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Executive Summary 
 

Transportation is a key element in the movement of agricultural products to market.  The level and nature 

of demand for different modes has a significant influence on the prices agricultural shippers pay, the 

routes that are taken, and whether public and/or private investments are warranted.  Modal demands, 

however, are influenced by the geography of the shippers and characteristics of the commodity 

transported.  Shippers located a long distance from the river tend to ship by rail (at least for long-haul 

movements), while shippers located near the waterway typically ship by barge, as truck-to-barge rates 

are often considerably lower than rail. 

The prices paid by shippers also depend on these same characteristics.  While truck and barge 

markets are often thought to be competitive, railroads have considerable latitude in the rates they charge, 

and the range of observed prices is quite large.  In areas where barge is a viable option, railroads may be 

constrained by barge rates, while in areas where barge is not a feasible option, railroads may choose 

higher prices (Anderson and Wilson (2008), Burton (1993), MacDonald (1987; 1989)).  In between, 

railroads can choose a set of prices that exclude rail to barge routings in favor of all-rail routings even 

though the multimodal routing is less costly (Burton and Wilson (2006)).   

At the root of competition is the presence and availability of substitutes.  As noted, in the case of 

rail and barge transportation, barge is relatively more attractive for locations close to the river.  However, 

as the distance from the waterway increases, barge becomes less attractive and eventually is not used.  

However, the catchment area for barge—the range at which barge is a feasible mode for shippers—has 

received relatively little attention, and the relationship between modal demands and catchment areas 

has typically not been investigated. 

These relationships are central not only to pricing but also to the feasibility of both public and 

private infrastructure investments.  For example, the U.S. Army Corps of Engineers (USACE) uses barge 

demand models in their calculation of the benefits of waterway investments.  Controversies over their 
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planning models in the late 1990s led to a number of transportation demand studies intending to estimate 

barge volumes for their calculations.1  Most of these studies relied on survey data of shippers in a river 

system (e.g., Columbia-Snake river valleys, Upper Mississippi-Illinois river valleys, and the Ohio).2  From 

the surveys, data were collected on shipper choices and options and analyzed using choice methods to 

estimate demands.  Generally, the spatial environment of shippers in these studies was reflected in the 

choices made.  That is, shippers located a long distance from the waterway typically chose rail, while 

shippers near the waterway typically chose barge.  In this sense, the spatial boundaries are inherent in 

the choices made by the shippers and not used to define spatial boundaries (i.e., the catchment area for 

barge).3 

The overriding objective of this research is to accurately capture the linkages between the 

demands for barge and rail freight movement.  We develop a methodology—using data for corn, the top 

agricultural product in terms of tonnage—that considers a wide range of catchment areas using non-

survey data.  Essentially, we use available data within an area and estimate barge versus rail demand 

choices.  Our approach utilizes the unmasked confidential waybill sample (CWS) of the Surface 

Transportation Board (STB) and the Waterborne Commerce Statistics (WCS) of the Army Corps of 

Engineers.  The former gives the origin and destination of rail shipments, while the latter gives the origin 

and destination of barge movements.  While this paper focuses on corn, such a methodology could be 

used to investigate the linkage between modes for any commodity.  The main results of this research are: 

 
1 The National Academy of Sciences pointed to three primary issues.  These included the forecasts used, the demand models 
used, and the need to consider non-structural solutions to congestion.  In these models, ACE used the tow-cost model, wherein 
demand from one location to another was taken to be vertical (perfectly inelastic) to a threshold, and perfectly elastic at the 
threshold.  Part of the controversy was that if the demand functions had a slope, the model would overstate the benefits of 
investment. 

2 These included both theoretical studies of catchment areas, modal splits, pricing, and welfare (e.g., Anderson and Wilson 
(2004, 2007, 2008, 2015) as well as empirical studies of shipper choices (e.g., Train and Wilson 2004, 2007, 2008, 2019).  Other 
studies consider spatial market areas and/or barge demands from river pool to river pool (e.g., Henrickson and Wilson (2005) 
and Boyer and Wilson (2005). 

3 Train and Wilson (2006) was one exception to this method. This study estimated a shipper choice model and then used the 
results to map the modal choice of shippers into rail and barge catchment areas in a hypothetical network structure. 
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• Most barge shipments terminate in the Central Gulf, while rail shipments are much more 
diverse, with most terminating in the Illinois, Lower Ohio, Lower Mississippi, or Central Gulf 
regions. 

• In the region of study, barge shipments comprise approximately 86 percent of annual 
tonnage on average.  And, the fraction of tonnage shipped by each mode is consistent 
throughout the sample period (2000 to 2017). 

• There is uniformity in the results for zones in which both rail and barge are present. That is, 
there is a preference for barge over rail, holding rates constant, and the rates of barge and 
rail have an effect that is both economically and statistically important in explaining a 
shipper’s destination and mode choice.4 

• The preference for barge, however, dissipates, as the distance to the nearest waterway 
increases.  That is, as the distance band (the distance from the river) increases, the coefficient 
on barge falls.  This means that barge is less preferable to rail, given all else is the same, as 
distance to barge increases. The preference for barge is quite high within 50 miles of the 
waterway and falls to zero (statistically) for distance bands of about 175 miles.  This means 
that shippers located near the river have a preference for barge, but this preference becomes 
less important with the distance from the waterway, and by 175 miles or so there is no 
preference for barge over rail. 

• As would be expected, the coefficient on rates is negative and statistically significant for all 
distance bands considered.  That is, regardless of the distance from the waterway, we find 
that a higher rate for a particular mode and route reduces the likelihood a shipper will choose 
that option.  While there are some differences in the coefficient estimates across different 
distance bands, they are remarkably consistent overall. 

• Conditional on selecting where to ship, the probability of shipping by barge declines as the 
barge rate increases but the choice of where to ship does not respond strongly to changes in 
freight rates, as most of the annual tonnage flows to the Central Gulf. 

Our results suggest modal substitution for corn is present and persists over a range of different 

distance bands.  The findings provide agricultural stakeholders with information on how the pricing and 

availability of one mode will impact the other.  It also provides an alternative approach to estimating the 

demands for waterway traffic that both recognizes the effects of competing modes and can be applied to 

 
4 The preference for barge means that shippers located near the waterway tend to choose barge over rail given rates.  
Technically, the choice of barge and rail are generated by a barge coefficient and rates.  The barge coefficient falls with distance 
from the waterway. 
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broad commodity definitions.  The demand for waterway traffic is central to USACE’s planning and for 

evaluating the effects of waterway proximity on railroad competition and pricing.  
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1.  Introduction 
 

The flow of agricultural goods to market depends critically on transportation options.  Longer hauled 

shipments rely almost exclusively on rail and on barge (where available).  The decisions of where and how 

to ship are made by those who need (“demand”) transportation services (e.g., shippers).  The 

responsiveness of their decisions to changes in rates and shipment attributes is central in pricing decisions, 

as well as public and private infrastructure investment decisions.  In this study, we examine the movement 

of corn in the Mississippi River System.  Shippers choose where and how to ship commodities, and these 

choices give the demand for transportation to different locations and modes. 

  Our analysis is based on the aggregation of modal shipments to a location on or near the waterway 

into zones (origins and terminations).  Demand is formulated from a choice model wherein shippers 

choose the terminal location and the mode, which is estimated using modern techniques developed for 

estimating choice models with aggregated data. 

The choices made by shippers, grain elevators, depend critically on the spatial environment.  

Theoretically, Anderson and Wilson (2004, 2008, 2015) model demand, pricing, and competition with 

barge, rail, and truck in a spatial environment.  The most relevant results for this research are the notions 

that railroads cannot compete effectively with barge for shippers located near the river—but, as the 

distance from the river increases, the railroad’s competitive position improves and dominates barge.  

Hence, for a range of distances near the river, barge dominates.  For intermediate ranges a little further 

away from the river, railroads price to the equivalent alternative, which is taken here as a “truck-to-barge” 

movement.  However, for longer distances farther from the river system, barge is not viable to shippers 

and does not impact rail prices.  In the Anderson and Wilson (2004, 2008, 2015) models, the costs of trucks 

are higher than rail, which are higher than barge.  This gives the expected result.  That is, given the relative 

modal costs, truck-barge may dominate rail for shippers located near the waterway, but for shippers 
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located some distance from the waterway, the truck portion of the truck-barge movement may be too 

high and rail dominates.5 

In the present study, we model shipper choices over modes and destinations, and we estimate 

the model for corn shipments.  We begin by defining “origination pools” and “destination pools.”  These 

represent segments along the waterway.  Of course, many shippers are also located off the waterway.  

“Zones” are then formed, which represent an area (collection) of shippers beside and within a certain 

vicinity of a waterway pool.  Thus, ultimately, shippers within origination zones ship to various destination 

zones by either barge or rail.  Modal shares between each origin and destination zone form the dependent 

variable.  Independent variables include transportation rates, the presence of barge (or rail), and controls 

for different destinations (terminal zones).  We then vary the distance that defines a given zone and 

compare the estimated coefficients over these different distances.  We find that the rate, the presence of 

barge, and terminal zone variables have a statistically important effect for most distances.  Generally, we 

find there are modal tradeoffs with rates for each of the origination zones.  In other words, as the rate for 

barge increases, more is shipped by rail; and, as the rate for rail increases, more is shipped by barge.  In 

contrast, the effects of rates on shipment terminals is very small.  In corn markets across the region 

studied, the primary outlet is the Louisiana Gulf—the top region for corn exports in the United States.  

Most of the corn that travels by either barge or rail terminates in that location, although more so for 

barge.  After varying the distance bands, we find that after about 175-200 miles or so, the effects of wider 

zones do not have a material effect on the parameter estimates. 

 
5 However, as noted by MacDonald (1989) shippers near the waterway may still choose to ship by rail despite higher prices, owing 
to special circumstances (contract requirements).   MacDonald notes that rail shippers located on the waterway may pay high rail 
prices despite the lower cost of barge and suggests that a riverside shipper that chooses rail must do so owing to special 
circumstances such as time constraints in contract obligations.  Thus, in this case, shippers on the river may be priced higher by 
rail than for shippers located a short distance from the waterway.   
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The rest of the report is organized as follows.  In the next section, we provide a short summary of 

transport demand modeling.  In Section 3, we describe a choice model to motivate the empirical analysis 

of demand.  In Section 4, a detailed description of the data is provided.  Section 5 presents the results, 

including the demand estimates for a specific distance band and comparisons of the results across 

different distance bands.  Section 6 provides a summary and conclusions from the analysis and points to 

extensions. 

2.  Literature Summary 
 

There is a long history of research on transportation demand.  These range from demand models that use 

aggregated data to those that estimate disaggregate choice models based on McFadden’s (1973) random 

utility model.  These studies have also pointed to the role not only of the price (rate) but also product 

attributes (e.g., Quandt and Baumol (1966) and Baumol and Vinod (1970)).  There has been a considerable 

amount of research wherein a single modal choice is made (e.g., rail versus barge).  These studies are 

amply reviewed by Winston (1983; 1985) and Clarke et al. (2005).  However, there is also research at the 

shipment level that models the joint decision of shipment size and mode choice (e.g., Inaba and Wallace 

(1989) and Abdelwahab (1998)).  In our case, shipper surveys were not conducted, which means that 

individual shipper choices cannot be modeled.  Consequently, use of aggregated data at the modal level—

or as in our case aggregation over both modes and locations—is required.  In modern industrial 

economics, there have been substantial developments in the last few decades.  Current techniques allow 

for the estimation of individual choices based on choice models using aggregated market-level data (e.g., 

Berry (1994), Berry et al. (1995), and Nevo (2000)).  

In the case of agricultural commodities, there have been a number of demand studies.  Some of 

these use choice models to estimate demand (e.g., Train and Wilson (2004, 2007, 2008, 2019)), while 

other studies use more aggregated data and focus on spatial market areas and/or barge demands from 
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river pool to river pool (e.g., Henrickson and Wilson (2005a and 2005b) and Boyer and Wilson (2005)).  

The discrete choice studies require extremely detailed data at the individual shipper level and require 

information not only on the mode/locations chosen, but also for all the mode/locations that could have 

been chosen.  In the aggregate studies, the focus has been on a single mode (e.g., barge or rail), while our 

aggregate study provides an approach to aggregate across modes and over a geographic area. 

There are also studies that attempt to incorporate demand decisions and geographic space.  These 

include Train and Wilson (2006) who estimate a modal choice model and then use the relationship 

between truck rates and distance to map shipments into rail and barge zones for a hypothetical transport 

network.  Henrickson and Wilson (2005a) examine procurement decisions of shippers in a spatial setting 

where they compete with neighbors, estimating the model using data from the Upper Mississippi and 

Illinois waterways.  In a separate study, Henrickson and Wilson (2005b) use a non-parametric approach 

with rolling and locally weighted regressions to estimate barge elasticities for different “pools” along the 

Mississippi waterway, finding that demand elasticities can vary over the geography of the waterway.  In 

both studies, Henrickson and Wilson find that barge elasticities tend to be relatively elastic, and in the 

first study they find—as do the Train and Wilson (2006)—the cost of shipping to the waterway has a strong 

impact on market (or catchment) areas.  In terms of data, Train and Wilson (2006) is based on survey data, 

Henrickson-Wilson (2005a) uses extremely detailed data on shipper locations, and Henrickson-Wilson 

(2005b) rests on barge movements alone.  Our approach combines choice modeling using aggregated data 

which are more readily available. 

3.  Modeling Shipper Decisions 
 

The basic idea of our model is to capture rail and barge movements from and to given areas (origins and 

destinations).  In the data, we only observe the initial rail or barge origin.  This matters more for barge 

than rail because lower barge rates mean shippers are willing to truck much further distances to the river 
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than to a rail station.  Goods are taken as having originated from a nearby grain elevator, which means 

either (1) traveling to the river by truck and loaded on to a barge or (2) direct shipment by rail.  For rail, in 

these markets, the origin reported is a sufficient proxy for the true origin of the shipment. 

Areas are defined by collections of shipment points along the waterway and different distances 

from the waterway.  We call these areas “zones.”  To form a zone, we first start with a “pool.”  A pool is a 

simply a segment on the river that collects barge shippers.  We formed 9 pools based on an examination 

of river locations that ship and receive grain shipments as well as USDA’s river pool definitions (which 

stem from USDA’s Figure 9 in the Grain Transportation Report).  We found that USDA’s pools match 

natural breakpoints in the data.  Combining shipments within a certain distance of a river pool (e.g., 50 

miles) forms a zone.  Ultimately, we estimate a model of demand for rail and barge for movements from 

one zone to another.6  We follow this procedure for a wide range of distances and compare the results.7  

Estimating the demands for different distances enables us to gauge the sensitivity of the results to the 

distance chosen. 

More technically, our setup to model the decisions of shippers stems from the random utility 

model (McFadden (1973), which has been used extensively in the economics and transportation 

literatures.  Given a set of options, individuals select the option that provides them with the highest 

utility.8  In the context of this study, a shipper chooses the destination and mode based on (1) the observed 

 
6 The basic model takes shippers as choosing the terminal pool (where to ship the goods) and the mode (barge versus rail).  The 
choice of mode and terminal is the result of a comparison across different mode-terminal market options wherein the shipper 
chooses the option that gives the highest “utility.”  Specifically, the dependent variable is the share of total tonnage shipped to 
a specific pool by a specific mode (barge or rail).  In this literature, utility depends on a deterministic component and a random 
component.  The deterministic component is defined in terms of a set of variables and parameters to be estimated.  The actual 
utility is a random variable owing to the random (or unobserved) component and is not observed.  Instead, the choice (or 
shares) are used to represent the decision based on random utilities.  In our case, we take the observed component to be a 
function of the rate of each mode to each location and a set of alternative specific variables that represent the mode and the 
terminal pool location. Then we apply the model to distance bands that range from 50 to 300 miles. 

7 Generally, we consider bulk shipments of low value products that travel long distances.  While trucks can effectively compete 
with barge and rail for short-hauled shipments, in our case, we believe that truck is an ineffective competitor given the 
shipment distances involved.  However, they are a necessary component of the logistic chain and haul the products to the 
barge facility or to a rail terminal. 

8 We provide a more formal derivation in the appendix. 
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attributes of the route (e.g., transportation rates), (2) unobserved factors, such as commodity prices, 

which are taken as random, and (3) unobserved shipper-specific attributes, such as contracts which 

require timely shipments, outages which require another mode, etc. 

Following standard practice, we assume the latter unobservable terms are drawn from an 

independent and identically distributed extreme value distribution.  Under this assumption, the 

probability shipper i chooses to ship to destination j by a specific mode (m) can be estimated with a logit 

model:9 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑒𝑒𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
 (2) 

where Vijm is the measurable component of shipper i’s utility for shipments to destination j by mode m. 

We express the measurable part as a function of freight rates and destination attributes as follows: 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑗𝑗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖  (3) 

where, Bargeij is a dummy variable that corresponds barge shipments between i and j, and Destij is a 

set of dummies representing unobserved factors that may systematically vary over the destinations.10   

4.  Data 
 

The primary sources of data used in this study are the Waterborne Commerce Statistics (WBC) for barge 

and the Surface Transportation Board’s Carload Waybill Sample (CWS) for rail, both from 2000 to 2017.  

The WBC data includes dock to dock movements by commodity, and the CWS includes data from shipper 

origin to shipper destination by commodity.  We selected shipments of corn from each data source from 

 
9 Logit models are commonly used to estimate the probability of an event.  In this case, it is the probability that a shipper 
chooses to ship the commodity to a specific location by a specific mode.  In this case, the probability is taken to be a function of 
whether the mode is barge, the rate and the destination characteristics, and a random error term.  

10 A dummy variable is a binary variable (0, 1) that represents differences in categorical data (e.g., “barge” or “rail”).  In this 

case, a positive coefficient on barge ( 1β ) indicates that there is a preference for barge. 
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2000 to 2017 and then developed nine different origination and termination zones for different band 

widths as described in the subsections below. 

4.1  Barge data 
 

The WBC data contains information on barge shipments between docks located on the major U.S. 

commercially navigable rivers. This information includes tonnages, commodities, and dock identifiers 

which allow the locations to be geocoded.  We focus specifically on shipments that originate and 

terminate on the Mississippi, Illinois, and Ohio rivers.  Each river is divided into “river pools,” as shown in 

Figure 1.  The figure displays the average annual tonnage shipped by barge for each origin along the river.  

There are nine unique river pools, which correspond to natural breaking points in the inland waterway 

system and match regions used by USDA.11  From the top of the map, the river pools are: Upper Mississippi 

(UPMISS), Middle Mississippi (MIDMISS), Illinois (ILLINOIS), Saint Louis (STLOUIS), Lower Ohio (LOWOHIO), 

Upper Ohio (UPOHIO), Cairo-Memphis (CARMEMPH), Lower Mississippi (LOWMISS), and Central Gulf 

(CENTGULF). 

 
11 See, for instance, Figure 9 of USDA’s Grain Transportation Report: https://www.ams.usda.gov/services/transportation-
analysis/gtr.  

https://www.ams.usda.gov/services/transportation-analysis/gtr
https://www.ams.usda.gov/services/transportation-analysis/gtr
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Figure 1: Barge corn shipment origins and river pools 

 Note: This figure displays the average annual corn tonnage by barge shipment origin. Each river pool is labeled. 

 

Barge shipments are aggregated within each river pool.  Figure 2 displays and Table 1 provides 

the flow of average annual barge shipments across all nine river pools between 2000 and 2017.  The name 

of each river pool is shown on the outer ring.  The numbers under the river pool label are the average 

annual barge tonnages (in 100,000).  Outflows from a river pool are shown with a directional point at the 

destination.  For example, the figure shows that virtually all barge shipments from the MIDMISS river pool 

terminate in the CENTGULF river pool.  Nearly all shipments from each river pool end in the CENTGULF 

river pool. 
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Figure 2: Barge corn flows between river pools 

 
 
Note: This figure displays the average annual tonnage (in 100,000) shipped and received by barge for each river pool 
from 2000 to 2017. Shipments to a river pool are denoted with an “arrow.” 
 
 

 Table 1:  Average annual barge corn flows between river pools, 2000-17, tons  
Origin\Dest CARMEMPH CENTGULF ILLINOIS LOWMISS LOWOHIO MIDMISS STLOUIS UPMISS UPOHIO 
CARMEMPH 210 287,601 3,357 786 0 924 844 0 0 
CENTGULF 194 33,438 370 2,962 2,228 79 1,119 91 1,125 
ILLINOIS 1,025 1,700,000 9,157 83 423 0 1,389 0 380 
LOWMISS 0 348,242 5,441 1,157 646 3,513 4,321 0 592 
LOWOHIO 501 640,300 99 181 96 0 94 0 213 
MIDMISS 264 1,500,000 0 625 1,336 252 706 347 197 
STLOUIS 0 1,500,000 169 460 641 0 240 0 352 
UPMISS 1,425 1,600,000 616 727 584 1,913 720 681 521 
UPOHIO 180 638,238 0 0 197 0 0 0 0 
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4.2  Rail data 
 

The CWS contains information on rail shipments between all origins and destinations in the United States.  

To connect the rail data to the barge data, we start by identifying only rail shipments that terminate in 

one of the 9 river pools.  For each rail shipment origin, we define the catchment area based on the distance 

to the nearest barge location.  This forms an origin “zone.”  Figure 3 displays all rail shipment origins in 

the study region, where the size of the point represents average annual tonnage and the shade represents 

the distance to the nearest barge facility.  In this paper’s main empirical specification, we initially define 

the catchment area as shipments that originate within 100 miles of the waterway. Then, we examine how 

the relationships change with  different distance bands. 

Figure 3: Rail shipment origins 

 
Note: This figure displays the origins for rail shipments. The size of the point corresponds to the average annual 
tonnage, and the color of the port corresponds to the distance to the nearest barge location. 

 

Figure 4 displays and Table 2 summarizes the average flow of annual rail shipments across all 9 

river zones.  Similar to Figure 2, the name of the river zones is displayed on the outer ring, and the average 

annual tonnage (in 100,000) is displayed below the river zone name.  Unlike barge shipments (Figure 2), 

rail shipments are more disbursed throughout the 9 river zones.  The CENTGULF river pool is not a 
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significant origin for rail shipments but remains a significant destination.  The ILLINOIS river zone is the 

most significant origin of rail shipments, with nearly 700,000 tons per year.  

 

Figure 4: Rail corn flows between river zones 

 
 
Note: This figure displays the average annual tonnage (in 100,000) shipped and received by rail for each river zone 
from 2000 to 2017. Shipments to a river zone are denoted with an “arrow.” 
 
 

 Table 2:  Average annual rail corn flows between river zones, 2000-17, tons  
Origin\Dest CARMEMPH CENTGULF ILLINOIS LOWMISS LOWOHIO MIDMISS STLOUIS UPMISS UPOHIO 
CARMEMPH 1,999 33,995 1,418 10,384 7,116 0 0 0 0 
CENTGULF 0 39 0 137 1,517 0 525 0 0 
ILLINOIS 125,804 250,325 135,571 102,429 45,095 276 8,632 0 421 
LOWMISS 1,219 7,564 3,455 34,336 138 0 0 6 0 
LOWOHIO 2,111 7,986 939 390 224,523 137 545 0 0 
MIDMISS 3,653 13,619 40,943 34,472 397 16,716 1,418 11 0 
STLOUIS 13,480 71,451 1,150 8,352 9,243 301 5 0 0 
UPMISS 8,640 20,062 49,220 20,760 3,278 39,919 3,424 9,202 0 
UPOHIO 54 3,577 0 0 64,593 0 33 0 186 
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4.3  Combined data 
 

We combined the WCS and CWS data into a single dataset to examine zone to zone movements over time.  

The combined dataset contains shipments of corn by rail and barge to all river zones in every year.  Figure 

5 displays and Table 3 provides the flow of average total tonnage across both modes between all 9 river 

zones.  This figure is the combination of Figures 2 and 4 and shows the total tonnage shipped between all 

river zones in the average year. 

In Figure 6, the share shipped to each terminal zone by origination zone (the dependent variable 

in our empirical model) is summarized over time.  For all origins, the Central Gulf is the primary 

termination location for most points in time.  Typically, shares shipped to the Central Gulf are in excess of 

80 percent.  The shares also vary modestly over time. 
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Figure 5: Total (barge and rail) corn flows between river zones 

 
Note: This figure displays the average annual tonnage (in 100,000s) shipped and received by barge and rail for each 
river zone from 2000 to 2017. Shipments to a river zone are denoted with an “arrow.” 
 

 Table 3:  Average total corn flows (barge plus rail) between river zones, 2000-17, tons  
Origin\Dest CARMEMPH CENTGULF ILLINOIS LOWMISS LOWOHIO MIDMISS STLOUIS UPMISS UPOHIO 
CARMEMPH 2,209 321,596 4,775 11,170 7,116 924 844 0 0 
CENTGULF 194 33,477 370 3,098 3,744 79 1,644 91 1,125 
ILLINOIS 126,828 1,900,000 144,728 102,512 45,518 276 10,021 0 802 
LOWMISS 1,219 355,806 8,897 35,493 783 3,513 4,321 6 592 
LOWOHIO 2,611 648,286 1,037 571 224,619 137 639 0 213 
MIDMISS 3,916 1,500,000 40,943 35,098 1,733 16,968 2,124 359 197 
STLOUIS 13,480 1,600,000 1,320 8,812 9,884 301 245 0 352 
UPMISS 10,064 1,700,000 49,836 21,487 3,862 41,832 4,143 9,883 521 
UPOHIO 234 641,815 0 0 64,791 0 33 0 186 
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Figure 6:  Share to each terminal zone by origination zone 
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4.4  Freight Rates 
 

We assembled data on barge and rail rates for corn from two sources. Rail freight rates came from the 

CWS to calculate the rate of shipping goods by rail between all 9 river zones.  To do this, we use the 

weighted average rate (in dollars per ton, adjusted for inflation) across all shipments between origins and 

destinations within each river zone.  Because this CWS only contains information on shipments that 

occurred, the freight rate is missing if there were no shipments between two river zones in a given year.  

For example, if there were no shipments that originated within the CENTGULF river zone and terminated 

in the ILLINOIS river zone then it is not possible to calculate the rate between CENTGULF and ILLINOIS 

using the weighted average.  In these cases, we fill in the missing data using an interpolated freight rate 

based on the shipping distance. 

Barge rates are calculated using data from USDA’s Agricultural Marketing Service, which contains 

information on the annual barge rate (in dollars per ton) between each river pool and the CENTGULF river 

pool between 2000 and 2017.  We use this data to interpolate barge freight rates between all other river 

pools based on the shipping distance.  The result is a dataset that contains the yearly barge rate for 

shipments between all 9 river pools. 

Figure 7 displays the annual freight rates over time by destination zone and mode.  They derive 

from a weighted average based on origin zone tonnage and are adjusted for inflation.  Barge rates 

remained relatively constant over the sample period, while rail rates increased until 2013 and then fell.  

The general pattern in freight rates over time is consistent across all river zones.  However, the average 

barge rate for shipments terminating in the UPOHIO and CENTGULF river zones is higher than in other 

destinations.  Rail rates for shipments terminating in the CENTGULF river zone are also higher than in other 

destinations.  
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Figure 7: Barge and rail rates 

 

Note: This figure displays the average annual barge and rail rates, in dollars per ton, to each destination. 
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5.  Results 
 

The main results are presented in Table 4.  We develop three different specifications and compare the 

results to gauge their sensitivity.   Model 1 (Column 1) specifies the probability of a choice (choosing a 

mode and destination, from a particular origin) as a function of the rate for each option (RATE) and a 

dummy variable that indicates that the option involves barge (BARGE).  That is, the shipper located at a 

given origin chooses the destination and mode based on the rate of each mode to each destination.  The 

BARGE dummy captures systematic differences between barge and rail.  Models 2 and 3 introduce 

destination dummy variables, with the omitted category being the CENTGULF zone.  These are included 

to capture unobserved systematic differences in the destinations.14  The table's coefficients represent the 

parameters of the deterministic part of the utility equation.  They reflect the difference in expected 

shipper payoffs.  The positive sign on BARGE points to a preference for barge.  According to the model 1 

results, the probability of choosing barge is 5.9 percent higher than rail, on average.  Given the positive 

sign on RATE in Model 1, Column 2 shows a model with rate and dummy variables for the destination 

zones.  In this case, RATE is now the expected negative sign (a higher rate lessens the probability a mode 

is chosen), which points to the importance of including the terminal destination dummy variables to obtain 

unbiased coefficient estimates.  Finally, in Column 3, we incorporate the specifications reported in 

Columns 1 and 2, which includes the full set of explanatory variables—rate, a dummy for mode, and 

dummies for destination.   

Column 3 represents the preferred specification based on likelihood values and expected signs. 

In this model, rates can and do have a statistically significant effect.  The positive sign on BARGE suggests 

that shippers prefer shipping by barge.  That is, if barge is a feasible option, shippers tend to choose it 

given rates are the same.  In addition, in all cases, destinations are associated with lower shipper payoffs 

 
14 Due to the extremely small amount of tonnage originating in the CENTGULF region, it is excluded as an origin in the empirical 
analysis.   
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relative to the CENTGULF, which is consistent with the descriptive analysis of the data presented in the 

previous section. 

Table 4: Estimation Results  
Model (1) Model (2) Model (3)     

BARGE 5.978*** 
 

2.035***  
(0.675) 

 
(0.232) 

RATE 0.271*** -0.221*** -0.080***  
(0.032) (0.015) (0.018) 

CARMEMPH 
 

-6.880*** -5.873***   
(0.318) (0.293) 

ILLINOIS 
 

-7.642*** -5.728***   
(0.340) (0.286) 

LOWMISS 
 

-5.949*** -5.343***   
(0.261) (0.246) 

LOWOHIO 
 

-6.393*** -5.156***   
(0.376) (0.343) 

MIDMISS 
 

-9.166*** -7.090***   
(0.429) (0.344) 

STLOUIS 
 

-10.058** -8.206***   
(0.390) (0.366) 

UPMISS 
 

-11.584** -8.909***   
(0.567) (0.450) 

UPOHIO 
 

-10.984** -9.724***   
(0.511) (0.370) 

Constant -9.500 2.066 -0.458  
(10.461) (1.402) (1.803) 

Log-Likelihood -378.8 -191.5 -182.7 
 

The coefficients in Table 4 can be used to calculate conditional choice probabilities, which are 

easier to interpret and provide greater insight into the trade-offs between modes and destinations.  Figure 

8 displays the probability of selecting to ship by barge, conditional on choosing a given destination, based 

on the results in Table 4, Column 3.  The x-axis displays the barge rate, and the y-axis displays the 

conditional choice probabilities of selecting rail or barge.  Rail rates are held constant at the destination-
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specific average.  The result is apparent across all destinations: as barge rates increase, the probability a 

shipper chooses to ship by barge falls.  The probability that the shipper decides to ship by rail increases as 

the barge rate increases.15 

 
Figure 8: Modal choice probabilities 

 
Note: This figure displays the mode choice probability, conditional on a destination choice. Rail rates are held 
constant at the destination-specific average value. 

 

Next, we examine how changes to the distance band used to define origins and destinations 

influence the results.  Figure 9 displays how the coefficient on the barge variable (BARGE) changes when 

 
15 Destination choice probabilities can also be calculated from the results in Table 1.  For the most part, freight rates do not 
have a substantial effect on destination choice probabilities.  For barge and rail shipments, the probability of choosing the 
CENTGULF region is much higher than the probability of choosing other regions.  This makes sense, given the substantial 
amount of the Nation’s corn exported out of the region.  
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the distance band changes.  The figure is the result of estimating the specification in Column 3 of Table 1 

while allowing the distance band to vary from 50 miles to 300 miles in increments of one mile.  Thus, the 

figure displays the results from 250 separate regressions.  As the distance band increases, the probability 

of selecting barge (the coefficient on BARGE) goes down.  This suggests the preference for barge declines.     

The intuition behind this result is, as shipments originate further from the river are included in the 

estimation, the attractiveness of shipping by barge declines. 

Figure 9: Barge effect at different distances 

 
Note: This figure displays the coefficient on the barge dummy variable, and 95% confidence interval, as the distance 
band increases from 50 to 300 in increments of 1 mile. The figure shows the results of 250 separate regression 
estimates. 
 
 

Using similar methods, we examine how the coefficient on the rate variable (RATE) changes.  This 

is shown in Figure 10.  The effect of rates is relatively constant across the different distance bands used in 
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the 250 regressions, especially for distances bands of 175 miles or higher.  For all distance bands, except 

a distance band of 86 miles, the 95% confidence interval contains the average barge effect of -0.051. 

 
Figure 10: Rate effect at different distances 

 
Note: This figure displays the coefficient on the rate variable, and 95% confidence interval, as the distance band 
increases from 50 to 300 in increments of 1 mile. The figure shows the results of 250 separate regression 
estimates. 
 
 

Finally, we examine how the destination-specific dummy variables influence shipper payoffs at 

different distance bands.  The results are displayed in Figure 11.  We find that as the distance band used 

to determine origins and destinations increases, the payoffs for all destinations increase relative to the 

CENTGULF destination (the omitted category).  Similar to the results in Figures 9 and 10, at approximately 

175 miles, the coefficients stabilize.  Further, the rank ordering of the preferences for destinations changes 
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as the distance band increases.  That is, the coefficients estimated for different destinations change in 

relative importance.  For example, for distance bands between 50 and 90 miles, the payoff associated with 

LOWMISS is less than the preference associated with UPOHIO, but as the distance band increases this 

relationship flips, so that the preference associated with the LOWMISS is higher than for the UPOHIO.  

Similar patterns also exist for other preferences.  For example, we find that the preference associated with 

MIDMISS increases faster than the ILLINOIS and CARMEMPH destination preference. 

 

Figure 11: Destination dummies at different distances 

Note: This figure displays the coefficient on the destination dummy variables as the distance band increases from 
50 to 300 in increments of 1 mile. The figure shows the results of 250 separate regression estimates. The omitted 
destination is CENTGULF. 
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6.  Summary and Conclusion 
 

This report provides an in-depth analysis of rail and barge shipments of corn that originate and terminate 

within given distances of the Mississippi, Illinois, and Ohio waterways from 2000 to 2017.  The research is 

framed and executed in terms of demands for movements between locations and modes.  The basic tenet 

of the research is that the competitive relationship between barge and rail is central to rail pricing 

decisions and the calculation of benefits from both public and private infrastructure investment. 

Our analysis bases the construction of pools on the waterway (i.e., a set of locations between 

fixed points on the waterway).  We used these origin pools, and defined origin zones by incorporating off-

river locations within a given distance. From these origin zones, we aggregate rail shipments within a given 

distance band into the origin zone closest and added in the observed barge shipments.  Our dependent 

variable is the share  of origin zone tons shipped to other zones by a given mode.  We use the result to 

estimate demand models based on a choice framework. 

We find that most corn shipments by barge terminate in the Central Gulf termination zone 

(Louisiana), while rail shipments terminate in the Illinois, Central Gulf, and Lower Ohio zones.  The 

empirical results indicate that the demand flows are affected by rates and terminal dummies (which 

capture unobserved effects for each termination zone).  We compare estimated probabilities across 

termination zones and across modes.  For termination zones, the Central Gulf is dominant and remains 

dominant over a reasonable range of changes in barge rates.  However, the modal choice probabilities do 

vary substantially with the level of barge rates. 

The distance band is intended to capture the area in which rail and barge compete for corn traffic.  

However, the catchment area is not known beforehand.  Instead, we conduct the analysis for a wide range 

of distance bands (50 to 300 miles) and compare the results.  Generally, we find that there is a preference 

for barge, but the preference declines with distance from the waterway.  At a distance of 200 miles, there 
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is no strong preference for barge.  The effects of rates also vary with the distance band.  With the 

exception of a few bands, the estimates are remarkably stable.  Finally, we examine the coefficients on 

the termination zones over the distance bands.  The coefficients for each of the termination zones 

increase (from negative values) with the distance bands, and stabilize at a distance of about 175 miles. 

Overall, the results suggest the modal substitution does exist for most observed rates, and the 

effect is remarkably stable for most distance bands.  However, while there is substitution across 

termination zones, it is relatively small.  

To our knowledge, there are no other studies of this type in the modeling of the demand for 

freight transportation.  The modeling requires the use of distance bands, which reflect the catchment area 

for barge movements (the range at which barge is a feasible mode for shippers).  In comparing the results 

over different distances, it appears that a distance band of about 175 to 200 miles is the most appropriate.  

The approach used in this study can be readily adapted for other commodities, and, indeed, offer an 

alternative approach to estimating demand elasticities where rail and barge compete. 

The output of the modeling effort is the demand for rail and the demand for barge.  Both are of 

central interest to policymakers in considering the effects of barge competition on rail prices, which is a 

key factor of railroad regulation.  In addition, it provides a non-survey approach to estimating barge 

demands on the waterway which are consistent with theory.  This is important in that the Army Corps of 

Engineers generally use a survey approach with discrete choice models to estimate demands.  But, this 

approach is limited to commodities with a large number of shippers, representative samples, etc. 

In terms of the research's overriding objective, we have carefully examined the linkage between 

the demand for barge and rail freight movements and find that the demands are linked over a range of 

different barge catchment areas.  The results can be implemented for other commodities and used to 

gage the impact of pricing and better judge the benefits of both public and private investments. 
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Appendix:  Modeling Shipper Decisions 
 

The random utility model offers a useful framework to examine shipper decisions and it has been used 

extensively to model mode choice.  In the present case, shipper i chooses to ship to a terminal location j 

by a given mode m.  Given a set of alternatives, individuals select the option that provides them with the 

highest utility.  Utility for each shipper and option (terminal and mode combination) is taken to consist of 

two components—a deterministic component (Vijm) and a random component (𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖) and is given by: 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖    (A-1) 

In equation (A-1), Vijm represents the systematic, measurable component of utility.  The term 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  is 

an unmeasurable component that is unique to each shipper.  We assume the unobservable terms are 

drawn from an independent and identically distributed extreme value distribution.  Under this 

assumption, the probability shipper i chooses destination j by mode m can be estimated with a logit model.  

The probability of a choice is given by: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑒𝑒𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘
 (A-2) 

where Vijm is the measurable component of shipper utility.  The next step is to specify the deterministic 

portion.  In our case, we specify the deterministic part (V) as a function of freight rates and a set of 

alternative specific dummies including the mode and the terminal locations.  Suppressing the observation 

index i, this specification is as: 

𝑉𝑉𝑗𝑗𝑗𝑗 = 𝛽𝛽1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑚𝑚 + 𝛽𝛽2𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑗𝑗𝑚𝑚 +  𝛽𝛽2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  (A-3) 

where, Bargeij is a dummy variable that corresponds barge shipments between i and j and Destj  is a set of 

destination dummies that which control for destination-specific unobservable factors (e.g., prices of the 

commodity, the level of demand for the product shipped, etc.). 

In equation (A-3), shipments by barge to a destination by a mode are each observed.  The function 

is substituted into equation (A-2) and the unknown parameter estimated by maximum likelihood.  In our 
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case, the dependent variable is not the choice, but rather the share tonnages that originate in origination 

zone (i) and travels to terminal zone (j) by mode(m). 
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