indemnities
to total premiums and may be expressed as:

97 55

E E QjtjW
(Al) LR -t=78 j=

97 55

"E j wj
t=78 j=l

We use 55 counties during the time period of the simulation, 1978 through 1997. As discussed in the
main text, neither the RMA nor the insurance company accepts total liability of a policy under the SRA
environment, and thus we are unable to associate the premium or indemnity of a policy with either.
Therefore, the LR for the RMA and the insurance company cannot be calculated, although it still may
be derived for the program overall. We construct a new measure, denoted "pseudo" loss ratio (PLR), which
we define as the sum of annual underwriting losses divided by the sum of annual underwriting gains
over the 20-year simulation period. First, consider the PLR of the program, which is expressed as:

97 55

Emax 0, E (Qjt - jt)wj
(A2)(A2) PLR t=78 j=.

97 55

E max 0, E (jt - Qjtwj
t=78 j=l

The expression max(0, J5 (Qjt - T^j)wj) represents underwriting losses if indemnities exceeded premi-
ums, and zero otherwise for year t. Therefore, the sum over years represents net annual dollars paid
over the 20-year period. Conversely, max(0, j(fct - Qjt)wj) represents underwriting gains if premiums
exceeded indemnities, and zero otherwise for year t. Again, the sum over years represents net annual
dollars received over the 20-year period.

The PLR mimics the LR in that both represent the ratio of dollars paid to dollars received. The LR,
expressed in terms of premiums and indemnities, is the ratio of gross dollars paid to gross dollars
received; the PLR, expressed in terms of underwriting gains and losses, is the ratio of net dollars paid
to net dollars received.

We discuss two points (proven below) that bring credence to our PLR measure. First, if the LR is
[<, =, >] one, the PLR should be and is [<, =, >] one. Intuitively, if total indemnities exceed total prem-
iums over the 20 years (overall underwriting loss), in which case the LR is greater than one, then net
annual underwriting losses must exceed net annual underwriting gains, in which case the PLR is
greater than one. The converse follows the same reasoning. Second, if the LR is less [greater] than one,
the PLR is less [greater] than the LR; this is a less intuitive result that relies on the fact that the
difference between the denominator and numerator is identical for the LR and PLR, and both the
numerator and denominator of the LR are greater than the numerator and denominator of the PLR,
respectively.

* RESULT 1. If the LR is [<, =, >] one, the PLR is [<, =, >] one.

Denote 6t such that

1 if J5=51 Qjtwj > EJ5=51 jtWj (underwriting loss),

0 otherwise (underwriting gain).
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Now, PLR can be rewritten as:

97 55

E 8t E (Qjt - ^jt)w
(A3) PLR= t

=
78 j

=l

97 55

E (1 - t ) E (jt - Qjt)wj
t=78 j=l

By expanding and rearranging terms in the denominator,

97 55

(A4) PLR= t=78 j=
l

97 55 97 55

E 8t E (Qit - 'j)wj + E E (t - Qj)Wj
t=78 j=l t=78 j=l

97 55 97 55

E Eit Wj- E E Qj,
(A5) 1 -LR = t=78 j=1 t=78 j=

97 55

E E "tj wj
t=78 j=l

97 55

z Si(A Qjt)wj
(A6) = t=78

j=1
97 55

"E jWi
t=78 j=l

Thus, if LR [<, =, >] 1 - 1 - LR [<, =, >] 0 St=7s 25 - Qt)wj [<, =, >] 0.

* RESULT 2. If the LR is less [greater] than one, the PLR is less [greater] than the LR.

First, we express the numerator of the PLR from equation (A3) as:

97 55 97 55

(A7) t E (Qit - t)W = E E (Qit - it)Wjt
t=78 j=l t=78 j=l

97 55 97 55
(A8) = E QitWiat - E jtw j

t=78 j=l t=78 j=l

97 55
(A9) < Qtw

t=78 j=l

because 5t < 1 V t, and St=78 =l S Ajt Wj t > 0. Similar reasoningillustrates that the denominator of the PLR
is less than the denominator of the LR. Next, consider that the denominator less the numerator of the
PLR as expressed in equation (A3) is:

97 55 - 97 55 97 55

(A10) E E (ft - Qjt)w = E E t w - E Qit
t= j t78 j== t=78 j=78 =

which is the denominator less the numerator of the LR. To prove Result 2, we simplify matters by
making the following notational changes:
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K2

where
97 55 97 55

K = E E (Qjt - jt)wj and K2 = E(1 -6 t) ( jt Qj t ) j;
t=78 j=l t=78 j=l

and

LR
2'

where
97 55 97 55

i, = ESQjtwj and C2= E EItw.
t=78 j=l t=78 j=l

We have shown that K2 - K1 = C2 - l, K1 < C1, and K2 < C2. To prove Result 2, it is necessary to show the

following:

i f l1 K lif > 1, then > ;
C2 K2 C2

i f K1 Cl
if < 1, then _ < .

C2 K2 C2
Consider that

C1 _1 + (cl - K1)(All)
r2 K2 + (C2 - K2)'

where (Cl - K1) = (C2 - K2) = > 0, and thus

rl K1 
+

(A12)
C2 K2 + E

With a few lines of algebra and rearranging, we get

C0 K
(A13) 1 0 = 1

C2 K2

where

0 1+ (+_l -.r2)).

[ ClK2 )

Therefore, if

-> 1- 0> 1- - >-.

C2 K2 r2
Conversely, if

-<1 - 0 < 1 - <-.

C2 K2 C2

Unlike the LR, the PLR may be calculated in the SRA simulation by introducing the parameters of the
SRA. Recall from the text discussion of the Standard Reinsurance Agreement, the underwriting gain/
loss the insurance company retains is equal to the total underwriting gain/loss for the fund multiplied
by two parameters:

(A14) Qc = k ,ilU2,

where QI;c denotes the underwriting gain/loss retained by the insurance company for fund k, Qk denotes
the underwriting gain loss for fund k, ul is the first parameter for fund k, and pu2 is the second param-
eter for fund k. The underwriting gain/loss retained by the RMA was defined as:

QRMA = Qk(1 - 14u 2),
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where QMA denotes the underwriting gain/loss retained by the RMA. The first parameter (u1 ) repre-
sents an ex ante choice variable for the insurance company, whereas the second parameter (4) is a
function of the fund LR.

Unfortunately, it is necessary to introduce more notation. Define t' as the set of policies the
insurance company places in the assigned risk fund in year t, gt2 as the set of policies the insurance
company places in the developmental fund in year t, and finally t3 as the set of policies the insurance
company places in the commercial fund in year t. Also, redefine 5t such that

if E3 1 EjE~t &jtWj~ttlt >

8 tI Ei iE1et sjtwijitLt (underwriting loss),

0 otherwise (underwriting gain),

and thus the PLR for the insurance company is:

97 3

E atC E E (Qjt - ' )Wj-1tA,2t
t=78 k=l je.)t(A16) PLRIC 97 =J

97 3

d (1 8- 6C) Q ci - Qj,)WjtI)t],2t
t=78 k=l je- t

Conversely, for the RMA we define:

1 if 3iE Q^i-A^k k
k1if 3=1 Eje. t QjtWj(l - I1t].12t ) >

8RMA _ 1 3 j~e ettwj(l - lt)2t (underwriting loss),

0 otherwise (underwriting gain),

and thus the PLR for the RMA is:

97 3

(A17) PLRRMA = RRMA RMA97 3

(1 - R M ) E E ( i - Qjt)W(l- PK2t)
t=78 k=l jstk

Finally, because of the three funds, 6
tI and 6R may simultaneously be 1, simultaneously be 0, or one

may be 0 and the other 1.

Appendix B:
Generalized Additive Models

Estimating an additive model finds the projection onto the closest linearly additive subspace of a
generalized p-dimensional Hilbert space. The interested reader will find a thorough treatment of
generalized additive models in Buja, Hastie, and Tibshirani. Define t add = .7 + J/, which are closed
subspaces of y-,t,,. We minimize

(A18) E(y - m(t, s))2

subject to m(t, s) = ml(t) + m2 (s) e /add as opposed to the looser restriction m(t, sst) E tX. In a fully non-
parametric setting where m(t, sst) e .7, we have m(t, sst) E(Y It, s). Restricting the class of functions to

-addrecovers the closest additive approximation to the function E(Y It, s). Ideally, E(YI t,s) e Fadd.
Although the additive model is only consistent for a restricted class, the convergence of the unrestricted
model decreases rapidly as the number of independent variables increases. The estimator mi(X) is
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O(n-(2/4+d)), where d is the dimension ofX (Hardle). In our case, mI(t, s) is O(n- 1
/3), whereas m 1(t) and

rh2(s) can be estimated with the optimal one-dimensional rate O(n- 2/5) assuming E(Y It, s)E .fadd'
There does not exist any theoretical or empirical evidence in either the agronomy or climatology

literature to suggest that E(YI t,s) f amdd. Casual observation suggests SST and the technology

component of yields are uncorrelated; research and development expenditures determine the technology

set and are independent of SST. Why was it necessary to estimate the insurance company model in two

stages? Unless the realized SSTs produced orthogonality for certain columns of the projection matrix,

r 2(s) would pick up some of the temporal process not adequately approximated by the one-knot linear

spline (Buja, Hastie, and Tibshirani). We chose to avoid this minimal contamination so that the signifi-

cance of SSTs in modeling yields is not biased upward, even slightly.
Recently, there has been a significant amount of theoretical literature on estimating the generalized

additive model. Originally, backfitting procedures forwarded by Buja, Hastie, and Tibshirani were

employed. Hastie and Tibshirani (1987, 1990) noted that these procedures worked fairly well in many

empirical applications. The backfitting algorithm estimates each component holding the other fixed and

then iterates until the estimates converge. The current estimate of r 2(s) is updated by smoothing the

partial residuals yt - (y + m1̂ (t)) against s.

Most recently, theoretical properties of backfitting methods have been investigated in Neilsen and

Linton. Tj0stheim and Auestad, and Linton and Neilsen introduced an alternative approach using mar-

ginal integration with kernel smoothers. Finally, Fan, Hardle, and Mammen have provided an approach

for direct estimation oflow-dimensional additive models. Rather than the marginal integration approach,

we employed backfitting procedures to estimate the components. In our application, where the

components are independent, the backfitting algorithm converged very quickly (generally within 4-6
iterations) as expected; problems arise when the independent variables are correlated.

Appendix C:
Insurance Company Allocation Decision

This appendix outlines the insurance company's allocation decision of policies among the three funds:

assigned risk, developmental, and commercial. We first illustrate that the optimal strategy for allocating
policies among funds is not analytically tractable because of dimensionality problems. Second, we detail

the two (albeit suboptimal, but dimension-reducing) strategies, termed "independent" and "dependent."
Both strategies reduce a large dimensional problem into a single dimension.

Optimal Strategy

In our case study, the insurance company has 55 policies to allocate among the three funds given the
funds are cleared or settled each year. In reality, the insurance company has significantly more policies
to allocate. The optimal strategy chooses the allocation scheme that maximizes expected profits among
all possible allocation schemes. Two problems plague the optimal strategy. First, the number of possible
allocation schemes to evaluate is unmanageable (355 = 1.74E + 26). Second, there do not exist sufficient

data to estimate expected profit for any allocation scheme. To illustrate, assume a particular allocation
scheme yields sets i1, 2, and 3, where again .1 is the set of policies in the assigned risk fund, 2 is

the set of policies in the developmental fund, and 73 is the set of policies in the commercial fund. The
expected profit of this scheme is the sum of the expected profit for each fund. Recall from the main text
that the insurance company's profit for fund k is

(A19) Qc = E (-i -Q)
JEkk

where SEj( - Qj) denotes the underwriting gain/loss for fund k, 4 is the first parameter for fund k,

and p4 is the second parameter for fund k. Also recall the first parameter (ul) represents an ex ante

choice variable for the insurance company, while the second parameter ( 4) is a function of the fund loss

ratio (LR). That is,
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I J_
1'2 gk k

where g is depicted in figure 1. Thus, we need the joint density of Q Vij Gek to recover the LR density.
Note that Qi = max(0, Xyjf - yj), and thus has a mixed (discrete and continuous parts) density which may
be recovered from a transformation of the density ofyj. Therefore, to recover the LR density, we require
an estimate of the joint density of yj Vj E k. There exist insufficient data to estimate the Pk dimensional
density, where Pk is the cardinality of k. We overcome both problems by making dimension-reducing
assumptions on the joint density of the yields.

Independent Strategy

Recall, the insurance company's profit from fund k is

(A20) -Ic c (ah - Qj)i-4'
JEk

and therefore the contribution to total profit of a particular policy, sayj belonging to fund k, which we
denote rj, is

(A21) rk =( kk-&lrQ(A21) i (gtj Qj) kJ 2

By assumingyj is independent of the fund LR (we discuss this assumption below), then

(A22) E(rj) = (tj - E[Qj])4E[1 ,],

where E[Qj], the expected indemnity, is, with respect to the insurance company, density fyj(Yjl IIC).
Therefore, if (*j - E[Qj]) > 0, the insurance company believes the policy to be overpriced and maximizes
E[r ] by placing the policy in the fund which maximizes E[24]. Conversely, if (ft -E[Qj])< 0, the
insurance company believes the policy to be underpriced and maximizes E[rjk] by placing the policy in
the fund which minimizes E[41]. In general, to recover E[4] for fund k, we need the joint density of
the yields associated with the policies belonging to the fund. However, the support for the random
variable 0.2 P, which is the insurance company's share of the assigned risk fund when ul = 0.2 is speci-
fied, does not intersect the support for the random variable pu3 , which is the insurance company's share
of the commercial fund when ,3i = 1.0. That is, E[0.21u ] <E[u3] almost surely.19 Therefore, if policyj
is overpriced (gains expected), then E[rj] is maximized when k = 3 (policy placed in the commercial
fund) and the insurance company sets u = 1.0 (recall from the main text that u e [0.5, 1.0]). Conversely,
if policyj is underpriced (losses expected), then E[fk] is maximized when k = 1 (policy placed in the
assigned risk fund) and the insurance company sets jp = 0.2 (recall that ul e [0.2, 1.0]). The indepen-
dence assumption leads to a strategy where policies estimated to be underpriced are placed in the
assigned risk fund while policies estimated to be overpriced are placed in the commercial fund.

Dependent Strategy

The second strategy assumes the yield of a given policy and the loss ratio for the fund in which it
is placed are perfectly dependent. Specifically, we assume that the loss ratio of policyj, denoted LRj,
equals the loss ratio (LR) of the fund almost surely. Again, recall that the contribution of policyj
belonging to fund k to the total profit of the insurance company from fund k is:

19 Unfortunately, it cannot be said that E[plp2] <E[ I2,] <E[3PI12] almost surely, although by design this inequality
generally holds.
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(A23) rj = (ij - Qj)P12

where k = gk (LR), but LR = LRj almost surely. Therefore, LR is a function of the indemnity payment
Qj. Since Qj = max(0, Xyj e -yj),

LRj = max(O, ' yj -Y

which is a mixed (discrete and continuous parts) density resulting from a univariate transformation
of fyj(Yj| Ic). 20 Therefore, substituting Qj and LRj yields

(A24) E[r ] = J- (c - max(0, y -Y)) 1P max 0, ^jfyj(Yj Ic) dY-

Unlike the independent strategy, the dependent strategy takes into account the implicit subsidies
brought about by the asymmetric sharing of the underwriting gains and losses. However, this strategy
tends to overestimate the subsidy effect; mixing of indemnity payments across policies in the fund tends
to lower the implicit subsidy.

As mentioned, the funds are cleared by state. That is, any policies sold in a state are placed in one
of three funds. Consequently, an insurance company will have policies from not just different regions
of a state in a particular fund, but from different crops as well. Therefore, in a state not dominated by
one or two crops where Qj is not very dependent across space and crop, the independent assumption
would be realistic. However, in a state dominated by a few highly correlated crops, with respect to one
another and space, the dependent assumption could be more realistic.

20 The LRj density has mass at support point 0 equal to f .Py(yj IIc)dyj and continuous part derived from the trans-
formation

LRj = Y - Yj from fyj(yjlIc) for Xyj > yj.
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