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Contract Incentives and Excessive
Nitrogen Use in Agriculture

Paul V. Preckel, Gerald E. Shively, Timothy G. Baker,
Mei-Chin Chu, and Jessica Eide Burrell

This study examines incentives for input use under tournament contracts. We
analyze implications of contract design for nitrate-based environmental externalities
generated by agricultural producers. Outcomes are compared from contracts awarded
by tournament to those from fixed-payment contracts. Our findings show contract
insecurity can distort input use. The model developed in this analysis is applied to
a region of the U.S. where tournament-based production is prevalent and ground-
water contamination is a problem. We find contract insecurity increases nitrogen use
by about 12%, resulting in a 17% increase in nitrate leaching. Implications for con-
tract modification to reduce environmental externalities while maintaining contract
incentives are discussed.

Key words: agriculture, environmental externalities, nitrogen use, tournament
contracts

Introduction

The costs of water degradation in the U.S. due to agriculture have been estimated at
$2-$8 billion annually (Ribaudo). Contamination of drinking water supplies by elevated
nitrate levels in subsurface water is a particular concern. Nitrate is the most widespread
agricultural contaminant and poses a potential risk to human health in some locations.
Recent data suggest that as many as 4.5 million Americans are exposed to nitrate concen-
trations above the maximum level recommended by the U.S. Environmental Protection
Agency (EPA). The most significant environmental releases of inorganic sources of nitrates
originate in the use of fertilizers.' In many cases, elevated nitrate levels can be traced
to high rates of nitrogen fertilizer application by agricultural producers. When nitrogen
is applied in excess of crop uptake, nitrate leaching occurs below the crop root zone
leading to contamination of subsurface water supplies.
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For example, according to the EPA's Toxics Release Inventory, releases of fertilizer to water and land totaled over 112
million pounds from 1991 through 1993.
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In this study, we demonstrate both theoretically and empirically how excessive use
of nitrogen fertilizer can be traced to the incentives associated with insecure tournament
contracts. 2 A stochastic dynamic principal-agent model is used to compare specific
incentives for input use under fixed-payment and insecure tournament contracts. The
behavioral implications of the model are then examined and the magnitude of excess
nitrogen use is measured for a region in the Midwestern U.S. where groundwater is
highly susceptible to nitrate contamination. We show how the perceived lack of contract
security on the part of producers can lead to overapplication of variable inputs relative
to the case where it is known a priori whether the contract will be renewed. We also show
how contract rules could be modified to reduce or eliminate socially suboptimal applica-
tions of nitrogen.

Tournament Contracts in Agriculture

The contract of interest in this study is a tournament-based principal-agent contract.
The structure of principal-agent contracts in agriculture is of perennial interest among
applied economists due to underlying and difficult-to-observe differences in efficiency,
risk aversion, and double-sided moral hazards. Salanie provides a modern treatment of
contracting models, many of which build upon principal-agent theory (e.g., Holmstrom
and Milgrom 1987, 1992). Chu et al. provide an extensive treatment of the static prin-
cipal-agent problem in an agricultural setting, and Agrawal analyzes the links between
producer efficiency and contract choice in a principal-agent model applied to agriculture.

In the principal-agent framework, the principal has the power to design the contract,
while the agent responds to the contract in a self-serving way. The principal's goal is to
design the contract so as to achieve her goals, given that the agent will respond to the
contract by optimizing his goals. A major difficulty in contract design in agriculture is
that the principal (e.g., a landlord or contractor) is frequently unable to observe some
of the characteristics or actions taken by contracting agents.

In response, tournament contracts have arisen in agriculture as a way to encourage
incentive compatibility among contract participants. Outside of agriculture, tournament
contracts are widely used for employee compensation, especially at top management
levels (Gibbons and Murphy; Jensen and Murphy). The primary goal of a tournament
contract is to foster competition between agents by basing rewards from the principal
on some measure of agent performance (Nalebuff and Stiglitz). Typically, this goal is
achieved by designing a system of payoffs that reward those who perform better than
average and penalize, at least in relative terms, those who perform less well.3 Although
many principal-agent models are constructed using a risk-averse agent and a less risk-
averse (or risk-neutral) principal, the assumption of risk aversion is not required to
explain either the emergence of contracts or their persistence (e.g., Eswaran and Kotwal;

2 As noted by one of the reviewers, tournament contracts do not necessarily lead to increases in input use any more than
contracts based on fixed performance standards. (See Tsoulouhas and Vukina for a discussion of the various types of contracts
used in livestock production.) Rather, it is the combination of dependence of the compensation scheme and the future access
to the contract on current yield performance that can lead to excessive input use.

3 Our formulation leads to behavioral predictions for the agent that share some features of models of ratchet effects, i.e.,
contracts in which performance standards increase over time conditional on past performance. However, the current analysis
assumes the conditional probability distribution for contract renewal is fixed over time. Allen and Lueck study share contracts
in agriculture and find only limited evidence of ratchet effects.

Preckel et al.
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Nalebuff and Stiglitz). For simplicity in the model developed below, we assume risk neu-
trality on the part of both principal and agent.

One difficulty associated with optimal contract design is that the principal's optimi-
zation problem includes optimal behavior of the agent as part of the constraint set.
Thus, the problem falls into the class of bilevel programming problems (Bard and Moore;
Candler and Townsley). These problems can prove difficult to solve via traditional
numerical techniques because, in general, the constraint set for such problems need not
be convex. In the present se, we are concerned with the nature of the agent's response
to an existing tournament contract. Thus, we focus our attention on the agent's problem,
which is a convex optimization problem.

In the agricultural sector, tournament contracts are common in livestock and seed
corn production (e.g., Knoeber; Knoeber and Thurman 1994,1995; Swinton, Chu, and
Batie; Tsoulouhas and Vukina). In the case of broiler production, contract termination
provisions are rarely connected to tournament outcomes. In contrast, performance and
contract renewal are closely wedded in the case of seed corn production. Shaw, Howard,
and Martin provide a survey of contracts in the seed corn industry.

Contract seed production, wherein an agricultural producer grows a crop expressly
to provide seed for a supplier, is characterized by a lack of relationship-specific assets.
Producers typically provide machinery, land, and management skills that could be used
in other ways. Furthermore, significant and unobserved heterogeneity may exist with
respect to land and management skills. Because of this heterogeneity, the contracting
relationship between the seed corn company and the seed producer does not necessarily
develop as a long-term agreement. Unlike poultry contracts, which typically span several
years, seed corn contracts tend to be renewed annually. Moreover, because there are
essentially no fixed assets specific to seed corn production, there is no strong barrier to
short-term contracting. Instead, seed corn producers are paid for use of land and for
providing services such as land preparation, planting, and crop management. Payments
to seed producers are comprised of a fixed payment plus a bonus or penalty. The fixed
payment is typically not linked to seed corn production, but is instead based on per acre
revenues realized in the commodity corn sector. To this fixed payment, which is clearly
independent of variable input use on the seed corn, a bonus is added. An individual
producer receives a bonus if his yield exceeds the average for all producers under
contract. The producer may be penalized if his yield falls below the average.

Typically the number of producers seeking such contracts exceeds the number of
contracts available. In response, seed companies allocate contracts to preferred pro-
ducers, usually on the basis of high yields. As a result, a producer has two incentives
to seek a high yield: the bonus payment and the increased likelihood of future contract
allocations.

The first issue we address in this article is whether the features of insecure tourna-
ment contracts encourage greater application of inputs such as fertilizers than would
be the case under an allocation of contract by lottery, combined with a straight payment
for yield. Using a stylized model of the producer's problem, we demonstrate that the
insecure tournament contract can create an incentive to overapply fertilizer. Our second
concern is empirical and focuses on measuring the magnitude of this increase in input
use. A third issue taken up below is how one might modify the payment and contract
allocation schemes so as to reduce or eliminate the incentives for increased application,
while maintaining farmer incentives to maximize yields.
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The Model

To begin, we develop a model to compare fertilizer use under fixed-price and insecure
tournament contracts. For simplicity, we assume a single-input, stochastic yield function,
in which output per acre is a function of nitrogen application (the representative vari-
able input), a weather index, and an error term. The production function is assumed to
take a linear response and plateau form. The slope of the linear portion is constant with
respect to nitrogen and is independent of weather. The plateau level is an increasing
function of weather. The production function for the individual producer is:

y(n, w) = min(an, Pw) + e,

where a and p are fixed positive parameters, y(.) denotes output as a function of input
(nitrogen) level n and the disturbances w and The disturbance s reflect the imperfect
relationship between weather and output. Throughout the exposition, we use W (upper
case) to denote the weather random variable and w (lower case) to denote a realization
of the weather random variable. When functions of random variables are defined, they
will be defined in terms of realizations. When the arguments of these functions include
W, the function should be understood to indicate a random variable whose randomness
is driven by its arguments.

Following Nalebuff and Stiglitz, we assume the first disturbance is covariate, i.e.,
shared by all producers in the contest, and that the second disturbance is idiosyncratic,
i.e., specific to individual producers. The weather index ranges between zero and one,
with one indicating ideal conditions and zero indicareting conditions resulting in zero
yield. For convenience, we assume in the theoretical model that weather (W) and the
idiosyncratic disturbance (e) are uniformly distributed on [0, 1] and [-d - en, d + en],
respectively, where d and e are constants. With this formulation, the support of the
distribution that is not explained by weather has the potential to grow or shrink with
the leveltion of nitrogen use. The question of whether this support should grow, shrink, or
remain unchanged in response to changes in nitrogen use is an empirical one. We address
this in a subsequent section.

For simplicity, we rule out the possibility that farmers might base nitrogen applica-
tion rates on the expected impact of current-period nitrogen application on future soil
productivity. Whether such an assumption is appropriate is arguable, but the literature
on nitrogen carryover in the humid Midwest is largely inconclusive. Several studies
(e.g., Brown, Rice, and Hoette; Leclerc) have found little or no nitrogen carryover in
years of normal or high precipitation. Other studies (e.g., Bundy and Malone) have
indicated substantial overwinter retention of nitrogen in years when precipitation was
sufficiently limited that residual nitrogen did not leach beyond the root zone. Vanotti
and Bundy argue that while carryover is likely in most years at commonly recommended
application rates, the amount of nitrogen carryover is largely weather driven, and that
"accurate predictions of N carryover based only on the amounts of N previously applied
are not possible" (p. 885).

We assume, therefore, that a producer lacks the ability to accurately assess the extent
of nitrogen carryover in any given year. We also note that, in the region of study for the
empirical analysis of input use distortion (described in a later section), soils are sandy
and irrigation is used. Both of these factors contribute to a reduction in nitrogen carry-
over and add support to our decision to ignore nitrogen carryover. Given this assumption,

Preckel et al.
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the dynamics of the farmer's problem are reduced to assessing the impact of current-
period input decisions on subsequent bonus payments and probability of contract
renewal.

A Fixed-Payment Scheme

We examine first the incentives associated with a fixed-payment contract.4 With free
access to contracts and a fixed price per unit of output produced, the expected per acre
contribution from production is:

E[n(n, W, c)] = 1
d+e [pmin(pw, an) +pe - cn] 1 dedw

J -d -en 2(d + en)

= fn/P(ppw - cn) dw + I (pan - cn) dw

pan cn,

L an]

wherep denotes output price and c denotes nitrogen price. The expected profit-maximizing
level of nitrogen under the fixed-price scheme is:

n =max a2 (pa -c), 0].

The nitrogen level is strictly positive as long as the net marginal value product of

nitrogen is positive in some weather state of nature. Henceforth we assume pa - c > 0,
because otherwise nitrogen application would be zero. The expected profit-maximizing
level of nitrogen application under the fixed-payment contract is that which equates the
marginal value product of nitrogen application to its marginal cost.

The Tournament Contract

We now compare the fixed-payment scheme to a tournament contract. Let "tournament
average" refer to the average yield realized by producers participating in the tournment.
We denote this by Y. Now consider the case in which each producer receives a fixed
payment R plus a bonus. The bonus is a linear function of the deviation of producer yield
from the tournament average. Let the bonus be described by y(y(n, w) - Y), where y is
a constant ($ per bushel). Note that the bonus payment is conditional on realized
weather. Thus, it is an ex post payment. The producer's yield is a function of nitrogen
use on the farm, a weather realization, and the producer's idiosyncratic shock. The
tournament average is a function of nitrogen use on all farms in the tournament and the
same weather realization. As formulated, the bonus parameter y fills a role similar to
price in determining the optimal nitrogen application level. Expected profit under this
scheme is:

4 In the context of the model, the phrase "fixed payment" indicates a rate, like a price, that multiplies output. This is in
contrast to the "fixed performance standard" type of compensation as described by Tsoulouhas and Vukina, where the
payment is a constant plus a fixed rate that multiplies output.
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E [(n, W, )] = d+en [R + y(min(an, w) +e - Y)- cn] 1 cdedw
J den 2(d +en)

=R+yan 1 -2P - yE[Y] -cn.

If the individual producer believes that other producers will not alter rates of nitrogen
application in response to the individual's choice, the optimal level of input use under
the bonus scheme is:

B 1n = (a- c).
ya 2

This expression is analogous to the free-market, fixed-payment solution, with the bonus
rate y playing the role of the market price p. Observe that the optimal nitrogen level
under this contract will be greater than the optimal free-market rate when the bonus
rate exceeds the market price (i.e., y > p). It also will be less than the free-market rate
when the bonus rate falls below the market price. In other words, the effect of this type
of contract on nitrogen use is, in theory, ambiguous.

If producers have free access to the tournament contract and there is a noncontract
market for seed corn, participants and nonparticipants will apply the same rate of nitro-
gen, provided the market price of the product and the bonus rate for yield are equal.5
But if a farmer has an incentive to participate in the tournament and believes his
contract is insecure, he may respond by increasing nitrogen application to avoid falling
into the lower tail of the yield distribution, and thereby risking contract loss.

Behavior of Producers Under the Optimal Contract

To assess the behavioral implications of our model, consider the case where a producer
begins with access to the contract and y =p. Assume that the producer's best production
alternative produces a return of S. 6 Assume further that the producer's access to the
contract will be terminated if his output falls below the tournament mean by more than
the constant amount (p(d + en).7 Finally, assume that the producer discounts future
contributions to profits at the rate 6 and seeks to maximize the discounted sum of
returns. In this case, the producer's problem can be represented by a Markov chain with
two states-a transient state (with the contract), and an absorbing state (without the
contract). 8 In the style of Bellman, the value function is defined by the following recur-
sive relationship:

5 In this case, the marginal revenue associated with nitrogen is identical for participants and nonparticipants.
6 We assume S < E[W] because otherwise, producers would have an alternative that pays as well or better than seed corn

production with certainty. Thus, no producer would want the seed corn contract.
7 The perception of the critical level for contract termination will vary by individual. Some agents may perceive that con-

tracts will be terminated if yields fall below the tournament average ((p = 0). Here, however, we examine a general threshold
and sensitivity with respect to it.

8 The underlying assumption here is that once access to the contract is lost, it is lost forever. If the population of potential
agents is fixed, this implies that eventually no one has access to the contract. This outcome does not occur in reality because
the pool of contract seekers is not fixed. Even so, this assumption is probably a bit extreme. But to eliminate the assumption,
we would require an estimate of the transition probability between "no contract" and "contract" states. We have neither data
nor anecdotal evidence to suggest a value for this probability.

Preckel et al.
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(1) VT(j) =

r Zt=T S if j = 0,

max {E[TT(nT, W, e) + 6((1 - q(nT, W))VT+1(1) + q(nT, W)VT(O))]} if j = 1,
nT

where j denotes the contracting state, 7T(nT, W, e) is a random variable denoting the
current return from seed corn production, and q(n , W) is a random variable denoting
the probability that the contract will not be renewed. Note that the probability of
contract loss is conditional on nitrogen use and weather. The value function expresses
the current value in period T of the expected discounted future stream of profit flows,
conditional on the current state, wherej = 0 indicates that no contract is available and
j =1 indicates the contract is available.

In order to derive the individual producer's probability of losing the contract for a
given weather realization (q(n , w)) and establish its dependence on nT and w, it is neces-
sary to distinguish mean yield, conditional on weather, for the individual producer and
for all tournament participants. Payoffs under the contract, as well as the probability
of losing the contract for the individual, depend on the tournament average yield.

This tournament average yield is reasoned as follows. First, we assume that because
individuals behave independently, the tournament may be viewed as a game. Second,
to facilitate the analysis of this game, we assume that all tournament participants have
access to the same technology, resources, and information as the other participants.
Third, in the interest of simplicity, we take a Nash perspective of the tournament-the
individual producer chooses his nitrogen level assuming that the other producers do not
change their nitrogen levels. Finally, because of symmetry of this game, we reason that
the equilibrium occurs when all tournament participants have chosen the same level of
nitrogen use. The chosen level is such that there is no incentive to change, given that
the other participants do not change.

Thus, all participants use the same level of nitrogen, but the individual producer
controls only his own. To keep this distinction clear, we denote the individual's level by
n and the level applied by each of the other participants by N, noting that in equilib-
rium, these levels will be equal. Thus, the individual producer's mean yield conditional
on weather is:

y(n, w) = +en [min(w, an) + e] = min(pw, an).
J-d-en 2(d + en)

The tournament mean yield is expressed in analogous form as Y(N, w), with the regional
nitrogen level N replacing the individual nitrogen level n. Note this means that Y(N, w) =
y(N,w).

The producer's probability of losing the contract, conditional on the state of weather
and the level of nitrogen application, is found by integrating the density of the indi-
vidual producer's yield disturbance (e) over the range of e that would result in loss of
contract. This integral is:

(2) q(n, w) = Y(N,w)-(d+eN) 1 de
Jy(n,w)-d-en 2(d + en)

=1 1 [Y(N, w) - (d + eN) - y(n, w)].
2 2(d + en)
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We are now in a position to derive the conditions under which a producer tries to
reduce his subjective probability of contract loss by increasing nitrogen use. If the tour-
nament and individual nitrogen levels are equal, the expression for the probability of
contract loss in equation (2) reduces to (1 - (p)/2. However, the farmer knows that the
rate of nitrogen application affects his mean yield. Hence, the marginal effect of nitrogen
application on the individual producer's probability is:

(3) aq(n, w)
an

---d -- Oyi(n, w- ) _ e(Y(N, w) - (p(d + eN) -(n, w))
2(d + en) an (d + en)

The right-hand side of equation (3) is negative as long as the term in square brackets
is negative.

Consider the optimization problem in the recursive relationship. The first-order condi-
tion for the optimal nitrogen level is:

(4) E n +, ann' [VT+1(0) - VT+1(1)] =
anT

Equation (4) reflects our assumption that the optimal expected value function in the
subsequent period does not depend on the current-period nitrogen level (i.e., nitrogen
carryover is ignored). Taking advantage of the fact that the optimal expected value
function is stationary [i.e., that VT(j) = VT+1(j)], along with the fact that the optimal
expected value function has known value in the state without the contract [i.e., VT(O) =
S/(1 - 6)], we can define a relationship that implicitly identifies the optimal nitrogen
level. This is:

(5) E[ (nWe) 6(ET(nW, e) - S) E[aq(n, W)]
an (1- 6(1 -E[q(n*, W)])) an

Equation (5) simply states that the current expected marginal profit from nitrogen
application should equal the expected difference in the discounted income streams with
and without the contract, multiplied by the expected marginal change in the probability
of contract loss due to the effects of nitrogen changes. We derive equation (5) formally
in appendix A. For current purposes, the most important implication of equation (5) is
that the effect of contract insecurity on input use (hereafter referred to as the input
distortion) is in general ambiguous. Incentives for input distortion, if any, depend on the
relative values (and in some cases signs) of parameters in the problem. Thus, to measure
the direction and magnitude of any input distortion associated with the terms of an
insecure tournament contract, we must examine a particular case. The next section
provides a numerical analysis of our model, as applied to seed corn contract farming in
a region of the Midwestern U.S.

9 The first term in the square brackets is nonpositive because the marginal product of nitrogen is nonnegative in each state
of nature. If the regional and individual nitrogen levels are equal, then the sign of the second term depends upon the sign
of -ep(d + eN). The sign of this expression cannot be determined without knowledge of the sign of e, which must be evaluated
empirically.

Preckel et al.
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Empirical Evaluation of Input Use Distortion

Data

We evaluate our model empirically for St. Joseph County, in southern Michigan. We
selected this region for the empirical study due to the prevalence of seed corn production
and the high incidence of elevated nitrate levels in groundwater (Weight). St. Joseph
County exhibited the highest levels of nitrate presence in the U.S., with 19.5% of well
samples in a 1989 survey exceeding the maximum contaminant level set by the U.S.
EPA (Martin). Complete details regarding production costs for seed corn in this region
are available from the lead author upon request. In brief, seed corn is produced under
irrigated conditions, and total variable operating costs excluding nitrogen are $133 per
acre. For a representative farm, we analyze a contract of the form:

(6) payment = 1.1(Pbot - 0.12)[2(yi - (N, w)) + 185],

where Pcbot denotes an agreed-upon price, yi is the individual producer's realized yield,
and 185 is the regional average yield for non-seed-corn production. As is common in
contracts of this form, we peg the price to the Chicago Board of Trade futures price for
commercial corn, using a delivery date near harvest for the current year. In the simu-
lations reported here, we use a value of Pcbot = 2.70. As equation (6) states, we adjust the
pegged price downward by $0.12 to reflect the cost of transportation, and scale up the
payment by 10% to reflect the bonus the principal uses to make the contract desirable.
We assume yield depends upon both the realization of weather and random factors
unrelated to weather. As noted above, we set base yield for non-seed corn (the reference
crop for the fixed payment) to 185 bushels per acre. A payment bonus for above-average
yield equals twice the difference between farm-level yields and average yield across
other tournament participants. These figures are broadly representative of both the
form and magnitude of existing contracts in the industry.

The biophysical relationship between nitrogen and seed corn yield is based on a widely
used crop simulation model called DSSAT (Tsuji, Uehara, and Balas). For this study, the
model was calibrated to track the growth of hybrid seed corn in St. Joseph County,
Michigan (Ritchie et al.). Weather risk in the model is based on actual weather data for
the years 1953-92. We generated yields for each of the 40 years using 21 discrete nitro-
gen application rates. These ranged from zero pounds per acre to 178 pounds per acre
in 8.9-pound (10 kilograms per hectare) increments.10 Table 1 presents the estimated
parameter values for the DSSAT production relationship. (Further details regarding the
yield computations are presented in appendix B.) Based on the fitted model of yield
response, and a nitrogen rate of 86 pounds per acre, we obtain an aaverage yield of 78.3
bushels per acre for seed corn.1l Based on the payoff function and farm budgets, this
yields a net return of$504 per acre.12 Net return to the next best alternative to seed corn
production (S in the model) is $150 per acre. This corresponds to the median cash rental
rate for agricultural land in St. Joseph County during 1995 (King).

10 The DSSAT model takes as input data daily maximum and minimum temperatures, precipitation, and solar radiation.
While the model accounts for potential nitrogen carryover, we ignore any impact of nitrogen carryover in the analysis.

11 Note that the average yield of 78.3 bushels per acre corresponds to seed corn production, which is intensive in its use
of land. The base yield used to set the fixed payment, 185 bushels per acre, corresponds to #2 dent corn, the alternative crop
for the producer.

12 Net return in this context refers to gross revenues less variable costs.

476 December 2000



Contract Incentives and Excessive Nitrogen Use in Agriculture 477

Table 1. Estimated Parameter Values for DSSAT Production Relationship

Year

(t)

Intercept

(W)

1953

1954

1955

1956

1957

1958

1959

1960

1961
1962
1963
1964

1965

1966

1967

1968

1969
1970

1971

1972

22.712

14.562

23.863
13.287

30.919
28.133

13.953

12.613

24.010

28.732

11.110

36.442

33.026

33.844

4.824

24.369
30.970

26.053
27.558

22.749

Plateau

(P)

77.155

74.425

78.852

69.080

91.150

81.837

65.227

68.378

77.614

82.016

58.351

83.814

87.323

89.542

60.660
83.011

83.598

85.281

77.614

67.217

Year

(t)

Intercept

(W)'

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990
1991

1992

21.176

29.786

29.765

13.550

30.790

23.883

21.644

11.888

27.896

17.473

19.616
24.687

24.913

26.737

28.767

30.665
17.826

17.529

29.437

11.386

Plateau

(a)

76.313

86.557

90.014

62.140

86.200

75.344

78.278

71.861

86.583

76.517

73.303

86.162

76.173

87.157

83.700

95.781

81.467

72.805

88.535

54.511

Note: The common slope with respect to nitrogen for all years is a = 0.51242.

Empirical Results

The optimum level of nitrogen use can be computed by evaluating expression (5). Based
on the economic conditions assumed for this analysis, we computed an optimum level
of applied nitrogen of 98 pounds per acre for the case in which the producer is certain
he will retain his contract in the subsequent period.'3 We arrived at this result by con-
ducting a grid search across nitrogen values ranging from 93 to 113 pounds per acre.14

As we stated at the outset, however, producers cannot be certain of contract renewal.
Therefore we consider the case in which some of the producers lose access to the contract
in the next period. We examine a range of scenarios. These are defined by the density
in the lower tail of the yield distribution for tournament participants corresponding to
contract suspension in the subsequent period. Optimal nitrogen application rates for

13 This also is the optimum when the agent is certain that he will lose the contract next period. The reason is that the deriv-
ative of the probability of retaining the contract with respect to the nitrogen application rate is zero in both cases.

1
4 Derivatives of expected yield with respect to nitrogen application rate were evaluated by difference approximation. The

optimum is identified by the interval in which the sign of the expression (4) changes. If this sign does not change, then the
optimum nitrogen application rate is the lowest rate at which the expected marginal product of nitrogen becomes zero, which
occurs when the marginal product of nitrogen is zero in all 40 weather states (years). Clearly, this is the greatest rate that
would ever be applied in the presence of a positive nitrogen cost. In the present case, this maximum application rate is 110
pounds per acre.

I _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i

I I
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Table 2. Optimal Nitrogen Application Rates by Contract Cutoff Probability

Perceived Percentage of Lower Optimal Nitrogen Nitrate
Tail of Regional Yield Distribution Application Rate Loading Rate
That Loses the Contract (%) (lbs./acre) (lbs./acre)

0 98 34.7

1-36 110 40.5

37 108 39.3

38-50 106 38.2

51-60 104 37.2

61-67 102 36.5

68-76 100 35.6

77-80 98 34.7

81-100 97 34.4

these simulations are reported in table 2. Results show that if the cutoff percentage is
small (even 1%), then the optimal producer strategy is to apply nitrogen at the maximum
rate of 110 pounds per acre.15 The reason is that the individual can effectively eliminate
the probability of falling into the range of the yield distribution that triggers loss of
access to the contract by applying a bit more nitrogen than others in the tournament.
However, because all participants have identical incentives, and because we assume
they do not collude, each increases his use of nitrogen to the point where, in equilibrium,
he cannot affect the probability of contract loss in the subsequent period.

This phenomenon persists up to the point where the percentage of the lower tail
corresponding to contract suspension is 36%. As the data in table 2 indicate, at this
point nitrogen application has been distorted by over 12%. Above the 36% level, nitrogen
application drops gradually to the contract certainty level of 98 pounds per acre at the
77% level. When 100% of the lower tail loses the contract, the nature of contract security
is again certain. As a result, the incentive for excessive application disappears, and the
optimal application rate is again 98 pounds per acre.

In addition to predicting yields, the DSSAT model predicts nitrate leaching below the
crop root zone. These predictions are presented in figure 1. Importantly, the change in
the rate of nitrate leaching below the crop root zone is even greater than the rate of
increase in nitrogen application. The highest levels of leaching (and hence the greatest
risk of groundwater contamination) occur when the cutoff percentage is in the 1-36%
range. Here the nitrate loading rate is approximately 40.5 pounds/acre, about 17%
higher than with certain contract loss or certain contract renewal. In other words, when
producers believe that one-third or less of the contract holders will lose their contracts
due to low yield, the increase in nitrate leaching is approximately 17%. This by-product
of the tournament contract system is a direct source of an increased risk of groundwater
contamination. In the next section, we examine modifications to the contract that would
reduce or eliminate these distortions in input use.

16 Note that beyond 110 pounds per acre, there is no yield response to nitrogen in any of the weather states.
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Figure 1. Predicted nitrate loading rates (pounds/acre)

Implications for Contract Design

Our theoretical model demonstrates that, under plausible stylized circumstances, the
nature of insecure tournament contracts in the seed corn industry may lead to excessive
nitrogen application (and conceivably distortion in the use of other inputs). One cause
of this increase in input use is lack of security in the contract and the perception by
agents that if yield falls too low relative to the tournament average, the principal may
suspend the contract. Importantly, this result was derived under an assumption of risk-
neutrality on the part of both principal and agent.16 From a theoretical perspective, the
potential for a contract-induced externality serves to undermine some of the desirable
properties of relative performance compensation schemes in economies with imperfect
information.

The principal may desire to mitigate the externality induced by a tournament contract
in the interest of being perceived as a good corporate citizen. One way to achieve this
goal would be to award the contracts on the basis of random lotteries. However, in the
presence of real differences among agents with respect to yields, this approach probably
would not be acceptable to the principal without modification of the payment system.
This is because a greater amount of land under contract would be required to produce
the same amount of seed. Of course, the fixed portion of the payment could be reduced
to compensate the principal for the increased area under contract. But if the decrease
in the fixed payment were too large, some producers might seek alternatives to the
contract, thus raising the specter of adverse selection among participants.

However, there remains the important case where the principal may not perceive a
need to mitigate the externality. In this case, the market fails, and any solution will

6It is beyond the scope of this investigation to confront the problem of contract incentives when agents and/or the principal
are risk-averse. Such effort is warranted, however.
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likely involve government intervention. This intervention could take the form of reg-

ulating and monitoring nitrogen levels of tournament participants or limiting the

geographic region where the tournament contracts can be employed to those where the

environmental risks of input distortions are relatively low. None of these solutions are

particularly attractive from a practical perspective, and further research is needed to

identify additional alternatives.

Concluding Remarks

As the trend toward increased industrialization of agriculture proceeds (e.g., Barry;

Boehlje and Schrader), a number of observers have speculated that the role of con-

tracts as a means of coordinating links between agricultural firms will expand and

strengthen (e.g., Boehlje; Schrader). In the case of seed corn production, this analysis

shows that the use of insecure tournament contracts has the potential to distort

input use. We found insecure tournament contracts, in which the probability of

contract renewal depends on yield performance, encourage excess use of nitrogen

fertilizer, and as a result lead to increased nitrate leaching below the crop root zone.

Levels of nitrogen application and leaching were found to exceed those in the case

in which it was known a priori whether the contract would be renewed by up to 12%

and 17%, respectively.
Given the significant environmental and public health risks associated with nitrate

contamination of groundwater in the U.S. and elsewhere, this analysis calls into question

the ability of insecure tournament contracts to achieve socially optimal outcomes.

However, we have shown that the negative effects do not lie in the use of the tourna-

ment contract, per se, and that input distortions could be mitigated by either awarding

contracts by lottery, or possibly by modifying the contract payment function.

[Received January 2000; final revision received August 2000.]
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Appendix A:
Derivation of Optimality Condition for Nitrogen Level

Here we derive the optimality condition for nitrogen levels based on the theoretical choice model. From

the first half of the recursive relationship in text equation (1), we know that

(Al) VT(O) = 6 - S
t=O 1-6

From the second half of the recursive relationship, we know that

(A2) VT(l) = max Et{7T(n, W, e) + [1 - q(n, W)]V+T, (1) + 6q(n, W)VT+i(O)}.
n

The first-order condition with respect to n is:

(A3) 0 = Ed [V (0)a - VT+1(1)1}
an an

ao=,(n,, w, S) aq(n*, w) [vo ) v, 1],
= E +(6E [V+ 1(0) VT+)]

an an

where n* denotes the optimal level of nitrogen. Assuming the expectation of the marginal effect of nitro-
gen on the probability of contract loss is not zero, this expression may be rearranged to express the
value function in the state with the contract as a function of the marginal effects of nitrogen on current
profits, the probability of contract loss, and the value of returns to the alternative to seed corn production
as

(A4) VT+(1) E aT(*, W, E + VT(0)
an E n[ n

TT(n' W, ) OE aq(n*,W)} S
Oan an i 1-6

Note that if the marginal effect of nitrogen on the probability of contract loss is zero, the first-order
condition for the nitrogen level is satisfied at the more usual point where the marginal profit of nitrogen
is equal to zero. The value function is stationary [VT(O) = V(0) and VT(1) = V(1)], so we can rewrite the
recursion for the state with the contract as

(A5) V(1) = E {r(n*, W,e) + 6[1 - q(n*, W)]V(1) + 6q(n, W)V(O)}.

Eliminating the expected optimal value function by substituting the expression derived from the first-
order condition for nitrogen for the state with the contract, and for the previously noted expression of
the expected optimal value function for the state without the contract, results in the following expression:

(A6) S +E aT(n*, W, ) E[aq(n* W)]- 1

1-6 an an

= E rCT(nc W e) + o[l q(n S +E [aT(n' W'e) E aq(n*, W) -1= rc (n , W, e) I 6[1 -q (n* , W)] E 5
1-6an an

+Sq(n*,W)1
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which can be rearranged to obtain:

(A7) (s-l··c·-~n · · I)Elaa~n*,w) la~ba il-ru.q~n*, W aNT(n* W,e)(A7) (S -E[Tr(n, W, e)] )E n 6 + (1 - 6(1 - E[q(n*, W)]))E[ T(W) ] =
an an

This expression defines the optimal level of n*. The expressions for expected current-period profits and
expected marginal current-period profits are derived in the text. The expected probability of contract
loss and the marginal effect of nitrogen on the probability of contract loss are:

E[q(n W)] = f 1 + Y(N, w) - p(d + en) - (n*, w) dw
o 2 2(d + en*)

=1-( +- 1 *iC\f"aNdw + 1w w-d an/n*dw -t1 wdw
2 2(d +en*)J J[o a/p JO an/p J

_ l-(p + 1 (aN)2 _ (an*)2

2 2(d +en*) 2 2 2

and

(A9) E [a q(n*, W) - e . (aN)2 _ (an*)2 a2n *

a rin 2(d +en*)2 21 2P 2(d + en*)p

We assume that in equilibrium N = n*. Taking account of this fact and combining expressions, we
obtain a restatement of the condition satisfied by the optimal nitrogen level:

(A10) QS + (1+1- + plJa[1 Can* -] -a22(d +en*)[ + epa2n* -1

2 (d +en*)2p

[ ( 2 (an* (an*)2 ) ]p

This simplifies to a cubic equation in n*. While a closed-form expression exists for the single real root
of this expression, it is cumbersome and not amenable to straightforward interpretation. Thus, we
proceed on a numerical basis.

Appendix B:
Description of Estimation Procedure for

Yield Distributions

This appendix describes the estimation procedure employed to generate the yield distributions used in
the simulations reported in the "Empirical Evaluation of Input Use Distortion" section of the text. Con-
ceptually, the model of yield which is roughly consistent with the DSSAT biophysical model is:

(All) min[a(n + no(w)), 1(w)],

where no(w) denotes the amount of nitrogen available from natural sources. To obtain yield estimates
for values of nitrogen which are intermediate to the 8.9-pound increments, we solved the following least
squares problem:

40 21

(A12) min t E (Yti - min[t + ani, 1])2.
at,ytO t=l i=l
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Thus, there are year-specific intercepts (it,) and plateaus (1P), and there is a common slope (a) across
years. The parameters aP were fixed at the previously mentioned levels observed in the data. Due to the
source of the data, this model-fitting exercise should not be viewed as a proper statistical regression.
However, it may be useful to note that the estimated model fits the DSSAT data quite well with an
explained variation in the model data (R2) of 99.99%. Parameter values for the estimation are listed in
text table 1.

As part of the process of calibration of the DSSAT model used to simulate seed corn yields in southern
Michigan, Ritchie et al. employed experimental plot data and published the actual yields versus the
yields predicted by DSSAT. This information served as the basis for developing a distribution of the
variability in yields that is not explained by weather. These data include four alternative nitrogen
application programs and replications across three years, and suggest that the variance of the distri-
bution of unexplained variability is not constant with respect to the nitrogen application rates. These
variances were transformed into supports for a uniform distribution of yield variation unexplained
by weather (and the DSSAT model), and a linear regression of the support of the distribution of
unexplained variability on nitrogen application rate was performed to obtain the following relationship:
d + en = 24.838 - 0.055n, where n is applied nitrogen in pounds, and yield is measured in bushels
per acre. This relationship implies that the unexplained variation declines as nitrogen application
increases.

This does not necessarily imply that nitrogen is a variance-decreasing input (in the sense of Just and
Pope). The reason is that, over a range of nitrogen applications, the variation which is explained by
weather is increasing in nitrogen application. The total variation in output is a combination of variation
from these two sources. For simplicity, the distribution of the unexplained variation is assumed to
be uniform with mean equal to the sample mean of the residuals from the calibration and variance
depending upon the level of nitrogen application as described. Ideally we would elicit the distribution
of the yield variation not explained by weather from the data rather than imposing a uniform distribu-
tion. However, in the present context, insufficient experimental plot data were available to discriminate
among alternative distributional assumptions.
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