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Abstract 

More frequent and severe shocks combined with more plentiful data and increasingly 

powerful predictive algorithms heighten the promise of data science in support of 

humanitarian and development programming.  We advocate for embrace of, and 

investment in, machine learning methods for poverty and malnutrition targeting, 

mapping, monitoring, and early warning while also cautioning that distinct tasks require 

different data inputs and methods. In particular, we highlight the differences between 

poverty and malnutrition targeting and mapping, identification of those in a state of 

structural versus stochastic deprivation, and the modeling and data challenges of 

                                                        
1 We thank Nathan Jensen, Varun Kshirsagar, participants and presenters at the AAEA ASSA 
2021 Big Data and Near-Real-Time Monitoring of Food Emergencies session for feedback and 
insights on earlier drafts of this work. Any remaining errors are our own. We thank the United 
States Agency for International Development for financial support under cooperative agreement # 
7200AA18CA00014, “Innovations in Feed the Future Monitoring and Evaluation - Harnessing 
Big Data and Machine Learning to Feed the Future”. The contents are solely the authors’ 
responsibility and do not necessarily reflect the views of USAID or the United States 
Government. 
2 Correspondence should be sent to Linden McBride, lemcbride@smcm.edu, Department of 
Economics, St. Mary's College of Maryland, Kent Hall 203, 47645 College Drive, St. Mary's 
City, MD 20686; 240-895-2220 



developing early warning systems. Overall, we urge careful consideration of the purpose 

and possible use cases of big data and machine learning informed models. 

Introduction 

Recent extreme weather events, food price shocks, the COVID-19 pandemic, the east 

African locust infestation of 2020, and outbreaks of violent conflict have all vividly 

demonstrated that food emergencies arise quickly and effect their greatest devastation on 

already vulnerable and disadvantaged communities. Significant information gaps have 

long impeded effective humanitarian response to food emergencies. This was true during 

the ‘four famines’ declared by the United Nations in 2017 and remains true amid the 

current pandemic response around the world today. Agencies responding to such crises, 

or working on longer term development to reduce vulnerability to food emergencies, 

need tools to help manage the coupled challenges of relief and development 

programming.   

The tools agencies need vary. Accurate and up-to-date household targeting and 

deprivation mapping can help ensure scarce resources get directed to the subpopulations 

that most need and benefit from them, minimizing waste and accelerating relief. Rigorous 

monitoring and evaluation (M&E) systems can accelerate learning how best to deploy 

limited resources for maximal impact. Early warning systems can help with resource 

mobilization and accelerate timely delivery of contextually appropriate interventions. The 

appropriate intervention may differ, however, by type of deprivation being targeted, 

mapped, monitored, or forecasted.  



The rapid digitization of even low-income regions makes unprecedented volumes of data 

available in near-real time, potentially enabling rapid and significant advances in 

development agencies’ toolkits. Call detail records, mobile phone apps, remote sensing, 

and social media all teem with data. We have more available information about human 

movement, behavior, and interactions, and on the natural and cultivated environments 

than ever before. Simultaneous improvements in data science methods, which we broadly 

lump under the heading of ‘machine learning’, equip analysts to process ever larger 

volumes of data faster and extract from those ‘big data’ highly predictive feature sets for 

a given response variable.  

Machine learning methods are improving the accuracy of household level poverty and 

malnutrition targeting tools (Kshirsagar et al. 2017; McBride and Nichols 2018; 

Knippenberg et al. 2019; Aiken et al. 2020; Blumenstock 2021). Recent advances in both 

data and methods have enabled production of high quality, subnational maps with 

tolerably accurate estimates of current and probable poverty and malnutrition conditions 

(Jean et al. 2016; Yeh et al. 2020). Likewise, poverty and malnutrition forecasting for the 

purpose of early warning is making incremental gains (Yeh et al. 2020; Browne et al. 

2021; Tang et al. 2018, 2021). While development and humanitarian programming are 

enjoying a machine learning and big data revolution, there exist real risks that these new 

data series and methods get overhyped or misused. Careful evaluation and validation 

work are as important as the efforts to advance the data and methodological frontiers. 

While the appeal of machine learning applications to poverty and malnutrition targeting, 

mapping, M&E, and forecasting during an era of increasingly big data derives from the 

methods’ ability to produce data-driven predictive models, analysts must still consider 



carefully the purpose and possible use cases of different models. Consider, for example, 

the trade-offs between a household level proxy means test (PMT) targeting tool, with 

household consumption expenditures as the dependent variable, that has as its features 

(i.e., explanatory variables) a set of household asset holdings that jointly explain 

permanent income versus a tool that simply includes the feature set that exhibits the 

greatest predictive power in the available data. The former, asset-based model might 

include such assets as materials of housing construction, livestock holdings, and the 

education of heads of household -- all features that well-accepted theory suggests reflect 

long-term welfare status -- while the latter model, built on the most predictive feature set 

available, might include any strong correlates of current consumption, such as the amount 

of meat consumed in the last seven days and whether a household member is currently 

employed or not. The latter model may better identify the current poor, but may also lead 

to greater errors of inclusion if the objective is to target the structurally poor. 

Opportunistic models may prove more vulnerable to predictive skill degradation as new 

data arrive than might models founded in empirically-validated theory.  

Similar trade-offs exist between building a highly predictive tool with hundreds of 

features and one that predicts less accurately but includes only a very few easily observed 

features. The former may prove more useful for an agency, replete with technical 

expertise and adequate budget to harvest data continuously, that seeks a poverty map, but 

may be less useful for poverty targeting, program evaluation, monitoring and the like for 

a smaller operational agency if the more onerous data collection task that supports the 

model is infeasible to undertake on either an urgent or regular basis. Overall, effectively 



fitting tools to tasks requires attention to an operational agency’s objective function 

(Zhou et al. 2021).  

As Carter and  Barrett (2006) note, most of the work we do in identifying the poor is 

“almost unavoidably backward looking” due to the nature of data; this observation also 

applies to the task of identifying the malnourished and food insecure.3 However, the 

question most operational agencies seek to answer is: who will be poor or malnourished 

in the future in the absence of effective intervention? Of course, no method can reveal the 

future with certainty; the combination of machine learning and big data does not provide 

us with a crystal ball. We can, however, leverage big data and machine learning methods 

to make effective, efficient targeting tools by paying careful attention to the trade-offs to 

various approaches to modeling and data inputs. Valuable progress has been made on all 

these fronts; we review and discuss this progress while also highlighting the differences 

between targeting and mapping, the differences between identification of the 

stochastically poor versus the structurally poor, and discussing the modeling challenges 

of developing early warning systems as well as data collection efforts to support all these 

efforts going forward. 

Targeting versus Mapping  

Emergencies disproportionately impact places that suffer high levels of chronic poverty. 

So understanding spatial and other patterns of deprivation is one of the primary analytical 

                                                        
3 We are abstracting from important definitional challenges throughout this paper: determining a 
poverty line, local and global nutrition standards, and food security threshold (even measuring 
food security) are all non-trivial tasks. See Barrett (2010) for an introduction to the challenges of 
measuring food security, UNHCR (2005) for an introduction to the challenges of defining 
nutrition standards, and Ravallion (2020) for an introduction to the challenges of measuring 
poverty. 



tasks confronting any operational agency. Both targeting and mapping tools assist with 

these endeavors as well as related tasks such as M&E.  There are obvious applications of 

mapping for targeting and vice-versa. For example, one might use geographic targeting 

based on poverty maps as a coarse level tool and then develop PMTs to target 

individuals/households within specific geographic areas (see Blumenstock 2021 for a 

great example of this). The basic difference in the two approaches is that targeting 

identifies households or individuals while mapping identifies geographic areas. Below, 

we make some distinctions between targeting and mapping, note recent advancements, 

and identify research frontiers in both areas. 

At its most basic level, a targeting tool such as a PMT assigns weights to a set of easily 

identified household characteristics so as to either approximate the household’s welfare 

or the household’s probability of falling below a welfare threshold (Grosh and Baker 

1995; Coady et al. 2004; Schriener 2007). In most cases, stock variables, such as 

household asset holdings, are on the right hand side of a targeting model and flow 

variables, such as consumption, food security status, or a binary indicator variable 

capturing consumption or food security status below a threshold, are on the left hand side. 

Many development and social protection programs identify eligible participants based on 

PMTs. They also use such tools for monitoring, evaluation, and impact evaluation 

purposes, where appropriate. 

Recent innovations in poverty and malnutrition targeting have built upon the “scorecard” 

approach to tool development -- a scorecard includes a short list of observable household 

characteristics with corresponding estimated weights (Schriener 2007) -- using machine 

learning algorithms and techniques for dimension reduction and out-of-sample validation. 



Building on the basic function of a PMT, McBride and Nichols (2016) demonstrate the 

targeting gains of out-of-sample testing for model selection, whether using standard 

approaches such as logit and quantile regression or machine learning approaches such as 

random forests. Recognizing that agencies need simple scorecards and often have to build 

them using limited (as opposed to “big”) data, Kshirsagar et al. (2017) demonstrate that 

highly predictive models using no more than ten variables can be built on limited data 

using cross-validation and parameter regularization for feature selection. Kshirsagar et al. 

(2017) also highlight the important role of bootstrap aggregation -- parameterizing a 

model by averaging over many subsamples from the data -- within model development to 

achieve a model that performs consistently well across subpopulations within a country. 

Baez et al. (2019) emphasize the value and importance of using child malnutrition 

indicators on the left hand side of a targeting model when interested in child well-being, 

rather than consumption or expenditure measures that often prove noisy indicators of 

welfare among agricultural households and more predictive of long run health and human 

capital outcomes. In producing a drought-contingent targeting model using Demographic 

and Health Survey (DHS) data combined with Normalized Difference Vegetation Index 

(NDVI), Baez et al. (2019) find that simple and easily interpreted methods such as 

logistic regression and classification trees do just as well as black box methods such as 

random forest and gradient boosting in the prediction of child level stunting, suggesting 

that the trade-offs between interpretability and strong prediction may be modest. Baez et 

al. (2019) also make clear the value of augmenting relatively sparse data, such as DHS 

household level surveys, with big data such as NDVI satellite data for targeting purposes.  



One challenge of targeting tools is that model parameters may shift over time and space, 

meaning the model needs to be reparameterized to remain accurate when applied to a new 

(including future) population. This is a challenge because nationally representative 

household surveys are few and far between. Another challenge is that targeting tools 

require further data collection for application to a given subpopulation for the purpose of 

targeting: to be used for targeting or monitoring purposes, the model weights must be 

applied to current household assets and characteristics. Therefore, important innovations 

in targeting tool development include those that look to new data sources for 

parameterization and/or application of the model.  

For example, Altındağ et al. (2021) demonstrate that a PMT tool developed to assist the 

Lebanese government in disbursing aid to Syrian refugees could be applied to 

administrative data already held by the government. This innovation accelerates 

disbursement and reduces costs by obviating the need for a costly household survey. 

Blumenstock (2021) use a representative mobile phone based survey, in areas identified 

through a poverty mapping exercise, to build and deploy a PMT targeting tool based on 

mobile phone use during the COVID-19 pandemic. With the noted limitation that those 

who do not own a mobile phone SIM card will not have access to the targeted transfers 

(and the research team does a great deal to limit the population that will fall into this 

category), this approach resolves many of the challenges of conventional targeting tool 

development and deployment and will only become more effective as mobile phone 

ownership becomes more ubiquitous. Likewise, Aiken et al. (2020) find that call detail 

records (CDRs) perform as well as a survey based PMT in identifying the ultra poor in 

the Balkh province of Afghanistan for the subset of households that own phones. They 



also find, however, that CDRs are not strong predictors of household wealth in general in 

this setting, likely due to sample homogeneity. Use of satellite imagery to capture 

household level asset holdings, such as housing roof top material, may be another way 

forward in streamlining household level targeting. 

Poverty mapping is a related but distinct task from household- or individual- level 

targeting. In contrast to targeting tools, mapping focuses not on households but on 

geographic aggregates showing the spatial distribution of welfare (Ghosh and Rao 1994, 

Elbers et al. 2003; Coudouel and Bedi 2007).  Historically, mapping has been conducted 

at a relatively coarse scale, such as first or second administrative levels within or across 

countries. With increased spatial precision from various Earth observation products, it is 

now feasible to produce welfare estimates at far more precise – village, or sub-village, 

prospectively even plot – scales, which means the lines between geographic mapping and 

household level targeting are blurring. Further blurring the lines is the fact that the 

geographic aggregation of household level data may be used to communicate welfare 

distributions even though the disaggregate, household-level, data are readily available. 

The distinction between mapping and targeting then may come down to whether it is the 

objective of the analysis to identify variation in welfare across geographic space, or 

across households as identified by their observable characteristics (possibly including 

their geographic location).  

Recent advances in poverty mapping and small area estimation include the use of mobile 

phone records, nightlights data, daytime satellite imagery, and other remote sensing data 

combined with various machine learning models (or models more recently grouped into 

machine learning, such as elastic nets) for increasingly accurate projections of the spatial 



distribution of poverty, food (in)security, welfare, or measures of human development 

(Noor et al. 2008; Blumenstock et al. 2015; Jean et al. 2016; Steele et al. 2017; Pokhriyal 

and Jacques 2017; Engstrom et al. 2017; Head et al. 2017; Masaki et al. 2020; Hersh et 

al. 2020; Yeh et al. 2020; Browne et al. 2021).  

In particular, Blumenstock et al. (2015) introduce CDRs as a predictor of the distribution 

of asset wealth in regions of the world for which household level data are otherwise 

sparse. Jean et al. (2016) demonstrate that convolutional neural nets (CNN) trained to 

predict nighttime light intensity from daytime satellite imagery can capture 55-75 percent 

of the variation in asset wealth (as reflected in the widely used and internationally 

standardized DHS wealth index) within a given country and 41-56 percent of the 

variation in consumption expenditures. The greater success found by Jean et al. (2016) in 

predicting asset wealth, as compared with predicting consumption expenditures, reflects a 

finding later articulated in Barriga Cabanillas et al. (2021) and Tang et al. (2021): stock 

measures appear easier to predict than are flow measures. 

In addition to poverty mapping, recent advancements have been made in the mapping of 

other measures of deprivation. For example, Njuguna and McSharry (2017) combine data 

on mobile phone ownership and the number of calls per phone with nightlights and 

population density data to map the multi-dimensional poverty index for Rwanda. 

Pokhriyal and Jacques (2017) also map the multi-dimensional poverty index within 

Senegal at the commune level by using a combination of data sources including mobile 

phone records, climate and vegetation data, data on soils and crop production, and other 

remotely sensed and geospatial data.  



While the trend in mapping is to combine disparate data sources, it should be noted that, 

as the data input demands grow, so does the burden and expense of updating the 

model/map. A number of papers directly address these and other data challenges. Hersh 

et al. (2020) demonstrate that reasonably accurate poverty maps can be developed using 

only open source data, reducing the cost burden of map development and maintenance for 

national statistics offices. Yeh et al. (2020) demonstrate that CNNs trained on only 

nightlights or only multispectral daytime imagery do about as well as those trained on 

both nightlights and daytime imagery in the prediction of asset poverty across space, as 

the inputs capture the same variation. Such observations help reduce the input demands 

for high resolution spatial mapping.  

Yet et al. (2020) also find that nightlights data performed poorly relative to daytime 

imagery in predicting asset wealth over time, in large part because the nightlights data did 

not vary sufficiently over time in the sample regions. This finding highlights another key 

challenge of mapping with big data: often the data that are most abundant have limited 

variation among the poorest of the poor (Blumenstock 2016, 2020). For example, Barriga 

Cabanillas et al. (2021) demonstrate the limitation of CDRs in the prediction of food 

security outcomes in Haiti; they find that these records don’t capture variation at the 

lower end of the welfare distribution. Given the limitations of nightlights and CDRs, 

some recent approaches focus on use of NDVI, Solar-Induced Chlorophyll Fluorescence, 

and other remotely sensed data that may correlate better with the welfare of households 

that rely on local agricultural systems for their livelihoods, as farmers or farm workers, 

and for food supplies (Tang et al. 2019, 2021; Browne et al. 2021). 



The lack of correlation between the available big data and key outcomes of interest 

contributes to the fact that, even as these methods have rapidly advanced, machine 

learning and big data-informed mapping methods have not performed as well in 

predicting indicators of malnutrition as they have in predicting asset wealth. For example, 

Head et al. (2017) replicate the success of Jean et al. (2016) in predicting asset wealth, 

explaining approximately 70 percent of the variation in the DHS wealth index across 

space using satellite imagery. They also find moderate success predicting electricity, 

education, and mobile phone ownership, with 𝑟!values from 24-64 percent. However, 

they find very poor performance in predicting child anthropometric outcomes.  

A significant challenge in predicting poor nutrition outcomes is that they tend to be 

measured with noise and some workhorse measures (e.g., severe wasting) are, thankfully, 

less common than poverty (Head et al. 2017; Baez et al. 2019). To address this challenge, 

Zhou et al. (2021) use oversampling combined with random forest and gradient boosting 

models; they demonstrate that oversampling rare and noisy food insecurity outcomes in 

model development can significantly improve predictive accuracy in the targeting and 

forecasting of food insecurity at the cluster level. Noting that malnutrition outcomes are 

strongly correlated with wealth, which Jean et al. (2016), Head et al. (2017), and many 

others predict well, Browne et al. (2021) approach the prediction of malnutrition and 

wealth measures jointly. The objective is to parse signal from noise by harnessing 

multivariate analysis. Browne et al. (2021) find modest improvement in predicting 

malnutrition indicators over time using multivariate random forests; this line of research 

merits further exploration.   



Mapping and targeting differ fundamentally in terms of objectives and (geographic) scale 

of output though they can be, and often are, frutifully used together. Machine learning 

and big data have enabled exciting advancements in the efficiency and accuracy of both 

targeting and mapping. In comparison to mapping, targeting has not enjoyed as much 

innovation in recent years. This may be due to the fact that geography is a strong 

determinant of poverty and malnutrition and therefore, household level targeting is not as 

great a priority as is geographic targeting for operational agencies. It is also in part due to 

the fact that big data are not yet abundant at the household level. CDRs and targeting 

advances by Blumenstock and co-authors prove the exception to this; however, as noted 

above, in many places these data offer limited information about the population of 

interest, the poorest of the poor (Blumenstock 2020; Barriga Cabanillas et al. 2021). We 

join Head et al. (2017) in urging caution when generalizing the results of successful 

approaches such as Jean et al. (2016) to other contexts and outcomes. Sufficient variation 

in the input variables and sufficient correlation with the outcomes of interest are 

minimum requirements for a targeting or mapping model to accurately identify the poor 

or malnourished. 

Structural versus stochastic poverty and food insecurity  

The poor include those who are always poor as well as those who move in and out of 

poverty, with some evidence that the latter group make up a substantial proportion of the 

poor at any given point in time. For example, Baulch and Hoddinott (2000) find that 20-

65 percent of households across 13 panel studies are classified as “sometimes poor,” a 

category more numerous than the “always poor” classification. They also find 



considerable heterogeneity in the duration of poverty within the transitory poor.4 

Likewise, Knippenberg et al. (2020) find that most food insecure households in Malawi 

transition in and out of food insecurity, with significant heterogeneity in food insecurity 

spell length. Distinguishing between structural and stochastic5 deprivation is important 

for well-targeted interventions and requires the targeting, mapping, monitoring, or early 

warning model to account for the structural determinants of deprivation (Carter and 

Barrett 2006).  

How can one account for the structural determinants of deprivation in such a model? 

Because permanent (i.e., expected) income and thus consumption expenditures are 

endogenous to the stock of productive assets one controls, identifying the structural 

determinants of poverty entails considering the dynamics of asset accumulation, where 

“asset is understood to broadly include conventional, privately held productive and 

financial wealth, as well as social, geographic and market access positions that confer 

economic advantage” (Carter and Barrett 2006). Much empirical work supports this 

asset-based theory of welfare dynamics (Barrett et al. 2006; Carter and Lybbert 2012; 

Barrett et al. 2019; Balboni et al. 2020). 

An asset-based understanding of welfare dynamics can assist one in identifying the 

structural poor in a targeting or mapping setting. One useful, data-driven, distinction is 

                                                        
4 An important caveat to these observations is that transience in welfare status is typically 
overestimated in available data due to measurement error and short panel intervals (Naschold and 
Barrett 2011).  In addition, while the transitory poor and food insecure make up a majority of the 
poor and food insecure on headcount measures, they are not necessarily the majority in more 
distributionally sensitive metrics, as the depth of poverty and food insecurity is typically greatest 
among the most chronically deprived.. 
5 One might consider seasonal food insecurity along these same lines: some seasonal food 
insecurity is structural, some stochastic (V. Kshirsagar, personal corresp. 2021). Where parsing 
structural seasonal food insecurity from stochastic seasonal food security is important for a well-
targeted intervention, the concerns we identify here apply. 



offered by Carter and  May (1999): households that are currently poor (according to their 

current level of consumption or expenditures) but hold an asset profile that, in 

expectation, predicts a non-poor standard of living are considered stochastically poor; 

those that are currently poor and hold an asset profile that, in expectation, predicts a poor 

standard of living are considered structurally poor. This distinction reinforces the value of 

including asset holdings as features in a targeting model and as the response variable in a 

mapping model in settings where the primary group of interest is the structural poor. 

Asset holdings have the additional advantage that they are often verifiable whereas other 

dimensions of welfare, such as how much meat was consumed in the past week, may be 

more challenging to verify. However, there is tension between the asset-based theory of 

welfare dynamics, wherein asset holdings are important in determining long term 

deprivation, and standard big data/machine learning approaches to model development 

based on the most predictive feature set for a given response variable. Big data rarely 

include household level asset holdings and models with the highest out of sample r2 may 

not do a great job identifying the structurally poor and food insecure, as these are 

generally a subset of the overall currently poor.   

Where the distinction between stochastic and structural poverty or food insecurity is 

needed for well-targeted interventions, more household level survey data, or more 

creative data collection efforts such as those being pioneered by Blumenstock (2020, 

2021), may be needed. Where such data are not available, mapping for the purpose of 

geographic targeting may best capture the persistent spatial distribution of poverty and 

malnutrition. Geography typically reflects the confluence of multiple market and state 

failures and may directly influence structural poverty and malnutrition. Moreover, 



geographic targeting is relatively quick and cost-effective, especially as compared to 

household- or individual-level targeting. Indeed, there is growing evidence that much 

persistent poverty is place-based and that escape from such poverty often involves 

migration (Jalan and Ravallion 2002; DeWeerdt 2010; Beegle et al. 2011; Ravallion and 

Wodon 1999; Pritchett and Hani 2020). Yeh et al. (2020) suggest, and take a few steps in 

the direction of, using poverty mapping as an avenue to learn more about the 

determinants of geographically distributed structural poverty; this is an important 

direction for further research. 

Static versus dynamic models 

Can advances in machine learning methods and data availability improve early warning 

systems, i.e., prediction of mass movement into (or deepening of) poverty or malnutrition 

in an upcoming period? To identify who will be poor or malnourished in the next period, 

or to anticipate the consequences of shocks on vulnerable populations, dynamic rather 

than static models may be necessary. With few exceptions, poverty mapping and poverty 

targeting efforts tend to produce static models. This is in large part due to data 

limitations.  Although similar in nature, the tasks—early warning vs identifying the 

presently poor or malnourished—require different tools and inputs.  Most critically, 

dynamic models require panel data, i.e., repeated observations over time of the units of 

observation. 

Several works have made progress in these directions. Mude et al. (2009) generate a 

famine early warning and emergency needs assessment model using lagged high 

frequency data from northern Kenya. Lentz et al. (2019) demonstrate that simple linear 

regression with high frequency data inputs outperform the prevailing food insecurity 



early warning model, the Integrated Food Security Phase Classification System, in 

Malawi. Using such inputs as remotely sensed climate data, data on food prices, and 

demographic data, Lentz et al. (2019) make near-real-time food security predictions that 

would allow agencies to monitor food security dynamics over time and at a local (cluster) 

level. Cooper et al. (2019) produce a map that predicts where drought is likely to have the 

most severe impacts on child stunting by accounting for factors such as arid 

environments, poor governance, and political instability. And as mentioned above, Zhou 

et al. (2021) use oversampling to improve the forecasting of food insecurity at the cluster 

level and Browne et al. (2021) jointly predict next period asset and malnutrition outcomes 

at the cluster level using multivariate random forests.  

In addition to the above strategies, each of which predict levels of food security or 

malnutrition for early warning and monitoring purposes, several early warning efforts 

have focused on predicting changes in outcomes based on changes in inputs over time. 

Tang et al. (2018, 2021) demonstrate that a CNN trained on changes in NDVI over time 

can predict future changes in poverty in Uganda. Yeh et al. (2020) also show that 

dynamic mapping holds promise. The Yeh et al. (2020) deep learning model, using 

multispectral daytime imagery, captures 17 percent of the out-of-sample variation in 

cluster level in changes in welfare. Using simulations, Yeh et al. (2020) demonstrate that 

an r2 of 17 percent is about as well as a model could do predicting out-of-sample changes 

in the wealth index given the variation in the index over time.  

In addition to predicting changes over time, a fruitful area of research for early warning 

purposes relates to development resilience (Barrett and Constas 2014). Recent theoretical 

(Barrett and Constas 2014) and empirical developments (Cissé and Barrett 2018; 



Knippenberg et al. 2019) in the study of development resilience suggest that, with high 

frequency longitudinal data, targeting expected resilience may be possible. 

Conceptualizing resilience as a measure of future well-being allows one to estimate the 

probability of staying above a welfare threshold as a function of assets and exposure to 

shocks (Cissé and Barrett 2018; Knippenberg et al. 2019). Along these lines, Baez et al. 

(2019) propose a drought-contingent early warning system to identify regions where 

children are at risk of stunting due to drought. Knippenberg et al. (2019) estimate a food 

security early warning system, with the food security coping strategies index as the 

response variable, using LASSO and random forests for feature selection.  

Many of these early warning models depend on, or would perform better with, access to 

high frequency data from surveys or satellites. High frequency data collection using 

sentinel sites that allow for long term monitoring and measurement of welfare and well-

being would go a long way towards supporting development resilience and early warning 

(Barrett 2010; Headey and Barrett 2015). Taking advantage of widespread access to 

mobile phones, such sentinel sites could be set up affordably for the purpose of collecting 

a small set of key features unobservable through remote sensing while costlier 'thick' 

surveys that include the outcomes of interest for ground truthing could be conducted less 

frequently (Headey and Barrett 2015). High frequency survey monitoring data can 

increasingly be supplemented by remote sensing data - e.g., NDVI, SIF, weather, food 

prices, daytime or nightlights imagery - to significantly improve poverty and malnutrition 

M&E, mapping, and targeting. For example, multilateral collaboration to produce and 

maintain cloud-based platforms with curated, open access data would facilitate low-cost 

data reuse and augmentation, along with model development and improvement. Data 



preprocessing is time-consuming. Such a platform would allow researchers to pick up 

where others have left off. Google Earth Engine makes some raster data available, but the 

data list is still not comprehensive. Efforts such as the data gateway of the Food Security 

Portal, hosted by IFPRI (https://api.foodsecurityportal.org/) are a useful step in this 

direction.  

Early warning models also suffer from endogeneity of intervention. If prior indicators of 

food crises caused intervention/response, then the outcomes needed to train such an early 

warning model may not be available in the data (V. Kshirsagar, personal corresp. 2021). 

Prediction can fall prey to the same endogeneity concerns that bedevil causal inference in 

M&E. Analysts need data not only on food insecurity and its structural correlates, but 

also on intervention and mitigation efforts in order to design and maintain effective early 

warning systems. Such data would also require coordination among operational agencies 

and could be vastly facilitated by interagency/intergovernmental platforms. 

However, even as we clamor for more data, we also urge caution in data collection, 

handling, and use. Informed consent and anonymity must be scrupulously maintained. 

While randomized offsets in geotagged household level survey data can frustrate 

targeting, mapping, and M&E efforts, they also serve to protect the populations under 

study. As data continue to grow, especially geotagged data and data from mobile phones 

and apps, researchers will need to continue to protect the privacy of vulnerable 

communities while trying to enhance our ability to rapidly deploy services and transfers 

that can meet their needs.  

Finally, one can only predict with accuracy states and processes that have been 

previously observed in data. This presents a challenge to the development of early 



warning systems in an era of climate change. Nonstationarity processes can result in a 

shift into a previously-unobserved state. For example, with sea level rise, past data 

generating processes will likely perform poorly in predicting future outcomes for coastal 

communities increasingly faced with regular or permanent flooding. We will struggle to 

anticipate outcomes in such regions with accuracy no matter how abundant our data and 

powerful our algorithms. 

Conclusion 

Any machine learning-based model, map, or tool will only be as good as the data used to 

train and test it. Consequently, data availability has enormous implications for the 

questions that can be asked and answered with machine learning applications. Progress is 

limited by a serious undersupply of the global public good of collection, standardization, 

updating and open access curation of key variables that are typically useful in poverty 

and malnutrition targeting, mapping, M&E, and forecasting.  

The COVID pandemic, the rising challenges of climate change, and related food crises 

combined with advanced data collection techniques and powerful algorithms all increase 

the value of rapid assessment while simultaneously increasing the complexity of and care 

we must take in data use and model building. While we embrace the power and 

possibility of big data and machine learning, we simultaneously urge thoughtful 

consideration of the uses and purposes of these models. Most importantly, no data or 

targeting, mapping, or early warning model will be effective without the political will and 

financial support to take action and intervene to reduce unnecessary human suffering.  
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