|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Journal of Agricultural and Resource Economics 25(2):501-519
Copyright 2000 Western Agricultural Economics Association

Policy Changes and the Demand
for Lottery-Rationed
Big Game Hunting Licenses

David Scrogin, Robert P. Berrens,
and Alok K. Bohara

Lotteries are commonly used to allocate big game hunting privileges. In this study,
lottery demand and consumer surplus are modeled before and after policy changes
designed to increase participation. The application is to New Mexico elk hunt lotteries.
Given the volume and variety of hunts, we adopt a disaggregated and flexible count
modeling approach. Two welfare measures are estimated: Marshallian surplus and
a proposed measure that incorporates consumer uncertainty. The Marshallian
measure produces smaller and slightly less precise estimates. However, regardless
of the surplus measure examined, welfare increased significantly with the policy
changes, while revenues changed by less than 1%.
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Introduction

Big game hunting privileges are a type of quasi-private good. While the right to harvest
a species can be defined by the license and allocated by some mechanism (such as an
auction, lottery, or queue), the right is typically not transferable. The numbers of licenses
issued are determined by the herd management objectives of state game managers and
are generally fixed quantities. A primary concern for game managers is to allocate
hunting rights in an equitable fashion, with special concern to protecting access for
resident hunters. As such, license prices are typically fixed below what would prevail
in a market setting so as not to deny access based upon ability to pay; such price ceilings
result in license shortages. Because lotteries distribute licenses without regard to
income, this mechanism is often used to deal with these shortages. In this analysis, we
model the demand for and welfare derived from lottery-rationed recreational goods. The
application is to the New Mexico lotteries for elk hunting licenses before and after a set
of policy changes that had a substantial effect on participation.

New Mexico is one of many states that operate a lottery system for big game hunting
licenses. Established in 1933 as a tool for managing dwindling elk herds, the New Mexico
lottery currently distributes licenses to hunt antelope, bighorn sheep, deer, elk, ibex,
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javelina, and oryx. Three amendments to the lottery effective in the 1997-98 season
were intended to increase resident access to the hunts." Subsequent to the combined
policy changes, there was a 58% increase in the number of resident applications for elk
licenses processed by the New Mexico Department of Game and Fish. As nonmarket
values are associated with the right to hunt, an immediate question that arises is how
resident welfare was altered. , _

Given the various statistical and choice-set issues surrounding random utility models
(RUMs), we model lottery demand in a multi-site zonal travel cost framework by treating
observations as counts. After demonstrating how counts may be derived from lottery
applicant data, we use the generalized negative binomial regression model for estimat-
ing lottery demand and welfare. The approach also allows for the testing of several nested
alternatives. Our results show that the traditional surplus measure produces under-
estimates of welfare relative to the proposed measure of lottery surplus in the New
Mexico case. Further, regardless of the two surplus measures examined, resident con-
sumer surplus substantially increased following implementation of the policy changes,
while there was less than a 1% change in resident lottery revenues.

Lottery Participation and Welfare
Lottery Participation

In this section, we present a model of lottery participation to provide insight about the
choices made by individuals in the lottery application process. We extend the work of
Nickerson by deriving the consumer surplus obtained from the lottery system. This
surplus measure is shown to be equivalent to those proposed in the literature on
underpriced public goods rationed by lottery.

Assume that (a) applicants are randomly drawn in the lottery, (b) the supply of licenses
for each hunt is fixed, (¢) an individual can apply for only one license, (d) licenses are
nontransferable, (¢) applicants are risk neutral and seek to maximize the expected (net)
value of participating, and (f) participants have full information about the characteristics
and regulations of the various licenses to be issued and the total number of applicants
for each hunt.?

Let S; represent the number of licenses to be issued in the lottery for hunt j, and N,
represent total applications for hunt j licenses. Thus, the probability of being drawn is
S;/N;, denoted ;. An individual, i, is assumed to be willing to pay V, (Y, P,, H;,Z) to
receive a j license with certainty. The terms Y}, P,, and H, represent individual i’s
income, the price level of the goods in i’s consumption set, and a vector of his/her house-
hold characteristics, respectively, and the term Z; is a vector of attributes associated
with the jth hunt.® Also, assume there is a nonrefundable entry fee (P,) paid by all

! The first amendment was the imposition of a nonresident supply quota guaranteeing residents at least 78% of the lottery-
issued licenses for several species (including elk). The second was lowered fees for all elk licenses; the average fee declined
by about 17%. Third, applicants were allowed to submit only the entry fee with their applications; for the 20 years prior, both
the entry fee and license fee were required for participation. Applicants not drawn were refunded the license fee.

? Assumptions (a)~(d) apply to all New Mexico lotteries; assumptions (e) and (f) are for convenience.

3 Thus, V., isinterpreted as a money metric indirect utility function. It is the amount of money that individual ; would need
at price level P, to be as well off as foregoing a unit of j and having income Y.
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lottery participants, a hunt-specific license fee (P) incurred on an awarded license, and
individual-specific expected travel costs (P,,) incurred from trip taking.

The expected value of entering lottery j and being drawn is o[V, (Y, P, H,, Z)-P -
P, - P, ], and the expected value of not being drawn is (1 - 8,)P; . Adding these values
yields individual i’s expected (net) value of a hunt j license:

) E(V,) = §[V,,(Y,, P, H,, Z) - P, - B, - P] - (1 - 8)P,.

Under the assumption of risk neutrality, an individual will participate in the drawing
if his/her expected value is nonnegative. Hence, the lottery for hunt j licenses is fea-
gible if:

(2) EWV,) = §[V (Y, P, H,Z)-P-P,]-P =0

Since an individual can choose only a single hunt, he or she selects the hunt providing
the greatest expected value. The ith individual’s decision on the optimal lottery in which
toparticipate can then be represented by theset d, ;, d, ;, ..., d,;, where Jrepresents the
total number of hunts from which to choose; d;; = 1if j is preferred to the other -1
hunts, and d;; = 0 otherwise. Specifically, individual i’s choice of hunt is given by:

1 if o,V (Y, P, H,, Z)-P-P1-P,>0
and
3) di; =) 5V, ,(Y,, P, H,,Z) ~P,-P, 1 -P, »
5f[Vf’i(Yi, P,H, Zf) —Pf _Pf,i] -P;
| 0 otherwise Vifed, jef.

As P, is constant for all JJ, a change in its value will not cause substitution within /. , but
may influence the decision of whether or not to participate. Alternatively, P and P are
hunt specific, so changes in these amounts can influence participation and lead to sub-
stitution within .

Welfare from Lottery-Rationed Goods

Measures of consumer welfare obtained from goods rationed by lottery have been
proposed in various theoretical papers. In an early work, Seneca demonstrates how the
traditional Marshallian measure of consumer surplus must be modified in order to
correctly measure consumer surplus from underpriced and randomly allocated public
goods (e.g., hunting licenses). In another early investigation, Mumy and Hanke consider
the situation more generally by examining the amount of the good that should be
rationed in order to maximize consumer surplus, given demand and cost conditions.
These works address aggregate, market-level issues and do not model individual-level

* As an anonymous reviewer noted, expecfed travel costs may be mean trips multiplied by the expected price per trip. Since
alicense typically allows the holder several days or weeks to hunt, multiple trips may be taken, and thus travel costs incurred
on each of these trips.
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behavior. More recently, Boyce considers lottery welfare from an expected utility frame-
work. Results are compared under different lottery structures (e.g., transferable and
nontransferable lotteries). Welfare from our lottery participation model (3) is obtained
in a fashion that is consistent with this literature. After deriving consumer surplus, we
note the equivalence of our measure to the measures proposed in these works.

Because an individual can choose only a single hunt, the expected value associated
with the chosen hunt is the maximum expected value obtainable through the lotteries.
This expected valueis also the relevant value for welfare analysis. Summing the expected
value of hunt j across applicants, N;, yields the total expected value of the hunt:

ZVJ.
@) )Y [5j("},i(‘) -B-P,)- PL]'
i1 :

Rewriting (4) yields a more familiar expression of total expected net benefits of hunt j
licenses:

2

J

(5) 5 . Vi= 9 ;Pj,i ~(SF, -NP) =

-~
[ury

total expected net benefits of hunt j.

The first term in (5) is the sum of the values individuals would be willing to pay for a
hunt j license with certainty, weighted by the proportion of individuals awarded
licenses. Similarly, the second term is the portion of total applicant expected travel costs
that are incurred. In parentheses is the total revenue collected from hunt j licenses by
the management agency, where S, P, and N, P, are the license revenues and entry fee
revenues, respectively. Note that (5) is identical to the traditional expression of consumer
surplus in the case where the number of licenses is not constrained to be less than the
number of applications (i.e., when §; = 1).

If P, =P, =P, = 0, then (5) is equal to the welfare measure proposed by Seneca [i.e.,
his expression (5)]. This is also equal to the welfare measures proposed by Mumy and
Hanke [i.e., their expression (4) in the zero-price case and expression (6) in the under-
priced case, with price consisting of P, P;, and P, ], given a quantity (S)) to be rationed.
Andif P, = P,; = 0, and assuming no portion of revenues is rebated to society, then (5) is
equal to expression (15) in Boyce for the welfare derived from a nontransferable lottery.
Thus, the differences across the literature in the welfare expressions are primarily in
the structure of price.

Similar to Boyce, we depict in figure 1 the lottery for a fixed supply of licenses in
applicant-value (N, V) space.’ Ordering the applicants for hunt j licenses, N;, by the value
each places on a license yields the demand curve for hunt j, denoted by V.. If the price
of a license (i.e., sum of the entry fee and license fee) is set by the agency at PjA (the
clearing price), the results are identical to that of an auction.® Consumer surplus would

® We have suppressed expected travel costs from this graphical depiction of the lottery. Since P,, differs across individuals
(unlike P, and P,), and its relation to V,, is unknown, it cannot be depicted conveniently in figure 1. However, average expected
travel costs would enter graphically by an amount added to the expected fees (P, + §,P,) that is equal to the averaged proba-
bility-weighted sum of total applicant expected travel costs.

% Note in figure 1 that for illustrative purposes we represent supply as a fixed curve. However, as both the quantity and
price are fixed in the lottery, there is no supply curve, but instead a single price-quantity point.
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Figure 1. The lottery for hunt j licenses

be equal to the area VjUAPJ-A in figure 1. Also, total revenues collected by the agency
would be the same under both allocation methods, depicted by the area PAAN 0.

However, if the price is set by the agency below the clearing price, say at P , a short-
age equal to N - S; licenses results. A lottery to allocate the S, licenses then 1mp11es a
probability of receiving a permit, §; < 1. Weighting V.by §; yields the function §,V;, corres-
ponding to the first term in (5). The lottery price, PJ , consists of the entry fee, P;, and the
license fee, P;, so the agency collects entry fee revenues equal to the area PLEN 0, and
license revenues equal to the area PLCDPL Assuming the expected net value obtained
by the last of the ordered applicants is zero, then consumer surplus derived from the S;
lottery-distributed licenses is equal to the area & VUB(PL +8;P;) in figure 1. Altering the
lottery prices will influence revenues collected, apphcatlons recelved and the welfare
obtained from participation. Similarly, altering the supply of licenses awarded (e.g., impos-
ing a quota) can be expected to influence revenues, applications, and consumer surplus.

In the New Mexico case for lottery-rationed elk hunts, there were several simultane-
ous policy changes. Our focus is on evaluating their effects on resident welfare (and agency
revenues). The next section turns to developing a demand modeling approach to explain
lottery applications received and the welfare generated through the rationing.

Empirical Analysis

Modeling Considerations

Big game hunting opportunities rationed through a lottery system can be described as
a quasi-private good (Boxall). An individual can only receive a single permit granting
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the right to hunt, and this permit cannot typically be traded in a competitive market.
The implication is that there are some nonmarket values attached to big game hunting
opportunities, and nonmarket measurement techniques must be pursued for demand
analysis. As detailed in the historical development of the travel cost literature on
nonmarket recreational goods, an important choice for the analyst is the decision to use
aggregate or individual-level data. The dominant trend over the last decade or more has
been to use individual-level data constructed from surveys.

The economic literature specific to lottery-rationed big game hunting is rather sparse.
In early work on demand analysis for lottery-rationed big game hunting, Loomis argued
that for a variety of practical and theoretical reasons the appropriate approach is to use
lottery applications rather than the realized hunts or trips. While Nickerson econo-
metrically examined total lottery applications across big game hunts, welfare was not
estimated due to the absence of a price proxy (i.e., a travel cost variable). Boxall provides
a strong argument for the use of RUMs to more accurately characterize behavior. The
single choice occasion of the lottery eliminates the need to link site choice to seasonal
trip demand, an issue of concern in the literature. Boxall also notes the problem of
handling zero observations in the traditional aggregate-model framework. However, as
Hellerstein (1991, 1995) discusses, the choice between individual and aggregate-level
data for recreational demand analysis involves tradeoffs between different types of
estimation biases that may be encountered. ’

The reliance on aggregate data in early zonal travel cost models was largely driven
by availability and statistical convenience; however, it introduced potential aggregation
biases and had weak behavioral foundations, relying on the assumption of the “repre-
sentative consumer model” (Hellerstein 1995).” With increasingly available micro-level
data from nonmarket valuation surveys, researchers now typically eschew aggregate
models and favor individual travel cost models or RUMs. However, individual-level
models come with the potential for sample selection and nonresponse bias (see Cameron,
Shaw, and Ragland) and often require the use of limited-dependent variable estimators
with strong distributional assumptions. For RUMs there is also the issue of choice set
definition. Boxall models lottery-rationed antelope hunts using a RUM with choice sets
fixed at eight hunts. In contrast, in our New Mexico case there are 215 annual elk hunts.
Inclusion of all hunts in the choice set when individuals consider less than the full set
can lead to biased parameter and welfare estimates (Peters, Adamowicz, and Boxall).?

Thus, the choice between aggregate and individual-level data is an open empirical
issue, and may well depend on the purposes of the study and available data. In simula-
tion studies of thisissue, both Kling and Hellerstein (1995) show that aggregate demand
models may be more reliable than individual-level models. With sufficient variation in
the dependent variable, aggregate models can perform relatively well for statistical
inference and estimating welfare values. Further, Hellerstein (1998) notes that the
richness of a data set with respect to the topic of interest may warrant its use, despite
limitations in other dimensions.

" Potential statistical biases in aggregate travel cost models for big game hunting have been recognized for over 25 years.
Brown and Nawas were concerned with the increased correlations among explanatory variables arising with aggregation,
and argued for disaggregation to reduce potential multicollinearity.

8 Choice sets may alternatively be defined through an aggregation scheme, by random draw, or through some nesting struc-
ture. Such approaches have the potential to introduce specification error, and the selection of an appropriate choice set
remains an unresolved issue.
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The lottery participation model given in (3) is comparable to that underlying the
random utility design (see, e.g., Ben-Akiva and Lerman, p. 101). Adding error terms and
defining individuals’ choice sets leads to a random expected utility model. The alterna-
tive discrete-value approach for estimating lottery demand and welfare is count data
modeling. Counts associated with discrete-choice occasions have been analyzed in select
contexts, including recreational demand modeling (see, e.g., Hausman, Leonard, and
McFadden; Hellerstein and Mendelsohn). A Poisson-distributed random variable results
when independent and identically distributed outcomes (i.e., zeros and ones) of a
Bernoulli random variable are summed over trials. Relaxing the assumption that the
trials are identically distributed (i.e., allowing the probability of “success” to differ
across trials) leads to a non-Poisson random variable. Draws from the underlying distri-
bution (Poisson or otherwise) can be conditioned on a set of explanatory variables and
parameters, and the latter robustly estimated using pseudo maximum-likelihood methods
(Gourieroux, Monfort, and Trognon). Further, unlike the traditional least squares models,
count models produce unbiased parameter estimates while accounting for nonpartici-
pation (e.g., zero observations) in the analysis (Hellerstein 1992).

Given the volume of annual hunts from which individuals may choose (215), and the
number of applicants to assign potentially erroneous choice sets (29,263 and 46,430 in
the 1996-97 and 1997-98 seasons, respectively), we adopt the count modeling approach
for analyzing lottery demand. To reduce the potential for aggregation biases, we develop
our model in a highly disaggregated fashion. Zones of trip origin are defined as residential
zip codes rather than, for example, the county or hunt level.® Counts on applications
from each zip code population (i) for each hunt (j) allow resident demand for each of
these hunts to be modeled. Combining for each season I = 273 residential New Mexico
zip codes and J = 215 annual elk hunts leads to 58,695 annual observations on appli-
cations. For nonresident applicants this approach is not feasible due to the volume of
combined Unites States zip codes and hunts. Further, the spatial limits of the model
(Smith and Kopp) may be exceeded in the nonresident case, regardless of the adopted
modeling approach.

Table 1 reports summary statistics on the dependent variable—lottery applications
for each hunt received from each residential zip code—including the frequencies of the
observations in the 1996-97 and 1997-98 seasons. Despite the volume of resident appli-
cations in both seasons, less than one application was received on average annually from
each zip code. However, mean applications increased by over 58% in the latter season.
The size of the standard deviation-to-mean ratio in each season (approximately 6.0) is
an indication of overdispersion, resulting from a preponderance of zero observations.®
The increase in applications in the 1997-98 season only slightly offsets the volume of
zeros. Overall, the frequency distributions have considerable mass near zero and long
right tails.

The count model we adopt is the generalized negative binomial (GNB), which accom-
modates overdispersed and heterogeneous data. It can also be readily used as a bench-
mark for testing several restricted and commonly used count models, such as the Poisson

® Frequencies, summary statistics, and estimation results for cbunty-levél applicant data are available upon request from
the authors. . .

1° The proportion of zeros in our data is comparable to that examined by others. Sixty percent of the 695 observations on
boating trips were zeros in Seller, Stoll, and Chavas’ data (used also in Ozuna and Gomez; Gurmu and Trivedi; and Saha and
Dong). About 75% of the 527 observations on beach visits were zeros in Haab and McConnell.
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Table 1. The Dependent Variables: Summary Statistics and Frequencies of
Lottery Applications per Zip Code

A, 1996-97 SEASON, APPLICATIONS PER ZIP CODE (N = 58,695)

4mmmmmmeeeeeeeeeo o~~~ FREQUENCIES -------=-=-=-—--—oooooooo >

0 1 2 3 4 5 6-10 11-25 26-50 51 Max

Obs. 51,372 3,005 1,458 810 481 342 717 379 101 30 196
Cum. 0875 0926 0951 0965 0973 0979 0.991 0.998 0.999 = 1.000

Mean = 0.499 Std. Dev. = 2.967

B. 1997-98 SEASON, APPLICATIONS PER ZIP CODE (N = 58,695)

R FREQUENCIES ----------===nommmmomooooe >

0 1 2 3 4 5 6-10 11-25 26-50 51 Max

Obs. 49,946 3,221 1,634 937 619 408 986 683 164 97 263
Cum. 0.851 0906 0934 0950 0.960 0.967 0984 0.996 0.998 1.000

Mean = 0.791 Std. Dev. = 4.854

and type I and type II negative binomial models (denoted by NB-I and NB-II, respec-
tively). Under the GNB approach, the quantity of lottery applications for huntj licenses
received from zip code i (Q;;) is assumed to be an NB distributed random variable." The
probability density function can be expressed as:

= = bt ’ _
(6) P(iji = Cj,i) = _—' Uiis Cii= 0,1,2,...,
where v;; is a gamma-distributed error term, and the remainder is the Poisson density,
where 6,;is both the Poisson mean and variance. Then, the NB density can be written as:

) Dle;; + ;) Vi | 0 |
, I‘(cj,i + l)I‘(yj’i) Y+ ej’i it ej’i

where I'(:) is the gamma density and y;; is a dispersion parameter. Following Cameron
and Trivedi, we conditionalize 6, ; = exp(x; ,f) and v, ; = exp(kx, ;B)/«, where x;; is a row
vector of £ explanatory variables and a constant term, B is the corresponding vector of
k +1 parameters to be estimated, and « and k are two additional parameters to be
estimated.

The roles of ¢ and k in the modeling are apparent upon deriving the conditional mean
and conditional variance. These moments are related such that:

®) Var(@,;|x,,) = E@;|x,,) + aE(@,|x, > = 0,, + ab’".

1We can use the Q;; disaggregation to differentiate our approach from previous aggregate demand approaches for lottery-
rationed big game huntmg Loomis modeled lottery applications for hunts for antelope, bighorn sheep, and buffalo by zone
of trip origin, i, using from 9 to 15 observations; the only explanatory variable evaluated was a travel cost variable (defined
on i). Alternatively, Nickerson modeled total lottery applications using observations on 368 elk hunts and 242 deer hunts;
explanatory variables included various hunt characteristics (defined on j), but not a travel cost variable.
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Note the ability of the GNB model to accommodate overdispersion, as Var(Q; |xj’i)>
E(Q; ;|x;,). The coefficient o is an overdispersion parameter, and the k parameter allows
therelation between the conditional mean and the conditional variance to take a variety
of forms. The % + 1 parameter Poisson model, with equal first and second (conditional)
moments, is obtained with the restriction «=0. The restriction k=1 leads to a linear
relation between the conditional moments and the %+ 2 parameter NB-I model; the
restriction k=0 results in a quadratic conditional moment relation and the % + 2 param-
eter NB-II model. The absence of these restrictions on « and « yields the highly flexible,
k + 3 parameter GNB model. The log-likelihood function of the GNB model is specified
as follows:

JxI 0, . 0..
9) Yy { lnl"(cj’i + —“—] - InI‘( i) - InT'(c;; + 1)
Ji=1 o o
.. .. 0.,
_ (cj,i + %) In( -@% + exj,iﬂ) + ¢ ,(x;,P) + —OJ"-’- (K(Xj’iﬁ) — lnoc) } ,
where 0, ; = 07, /0.

The appropriateness of the NB-I and NB-II models can be gauged by testing hypoth-
eses about k from the GNB model or with likelihood-ratio tests after estimating the
three models. Model performance can also be gauged by several goodness-of-fit criteria,
such as the consistent Akaike information criterion (see Gurmu and Trivedi) or Maddala’s
R? (see Maddala, p. 39).

Explanatory Variables

Table 2 presents definitions and summary statistics for the explanatory variables. These
include variables for hunt price, time and location, bag limit, weapon restrictions, the
probability of being drawn in the lottery, the probability of harvesting an elk (conditional
on being awarded a license), and average applicant age. To control for unequal popula-
tions across zip codes, we also include the logarithm of population as an explanatory
variable. As Boxall, McFarlane, and Gartrell note, the inclusion of this variable is
similar to weighting the dependent variable by the population, yet as a regressor it is
able to capture variation in the dependent variable.

The first and most substantive change occurring in the 1997-98 season was the
imposition of the nonresident supply quota guaranteeing residents 78% of the licenses
awarded for each elk hunt. The quota was designed, in part, to increase the number of
resident license holders. We construct the variable PROB to capture the effects of per-
ceived lottery odds, pre- and post-quota, on resident applications. As shown in table 2,
mean PROB increased by about five and one-half percentage points with the quota.

A key issue in the estimation of any recreational demand model without market
prices available is the construction of a price proxy. Typically this is a constructed travel
cost measure, where distance is assumed to be costly. Across aggregate models and
individual-level models, the literature contains a variety of specifications of travel cost.’

2 Examples from other aggregate demand models for big game hunting include: Nickerson, who excludes travel cost from
aggregate lottery participation equations; Sandrey, Buccola, and Brown, who include entry fees and mileage costs; and Balkan
and Kahn, who include mileage costs and opportunity costs, valued at one-third the hourly wage rate. For a recent review
of the opportunity cost of time issue and its treatment in travel cost models, see Feather and Shaw.
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Table 2. The Independent Variables: Definitions and Summary Statistics

Variable Definition 1996-97 1997-98

LNPOP Natural logarithm of population 6.93 6.93
(2.11) (2.11)

TC1 Lottery fee + license fee + $0.526 x round-trip miles, scaled 3.37 3.24
by 100 (1.31) (1.31)

TC2 Lottery fee + license fee + $0.526 x round-trip miles + 1/3 3.51 3.39
x average hourly wage, scaled by 100 (1.38) (1.38)

AGE Average applicant age, scaled by 100 0.40 0.40
(0.04) (0.04)

LICENSES Number of licenses to be drawn, scaled by 100 1.13 1.10
(1.10) (1.07)

PROB 1996-97: Ratio of LICENSES to 1995-96 applicants 0.57 0.63
1997-98: Ratio of 0.78 x LICENSES to 1996-97 resident (0.31) (0.30)

applicants '

HARVEST Ratio of elk harvest to total hunters in 1995-96 0.33 0.33
. (0.26) (0.26)

QUALITY 1 if “quality” hunt; 0 otherwise 0.13 0.13
: (0.34) (0.34)

BULL 1 if mature bull elk hunt; 0 otherwise 0.41 0.40
(0.49) (0.49)

BOW 1 if bow-only hunt; 0 otherwise 0.20 0.20
v (0.40) (0.40)

MUZZLE 1 if muzzle-loader-only hunt; 0 otherwise 0.15 0.15
(0.36) (0.36)

NOLIMIT 1 if unlimited license hunt; 0 otherwise 0.07 0.07
(0.26) (0.26)

MARQUEZ 1 if hunt includes the Marquez wildlife area; 0 otherwise 0.03 0.03
(0.18) (0.18)

HANDICAP 1 if impaired-hunter-only hunt; 0 otherwise 0.01 0.01
(0.12) (0.12)

SE 1 if hunt is in the southeastern quadrant of New Mexico; 0.05 0.05
0 otherwise (0.21) (0.21)

NW 1 if hunt is in the northwestern quadrant of New Mexico; 0.39 0.39
0 otherwise (0.49) (0.49)

OPENING 1 if opening week rifle hunt, bow hunt, or muzzle-loader hunt; 0.22 0.22
0 otherwise (0.41) 0.41)

HOLIDAY 1 if hunt occurs during Thanksgiving or the end of December; 0.04 0.04
0 otherwise (0.19) 0.19)

LAST 1 if hunt occurs during the final week of the season; 0.01 0.01
0 otherwise (0.12) (0.12)

Note: Numbers in parentheses are standard deviations.

As shown in table 2, we construct two alternative measures of travel cost (labeled TC1
and T'C2) to serve as price proxies in our aggregate models.”® TC1 is the sum of the lottery
entry fee, license fee, and an estimate of mileage costs; TC2 equals T'C1 plus an estimate

¥ Thus, an implicit assumption in the definitions of the travel cost variables is that applicants expect to take a single trip
if awarded a license. However, as Creel and Loomis note, given a bag limit allowing the harvest of a single animal and that
alicense is typically valid for a hunting season (e.g., multiple days or weeks), license holders may choose to take multiple trips.
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of the opportunity cost of time, valued at one-third of the average hourly wage rate.*
The decline in the means of the associated travel cost variables reflects a second policy
change: resident license fees were reduced by about 17% on average in the 1997-98
season.” A substitute-price variable is not included because, given the variety of hunts
around any particular hunt (in location and time), the choice of a substitute would be
ad hoc and expected to be highly correlated with the own-price variable.'®

Of the explanatory variables summarized in table 2, only PROB, TC1, and TC2 were
altered across the seasons. It is important to note that the third policy change, the
requirement that only the lottery entry fee was needed to participate, is not reflected
in the variables. Isolating the effect of this policy change requires the pooling of the
observations and controlling for all other cross-seasonal effects. After statistically
selecting an appropriate count model, we begin by examining the determinants of
lottery demand in the individual seasons. For completeness, we then proceed by pooling
the observations in order to further examine the effects of the altered, policy-relevant
variables on lottery applications.

Estimation Results

We begin by selecting a count model to examine the determinants of lottery demand.”
Table 3 reports the results of our model selection process.'® The four candidates are
the Poisson, NB-I, NB-II, and GNB models. Note in each case that the estimated o
is highly significant, so the null of Poisson (Hy: « = 0) is rejected. However, rejection
of a null does not imply the alternative is correct, as Saha and Dong emphasize in a
GNB context. Thus, we test the NB-I and NB-II conditional moment restrictions
(Hy: x =1, and Hy: x = 0, respectively) from the GNB model. For each season we reject
these restrictions in favor of the GNB model using asymptotic t-tests and likelihood-
ratio tests. The goodness-of-fit criteria also reported in table 3 suggest the GNB
model is superior, with the NB-I model providing the next-best fit. In conclusion, the
evidence in table 8 supports the use of the least restrictive specification: the GNB
model.*®

* We calculated miles traveled as the round-trip road distance between each residential zip code and the zip code associ-
ated with the hunt (CACY Marketing Systems), using the ZIPFIP program (Hellerstein et al.). This was multiplied by $0.526
per mile, an estimate of the cost per mile of operating an average American car in 1996 (U.S. Department of Transportation),
to arrive at an estimate of explicit travel cost. The opportunity cost of time is computed by dividing the 1990 census estimate
of the per capita income associated with each zip code (CACI Marketing Systems) by 2,000 to arrive at an estimate of the
hourly wage, and multiplying this by one-third to arrive at an estimate of the opportunity cost of one hour of time. This is
multiplied by the number of round-trip hours traveled, calculated as total miles driven at an average rate of 50 miles per
hour, to arrive at the total opportunity cost of travel time.

- 5 Resident license fees are a function of the bag limit. Fees for antlerless elk declined from $45 to $37, and for mature bull
elk from $75 to $60 in the 1997-98 season. .

'8 While applicants are allowed to select a first and second choice of hunt, about half choose a single hunt. Further, because
observations are defined for i, j combinations, if the second choice of hunt was for the same location (but different time of the
season) or nearby, then the own- and substitute-price proxies would be highly collinear.

" We also attempted to estimate the model proposed by Haab and McConnell; in each case, the model failed to converge.
Double-hurdle models generally use individual characteristics to distinguish between zero and nonzero observations. In our
zonal context, however, individual characteristics can be included only as zip code averages. The GNB model accommodates
zero observations without the behavioral foundation implicit in the hurdle models.

'8 For brevity, we report the results of our model selection process for the specifications using TC1, as estimation results
using this proxy are superior to those using the TC2 price proxy.

1 Estimation results for the NB-I and NB-II models are available upon request from the authors.
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A. 1996-97 SEASON (N = 58,695)

Generalized Type I Type II
Description Negative Binomial Negative Binomial Negative Binomial
X 0.638* [k =1.0] [k =0.0]
(26.23)
o 4.332% 4.961% 3.947*
(34.67) (24.64) (31.23)
LnL -29,485.14 -29,772.04 -30,492.99
CAIC 59,221.86 59,783.68 61,225.59
Maddala’s R? 0.236 0.229 0.209

Selection Tests from the GNB Model:
t-test for NB-I [H,: x = 1], ¢{=15.08*
t-test for NB-II [H,: k = 0], ¢ = 26.23*

LR test for NB-I [Hy: x = 1], ¥* = 573.80*
LR test for NB-II [H,: k = 0], »* = 2,015.70%

B. 1997-98 SEASON (N = 58,695)

Type II

Generalized Type I
Description Negative Binomial Negative Binomial Negative Binomial
K 0.634* [k = 1.0] [x =0.0]
(25.56)
o 5.823* 7.811%* 4.614*
(31.44) (25.43) (31.79)
LnL : -36,376.64 -36,758.62 -37,795.71
CAIC ) 73,004.86 73,756.85 75,831.01
Maddala’s R? 0.261 0.251 0.224

Selection Tests from the GNB Model:
t-test for NB-I [Hy: x = 1], ¢ = 14.64*
t-test for NB-II [H,: x = 0], ¢ = 25.56*

LR test for NB-I [H,: x = 11, = 763.96*
LR test for NB-II [H: x = 0], y* = 2,838.14*

Notes: An asterisk (*) denotes the estimate or test statistic is significantly different from zero at the 1%
level. Numbers in parentheses are t-scores. Numbers in brackets are the implied restrictions on the GNB
model. The LR test statistic is defined as -2(LnL¥ - LnLV), where R refers to the restricted model (NB-I
or NB-II), and U indicates the unrestricted GNB model. The CAIC (consistent Akaike information criterion)
statistic is defined as -2LnLY + (& + 1)[Ln(N) + 1], where & is the number of independent variables, and N
is the number of observations. Maddala’s R? is defined as 1 - (LY/LR)*N,

Table 4 presents the estimation results for the GNB lottery demand models.* Overall,
the models perform quite well. Consider first the effects of the policy-relevant variables
(TC1, TC2, and PROB) on applications in each season. The estimates on the price proxies,
TC1 and TC2, are of the expected sign, though statistically different in each season at
the 10% level. However, the models are robust to the alternative definitions of travel
cost, as the remaining estimates do not statistically differ across the specifications in

2 We tested for multicollinearity using the condition number method (see, e.g., Kmenta, p. 439). The test uses the ratio
of the largest-to-smallest characteristic roots of the determinant of the moment matrix, X'X; a condition number greater than
30 is a sign of substantial multicollinearity. The condition numbers for our set of explanatory variables are 26.64 and 25.94

in the 1996-97 and 1997-98 seasons, respectively.
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-Table 4 Generalized Negative Binomial Estimates of Zip Code-Level Appli-
cations, 1996-97 and 1997-98 Seasons (N = 58,695)

1996-97 1997-98

Variable Estimate ¢:Score  Estimate ¢-Score = Estimate #-Score Estimate #-Score

CONSTANT  -5.348%** -34.35 -5.446%** -35.78 -4.904%** -35.49 -4.994%**  -36.08

LNPOP 0.722%**  70.29 0.728***  70.71 0.680***  §7.77 0.686***  68.19
TC1 -0.708%** -39.69 — — -0.749%**  -41.66 — —

TC2 — — -0.661*** -39.25 — — -0.701%**  -41.24
AGE 0.332 1.22 0.353 1.36 0.344 1.51 0.365 1.60
LICENSES 0.656%+* 4434 0.655***  44.30 0.725%**  42.76 0.724***% 42,59
PROB -0.792%**  -13.69 -0.789*%** -13.66 -0.497%** 827 -0.498***  -8.06
HARVEST 0.3974* 6.80 0.395%#* 6.77 0.717*%*  13.61 0.716%**  13.57
QUALITY 0.222%*+* 5.02 0.221 %% 4.99 0.903***  23.91 0.901***  23.86
BULL 0.062* 1.89 0.050 1.52 0.245%%* 7.73 10.236%+* 7.30
BOW -0.282%**  -4.85 -0.204%%*%  -5.05 -0.742%** -12.08 -0.750%*** -12.31
MUZZLE 0.104%* 2.44 0.101** 241 -0.270%*  -6.76 -0.271%%%  -6.82
NOLIMIT -0.631*%**  -9.02 -0.641%**  -9.16 -0.008 -0.27 -0.016 -0.25

MARQUEZ 0.484*#* 7.41 0.486%** 7.45 0.415%#* 6.24 0.416%+* 6.25
HANDICAP 0.295%* 2.37 0.281%* 2.26 -0.252%* -2.30 -0.263%* -2.37

SE 0.23 7% 3.46 0.238%%* 3.47 0.27 14k 4.18 0.271%#* 4.20
NW -0.531%** -15.28 -0.530%** -15.25 -0.626%** -18.36 -0.625%** -18.28
OPENING -0.337***  -7.27 ~0.337#**  .-7.27 -0.055 -1.16 -0.055 -1.22
LAST 1.384%%*  15.07 1.381%**  15.02 0.81 1+ 9.06 0.810%** 9.02
HOLIDAY -0.614%  -550 -0.611%**  -548 -0.385%**  -4.12 -0.382%**  -4.09
o 4.332%**  34.67 4.349%*% 3473 5.823***  31.79 5.838%+*  31.89
X 0.638***  26.23 0.638***  26.29 0.634%** 2556 0.633%**  25.57
LnL -29,485.14 -29,525.93 -36,376.64 -36,418.37
Maddala’s R? 0.236 0.235 0.261 0.259

Note: Single, double, and triple asterisks (*) denote the estimate is significantly different from zero at
the 10%, 5%, and 1% levels, respectively.

each season. The estimated coefficients on PROB are significantly negativein all regres-
sions. This finding suggests that applicants systematically prefer “long shots” in the
lottery, all else constant. A plausible explanation is that perceived probability may
proxy hunt attributes absent from our set of explanatory variables, such as measures
of remoteness and geography.

Also of note, LICENSES is positively related to applications in both seasons, perhaps
serving as an indicator of the sizes of the elk herds. QUALITY hunts are relatively desir-
able, and particularly so in the 1997-98 season. Similarly, mature bull hunts (BULL)
had a more sizable positive effect in the 1997-98 season. The marginal applicants in this
season may have largely favored these two classes of hunts. The variable AGE is con-
sistently an insignificant determinant, perhaps lacking sufficient variation given that
the average of applicant age is used when the corresponding dependent observations
are zero. The estimated coefficients on BOW are significantly negative in all cases,
suggesting that the number of applications for hunts allowing use of a firearm are
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distinct from these primitive-weapon hunts. Considering location, hunts in the Capitan
Mountains of south-central New Mexico (SE) received significantly more applications
in both seasons. Only 10 of the 215 annual hunts are in this region, and generally these
hunts are perceived as remote and uncongested—both favorable attributes. Alternatively,
NW hunts received significantly fewer applications. Early season hunts (OPENING) and
hunts during Thanksgiving and the end of December (HOLIDAY ) received significantly
fewer applications. The final annual hunts (LAST), beginning in mid-March, more than
two months after all other elk hunts have concluded, received significantly more appli-
cations. .

In summary, the GNB results reported in table 4 demonstrate that lottery applica-
tions are influenced by a variety of elements. The specifications including the price
proxy of explicit costs, TC1, slightly outperform those including T'C2. Also, likelihood-
ratio tests indicate the estimates jointly differ across the seasons. The question arises
regarding the dimension in which the seasons differ. Testing the equality of the
1996-97 season estimates with the corresponding 1997-98 season estimates, we reject
the null of equality at the 10% level or less in all cases except TC1, AGE, MARQUEZ,
and SE. ~

Because the third policy change, the entry-fee-only requirement, is not reflected in
the explanatory variables, we examine its effect with a pooled regression. A variable,
TIME, is created that takes the value of zero in the 1996-97 season, and the value of one
in the 1997-98 season. Interaction variables are also created by multiplying TIME by
each explanatory variable to control for all other cross-seasonal effects. Table 5 reports
selected pooled estimates. Of note, the positive coefficient on TIME suggests that after
controlling for all other influences, more applications are associated with the 1997-98
season. To the extent that the variables reflect the components of the lottery system
altered by the policy changes, we conclude that these determinants had significantly
different effects on resident applications across the two seasons.

Evaluating the Effects of Policy Changes

In this section, we estimate consumer (applicant) surplus from the 1996-97 and 1997-98
lotteries. Consumer surplus estimates from the proposed measure [given by (5) and
depicted graphically in figure 1 by the area below 6,V; and above P, + §,P,] are compared
to those from the traditional Marshallian measure (which assumes 0, = 1). Thus, com-
parisons are made across approaches and seasons and dollar values assigned to the
three policy changes affecting the 1997-98 season. As noted earlier, the policy changes
have implications for lottery revenues, so we also report resident entry fee revenues and
license revenues in both seasons.

For a given specification of demand to be used in calculating nonmarket values, an
assumption is needed about the source of the error component in the regression model.
Bockstael and Strand show that consumer surplus calculations from regression estimates
may differ between the error assumption of omitted variables and that of measurement
error. We estimate consumer surplus following the conservative standard of assuming
measurement errors.

~ Following (5) and figure 1, the empirical measure of expected consumer surplus that
accounts for the rationing of the licenses by a lottery is:
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Table 5. Generalized Negative Binomial Estimates of the Policy-Relevant
Parameters and Their Seasonal Interactions: Pooled Regression

Variable Estimate t-Score Interaction Variable Estimate t-Score
PROB -0.780%* -18.65 PROB+TIME 0.272%* 3.26
TC1 -0.709%*  -41.57 TC1+TIME -0.043* -1.89
TIME 0.440%* 1.94 — — —

o 5.138%* 46.32 —_ — —

X 0.628%* 35.17 — — -
N 117,390

LnL , -65,922.94

Maddala’s R? 0.250

Note: Single and double asterisks (*) denote the estimate is significantly different from zero at the 10%
and 1% levels, respectively.

U
(10) E«BMW):fo 8 e dx,g,

= ulottery ’
PLrdfFyeFy))

The surplus estimate is obtained by substituting the GNB estimates of B into (10) and
selecting upper and lower limits of integration and a §; value. We choose infinity as the
upper limit, and the sum of the entry fee (P, = $6) and the mean of TC1 (net P,) weighted
by the mean of PROB (reported in table 2) as the lower limit. The remaining explanatory
variables are set equal to their sample means, resulting in the vector x,. The estimate
of consumer surplus derived from the lottery is then given by:

e*b
0,Brc:
We compare estimates obtained from (11) to those produced by the traditional Marshal-
lian surplus measure. In the latter case, 8; = 1, so the uncertainty associated with
receiving a license is absent. With respect to (10), this leads to an empirical equivalent
of the Marshallian consumer surplus. The upper and lower integration limits are equated
to infinity and mean T'C1, respectively. The remaining explanatory variables in x are

set equal to their sample means, resulting in the vector x,,. The estimate of consumer
surplus in this “market” setting is then:

(11)

11lottery -

x,,f
(12) =-£7

Mporket ~

TC1

Note that it is unclear whether (11) or (12) will yield larger estimates, since 8; enters
both the numerator and denominator in (11).

Considering the aggregate setting, consumer surplus is defined for observations on
applications from a zip code i to a hunt j, and may be interpreted as the net value of the
opportunity of receiving a license in an average hunt by residents from an average zip
code. To place monetary values on the change in total resident welfare across the two
seasons, we multiply (11) and (12) by the total number of annual observations.
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Table 6. Expected Resident Consumer Surplus and Lottery Revenues, 1996-97

and 1997-98 Seasons

Description 1996-97 1997-98 % A

Lottery-Rationed Consumer Surplus® $57.72% $71.71* +24.2
(2.12) (3.00)

Total Consumer Surplus® $3,387,875 $4,209,019 +24.2

Hypothesis Tests [Hy: Hy996.97 = Miog7.0s] z = 3.80* ¥ = 219.24%

Marshallian Consumer Surplus® $12.01* $18.72% +55.9

(0.65) (1.08)

Total Consumer Surplus® $704,927 $1,098,770 +55.9

Hypothesis Tests [Hy: 1995 o7 = Pyg97-08) z = 5.30* x? = 187.95%

Lottery Revenues: $1,369,152 $1,377,358 +0.60
Entry Fee Revenue $178,692 $282,372 + 58.0
License Fee Revenue $1,190,460 $1,094,986 - 8.0

No. of Resident Applicants 29,782 47,062 + 58.0

No. of Resident License Holders 17,998 19,951 +10.9

Notes: An asterisk (*) denotes the estimate is significant at the 1% level. Standard errors are reported in
parentheses.

®The estimates are calculated from equation (11).
bThe total is calculated by multiplying the respective zip code estimate by N = 58,695 annual observations.
¢ The estimates are calculated from equation (12).

The standard error of estimated consumer surplus calculated under either approach
is given by the square root of:

(13) v Estimated Var()) = f A

ap g a[i
where f denotes (11) and (12) in the lottery case and market case, respectively, and 23 the
{19x19} covariance matrix of estimates.

Table 6 reports the estimated values of average and total consumer surplus and the
accompanying standard errors calculated using both approaches for the 1996-97 and
1997-98 seasons. In all cases, the estimates are significantly different from zero at
the 1% level. However, the t-statistics of the lottery-rationed estimates are about 50%
larger than those of the Marshallian measure. Testing the equality of the estimates
(Hy: My906-07 = Miger-0s), We reject the hypothesis in both cases using a z-test and a Wald
test (see, e.g., Kmenta, pp. 492-93).”> Annual estimates of total resident surplus are
obtained by multiplying the zip code estimates by N = 58,695 observations. The
proposed measure of lottery surplus produces larger estimates of total surplus. However,

! The Wald statistic is as follows, distributed as y* with one degree of freedom:

Jarl e af| I
5 |5
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the percentage increase across the seasons is less than half of that predicted by the
Marshallian measure.?

Table 6 also reports lottery revenues collected from residents in the two seasons.
Total revenue collected from residents increased by less than 1% in the 1997-98 season.
The percentage reduction in license fees exceeded the percentage increase in resident-
awarded licenses, so license revenues necessarily declined.?? However, resident entry
fee revenues increased with the substantial increase in applications, offsetting the lost
license revenue.

Of final note from table 6, the relative number of resident license holders to resident
applicants declined considerably in the 1997-98 season. Although the nonresident
license quota guaranteed an increase in the number of resident license holders, the 58%
increase in resident applications in the 1997-98 season exceeded the increase in
resident-awarded licenses and reduced resident odds of being awarded licenses in the
majority of the elk hunts.

Conclusions

Lotteries are commonly used by state game management agencies to distribute fixed
numbers of big game licenses across resident and nonresident hunters. Several policies
effective in the 1997-98 hunting season in New Mexico were designed to increase resi-
dent participation in the lottery and the number of resident license holders. Modeling
the demand for these quasi-private goods and estimating the accompanying nonmarket
values requires that applicant data, rather than trip data, be examined, and the
uncertainty of the lottery accounted for. Using resident applicant zip codes as the points
of expected trip origin, we estimate multi-site lottery demand for the entire set of 215
annual hunts before and after the policy changes. Given the discreteness of lottery appli-
cations and overdispersion due to “excess zeros,” we use the highly flexible generalized
negative binomial regression model. Two welfare measures are estimated: Marshallian
surplus and a proposed measure that incorporates consumer uncertainty. The Marshallian
measure produces smaller and slightly less precise estimates. However, regardless of
the surplus measure examined, welfare increased significantly with the policy changes,
while there was less than a 1% change in lottery revenues.

As afinal caveat, it can be expected that individual-level demand models will remain
the preferred modeling choice in most nonmarket valuation applications. However, as
recognized by Hellerstein (1991, 1995) and others, there are tradeoffs between individual
and aggregate-level demand models, and some applications may warrant the latter. In
this study, given a rich data set and the dimensions of site choice, we illustrate the use
of count data travel cost models for evaluating policy changes to a lottery system for
rationing recreational opportunities.

[Received February 1999; final revision received May 2000.]

2 The welfare analysis was also performed using county data. Similar to that from the zip code data, the Marshallian
measure produces smaller estimates of total consumer surplus for both seasons and a larger percentage increase in the
1997-98 season. In all cases, the estimates produced from the county data are approximately 50% larger than those of the
zip code data. Results are available upon request from the authors.

# License revenues declined from 86.9% of lottery revenues in the 1996-97 season to 79.5% of lottery revenues in the
1997-98 season. '
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